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ABSTRACT

Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and
processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the
Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide
the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a
train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in
neuroscience.

To address this challenge we start by explicitly modeling the space of odorants using constructs
of both semantic and syntactic information. Odorant semantics concerns the identity of odorants
while odorant syntactics pertains to their concentration amplitude. These odorant attributes are
multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory
systems must address is how to disentangle the odorant semantic information from the odorant
syntactic information.

To address the untanglement problem we devised an Odorant Encoding Machine (OEM)
modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing
stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models
of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded
DNPs.

By extensively modeling and characterizing the processing of pure and odorant mixtures in
the Calyx, we seek to answer the question of its functional significance. We demonstrate that
the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant
concentration, thereby separating odorant semantic information from syntactic information. We
then advance a code, called first spike sequence code, that the KCs make available at the output
of the Calyx. We show that the semantics of odorants can be represented by this code in the
spike domain and is ready for easy memory access in the Mushroom Body compartments.
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1 INTRODUCTION

Odor signal processing in the olfactory system of diverse organisms is the result of millennia of convergent
evolution (Gire et al., 2013} /Ache and Young, [2005). Unlike other sensory systems such as the visual
system, the odor processing pathways are not embedded within topographically organized circuits (such
as retinotopy in visual systems (Sanes and Zipursky, 2010)). Instead, olfactory circuits are organized
non-topographically (Mombaerts, [1999; Buck, 2004} Shepherd, 2004; |Cleland and Sethupathyl [2006),
and their affinities (Buck and Axel, 1991} |Firestein, |2001) to given odorant molecules directly encode the
identities of the said stimuli. This unique sensory characterization of the olfactory stimulus space also led
to a highly efficient odor signal processing neural circuit.

In Drosophila Melanogaster, about 40% of the total neural real estate is dedicated to processing visual
signals (Barish and Volkan, |[2015), while less than 5% is dedicated to processing olfactory inputs (Scheffer
et al.,[2020; Masse et al., 2009; Bushdid et al., 2014). Neverthless, Drosophila have remarkable olfactory-
based foraging, mating, and predator avoidance (Wilson and Stevenson, 2006; Vosshall and Stocker, 2007)
capabilities. Given the rich olfactory-related behavior repertoire of Drosophila (Boto et al.,|2023; Benton,
2022; Vosshall and Stocker, 2007; Zheng et al., 2017), its well-mapped olfactory neural circuit (Benton,
2022) and powerful genetic tools (Boto et al.,|2023), its olfactory system serves as the ideal platform for
unraveling the mysteries of olfactory processing.

In the fruit fly, natural odorant scenes (see Figure [T first column) are first sensed in the Antenna and
Macxillary Palps by the dendrites of thousands of Olfactory Sensory Neurons (OSNs), each expressing a
single olfactory receptor (OR) type (Vosshall,2000) (see Figure[I second column). The second layer of
olfactory sensory processing is the Antennal Lobe (AL, see Figure|l|third column). OSNs expressing the
same OR type typically project their axons into a single glomerulus, a dense connectivity region in the
AL. The dendritic trees of Projection Neurons (PNs) typically also innervate a single glomerulus. A large
number of Local Neurons (LNs) shape the I/O of the AL circuit (Lazar et al.,|2022). PNs project their

Lateral

Maxillary
Palp

Natural Odorant Scene Antenna Antennal Lobe

Figure 1. Odorant mixture processing pathways of the Early Olfactory System of the fruit fly. A natural
odorant scene (left) may consist of many odorant mixtures, including ripe and unripe tomatoes, and
peppermints that repel flies. Odorant mixtures are sensed by the Olfaction Sensory Neurons (OSNs)
whose dendrites are located on the Antenna and Maxillary Pulps (2nd to left, adapted from |[Fabian and
Sachse| (2023), under Creative Commons Attribution License (CC-BY)). OSNs project their axons into the
Antennal Lobe (AL) (white ellipse in 3rd to left). AL is innervated by a large number of Local Neurons
(LNs, white transparent). Projection Neurons (PNs) (colored neurons), the outputs of the AL, send their
axons to the Calyx (green ellipse in 3rd to left) and the Lateral Horn (yellow ellipse in 3rd to left). In Calyx
(right most), PNs (colors other than red and white) provide inputs into Kenyon Cells (KCs) (red). The
Calyx is also innervated by the APL neuron (white transparent) that interacts with the KCs. For interactive
3D visualization of the connectome of the AL and Calyx, see NeuroNLP (2024a) and [NeuroNLP (2024b).
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axons to the Mushroom Body Calyx and/or the Lateral Horn (see Figure|[I third column top and fourth
column). In the Calyx, some 50 types of PNs synapse onto 2,000 Kenyon Cells (KCs), a rapid expansion of
the number of neurons (Modi et al., 2020). A key circuit element in the Calyx is the giant Anterior Paired
Lateral (APL) feedback neuron receiving input from all KCs. The third and fourth columns in Figure |I|can
also be viewed online as interactive 3D visualizations provided by the Fruit Fly Brain Observatory (Ukani
et al., (2019, [2024). The URLs can be found in [NeuroNLP (2024a) and NeuroNLP (2024b).

There has been an extensive amount of work in discerning the odorant identity and concentration in the
olfactory system of the fruit flies, other insects and vertebrates. It has been shown that odors typically retain
their perceptual identities over a range of concentrations (Blazing and Franks, 2020a). In Drosophila, the
same odorant may recall the memory associated with the odorant over more than an order of magnitude of
concentration amplitude values (Masek and Heisenberg, 2008)).

Concentration-invariant representation of odorant identity has been proposed at almost every stage of
the olfactory circuit, in the Antenna (Egea-Weiss et al.,[2018)), in the Antennal Lobe (or Olfactory Bulb in
vertebrates) (Stopfer et al., 2003; Wilson et al., 2017;|Chong et al., 2020; |Lazar et al., 2023) and at the KC
level of the Mushroom Body (or Piriform Cortex in mammals) (Stopfer et al.,[2003; Bolding and Franks),
2018). These studies assumed, however, that the odorant identity is known. In other words, odorant identity
has been viewed akin to labels used in supervised learning. A major goal has been to record from the neural
activity arising at different stages of the Early Olfactory System and to examine when the recorded signal
can be used to increase the accuracy of identifying or classifying odorants (Egea-Weiss et al., 2018; Jeanne
and Wilson, 2015; Stopfer et al.,|2003). These approaches do not reveal, however, the functional logic of
the underlying neural circuits.
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Figure 2. The architecture of the Odorant Encoding Machine (OEM) modeling the early olfactory system
of the fruit fly. The OEM consists of a cascade of spatio-temporal divisive normalization processors each
modeling the Antenna, Antennal Lobe and Calyx. All odorants in a mixture are sensed and encoded by a
molecular Odorant Transduction Process (OTP) of each OSN type. Each OSN type then provides input to
an AL channel (glomerulus) with a Projection Neuron (PN) as channel output. 3 types of local neurons,
Presynaptic Local Neurons (Pre-LN), Postsynaptic excitatory LN (Post-eLN) and Postsynaptic inhibitory
LN (Post-iLN) are modeled as 3 types of differential divisive normalization processors. The Calyx features
an expansion of PN to KC connectivity, as well as a DNP circuit consisting of the KC dendrites, KC
biological spike generators and the APL spatio-temporal feedback neuron.
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In previous work, we proposed computational models for mono-molecular odorant encoding and
processing in both the Antenna (Lazar and Yeh, 2020) and the Antennal Lobe (Lazar et al., 2023).
We advanced a model of olfactory objects of the odorant space that explicitly describes both their identity
(odorant semantics) and their concentration amplitude (odorant syntax). Our model of the Antenna then
encodes a multiplicatively-coupled representation of the semantic and syntactic information streams,
resulting in a confounding representation that is disentangled by the inhibitory and excitatory Local
Neurons of the Antennal Lobe. Both models of the Antenna and the Antennal Lobe reproduce with a very
high precision the experimentally obtained physiological responses of the Olfactory Sensory Neurons
(output neurons of the Antenna) and Projection Neurons (output neurons of the Antennal Lobe) (Kim
et al., 2011, 2015). Importantly, by developing a model of the Antennal Lobe that recovers the odorant
identity information from the confounding representation of the Antenna, we showed that the functional
significance of the Antennal Lobe (in particular its highly diverse inhibitory Local Neurons) could be to
separate the odorant semantics from syntax, thereby undoing the multiplicatively coupled odorant encoding
in the Antenna (see also Figure [2)).

To emphasize, the novelty of our approach rests on explicitly modeling the space of odorants using
constructs of both semantic and syntactic information, a subtle but profound distinction from the existing
literature that solely invokes methods of traditional syntactic information processing. These prior works
focused on methods of processing odorant concentration, with odorant identity mentioned in passing and/or
lacking computational or theoretical rigor. However, when it comes to understanding the functional logic of
olfactory circuits, processing odorant concentration alone turns out to be, as we argue here and elsewhere,
a major limitation. Our present work extends the I/O modeling and characterization of semantic/syntactic
information processing that we obtained for the Antenna and Antennal Lobe to the MB Calyx circuit. We
show how the Calyx extracts and represents semantic information in the spike domain.

The first three layers of the Early Olfactory System depicted in Figure[I are modeled as the Odorant
Encoding Machine (OEM) shown in Figure 2| (Lazar et al., 2020a). The architecture of the OEM consists
of three cascaded Divisive Normalization Processors (DNPs), a spatio-temporal extension of the static
divisive normalization model previously analyzed by (Olsen and Wilson, 2008; Carandini and Heeger,
2012} |Lazar et al., 2020b; Lazar and Zhou, 2023)). Note that in vision, it has been recently shown that the
motion detection pathway of the early visual system of the fruit fly can also be modeled as a cascade of
DNPs (Lazar et al., 2020b; |Lazar and Zhou, [2023), suggesting that DNPs as building blocks of computation
can be combined to realize more complex processing in the fruit fly brain.

In the current work, we seek to answer the question regarding the functional significance of the Mushroom
Body Calyx, the last building block of the OEM cascade shown in Figure [2. Note that in the MB Calyx
most of biological real estate is devoted for re-representing odorant identities - with, on average, 40 Kenyon
Cells in the Calyx for each 1 Projection Neuron type in the Antennal Lobe. While previous studies have
explored the Calyx’s role in associative learning (e.g.,[Heisenberg| (2003))), our focus shall be on modeling
the pre-associative representation of odorant identity and exploring how semantics of pure and odorant
mixtures are coded for memory access by the Mushroom Body. By (i) abstracting the structural connectome
datasets into executable circuit diagrams, and by (ii) focusing on the exploration of the functional logic of
the underlying circuits, we follow here the workflow established in Lazar et al. (2021)).

This paper is organized as follows. In Section [2| we present the architecture of the OEM. We review the
model of the space of odorants and the input/output (I/O) model of the Antenna and Antennal Lobe. The
model of the Calyx is detailed next. In Section 3| we extensively characterize and evaluate the processing of
pure and odorant mixtures in the Calyx. The KC generated spike train at the output of the Calyx, called the
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first spike sequence code, represents the odorant identity made available to the Mushroom Body memory
circuit. In Section 4] we conclude with a brief discussion.

2 ODORANT ENCODING MACHINE

A schematic diagram of the Odorant Encoding Machine (OEM) is shown in Figure [2| In what follows we
describe the 4 cascaded building blocks of the OEM, respectively, modeling the space of odorants (see
section , the molecular encoding of mono-molecular odorants and odorant mixtures in the antenna (see
section @), the I/0 modeling of the antennal lobe (see section @) and the I/O modeling of mushroom
body calyx (see section [2.4).

2.1 Modeling the Space of Odorants

Receptors
25ePie

¢¢¢¢¢¢¢¢¢¢¢¢

Figure 3. Modeling the space of mono-molecular odorants. Elements of the odorant space are defined by
the tensor of odorant-receptor binding rate, dissociation rate and concentration amplitude (b, d, u(t)). For
a given neuron n = 1, 2, ..., N, the binding rate and dissociation rate values are, respectively, denoted by
[blron and [d]yon, forall r = 1,2, ..., R, and 0 = 1,2, ..., O. Single and/or odorant mixtures interact with
the receptors expressed by the Olfactory Sensory Neurons in the Antenna (right).

The space of mono-molecular odorants (see also Figure[2] left) was first formally modeled and biologically
validated in|Lazar and Yeh (2020). In this model, the Odorant Transduction Process (OTP) taking place
in the cilia of the Olfactory Sensory Neurons (OSNs) (see also Section @) encodes odorants as objects
defined by the tensor of binding rates, dissociation rates and concentration amplitude (b, d, u(t)). Tensors
are multidimensional arrays that generalize the concept of vectors (1-dimensional arrays) and matrices
(2-dimensional arrays). They provide a complex representation of complex data. Here b and d are 3-
dimensional tensors (see Figure [3), with each of the three dimensions representing O odorants, R receptors
and N OSNs expressing a receptor. Each entry [b],on, [d]on describes binding/dissociation rates for n-th
OSN expressing receptor r to odoranto,n € 1,--- ,N,r € 1,--- /Rando € 1,--- ,0. The entry [u],(t)
is the concentration waveform of odorant o, 0 € 1, --- | O (see also Figure [3).

With this odorant object model, the semantics of the space of mono-molecular odorants (Lazar et al.,
2023)) is defined by the 2-tuple of binding/dissociation rate tensors (b, d), fully characterizing the identity
of the odorant object given the set of olfactory receptors. The syntax of the space of mono-molecular
odorants is characterized by the vector of concentration waveforms [u](¢). More details regarding the
encoding of mono-molecular odorants by the OSNs is given in|Lazar and Yeh (2020) and in the next section
below.

Frontiers 6
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2.2 Modeling Odorant Encoding in the Antenna

In order to study pure and odorant mixture processing in the Mushroom Body, we first extended our
model of the Antenna to account for competitive binding of mixture of odorant molecules (Nagel and
Wilson, 2011;|Olsen et al., 2010).

Odorant molecules are first sensed in either the second-segment of the Antenna or Maxillary-Palp (see
Figure |I 2nd column) that are both covered with sensory hairs, called sensilla. Cilia (dendrites) of a few
OSNs are housed in each sensillum. Odorants that enter sensilla through the pores on its surface are
subsequently transported to the Odorant Receptors (ORs) located on the OSN sensory cilia (Larter et al.,
2016). Odorant molecules then bind to the ORs and induce the OSN to generate action potentials. This
process is modeled here as the Olfactory Transduction Process (OTP) (see also Figure [4)).

We start by briefly reviewing the OTP for a single mono-molecular odorant. The output of the peri-
receptor process, that models the overall effect of odorant molecules entering the sensilla before binding to
ORs (see also Figure ), is given by [Lazar and Yeh (2020)

Vo (0= Re ([ 0t = lula(s)ds + Bl [ hle = )dia(s)) M)

where [u], is the concentration of the odorant o, [v], . is the concentration profile of the odorant o at
receptor r expressed by the OSN n. Re above denotes the rectification function and h(¢) is the impulse
response of the peri-receptor process.

The bound-receptor model describes the dynamics of binding of odorant molecules to the ORs (see also
Figure[d) and is given by

% [Xl]ron = [b]ron [V]ron (1 - [Xl]ron) - [d]ron ) [Xl]rorw 2)

where [x1],,,, (bounded between 0 and 1) is the ratio of the ligand-bound receptors bound to the mono-
molecular odorant o. In steady-state,

(], [V]
[Xl] — ron ron , (3)
ron [a]TOTl [V]TOTI + 1
where [a],,, = Eﬂ denotes the odorant affinity. For more details regarding the modeling and biological

validation of the n{gflo—molecular OTP, see|Lazar and Yeh (2020).

To study odorant mixture representation and processing, we now extended the OTP model to odorant
mixtures. In the odorant mixture model, we denote the set of mixture components as O and assume that the
odorant components are independent of each other during the peri-receptor process. Receptor r expressed
by neuron 7 can be bound by different odorant components in the mixture, and the ratio of receptors bound

by odorant o, denoted as [x1],.,,, is described by
d
dt [Xl]ron = [b]ron [V]ron (1- Zpe@ [Xl]Tpn> - [d]ron ) [Xl]ron ,0€0. 4)

Frontiers 7
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Figure 4. Schematic diagram of the Olfactory Transduction Process for a set O of odorant mixture
components, o € O. The OTP has 3 stages. In the first stage, also known as the active receptor model,
each odorant mixture component is processed by a peri-receptor process followed by a feedback controlled
receptor binding process that depends on the receptor binding of the other odorant components. The output
of the bounded receptor generator is then fed into the second stage, the co-receptor channel model that
generates the transduction current. Finally, a biophysical spike generator model converts the transduction
current into a spike train. Refer to Table|l|for the mathematical notation.

Eq. (4) models the syntopic interaction between odorants in the mixture and the receptor (Rospars et al.,
2008). Note that if only one odorant o is present in the mixture, Zpe(’) [Xl]rpn simply reduces to the single

term [x1],,,, as in Eq (2).

It is easy to see that by summing up the equations in (4) over all the odorants present in the mixture, the
ratio of the total bound receptors in steady-state amounts to

x — > 0co @ron [Vron
ZOEO [ 1]1"011 ZOGO [a]mn [V}Ton + 1’ (5)

and the steady-state solution to the set of equations in (4)) is

[a],.on [V]
ron LY lron ] 6
peO [a]rpn [V]rpn +1 ©

[Xl]TOTl = Z

If we consider the odorant mixture at a particular component ratio as a new “’pure” odorant, then we can
define, up to a scaling, its effective affinity as

o ZOGO [a]ron [V]ron
[a]r(’)n B ZOGO [v]ron @

The co-receptor channel that models the dynamics of the activation of ligand-gated channels in the
mixture model (see also Figure ) can then be compactly described by

d
E [X2]r(’)n - Oég (ZPEO [Xl}rpn> <1 - [X2]7‘On) - 659 [X2]r(’)n - ’io [X2]%93n [X3]ié)3n ®)
d

% [X3]7‘On = Oé?(? [X2]7‘O7’L - ﬁgo [X3]r(9n )
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where 04%9 and 659 are scalars indicating the rate of activation and deactivation of the gating variable
[X2],.0,,» respectively, and the constant x© models the calcium feedback for the mixture model. ag and
@?? are scalars that indicate the rate of increase and decrease of the gating variable, again for the mixture
model. Note that, by using the ratio of the total bound receptors > _ . [X1],,,, the receptors bound by
different odorants in the mixture jointly determine the dynamics of the gating variable [x2],.,,-

Taken together, the OTP process of an odorant mixture O is given by the following equations

Vo (0 = Re [ 1t = 9)[ula(5ds + 1] [ 10 = )lu(s)) o € 0

d
% [Xl]ron - [b]ron [V]ron (1 o ZpEO [Xl]rpn) - [d]ron ’ [Xl]ron ;0 € o
d
% [XQ]TOH - 0459 (ZPGO {Xl]rpn) (1 - [X2]r0n> - Bg [XQ]rOn - /io [XQ]i(/stn [X?’]fégn (9)
d
E [X3]fr0n = Oég [XQ]T'OTL - 52? [X3]r(’)n

% [I]r(’)n = [X2]£On (TTOn - [I]r(’)n) - [I]TO” )

In the last equation of (9)), p and c are scalars, and 1,0, denotes the maximal amplitude of the current
through the co-receptor channel, whose value is empirically determined through parameter sweeping. If
the current is activated on a much faster time scale than the activation of the co-receptor, the last equation

will operate in steady-state and
p

(x2],00 T
1, =———ron T, 10
[ ]TOTL [XZ]f(f)n _I_ Cp @) ( )

Revisiting Eq @]) we note that, similar to the mono-molecular odorant, the encoding of odorant mixtures
exhibits multiplicative coupling in a confounding representation of odorant identities and concentration
waveforms.

Finally, we note that the spike train generated by the Biophysical Spike Generator (BSG, see also Figure )
of the OSN expressing receptor 7 = {1,..., R} with noise variance (¢©)? in response to the odorant
mixture with components in O is given by

> " 8(t — tf,,) « NoisyConnorStevens([T],on; 0), =
kez,

where (tgn) rez are the spike times generated by the Noisy Connor-Stevens point-neuron model and ¢
denotes the Dirac delta functional. Compared with the Connor-Stevens point-neuron (Connor and Stevens,
1971), the Noisy Connor-Stevens point-neuron model exhibits a tunable frequency-current response curve
controlled by the variance of the noise. A detailed computational description of the Noisy Connor-Stevens
point neuron is available in the Appendix of Lazar and Yeh (2020).

In conclusion, the notation of the key parameters and input/output variables of the Antenna circuit (see
Figure [3]and 4] are shown in detail in Table
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Symbol Description

v, Output of the peri-receptor process (see Eq (1))

(x1], Ratio of receptors bound by odorant o (see Eq (4)))

2 Gating variable of the co-receptor channel (see Eq (8))

T3 Gating variable of the calcium channel (see Eq (8))

1 Transduction current (see Eq (9))

St —t9) Spike train response of the OSN (see Eq (L1))

r={1,..., R} Index of receptor types expressed by the OSNs of the Antenna

(b,d,u(t)) Tensor modeling the space of odorants presented to the early olfactory
system

Y orez 0t — tgn) Spike train output of the OSN expressing the r-th receptor type in

response to an odorant mixture with components in O

{3 pen ot =t E Multi-dimensional spike train output across all OSNs expressing the R
different types of olfactory receptors

Table 1. Mathematical notation of the Antenna circuit model.

2.3 1/0 Modeling of the Antennal Lobe

The Antennal Lobe (AL) can be anatomically divided into some 52 regions called glomeruli, where
all the OSNs expressing the same olfactory receptor project their axons into (Buck and Axel, 1991;
Firestein, [2001). The dendrites of a uniglomerular projection neurons (uPNs) exclusively innervate a single
glomerulus (Scheffer et al.,[2020) (see also Figure|I third column, each color marks the PNs innervating
a single glomerulus). Therefore each glomerulus can be considered a separate coding channel in which
the odorants sensed by a single olfactory receptor type all converge onto the same uPNs. In addition to
uPNs, multiglomerular PNs innervate multiple glomeruli and most of them project to the Lateral Horn
(LH) while skipping the Mushroom Body (MB). Following (Lazar et al.,|[2023)), multiglomerular PNs are
ignored in our AL model described below as physiological recordings are only available for uPNs (Kim
et al., 2015). An extensive group of Local Neurons (LNs) exclusively innervates the AL (Scheffer et al.,
2020; Lazar et al.,|2022). LNs are known to mediate presynaptic inhibition on the OSN axon terminals
(Olsen and Wilson, 2008)).

The I/O modeling of the Antennal Lobe is extensively covered in the Supplementary Material, Section
1. Here, we briefly describe the I/O of the Antennal Lobe circuit with spatio-temporal feedback. The
schematic diagram of this circuit is shown in Figure [5. This circuit consists of R channels modeling
glomeruli (2 channels are shown in Figure[5). As shown in the Supplementary Material, Section 1, each
channel r is modeled with 3 Divisive Normalization Processors (DNPs) (Lazar et al., [2023). The first DNP,
a model of the OSN Axon Terminal, is controlled by the Presynaptic inhibitory Local Neuron (Pre-LN).
The Pre-LN receives inputs from and provides spatio-temporal feedback to all R channels. The OSN Axon
Terminal DNP plays a key role in extracting the odorant identity. Each of the other two DNPs models the
Postsynaptic excitatory Local Neuron (Post-eLN) and the Postsynaptic inhibitory Local Neuron (Post-iLLN),
respectively. Their functions are to extract the stimulus onset and offset semantic timing information.
Overall, the AL is modeled as a multi-channel DNP with spatio-temporal feedback.

Frontiers 10
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In what follows, in response to the spike train generated by an OSN, we will evaluate the currents injected
by each of the three DNPs of a single channel r into a Projection Neuron. For guidance see Figure
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Figure 5. Schematic diagram of the multi-channel AL circuit with spatio-temporal Pre-LN feedback.
“OSN” represent a group of OSNSs that express the same OR. Their axon terminals provide inputs to uPNs
(“PN”) in the same channel (glomerulus). OSN spikes are fed into both Post-eLN and Post-iLN in the
channel. These two neurons also drive PNs. In addition to providing inputs to their corresponding PNs,
neurotransmitter release at all OSN axon terminals also drive the Pre-LLN, which then feedback into the
OSN axon terminals. Channels 1 and R are shown. Refer to Table [2 for the mathematical notation.

v

> OSN to Post-iLN
Synapse

The r-th channel parameters of the OSN to Pre-LN synapse are [oleL, 5? L, E%x, EOL ]. The synaptic
current I,Q L in channel r is described by (see also (the middle of) Figure

d
ot = ot NTIP (1= a?) = BP% 2Pt (12)
PP =g a) " (V= EOF), (13)

where [N T]? P is the concentration of the synaptic neurotransmitter released by the OSN expressing the
r-th receptor and captured by the downstream PN, V” is the Pre-LN BSG membrane voltage and EOL js
the reversal potential of the synapse.
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Pre-LLN BSG is modeled as a Noisy Connor-Stevens point neuron model (Lazar and Yeh, 2020), similar
to the OSN BSGs. The generated spike train is given by

R
Z 5t —tE) « NoisyConnorStevens(Z 190 51, (14)
keZ r=1

where (t£)xcz are the Pre-LN spike times, and (o) is the noise variance of the point neuron model
controlling its frequency-current response curve.

The r-th channel parameters of the OSN Axon-Terminal are [a{'*7, g7 42T [NT] |, where
afle T gAeT AxT are rate constants and [NT7], . . denotes the maximum neurotransmitter concentration,

and the r-th channel OSN Axon-Terminal is described by

d
LT o037 50— 40) - (1 = afoT) = BT T — oS st~ i)t (1)
keZ keZ

- gleT, (16)

INTIPY = [NT], 0 -
where [NT]9F denotes the vesicle concentration in the OSN Axon-Terminal. Eq. describes a temporal
feedback Divisive Normalization Processor (DNP) (Lazar et al., 2023) that models the presynaptic
normalization taking place at the OSN axon terminal (Olsen and Wilson, |2008). Note that the steady-state
response of Eq. (13)) is of divisive form (see Eq. (S5) in Supplementary Material, Section 1). The outputs
of each OSN Axon-Terminal (feedback DNP) are joined with two additional feedforward DNPs modeled
by a Post-eLLN and a Post-iLN in each channel (for more details, see Supplementary Material, Section 1).
The three DNP outputs in the channel then drive synapses of the Projection Neuron (PN) arborizing the
same channel. The total spike train generated by the PN BSG with noise variance (¢")? amounts to

Zé(t — t£) « NoisyConnorStevens(I97, I¢EF [1LP, 51y, (17)
keZ
where 19T 161 TP are the synaptic currents from, respectively, the OSN axon terminal, Post-eLN and

Post-iLN, and (tkpr)kez are the spike times of the PN (see Figure . Details regarding the derivation of the
synaptic currents ITO P 1¢LP and I'FP are given in the Supplementary Material, Section 1.

In conclusion, the key parameters and input/output variables of the Antennal Lobe circuit with spatio-
temporal feedback (see Figure |S)) are shown in detail in Table

2.4 1/0 Modeling of the Mushroom Body Calyx

The primary circuit architecture of the Mushroom Body Calyx (MB Calyx) exhibits 3 types of neurons.
The first neuron type, the uPNs of the Antennal Lobe, projects into the MB Calyx and provides inputs to the
second neuron type, the Kenyon Cells (KCs). In the fruit fly, there are about 2,000 KCs on each hemisphere
(L1 et al., 2020). The connectivity between PNs and KCs is considered random and differs among individual
flies (Caron et al., [2013; Masuda-Nakagawa et al., |2005), although a more recent connectome study
suggested the existence of more discernible structures (Zheng et al., 2022)). Nevertheless, the connectivity
is stereotypic with each KC receiving inputs, on average, from 6 to 7 PNs. The third type is an Anterior
Paired Lateral (APL) neuron. It covers the entire MB, including the Calyx, and has reciprocal interactions
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Symbol

Description

r={1,..., R}
ZkEZ 6(t - tgr)

INTIOP

ZkGZ (5<t o tgr)

{ZkEZ §<t - tkPr> 7]“%—1

[OeL
r
]OiL
S Ot —t5r)
S0t —tik)

Index of the channels in the spatio-temporal AL circuit

Input into the r-th AL channel, where (tgr)k:ez are spike times generated
by the OSN expressing receptor type 7 (see Eq (L1))

Normalized output signal of the feedback DNP in the r-th channel (see

Eq (15) and Eq (16))

Output of the 7-th channel of the AL, where (! )icz are spike times
generated by the r-th channel output PN BSG (see Eq (17))

Multi-dimensional output spike trains across all AL channels
Synaptic current to Post-eLLN driven by OSN r (see Eq (S6-S9))
Synaptic current to Post-iLN driven by OSN r (see Eq (S11-S14))
Output of Post-eLN in the r-th channel (see Eq (S10))

Output of Post-iLN in the r-th channel (see Eq (S15))

]7(;7 P Synaptic current into PN driven by OSN axon terminal (see Eq (S16-S17))

Ierr Synaptic current into PN driven by Post-eLN (see Eq (S18-S19))

IiLrP Synaptic current into PN driven by Post-iLN (see Eq (S20-S21))

S0t —th) Output of the Pre-LN (see Eq (14))

I 79 L Synaptic current to Pre-LN driven by OSN axon terminal in the r-th channel

(see Eq and (13))
{3 hez 0t —t2)}E | Multi-dimensional input across all AL channels
AmT Normalized output signal of the feedback DNP in the r-th channel

{a:A“"T R Multi-dimensional normalized output signals of the feedback DNPs across

all AL channels

Table 2. Mathematical notation of the Antennal Lobe circuit model.

with all the KCs throughout. It has been recently shown that the APL neuron normalizes the magnitude of
the overall responses of all the KCs in the MB Calyx (Prisco et al., 2021)).

Here, we refine the MB Calyx circuit with two primary structures. First, the PN to KC connectivity is
modeled as a bipartite graph, as PNs and KCs can be considered two disjoint sets of vertices in the graph
and all edges connect a PN to a KC. Second, we model the interactions between KCs and the APL as a
spatio-temporal feedback DNP circuit, similar to the Pre-LN feedback circuit in the Antennal Lobe.

The schematic diagram of the MB Calyx circuit with spatio-temporal Anterior Paired Lateral (APL)
feedback is shown in Figure @ The m-th KC dendritic output current I CD (superscript “KCD” for “KC
Dendrite”) is determined by the input of a random number of PN axons projecting into each KC dendritic
tree and the feedback 2L provided by the APL neuron.
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The output current IXCP of the m-th KC dendrite with parameters [a{( D, ﬁ{( D, K{( CD1 s described
by
d kep _ ofCD P KCD KCD __ KCD KCD  , KCD L APL
o g KOD — (KO ZZét—tkr (1 — zBCDy _ gRCD K€D _ (JKCD KCOD (18)
r€lm k€Z
Kcp _ 7K KCD
Im - Imaa: " T ) (19)

where I,,, denotes a set of PNs connected to the dendrite of the m-th KC, aff¢P gKCD KCD are rate

constants. Here, we assume I, to be a random set (Caron et al., 2013). The number of PN 1nputs that a KC
receives is parameterized by ().

K
JKCD 220t —t5)
KC Dendrite . :@ k >

PN-to-KC
Synapse

KC Dendrtite KC »
KCD
Tar 3t = tr)
K

Figure 6. Schematic diagram of the Calyx circuit with spatio-temporal APL feedback. Spiking outputs of
the PNs provide inputs to KC dendrites. Each KC receives inputs from () PNs. Output of the KC dendrites
then drive their respective KC BSGs (“KC*) to respond and their spikes are fed into the APL neuron. The
APL neuron output provides a second input to each KC dendrite. Refer to Table 3 for the mathematical
notation.

APL :

For simplicity, the APL feedback signal x is modeled as the solution of a kinetic equation with

parameters [o\7F| BAPL] driven by the aggregated input KC spike trains zm:l Spen ot —tE
d
EIAPL aPL Z 25 (t—tK ). (1 — ¢APLy _ gAPL . pAPL, (20)
m=1keZ

where 2%21 > kez 0(t — t Y is the total KC spiking activity. For simplicity, we omit the PN-KC and
KC-APL synaptic dynamics.

The KC BSG is modeled by the NoisyConnorStevens point neuron, with noise variance (aK )2 =0, and
generated spike train

Z o(t tkm — N01syConnorStevens([n[§CD; O'K), (21)
keZ
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where (tka)keZ are the spike times generated by the m-th KC neuron and 6 denotes the Dirac functional.

In conclusion, the key parameters and input/output variables of the Calyx circuit (see Figure[6) are shown
in detail in Table[3l

Symbol Description
m=A{1,...,M} Index of the KC neurons in the Calyx circuit
r=A{1,...,R} Index of the PNs

Input to the m-th KC dendrite, where I,,, denotes a random set of PNs
connected to the m-th KC dendrite and (£ )¢z is the set of spike

kr

times generated by the PN BSG at the output of the r-th AL channel

Zreﬂm ZkGZ 6(t - tllcjr)

O rer, Sopez 0t —tE YR,
KCD
$m

Multi-dimensional input to the dendrites across all KC neurons

Normalized dendritic output current of the m-th KC neuron

KCD _ (yKCD\M

X m m=1

Multi-dimensional normalized dendritic output current across all KC
neurons

Spez 0t —tE ) Output of the m-th KC neuron, where (tK kez is the set of spike
times generated by the m-th KC BSG
{Dhez 0t =t Y

Zk’ 5(t - tlljr)

[KCD
Zk 5(t - ti{m)

Table 3. Mathematical notation of the Mushroom Body Calyx circuit model.

Multi-dimensional output across all KC neurons

PN spike outputs

Synaptic outputs of the KC dendrite (see Eq and Eq (19))
KC spike output

3 1/0 CHARACTERIZATION OF ODOR SIGNAL PROCESSING IN THE MB CALYX

In what follows, our goal is to characterize the 1/0O of the MB Calyx, the last building block of the OEM
cascade depicted in Figure 2] Given the prior modeling of the space of odorants in Section (2.1), the odorant
encoding process in the Antenna described in Section and, the odor signal processing taking place in
the Antennal Lobe and detailed in Section (2.3), the input to the Mushroom Body Calyx can be readily
evaluated as the PN response at the output of the Antennal Lobe for pure and odorant mixtures.

Recall that, we evaluated the odorant encoding process described in Section (2.2) with 110/23
odorant/receptor pairs stored in the DoOR dataset (Miinch and Galizial, 2016). Each of the 110 odorants
was associated with a 23-dimensional affinity vector whose entries were estimated using the algorithm
advanced in (Lazar and Yeh, 2020). Given the PN output provided by the Antennal Lobe model (Lazar
et al., 2023), we shall investigate whether the Mushroom Body Calyx extracts semantic information, i.e.,
the identity of pure odorants and odorant mixtures, faithfully and distortion free.

This section is organized as follows. In section 3.1/ we evaluate the effect of the PN-KC connectivity on
the KC dendritic input for both pure (mono-molecular) and odorant mixtures. In section [3.2 we evaluate
the effect of the KC-APL feedback on the KC dendritic output for both pure and odorant mixtures. Finally,
in section [3.3| we show how the Calyx extracts and represents semantic information in the spike domain.
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3.1 The Effect of the PN-KC Connectivity on the KC Dendritic Input for Pure and Odorant

Mixtures

A key descriptor of the Calyx circuit is the connectivity between PNs and KCs, i.e., the adjacency matrix
of the PN-KC bipartite graph. The topology of the bipartite graph is determined by two factors. First, each
KC receives inputs from a number of () PNs. Second, the PNs are randomly selected in an individual fly
(Caron et al., 2013). This determines how the KC dendritic trees sample the [?-dimensional space of the
PN responses to odorants.

We first evaluate the dependency of the KC dendritic inputs on (). Biologically, the value of () corresponds
to the number of claw-like endings of the KC dendrites (Schiirmann, 1974; Yusuyama et al., 2002). Each
KC claw receives dense synaptic inputs mostly from a single PN. Therefore, the number of dendritic claws
of a KC largely determines the number of different PNs that the KC receives inputs from.

A recent experimental study has examined the effect of the number of KC claws on fly’s ability to
discriminate odorants (Ahmed et al.,[2023). Genetic manipulation allowed the authors to obtain flies that
have an increased or decreased number of dendritic claws. Here we evaluate the effect of computationally
changing the value of Q.
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Figure 7. Evaluating the effect of the PN-KC connectivity parameter () on the dendritic KC input for

aalia Acetone. (A) Acetone affinity in descending (ranking) order. Affinity is normalized by the sum of all
affinity values across receptor types. (B) Steady-state responses of OSNs to Acetone at 4 different constant
amplitude concentration levels. (C) Steady-state responses of PNs to Acetone at 4 different constant
concentration levels. (D) Dendritic inputs to each KC in descending order of input strength, at 4 different
different constant concentration levels. (D1) Q =3, (D2) Q =6, (D3) Q = 9. The horizontal axis lists the
KCs in ranking order.

3.1.1

In this section we evaluate the dependence of the KC dendritic inputs on () (number of claw-like endings
of the KC dendrites) for pure odorants. In Figure E we evaluate our model for Acetone at 4 constant
amplitude concentration levels: 50ppm, 100ppm, 150ppm and 200ppm, and examined the respective
steady-state responses at the OSNs, PNs and KC dendritic inputs. In Figure[7A, the affinity value of each
of the 23 receptors normalized by the sum of all affinity values is shown in descending (ranking) order.

The Effect of the PN-KC Connectivity on the Dendritic KC Input for Pure Odorants
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Note that the responses presented in ranking order provide a more intuitive representation of the structure
of the response vectors. The OSN and PN spike train responses are shown in Figure[7B and Figure[7C,
respectively. Consistent with (Lazar et al., 2023), while both OSN and PN responses are sensitive to odorant
concentration, the dependency at the PN level is markedly reduced.

Visualizing the KC responses in Figure [/D1-D3, we observe that the number of KCs activated by a given
odorant is strongly influenced by the () values: () = 3, ) = 6 and ) = 9.

We note that the ranking of the KC dendritic inputs is largely determined by the number of top responding
PNs. For example, if the () = 6 inputs to a KC originate from the top 6 responding PNs, then that KC
is ranked tops among all other KCs. Since only 1 PN (DM4 PN) out of the 23 PNs strongly responds to
Acetone, the KCs that receive inputs from the DM4 PN have significantly higher total dendritic input than
the other KCs (see also Figure[7/D1-D3). This results in a large gap in the dendritic input-rank curve. As Q)
increases from 3 to 9, the number of KCs that have DM4 PN dendritic input also increases. This increase
leads to a larger percentage of KCs with larger inputs while the total number of KCs remains unchanged.
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Figure 8. Evaluating the effect of the PN-KC connectivity parameter () on the dendritic KC input for
nerol. (A) Nerol affinity in descending order. Affinity is normalized by the sum of all affinity values across
receptor types. (B) Steady-state responses of OSNs to Nerol at 4 different constant amplitude concentration
levels. (C) Steady-state responses of PNs to Nerol at 4 different constant concentration levels. (D) Dendritic
inputs to each KC in descending order of input strength, at 4 different constant concentration levels. (D1)
Q=3,(D2) Q =6, (D3) Q=9. The horizontal axis lists the KCs in ranking order.

In Figure |8 we characterize responses to the odorant Nerol in the same way as in Figure 7| for the odorant
Acetone. We note that the affinity values of 3 receptors are relatively higher. This creates a different
signature in the ordered ranking of the KC inputs. The general trend is similar to the case when Acetone is

presented. With a smaller () value, less KCs receive enough inputs to generate spikes, as experimentally
observed in[Ahmed et al.| (2023).

With an increasing number of PNs responding to a pure odorant, the dendritic input-ranking curve
becomes smoother. See for example, the results for Diethyl Succinate and Ethyl Butyrate shown,
respectively, in Supplementary Figure S3 and S4. Ethyl Butyrate elicits responses in a wide range of PN,
and the dendritic input-rank curves are smoother without noticeable gaps between KC dendritic inputs.
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Figure 9. Evaluating the effect of the PN-KC connectivity parameter () on the dendritic KC input
with mixtures of Acetone and Diethyl Succinate. Concentration of Acetone is kept at 100ppm, and the
concentration of Diethyl Succinate changes in each column such that the ratio of the two odorants are
(column 1) 4:1, (column 2) 2:1, (column 3) 1:1, (column 4) 1:2 (column 5) 1:4. The mixtures are
presented at constant concentration levels, and the steady-state responses are shown. (A) Effective affinity
of the mixture at different component ratios. (B) OSN responses. (C) PN responses. (D) KC dendritic

inputs for (blue) () = 3, (orange) () = 6 and (green) () = 9. The horizontal axis lists the KCs in ranking
order.

Similar dendritic input-rank plots can be obtained for randomly instantiated PN-KC bipartite graphs (see
Supplementary Figure S5). Note, however, that for random connectivity, the exact ranking order of each
KC might differ. Since the connectivity between PNs and KCs has been shown to be random and may
differ from fly to fly (Caron et al., 2013), the preservation of the input-ranking for different odorants across
concentration amplitudes applies across individual flies.

3.1.2 The Effect of the PN-KC Connectivity on the KC Dendritic Input for Odorant Mixtures

In Figure[9] we evaluate the dependence of the KC dendritic inputs on the connectivity parameter () when
a binary odorant mixture consisting of Acetone and Diethyl Succinate is presented. The concentration of
Acetone is kept at 100ppm, and the concentration of Diethyl Succinate changes in each column such that
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the ratio of the two odorants are, respectively, 4:1, 2:1, 1:1, 1:2 and 1:4. The mixtures are presented at
constant amplitude concentration levels, and the steady-state responses are shown.

We observe that across all () values, the ordered KC dendritic input exhibits different characteristics
when the component concentration amplitude ratio shifts from 4:1 to 1:4. This characteristic is largely
preserved for different () values at a particular component concentration ratio. In particular, the range of
magnitude of KC dendritic inputs are similar across 3 () values, as there are only 3 large components in the
affinity vectors.

Concluding, the connectivity between the PNs and KCs modeled by a bipartite graph with parameter )
changes the distribution of the ranking of the output of dendritic KCs. In Figures and [9) higher rank KC
input values gravitate and are grouped together. These groupings can be more easily distinguished from
lower rank values that also gravitate together. In addition, these response properties are preserved despite
the randomness of the connectivity between PN and KC across individual flies.

3.2 The Effect of the KC-APL Feedback on the KC Dendritic Output for Pure and Odorant
Mixtures

In this section we analyze the dependence of the Mushroom Body Calyx circuit on the APL feedback. We
focus on the effect of APL feedback on the KC dendritic outputs that drive the KC spike generation. For
simplicity, we set the connectivity parameter of the PN-KC bipartite graph to () = 6, a number consistent
with average of PN-to-KC connections observed in the connectome (Scheffer et al., [2020). We show that
the APL feedback facilitates the extraction of semantic odorant information by normalizing KC responses
and by reducing odorant concentration dependence of the KC dendritic output.

3.2.1 The Effect of the KC-APL Feedback on the KC Dendritic Output for Pure Odorants

We first note that the differential DNP described by egs. (18) and (20) is, in steady-state, approximately
characterized by a monotonically increasing sigmoid function of KC dendritic inputs. Therefore, we expect
that the ranking of the magnitude of KC dendritic inputs is preserved by the KC dendritic outputs.

In Figure[I0, we depict the transformation of KC dendritic inputs (left column) into dendritic outputs
(middle column) in the presence of APL feedback. Each row of Figure [I0 shows the transformation for
one of the 4 odorants that we tested (Acetone, Diethyl Succinate, Nerol and Ethyl Butyrate) each with 4
different constant amplitude concentration values. The dendritic output amounts to ngD in steady-state.
Here the KC spiking threshold was chosen to be 0.5. Thus, the KCs that have dendritic output greater than
0.5 will generate spikes that contribute to the magnitude of the amplitude of the APL feedback.

As shown in Figure [0, the presence of APL feedback largely removes the concentration dependence
of the KC dendritic output if the latter is above threshold. This demonstrates that the proposed divisive
normalization circuit is capable of further reducing the variability of KC responses to odorants of different
concentration levels (Prisco et al., 2021) beyond the normalization effect induced by the Local Neurons
of the Antennal Lobe (Lazar et al.,|2023), thereby further separating odorant semantic information from
syntactic information (Lazar et al.,[2023). The aggregation of the KC responses in Figure [[0[right column)
will be discussed in Section [3.3]

3.2.2 The Effect of the KC-APL Feedback on the KC Dendritic Output for Odorant Mixtures

APL feedback is equally effective for extracting the semantic information of odorant mixtures. In
Figure [11, we consider a binary mixture consisting of acetone and diethyl succinate at different
componentconstant amplitude concentration ratios. For each component ratio, we also varied the total
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Figure 10. APL feedback facilitates the extraction of odorant semantic information by normalizing KC
responses and by reducing odorant concentration dependence of the KC dendritic output. The connectivity
parameter of the PN-KC bipartite graph is () = 6. Odorant semantics in row (A) Acetone, (B) Diethyl
Succinate, (C) Nerol, and (D) Ethyl Butyrate. (left column) Ranking of KC dendritic inputs. (middle
column) Ranking of KC dendritic outputs. (right column) Odorant semantics encoded in the time domain
across the population of KCs. The first spikes of each of the active KCs in response to each odorant are
collected onto a single row for each of the odorant concentration amplitude values.

concentration while keeping the ratio fixed. The OSN responses to the mixtures are shown in Figure [TTA.
PN responses, as shown in Figure[T1B, exhibited reduced variability to constant concentration ratios. The
KC dendritic inputs and and the dendritic outputs are, respectively, shown in Figure and Figure [T ID.
While the magnitude of dendritic inputs varies across component ratios and total concentration, the
dendritic outputs display a markedly reduced variability across concentration amplitudes. Among the
different component ratios tested, the overall range of responses at the KC dendritic outputs are also similar.

Normalized KC dendritic outputs naturally maintain the number of active KCs with a single spiking
threshold. From Figure [10 and Figure [I T, we can see that about 20% of the KCs are above the spiking
threshold. With a different threshold or () value, the percentage of active KCs can easily be controlled. This
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Figure 11. By normalizing KC responses and by reducing odorant concentration dependence of the
KC dendritic output, APL feedback reduces the variability of KC responses to component concentration
ratios of odorant mixtures. (A) OSN responses to mixture of Acetone and Diethyl Succinate at 5 different
component ratios and different total concentration levels. Legend shows the concentration of Acetone.
Concentration of Diethyl Succinate can be derived from the component ratio. (B) PN responses. (C) KC
dendritic inputs. (D) KC dendritic outputs. Ratios of Acetone to Diethyl Succinate are (column 1) 4:1,
(column 2) 2:1, (column 3) 1:1, (column 4) 1:2, (column 5) 1:4. The horizontal axes in rows (C) and (D)
list the KCs in ranking order. The connectivity parameter of the PN-KC bipartite graph is ) = 6.
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406
407

demonstrates that the spatio-temporal DNP model of the MB Calyx circuit is a more natural mechanism
for ensuring the sparsity of KC responses, as opposed to an artificial winner-take-all mechanism that has
been used by other models of the mushroom body for enforcing the sparseness of KC responses (Dasgupta
et al.,[2017;|Saumweber et al., [2018; |Gkanias et al.,[2022)).
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3.3 The Calyx Extracts and Represents Odorant Semantic Information in the Spike
Domain

Ranking the dendritic input and output KCs in Figure[10]and Figure 1 1] provides insights into the structure
of the affinity vector of pure and mixture odorants under consideration. The ranking operation, however,
exhibits a combinatorial complexity. This forbidding complexity can be computationally readily avoided
by mapping, for each KC, the dendritic output into the spike domain. The proposed code takes the first
spike of each active KC and joins them all together at generation time into a single first spike sequence.
Figure [10(right column) shows the first spike sequences for 4 different odorants, each at 4 different
concentration levels. We note that these spike sequences are not generated by a single neuron. Rather,
each sequence consists of a train of spikes received by, e.g., a Mushroom Body Output Neuron (MBON)
(or APL neuron) innervating its presynaptic KCs in a MB compartment. Therefore, the order of the KC
dendritic output that is invariant to odorant concentration can be naturally read out by an MBON (or APL)
based on the timing of the proposed first spike sequence.

Since the KC dendritic output is largely concentration invariant for the KCs with dendritic output above
the threshold, the variability of the sequence of spikes across a range of concentration amplitude values is
small. The first spike sequences in Figure [[0fright column) are clearly different when due to two different
odorants but rather similar when due to two different concentration waveforms of the same odorant. In the
Supplementary Figure S6, we display the ranked KC dendritic inputs, the ranked KC dendritic outputs, the
first spike sequence and the cumulative interspike intervals for all 110 odorants whose OSN responses have
been characterized for 23 ORs at a single concentration level in the DoOR dataset (Miinch and Galizia,
2016). Note that the cumulative interspike distance plots are largely concentration invariant. This is amply
displayed in the last column of the Supplementary Figure S6 for 110 mono-molecular odorants evaluated at
4 different concentration amplitude values. Thus, we hypothesize that the sequence of first spikes generated
by each individual KC represents the odorant semantic information in the time domain largely unaltered by
the syntactic information of the odorant concentration waveform.

The key advantage of the first spike sequence code across the active KCs in the spike domain is that the
readout of the sequence of spikes arriving at the MBONs does not require the knowledge of the KCs that
the spike originated from. The entire sequence becomes a single code. Therefore, the code remains the
same for different flies with different instantiations of the PN-KC bipartite graph.

The first spike sequence code can also be used to distinguish odorant mixtures with different mixture
ratios. Figure [12|right column) shows the first spike sequence code for mixtures of Methanol and Benzyl
Alcohol at 5 different ratios. For each fixed ratio, the concentration of the mixture components are presented
at 4 different Methanol concentration levels. Again, the first spike sequence code shows different patterns
for each ratio but similar patterns for different concentration ampitudes of the same ratio. The corresponding
cumulative interspike intervals are shown in Supplementary Figure S7. The response of the OEM to two
other binary mixtures are shown in Supplementary Figure S8 and S9.

Frontiers 22



Lazar et al.

s " 1.00
o 80 7 . 200ppm | 200ppm —— 200ppm
g IR g 0.75 [ R RN R AT T T I —— 150ppm
& 60 = _El{_) 8 —— 100ppm
5 fe) 0.50 5 C I W 1 —— 50ppm
240 A g » g
c = >
- = o [ Y T A R T B A
2 T 0.25 A = o
=20 A S (g%}
S 3 [y T T A S I A (I
S 0 0.00 A
[a) T T T T T T T T T T T T T T T T T T T
o S S 2 2 S o S S 2 =4 S 10 12 14 16 18 20 22 24
~ < © © = o~ < © © =1 Time (ms)
B1 Rank of KC Bz Rank of KC B3
k= Ems 1.00
] 100 R 200ppm |, 200ppm —— 200ppm
] 3 150ppm | 3 .75 4 § (R T T —— 150ppm
2 751 \ 100ppm g g § —— 100ppm
=1 a AT T T | J—
g 50 R 50ppm 2 0.50 by g 50ppm
= = E g [ LY T Ty R R A
2 251 20.25 T
5 3 R T A RN AN} 1
S 0 0.00
[a] T T T T T T T T T T T T T T T T T T T
o S S § § § o = S § § § 10 12 14 16 18 20 22 24
N ~ S N ~ S Time (ms)
C1 Rank of KC CZ Rank of KC C3
s N 1.00
2 3 200ppm |, 200ppm —— 200ppm
g 100 A ‘: 30.75 © o 00U IO OO TR OO O W0 L 1 —— 150 ppm
%] 5 ~ O —— 100ppm
- o c —
5 S 050 (% 5 R I AT N R A T 50ppm
£ 50 A z I g [ Ny I T T W R TN
o s
= 20.25 %)
S 3 I T T Y Y N T R R I
s 04 0.00
[a] T T T T T T T T T T T T T T T T T T T
© S S S S 2 o 2 S S S 2 10 12 14 16 18 20 22 24
~ < © © S ~ <~ © © S Time (ms)
D1 Rank of KC DZ Rank of KC D3
k=] " 1.00
= 9 200ppm | 200ppm —— 200ppm
o i\ 3 [N O TR T Y —— 150ppm
» 1009 X 5 2o —— 100ppm
5 A o a e U W HRO W e | —— 50ppm
o o n O
< = b 3 T YT A T TR T T
o 507 © 2o
= 5 £
5 8 T I T T T T T A N T O R
c
© 3 S S S S © S 3 3 S S 10 12 14 16 18 20 22 24
E1 ~ < © © S E2 ~ < © © S E3 Time (ms)
Rank nf KC Rank nf KC
s 1.00
2150 A 200ppm |, 200ppm —— 200ppm
g \ 150ppm | 2 g 75 o IO RO WL i ——  150ppm
3 g 2 [0} —— 100ppm
+ 100 A o = I —
5 3 0.50 (% ac.: N N T TR TR RN 50ppm
< £ b g LT T T T O T N T AR
© 50 A T 0.25 2o
k= s [}
5 3 (TN T T [ N T T T T TR N B R T
o 0 0.00 A1
[a] T T T T T T T T T T T T T T T T T T T
© S S S =4 2 o 2 S S S 2 10 12 14 16 18 20 22 24
~ < © © S ~ < © © S Time (ms)
Rank of KC Rank of KC

Figure 12. Odorant semantics information of a mixture of Methanol and Benzyl Alcohol with different
constant concentration amplitude ratios encoded in the time domain across the population of KCs. The
mixtures are presented at a fixed ratio in row (A) 4:1, (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:4. For each fixed
ratio, 4 Methanol concentration levels are used, (red) SOppm, (green) 100ppm, (orange) 150ppm and (blue)
200ppm. (left column) Ranking of KC dendritic inputs. (middle column) Ranking of KC dendritic outputs.
(right column) Odorant semantics encoded in the time domain across the population of KCs. The first
spikes of each of the active KCs in response to each odorant are collected onto a single row for each of the

odorant concentration amplitude values.
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4 DISCUSSION

The early olfactory sensory circuits evolved to encode and identify odorants in various ecological niches,
thereby raising the structure and features of the odorant space to be key determinants of the encoding
mechanisms adapted in the olfactory pathways. Despite its importance, however, an explicit modeling of
the odorant space has often been neglected when discussing odor signal processing in the early olfactory
circuits (Endo and Kazama, 2022).

In the present work, we explicitly modeled odorant stimuli in terms of their semantic and syntactic
information content, and explored how the early olfactory system of the fruit fly separates semantic and
syntactic information. Recall that, Shannon (Shannon, |1948) made a clear distinction between meaning
(semantic) and syntactic information. He felt, rightly so, that syntactic information can be formalized and
that led to, among others, key concepts in information theory such as channel capacity, coding theorems,
etc. One of his main arguments was that “a bit is a bit” and there is no meaning associated with “bits”. He
did not address the challenges of formalizing the concept of semantic information.

In accordance to Shannon’s distinction between syntax and semantics, our key prior research results
(Lazar and Yeh, 2020; |Lazar et al.,|2023) have pointed out that the traditional application of methods of
information theory, signal processing and control theory to odor signal processing is lacking the notion of
“meaning” or semantics. An example might help clarify our point of view. When a neuroscientist applies
a mono-molecular odorant such as Acetone, to the Antennae of the fruit fly, and only provides single
OSN recordings to a second neuroscientist without mentioning the odorant identity, the recordings alone
provide no clues that the odorant in question is Acetone. This is because different odorant identity and
concentration pairs can lead to the same OSN spike train response (Lazar and Slutskiy, 2012). Most of
the experiments in the olfactory literature, assume that the odorant identity is known. As such, prior arts
(Blazing and Franks| 2020bj |[Endo and Kazama, 2022; Bandyopadhyay and Sachse, [2023)) have primarily
focused on the representation of odorant syntactic information (i.e., concentration amplitude) and cannot,
therefore, serve as baseline methods without a formal computational/theoretic model of odorant identity.
In contrast we argue that odor signal processing in the Early Olfactory System (EOS) of the fruit fly, is
mostly focussed on extracting semantic information. Consequently, we argue that olfactory research needs
to shift from solely focusing on processing syntactic (or Shannon) information to processing semantic, i.e.,
odorant identity information.

To that end, by extending our previous work on the functional logic of odor signal processing in the
Antennal Lobe (Lazar et al., 2023), we have established that the Antennal Lobe and Calyx jointly remove
the concentration dependency of the odorant information from the confounding representation of the
Antenna (Lazar and Yeh, 2020). We demonstrated that these circuits separate the odorant semantics from
syntax, thereby undoing the multiplicative coupling of these two information streams in the Antenna.

We showed that in the Calyx the sought after semantic information underlies the ranking of the
KC dendritic output after the KC dendritic input undergoes the PN-KC random connectivity and the
spatio-temporal feedback provided by the APL neuron. Consequently, expansion recoding in the Calyx
characterizes the structure of vector PN responses by computing fixed mean random additive combinations,
and use their ranking as a simple yet powerful way of extracting the semantic information of the odorant.
More importantly, we addressed the combinatorial complexity of ranking by mapping, for each KC, the
concentration-invariant dendritic output into the spike domain. The proposed time code takes the first
spike of each active KC and joins them all together at generation time into a single first spike sequence.
Clearly, the order of the first spikes across the population of KCs reflects the ranking order at negligible
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complexity. The existence of such concentration-invariant spike code is supported by increasing evidence
in the Antenna and Antennal Lobe (Haddad et al., 2013} |Wilson et al., 2017; [Zwicker, [2019; (Chong et al.,
2020; |[Egea-Weiss et al., 2018)), the piriform cortex (Bolding and Franks, 2018)), the visual system (Rullen
and Thorpe, 2001 Gollisch and Meister, 2008)), and at the neuron level in general (Branco et al.,[2010).

Time is an intrinsic variable of the concentration waveform, but not of the odorant object identity.
Interestingly, the key result of the modeling and characterization of the early olfactory system we advanced
here asserts that the semantic information is mapped into the time domain by the Calyx circuit, in the form
of the first spike sequence code. This allows a low complexity single readout of the semantic information at
the downstream MBONS regardless of the exact connectivity between PNs and KCs in individual flies. The
code itself is temporally bounded, making it possible for timely memory access in the MB compartments.

Overall, our work argues that the main information pattern processed by the early olfactory system is
supplied by the odorant semantics and not the syntax. The odorant semantics is mapped by the Calyx circuit
into a first spike sequence in the time domain. This is, clearly, central to understanding the functional logic
of the neural circuits involved in odor signal processing in the EOS of the fruit fly brain. Our approach,
backed up by the analysis of the fist spike sequence code and the robustness of the cumulative interspike
intervals of 110 odorants in the DoOR dataset (Miinch and Galizia, 2016), represents a radical departure in
understanding the logic of odor signal processing in the EOS. Among others, it calls for recordings of the
KCs in the MB with the ultimate goal of addressing the existence of the first spike sequence code that we
advanced here.

Furthermore, we extended the model of mono-molecular odor signal processing in the Antenna, Antennal
Lobe and Calyx to odorant mixtures. Our model covers the syntopic interactions (Rospars et al., |2008)
among odorants competing for the unbound receptors in the OSN cilia while abstracting additional resources
(e.g., the number of permeable pores on the surface of sensilla binding proteins (Larter et al., 2016)) into
the peri-receptor processes. No further interactions between odorants and the same receptor type have been
modeled that may result in binding/dissociation facilitation or suppression (Singh et al., 2019). We note
that alternative extensions to the OTP model may be developed for describing other phenomena of odorant
mixture encoding, such as masking (Reddy et al., 2018), and ephaptic coupling (Su et al., 2012; Wu et al.,
2022} |Pannunzi and Nowotny, 2021]). However, despite recent insight into the structure of Machili hrabei
olfactory receptor (del Marmol et al.,|[2021), additional recording datasets are required to determine which
model most accurately describes odorant mixture binding to Drosophila olfactory receptors.

Algorithmically, our model of the first three stages of the EOS anchors on Divisive Normalization
Processors (DNPs). DNPs are models of biological neural circuits (Lazar et al., 2020b; Lazar and Zhou,
2023) with spatio-temporal feedforward and/or feedback control. The power of DNPs in modeling key
computational building blocks in the early olfactory system suggests their applicability in many other
sensory processing systems in and beyond those of the fruit fly brain.
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SCOPE STATEMENT

Associative memory in the Mushroom Body (MB) of the fruit fly brain depends on the encoding and
processing of odorants in the first three stages of the Early Olfactory System: the Antenna, Antennal Lobe
and MB Calyx. The Kenyon Cells (KCs) of the Calyx provide the MB compartments the identity of pure
and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains
is a major challenge in neuroscience.

We model the space of odorants using constructs of both semantic and syntactic information. A key
question that early olfactory systems must address is how to disentangle odorant semantics from syntax. To
address this challenge we devised an Odorant Encoding Machine (OEM) modeling the first three stages of
the early olfactory processing as a cascade of Divisive Normalization Processors (DNPs). By extensively
modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we demonstrate
that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant
concentration, thereby separating odorant semantic information from syntactic information. We advance
the first spike sequence code at the output of the KCs that represents the odorant semantics in the spike
domain.
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