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ABSTRACT2

Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and3

processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the4

Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide5

the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a6

train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in7

neuroscience.8

To address this challenge we start by explicitly modeling the space of odorants using constructs9

of both semantic and syntactic information. Odorant semantics concerns the identity of odorants10

while odorant syntactics pertains to their concentration amplitude. These odorant attributes are11

multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory12

systems must address is how to disentangle the odorant semantic information from the odorant13

syntactic information.14

To address the untanglement problem we devised an Odorant Encoding Machine (OEM)15

modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing16

stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models17

of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded18

DNPs.19

By extensively modeling and characterizing the processing of pure and odorant mixtures in20

the Calyx, we seek to answer the question of its functional significance. We demonstrate that21

the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant22

concentration, thereby separating odorant semantic information from syntactic information. We23

then advance a code, called first spike sequence code, that the KCs make available at the output24

of the Calyx. We show that the semantics of odorants can be represented by this code in the25

spike domain and is ready for easy memory access in the Mushroom Body compartments.26
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1 INTRODUCTION

Odor signal processing in the olfactory system of diverse organisms is the result of millennia of convergent28

evolution (Gire et al., 2013; Ache and Young, 2005). Unlike other sensory systems such as the visual29

system, the odor processing pathways are not embedded within topographically organized circuits (such30

as retinotopy in visual systems (Sanes and Zipursky, 2010)). Instead, olfactory circuits are organized31

non-topographically (Mombaerts, 1999; Buck, 2004; Shepherd, 2004; Cleland and Sethupathy, 2006),32

and their affinities (Buck and Axel, 1991; Firestein, 2001) to given odorant molecules directly encode the33

identities of the said stimuli. This unique sensory characterization of the olfactory stimulus space also led34

to a highly efficient odor signal processing neural circuit.35

In Drosophila Melanogaster, about 40% of the total neural real estate is dedicated to processing visual36

signals (Barish and Volkan, 2015), while less than 5% is dedicated to processing olfactory inputs (Scheffer37

et al., 2020; Masse et al., 2009; Bushdid et al., 2014). Neverthless, Drosophila have remarkable olfactory-38

based foraging, mating, and predator avoidance (Wilson and Stevenson, 2006; Vosshall and Stocker, 2007)39

capabilities. Given the rich olfactory-related behavior repertoire of Drosophila (Boto et al., 2023; Benton,40

2022; Vosshall and Stocker, 2007; Zheng et al., 2017), its well-mapped olfactory neural circuit (Benton,41

2022) and powerful genetic tools (Boto et al., 2023), its olfactory system serves as the ideal platform for42

unraveling the mysteries of olfactory processing.43

In the fruit fly, natural odorant scenes (see Figure 1 first column) are first sensed in the Antenna and44

Maxillary Palps by the dendrites of thousands of Olfactory Sensory Neurons (OSNs), each expressing a45

single olfactory receptor (OR) type (Vosshall, 2000) (see Figure 1 second column). The second layer of46

olfactory sensory processing is the Antennal Lobe (AL, see Figure 1 third column). OSNs expressing the47

same OR type typically project their axons into a single glomerulus, a dense connectivity region in the48

AL. The dendritic trees of Projection Neurons (PNs) typically also innervate a single glomerulus. A large49

number of Local Neurons (LNs) shape the I/O of the AL circuit (Lazar et al., 2022). PNs project their

Figure 1. Odorant mixture processing pathways of the Early Olfactory System of the fruit fly. A natural
odorant scene (left) may consist of many odorant mixtures, including ripe and unripe tomatoes, and
peppermints that repel flies. Odorant mixtures are sensed by the Olfaction Sensory Neurons (OSNs)
whose dendrites are located on the Antenna and Maxillary Pulps (2nd to left, adapted from Fabian and
Sachse (2023), under Creative Commons Attribution License (CC-BY)). OSNs project their axons into the
Antennal Lobe (AL) (white ellipse in 3rd to left). AL is innervated by a large number of Local Neurons
(LNs, white transparent). Projection Neurons (PNs) (colored neurons), the outputs of the AL, send their
axons to the Calyx (green ellipse in 3rd to left) and the Lateral Horn (yellow ellipse in 3rd to left). In Calyx
(right most), PNs (colors other than red and white) provide inputs into Kenyon Cells (KCs) (red). The
Calyx is also innervated by the APL neuron (white transparent) that interacts with the KCs. For interactive
3D visualization of the connectome of the AL and Calyx, see NeuroNLP (2024a) and NeuroNLP (2024b).

50
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axons to the Mushroom Body Calyx and/or the Lateral Horn (see Figure 1 third column top and fourth51

column). In the Calyx, some 50 types of PNs synapse onto 2, 000 Kenyon Cells (KCs), a rapid expansion of52

the number of neurons (Modi et al., 2020). A key circuit element in the Calyx is the giant Anterior Paired53

Lateral (APL) feedback neuron receiving input from all KCs. The third and fourth columns in Figure 1 can54

also be viewed online as interactive 3D visualizations provided by the Fruit Fly Brain Observatory (Ukani55

et al., 2019, 2024). The URLs can be found in NeuroNLP (2024a) and NeuroNLP (2024b).56

There has been an extensive amount of work in discerning the odorant identity and concentration in the57

olfactory system of the fruit flies, other insects and vertebrates. It has been shown that odors typically retain58

their perceptual identities over a range of concentrations (Blazing and Franks, 2020a). In Drosophila, the59

same odorant may recall the memory associated with the odorant over more than an order of magnitude of60

concentration amplitude values (Masek and Heisenberg, 2008).61

Concentration-invariant representation of odorant identity has been proposed at almost every stage of62

the olfactory circuit, in the Antenna (Egea-Weiss et al., 2018), in the Antennal Lobe (or Olfactory Bulb in63

vertebrates) (Stopfer et al., 2003; Wilson et al., 2017; Chong et al., 2020; Lazar et al., 2023) and at the KC64

level of the Mushroom Body (or Piriform Cortex in mammals) (Stopfer et al., 2003; Bolding and Franks,65

2018). These studies assumed, however, that the odorant identity is known. In other words, odorant identity66

has been viewed akin to labels used in supervised learning. A major goal has been to record from the neural67

activity arising at different stages of the Early Olfactory System and to examine when the recorded signal68

can be used to increase the accuracy of identifying or classifying odorants (Egea-Weiss et al., 2018; Jeanne69

and Wilson, 2015; Stopfer et al., 2003). These approaches do not reveal, however, the functional logic of70

the underlying neural circuits.71
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Figure 2. The architecture of the Odorant Encoding Machine (OEM) modeling the early olfactory system
of the fruit fly. The OEM consists of a cascade of spatio-temporal divisive normalization processors each
modeling the Antenna, Antennal Lobe and Calyx. All odorants in a mixture are sensed and encoded by a
molecular Odorant Transduction Process (OTP) of each OSN type. Each OSN type then provides input to
an AL channel (glomerulus) with a Projection Neuron (PN) as channel output. 3 types of local neurons,
Presynaptic Local Neurons (Pre-LN), Postsynaptic excitatory LN (Post-eLN) and Postsynaptic inhibitory
LN (Post-iLN) are modeled as 3 types of differential divisive normalization processors. The Calyx features
an expansion of PN to KC connectivity, as well as a DNP circuit consisting of the KC dendrites, KC
biological spike generators and the APL spatio-temporal feedback neuron.
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In previous work, we proposed computational models for mono-molecular odorant encoding and72

processing in both the Antenna (Lazar and Yeh, 2020) and the Antennal Lobe (Lazar et al., 2023).73

We advanced a model of olfactory objects of the odorant space that explicitly describes both their identity74

(odorant semantics) and their concentration amplitude (odorant syntax). Our model of the Antenna then75

encodes a multiplicatively-coupled representation of the semantic and syntactic information streams,76

resulting in a confounding representation that is disentangled by the inhibitory and excitatory Local77

Neurons of the Antennal Lobe. Both models of the Antenna and the Antennal Lobe reproduce with a very78

high precision the experimentally obtained physiological responses of the Olfactory Sensory Neurons79

(output neurons of the Antenna) and Projection Neurons (output neurons of the Antennal Lobe) (Kim80

et al., 2011, 2015). Importantly, by developing a model of the Antennal Lobe that recovers the odorant81

identity information from the confounding representation of the Antenna, we showed that the functional82

significance of the Antennal Lobe (in particular its highly diverse inhibitory Local Neurons) could be to83

separate the odorant semantics from syntax, thereby undoing the multiplicatively coupled odorant encoding84

in the Antenna (see also Figure 2).85

To emphasize, the novelty of our approach rests on explicitly modeling the space of odorants using86

constructs of both semantic and syntactic information, a subtle but profound distinction from the existing87

literature that solely invokes methods of traditional syntactic information processing. These prior works88

focused on methods of processing odorant concentration, with odorant identity mentioned in passing and/or89

lacking computational or theoretical rigor. However, when it comes to understanding the functional logic of90

olfactory circuits, processing odorant concentration alone turns out to be, as we argue here and elsewhere,91

a major limitation. Our present work extends the I/O modeling and characterization of semantic/syntactic92

information processing that we obtained for the Antenna and Antennal Lobe to the MB Calyx circuit. We93

show how the Calyx extracts and represents semantic information in the spike domain.94

The first three layers of the Early Olfactory System depicted in Figure 1 are modeled as the Odorant95

Encoding Machine (OEM) shown in Figure 2 (Lazar et al., 2020a). The architecture of the OEM consists96

of three cascaded Divisive Normalization Processors (DNPs), a spatio-temporal extension of the static97

divisive normalization model previously analyzed by (Olsen and Wilson, 2008; Carandini and Heeger,98

2012; Lazar et al., 2020b; Lazar and Zhou, 2023). Note that in vision, it has been recently shown that the99

motion detection pathway of the early visual system of the fruit fly can also be modeled as a cascade of100

DNPs (Lazar et al., 2020b; Lazar and Zhou, 2023), suggesting that DNPs as building blocks of computation101

can be combined to realize more complex processing in the fruit fly brain.102

In the current work, we seek to answer the question regarding the functional significance of the Mushroom103

Body Calyx, the last building block of the OEM cascade shown in Figure 2. Note that in the MB Calyx104

most of biological real estate is devoted for re-representing odorant identities - with, on average, 40 Kenyon105

Cells in the Calyx for each 1 Projection Neuron type in the Antennal Lobe. While previous studies have106

explored the Calyx’s role in associative learning (e.g., Heisenberg (2003)), our focus shall be on modeling107

the pre-associative representation of odorant identity and exploring how semantics of pure and odorant108

mixtures are coded for memory access by the Mushroom Body. By (i) abstracting the structural connectome109

datasets into executable circuit diagrams, and by (ii) focusing on the exploration of the functional logic of110

the underlying circuits, we follow here the workflow established in Lazar et al. (2021).111

This paper is organized as follows. In Section 2, we present the architecture of the OEM. We review the112

model of the space of odorants and the input/output (I/O) model of the Antenna and Antennal Lobe. The113

model of the Calyx is detailed next. In Section 3, we extensively characterize and evaluate the processing of114

pure and odorant mixtures in the Calyx. The KC generated spike train at the output of the Calyx, called the115
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first spike sequence code, represents the odorant identity made available to the Mushroom Body memory116

circuit. In Section 4 we conclude with a brief discussion.117

2 ODORANT ENCODING MACHINE

A schematic diagram of the Odorant Encoding Machine (OEM) is shown in Figure 2. In what follows we118

describe the 4 cascaded building blocks of the OEM, respectively, modeling the space of odorants (see119

section 2.1), the molecular encoding of mono-molecular odorants and odorant mixtures in the antenna (see120

section 2.2), the I/O modeling of the antennal lobe (see section 2.3) and the I/O modeling of mushroom121

body calyx (see section 2.4).122

2.1 Modeling the Space of Odorants123

Figure 3. Modeling the space of mono-molecular odorants. Elements of the odorant space are defined by
the tensor of odorant-receptor binding rate, dissociation rate and concentration amplitude (b,d,u(t)). For
a given neuron n = 1, 2, ..., N , the binding rate and dissociation rate values are, respectively, denoted by
[b]ron and [d]ron, for all r = 1, 2, ..., R, and o = 1, 2, ..., O. Single and/or odorant mixtures interact with
the receptors expressed by the Olfactory Sensory Neurons in the Antenna (right).

The space of mono-molecular odorants (see also Figure 2, left) was first formally modeled and biologically124

validated in Lazar and Yeh (2020). In this model, the Odorant Transduction Process (OTP) taking place125

in the cilia of the Olfactory Sensory Neurons (OSNs) (see also Section 2.2) encodes odorants as objects126

defined by the tensor of binding rates, dissociation rates and concentration amplitude (b, d, u(t)). Tensors127

are multidimensional arrays that generalize the concept of vectors (1-dimensional arrays) and matrices128

(2-dimensional arrays). They provide a complex representation of complex data. Here b and d are 3-129

dimensional tensors (see Figure 3), with each of the three dimensions representing O odorants, R receptors130

and N OSNs expressing a receptor. Each entry [b]ron, [d]ron describes binding/dissociation rates for n-th131

OSN expressing receptor r to odorant o, n → 1, · · · , N , r → 1, · · · , R and o → 1, · · · , O. The entry [u]o(t)132

is the concentration waveform of odorant o, o → 1, · · · , O (see also Figure 3).133

With this odorant object model, the semantics of the space of mono-molecular odorants (Lazar et al.,134

2023) is defined by the 2-tuple of binding/dissociation rate tensors (b,d), fully characterizing the identity135

of the odorant object given the set of olfactory receptors. The syntax of the space of mono-molecular136

odorants is characterized by the vector of concentration waveforms [u](t). More details regarding the137

encoding of mono-molecular odorants by the OSNs is given in Lazar and Yeh (2020) and in the next section138

below.139
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2.2 Modeling Odorant Encoding in the Antenna140

In order to study pure and odorant mixture processing in the Mushroom Body, we first extended our141

model of the Antenna to account for competitive binding of mixture of odorant molecules (Nagel and142

Wilson, 2011; Olsen et al., 2010).143

Odorant molecules are first sensed in either the second-segment of the Antenna or Maxillary-Palp (see144

Figure 1 2nd column) that are both covered with sensory hairs, called sensilla. Cilia (dendrites) of a few145

OSNs are housed in each sensillum. Odorants that enter sensilla through the pores on its surface are146

subsequently transported to the Odorant Receptors (ORs) located on the OSN sensory cilia (Larter et al.,147

2016). Odorant molecules then bind to the ORs and induce the OSN to generate action potentials. This148

process is modeled here as the Olfactory Transduction Process (OTP) (see also Figure 4).149

We start by briefly reviewing the OTP for a single mono-molecular odorant. The output of the peri-150

receptor process, that models the overall effect of odorant molecules entering the sensilla before binding to151

ORs (see also Figure 4), is given by Lazar and Yeh (2020)152

[v]
ron

(t) = Re

(∫

R
h(t↑ s)[u]o(s)ds+ [ω]

ron

∫

R
h(t↑ s)d[u]o(s)

)
, (1)

where [u]o is the concentration of the odorant o, [v]
ron

is the concentration profile of the odorant o at153

receptor r expressed by the OSN n. Re above denotes the rectification function and h(t) is the impulse154

response of the peri-receptor process.155

The bound-receptor model describes the dynamics of binding of odorant molecules to the ORs (see also156

Figure 4) and is given by157

d

dt
[x1]ron = [b]

ron
[v]

ron
(1↑ [x1]ron)↑ [d]

ron
· [x1]ron , (2)

where [x1]ron (bounded between 0 and 1) is the ratio of the ligand-bound receptors bound to the mono-158

molecular odorant o. In steady-state,159

[x1]ron =
[a]

ron
[v]

ron

[a]
ron

[v]
ron

+ 1
, (3)

where [a]
ron

=
[b]ron
[d]ron

denotes the odorant affinity. For more details regarding the modeling and biological160

validation of the mono-molecular OTP, see Lazar and Yeh (2020).161

To study odorant mixture representation and processing, we now extended the OTP model to odorant162

mixtures. In the odorant mixture model, we denote the set of mixture components as O and assume that the163

odorant components are independent of each other during the peri-receptor process. Receptor r expressed164

by neuron n can be bound by different odorant components in the mixture, and the ratio of receptors bound165

by odorant o, denoted as [x1]ron, is described by166

d

dt
[x1]ron = [b]

ron
[v]

ron
(1↑

∑
p↑O

[x1]rpn)↑ [d]
ron

· [x1]ron , o → O. (4)
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Figure 4. Schematic diagram of the Olfactory Transduction Process for a set O of odorant mixture
components, o → O. The OTP has 3 stages. In the first stage, also known as the active receptor model,
each odorant mixture component is processed by a peri-receptor process followed by a feedback controlled
receptor binding process that depends on the receptor binding of the other odorant components. The output
of the bounded receptor generator is then fed into the second stage, the co-receptor channel model that
generates the transduction current. Finally, a biophysical spike generator model converts the transduction
current into a spike train. Refer to Table 1 for the mathematical notation.

Eq. (4) models the syntopic interaction between odorants in the mixture and the receptor (Rospars et al.,167

2008). Note that if only one odorant o is present in the mixture,
∑

p↑O
[x1]rpn simply reduces to the single168

term [x1]ron as in Eq (2).169

It is easy to see that by summing up the equations in (4) over all the odorants present in the mixture, the170

ratio of the total bound receptors in steady-state amounts to171

∑
o↑O

[x1]ron =

∑
o↑O

[a]
ron

[v]
ron∑

o↑O
[a]

ron
[v]

ron
+ 1

, (5)

and the steady-state solution to the set of equations in (4) is172

[x1]ron =
[a]

ron
[v]

ron∑
p↑O

[a]
rpn

[v]
rpn

+ 1
. (6)

If we consider the odorant mixture at a particular component ratio as a new ”pure” odorant, then we can173

define, up to a scaling, its effective affinity as174

[a]
rOn

=

∑
o↑O

[a]
ron

[v]
ron∑

o↑O
[v]

ron

(7)

The co-receptor channel that models the dynamics of the activation of ligand-gated channels in the175

mixture model (see also Figure 4) can then be compactly described by176

d

dt
[x2]rOn

= ε
O

2

(∑
p↑O

[x1]rpn

)
(1↑ [x2]rOn

)↑ ϑ
O

2 [x2]rOn
↑ ϖ

O [x2]
2/3
rOn

[x3]
2/3
rOn

d

dt
[x3]rOn

= ε
O

3 [x2]rOn
↑ ϑ

O

3 [x3]rOn
,

(8)
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where ε
O
2 and ϑ

O
2 are scalars indicating the rate of activation and deactivation of the gating variable177

[x2]rOn
, respectively, and the constant ϖO models the calcium feedback for the mixture model. εO

3 and178

ϑ
O
3 are scalars that indicate the rate of increase and decrease of the gating variable, again for the mixture179

model. Note that, by using the ratio of the total bound receptors
∑

p↑O
[x1]rpn, the receptors bound by180

different odorants in the mixture jointly determine the dynamics of the gating variable [x2]rOn
.181

Taken together, the OTP process of an odorant mixture O is given by the following equations182

[v]
ron

(t) = Re

(∫

R
h(t↑ s)[u]o(s)ds+ [ω]

ron

∫

R
h(t↑ s)d[u]o(s)

)
, o → O

d

dt
[x1]ron = [b]

ron
[v]

ron
(1↑

∑
p↑O

[x1]rpn)↑ [d]
ron

· [x1]ron , o → O

d

dt
[x2]rOn

= ε
O

2

(∑
p↑O

[x1]rpn

)
(1↑ [x2]rOn

)↑ ϑ
O

2 [x2]rOn
↑ ϖ

O [x2]
2/3
rOn

[x3]
2/3
rOn

d

dt
[x3]rOn

= ε
O

3 [x2]rOn
↑ ϑ

O

3 [x3]rOn

d

dt
[I]

rOn
= [x2]

ω

rOn
(IrOn ↑ [I]

rOn
)↑ c

ω [I]
rOn

.

(9)

In the last equation of (9), ϱ and c are scalars, and IrOn denotes the maximal amplitude of the current183

through the co-receptor channel, whose value is empirically determined through parameter sweeping. If184

the current is activated on a much faster time scale than the activation of the co-receptor, the last equation185

will operate in steady-state and186

[I]
rOn

=
[x2]

ω

rOn

[x2]
ω

rOn
+ cω

· IrOn. (10)

Revisiting Eq (9), we note that, similar to the mono-molecular odorant, the encoding of odorant mixtures187

exhibits multiplicative coupling in a confounding representation of odorant identities and concentration188

waveforms.189

Finally, we note that the spike train generated by the Biophysical Spike Generator (BSG, see also Figure 4)190

of the OSN expressing receptor r = {1, . . . , R} with noise variance (ςO)2 in response to the odorant191

mixture with components in O is given by192

∑

k↑Z
φ(t↑ t

O

kr
) ↓ NoisyConnorStevens([I]rOn; ς

O), (11)

where (tO
kr
)k↑Z are the spike times generated by the Noisy Connor-Stevens point-neuron model and φ193

denotes the Dirac delta functional. Compared with the Connor-Stevens point-neuron (Connor and Stevens,194

1971), the Noisy Connor-Stevens point-neuron model exhibits a tunable frequency-current response curve195

controlled by the variance of the noise. A detailed computational description of the Noisy Connor-Stevens196

point neuron is available in the Appendix of Lazar and Yeh (2020).197

In conclusion, the notation of the key parameters and input/output variables of the Antenna circuit (see198

Figure 3 and 4) are shown in detail in Table 1.199
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Symbol Description
[v]

o
Output of the peri-receptor process (see Eq (1))

[x1]o Ratio of receptors bound by odorant o (see Eq (4))
x2 Gating variable of the co-receptor channel (see Eq (8))
x3 Gating variable of the calcium channel (see Eq (8))
I Transduction current (see Eq (9))
∑

k
φ(t↑ t

O

k
) Spike train response of the OSN (see Eq (11))

r = {1, . . . , R} Index of receptor types expressed by the OSNs of the Antenna
(b, d, u(t)) Tensor modeling the space of odorants presented to the early olfactory

system
∑

k↑Z φ(t↑ t
O

kr
) Spike train output of the OSN expressing the r-th receptor type in

response to an odorant mixture with components in O

{
∑

k↑Z φ(t↑ t
O

kr
)}R

r=1 Multi-dimensional spike train output across all OSNs expressing the R

different types of olfactory receptors

Table 1. Mathematical notation of the Antenna circuit model.

2.3 I/O Modeling of the Antennal Lobe200

The Antennal Lobe (AL) can be anatomically divided into some 52 regions called glomeruli, where201

all the OSNs expressing the same olfactory receptor project their axons into (Buck and Axel, 1991;202

Firestein, 2001). The dendrites of a uniglomerular projection neurons (uPNs) exclusively innervate a single203

glomerulus (Scheffer et al., 2020) (see also Figure 1 third column, each color marks the PNs innervating204

a single glomerulus). Therefore each glomerulus can be considered a separate coding channel in which205

the odorants sensed by a single olfactory receptor type all converge onto the same uPNs. In addition to206

uPNs, multiglomerular PNs innervate multiple glomeruli and most of them project to the Lateral Horn207

(LH) while skipping the Mushroom Body (MB). Following (Lazar et al., 2023), multiglomerular PNs are208

ignored in our AL model described below as physiological recordings are only available for uPNs (Kim209

et al., 2015). An extensive group of Local Neurons (LNs) exclusively innervates the AL (Scheffer et al.,210

2020; Lazar et al., 2022). LNs are known to mediate presynaptic inhibition on the OSN axon terminals211

(Olsen and Wilson, 2008).212

The I/O modeling of the Antennal Lobe is extensively covered in the Supplementary Material, Section213

1. Here, we briefly describe the I/O of the Antennal Lobe circuit with spatio-temporal feedback. The214

schematic diagram of this circuit is shown in Figure 5. This circuit consists of R channels modeling215

glomeruli (2 channels are shown in Figure 5). As shown in the Supplementary Material, Section 1, each216

channel r is modeled with 3 Divisive Normalization Processors (DNPs) (Lazar et al., 2023). The first DNP,217

a model of the OSN Axon Terminal, is controlled by the Presynaptic inhibitory Local Neuron (Pre-LN).218

The Pre-LN receives inputs from and provides spatio-temporal feedback to all R channels. The OSN Axon219

Terminal DNP plays a key role in extracting the odorant identity. Each of the other two DNPs models the220

Postsynaptic excitatory Local Neuron (Post-eLN) and the Postsynaptic inhibitory Local Neuron (Post-iLN),221

respectively. Their functions are to extract the stimulus onset and offset semantic timing information.222

Overall, the AL is modeled as a multi-channel DNP with spatio-temporal feedback.223
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In what follows, in response to the spike train generated by an OSN, we will evaluate the currents injected224

by each of the three DNPs of a single channel r into a Projection Neuron. For guidance see Figure 5.225

OSN to Post-eLN
Synapse

OSN Axon Terminal

OSN Axon Terminal

OSN to Post-iLN
Synapse

Post-iLN Post-iLN to PN
Synapse

Post-eLN

Pre-LN

OSN PN

OSN-to-PreLN
Synapse

OSN-to-PreLN
Synapse

OSN to PN
Synapse

OSN to PN
Synapse

Post-eLN to PN
Synapse

OSN to Post-eLN
Synapse

OSN to Post-iLN
Synapse

Post-iLN Post-iLN to PN
Synapse

Post-eLN

OSN PN

Post-eLN to PN
Synapse

Figure 5. Schematic diagram of the multi-channel AL circuit with spatio-temporal Pre-LN feedback.
“OSN” represent a group of OSNs that express the same OR. Their axon terminals provide inputs to uPNs
(“PN”) in the same channel (glomerulus). OSN spikes are fed into both Post-eLN and Post-iLN in the
channel. These two neurons also drive PNs. In addition to providing inputs to their corresponding PNs,
neurotransmitter release at all OSN axon terminals also drive the Pre-LN, which then feedback into the
OSN axon terminals. Channels 1 and R are shown. Refer to Table 2 for the mathematical notation.

The r-th channel parameters of the OSN to Pre-LN synapse are [εOL
1 , ϑ

OL
1 , g

OL
max, E

OL]. The synaptic226

current IOL
r in channel r is described by (see also (the middle of) Figure 5)227

d

dt
x
OL

r = ε
OL

1 · [NT ]OP

r · (1↑ x
OL

r )↑ ϑ
OL

1 · x
OL

r , (12)

228

I
OL

r = g
OL

max · x
OL

r · (V L

r ↑ E
OL), (13)

where [NT ]OP
r is the concentration of the synaptic neurotransmitter released by the OSN expressing the229

r-th receptor and captured by the downstream PN, V L
r is the Pre-LN BSG membrane voltage and E

OL is230

the reversal potential of the synapse.231
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Pre-LN BSG is modeled as a Noisy Connor-Stevens point neuron model (Lazar and Yeh, 2020), similar232

to the OSN BSGs. The generated spike train is given by233

∑

k↑Z
φ(t↑ t

L

k
) ↓ NoisyConnorStevens(

R∑

r=1

I
OL

r ; ςL), (14)

where (tL
k
)k↑Z are the Pre-LN spike times, and (ςL)2 is the noise variance of the point neuron model234

controlling its frequency-current response curve.235

The r-th channel parameters of the OSN Axon-Terminal are [εAxT
1 , ϑ

AxT
1 ,ϖ

AxT
1 , [NT ]

max
], where236

ε
AxT
1 , ϑ

AxT
1 ,ϖ

AxT
1 are rate constants and [NT ]

max
denotes the maximum neurotransmitter concentration,237

and the r-th channel OSN Axon-Terminal is described by238

d

dt
x
AxT

r = ε
AxT

1 ·

∑

k↑Z
φ(t↑ t

O

kr
) · (1↑ x

AxT

r )↑ ϑ
AxT

1 · x
AxT

r ↑ ϖ
AxT

1 ·

∑

k↑Z
φ(t↑ t

L

k
) · xAxT

r (15)

239

[NT ]OP

r = [NT ]
max

· x
AxT

r . (16)

where [NT ]OP
r denotes the vesicle concentration in the OSN Axon-Terminal. Eq. (15) describes a temporal240

feedback Divisive Normalization Processor (DNP) (Lazar et al., 2023) that models the presynaptic241

normalization taking place at the OSN axon terminal (Olsen and Wilson, 2008). Note that the steady-state242

response of Eq. (15) is of divisive form (see Eq. (S5) in Supplementary Material, Section 1). The outputs243

of each OSN Axon-Terminal (feedback DNP) are joined with two additional feedforward DNPs modeled244

by a Post-eLN and a Post-iLN in each channel (for more details, see Supplementary Material, Section 1).245

The three DNP outputs in the channel then drive synapses of the Projection Neuron (PN) arborizing the246

same channel. The total spike train generated by the PN BSG with noise variance (ςP )2 amounts to247

∑

k↑Z
φ(t↑ t

P

kr
) ↓ NoisyConnorStevens(IOP

r , I
eLP

r , I
iLP

r ; ςP ), (17)

where I
OP
r , I

eLP
r , I

iLP
r are the synaptic currents from, respectively, the OSN axon terminal, Post-eLN and248

Post-iLN, and (tP
kr
)k↑Z are the spike times of the PN (see Figure 5). Details regarding the derivation of the249

synaptic currents IOP
r , IeLPr and I

iLP
r are given in the Supplementary Material, Section 1.250

In conclusion, the key parameters and input/output variables of the Antennal Lobe circuit with spatio-251

temporal feedback (see Figure 5) are shown in detail in Table 2.252

2.4 I/O Modeling of the Mushroom Body Calyx253

The primary circuit architecture of the Mushroom Body Calyx (MB Calyx) exhibits 3 types of neurons.254

The first neuron type, the uPNs of the Antennal Lobe, projects into the MB Calyx and provides inputs to the255

second neuron type, the Kenyon Cells (KCs). In the fruit fly, there are about 2,000 KCs on each hemisphere256

(Li et al., 2020). The connectivity between PNs and KCs is considered random and differs among individual257

flies (Caron et al., 2013; Masuda-Nakagawa et al., 2005), although a more recent connectome study258

suggested the existence of more discernible structures (Zheng et al., 2022). Nevertheless, the connectivity259

is stereotypic with each KC receiving inputs, on average, from 6 to 7 PNs. The third type is an Anterior260

Paired Lateral (APL) neuron. It covers the entire MB, including the Calyx, and has reciprocal interactions261
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Symbol Description
r = {1, . . . , R} Index of the channels in the spatio-temporal AL circuit
∑

k↑Z φ(t↑ t
O

kr
) Input into the r-th AL channel, where (tO

kr
)k↑Z are spike times generated

by the OSN expressing receptor type r (see Eq (11))

[NT ]OP

r
Normalized output signal of the feedback DNP in the r-th channel (see
Eq (15) and Eq (16))

∑
k↑Z φ(t↑ t

P

kr
) Output of the r-th channel of the AL, where (tP

kr
)k↑Z are spike times

generated by the r-th channel output PN BSG (see Eq (17))

{
∑

k↑Z φ(t↑ t
P

kr
)}R

r=1 Multi-dimensional output spike trains across all AL channels

I
OeL
r Synaptic current to Post-eLN driven by OSN r (see Eq (S6-S9))

I
OiL
r Synaptic current to Post-iLN driven by OSN r (see Eq (S11-S14))
∑

k
φ(t↑ t

eL

kr
) Output of Post-eLN in the r-th channel (see Eq (S10))

∑
k
φ(t↑ t

iL

kr
) Output of Post-iLN in the r-th channel (see Eq (S15))

I
OP
r Synaptic current into PN driven by OSN axon terminal (see Eq (S16-S17))

I
eLP
r Synaptic current into PN driven by Post-eLN (see Eq (S18-S19))

I
iLP
r Synaptic current into PN driven by Post-iLN (see Eq (S20-S21))
∑

φ(t↑ t
L

k
) Output of the Pre-LN (see Eq (14))

I
OL
r Synaptic current to Pre-LN driven by OSN axon terminal in the r-th channel

(see Eq (12) and (13))

{
∑

k↑Z φ(t↑ t
O

kr
)}R

r=1 Multi-dimensional input across all AL channels

x
AxT
r Normalized output signal of the feedback DNP in the r-th channel

xAxT = {x
AxT

}
R
r=1 Multi-dimensional normalized output signals of the feedback DNPs across

all AL channels

Table 2. Mathematical notation of the Antennal Lobe circuit model.

with all the KCs throughout. It has been recently shown that the APL neuron normalizes the magnitude of262

the overall responses of all the KCs in the MB Calyx (Prisco et al., 2021).263

Here, we refine the MB Calyx circuit with two primary structures. First, the PN to KC connectivity is264

modeled as a bipartite graph, as PNs and KCs can be considered two disjoint sets of vertices in the graph265

and all edges connect a PN to a KC. Second, we model the interactions between KCs and the APL as a266

spatio-temporal feedback DNP circuit, similar to the Pre-LN feedback circuit in the Antennal Lobe.267

The schematic diagram of the MB Calyx circuit with spatio-temporal Anterior Paired Lateral (APL)268

feedback is shown in Figure 6. The m-th KC dendritic output current IKCD
m (superscript “KCD” for “KC269

Dendrite”) is determined by the input of a random number of PN axons projecting into each KC dendritic270

tree and the feedback x
APL provided by the APL neuron.271
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The output current IKCD
m of the m-th KC dendrite with parameters [εKCD

1 , ϑ
KCD
1 ,ϖ

KCD
1 ] is described272

by273

d

dt
x
KCD

m = ε
KCD

1 ·

∑

r↑Im

∑

k↑Z
φ(t↑ t

P

kr
) · (1↑ x

KCD

m )↑ ϑ
KCD

1 · x
KCD

m ↑ ϖ
KCD

1 · x
KCD

m · x
APL (18)

274

I
KCD

m = I
K

max · x
KCD

m , (19)

where Im denotes a set of PNs connected to the dendrite of the m-th KC, εKCD
1 , ϑ

KCD
1 ,ϖ

KCD
1 are rate275

constants. Here, we assume Im to be a random set (Caron et al., 2013). The number of PN inputs that a KC276

receives is parameterized by Q.277

KC Dendrtite

KC Dendrite

APL

PN

KC

PN

KC

PN-to-KC
Synapse

PN-to-KC
Synapse

PN PN-to-KC
Synapse

Figure 6. Schematic diagram of the Calyx circuit with spatio-temporal APL feedback. Spiking outputs of
the PNs provide inputs to KC dendrites. Each KC receives inputs from Q PNs. Output of the KC dendrites
then drive their respective KC BSGs (“KC“) to respond and their spikes are fed into the APL neuron. The
APL neuron output provides a second input to each KC dendrite. Refer to Table 3 for the mathematical
notation.

For simplicity, the APL feedback signal xAPL is modeled as the solution of a kinetic equation with278

parameters [εAPL
1 , ϑ

APL
1 ] driven by the aggregated input KC spike trains

∑M

m=1

∑
k↑Z φ(t↑ t

K

km
):279

d

dt
x
APL = ε

APL

1 ·

M∑

m=1

∑

k↑Z
φ(t↑ t

K

km
) · (1↑ x

APL)↑ ϑ
APL

1 · x
APL

. (20)

where
∑M

m=1

∑
k↑Z φ(t↑ t

K

km
) is the total KC spiking activity. For simplicity, we omit the PN-KC and280

KC-APL synaptic dynamics.281

The KC BSG is modeled by the NoisyConnorStevens point neuron, with noise variance (ςK)2 = 0, and282

generated spike train283

∑

k↑Z
φ(t↑ t

K

km
) ↓ NoisyConnorStevens(IKCD

m ; ςK), (21)
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where (tK
km

)k↑Z are the spike times generated by the m-th KC neuron and φ denotes the Dirac functional.284

In conclusion, the key parameters and input/output variables of the Calyx circuit (see Figure 6) are shown285

in detail in Table 3.286

Symbol Description
m = {1, . . . ,M} Index of the KC neurons in the Calyx circuit
r = {1, . . . , R} Index of the PNs
∑

r↑Im
∑

k↑Z φ(t↑ t
P

kr
) Input to the m-th KC dendrite, where Im denotes a random set of PNs

connected to the m-th KC dendrite and (tP
kr
)k↑Z is the set of spike

times generated by the PN BSG at the output of the r-th AL channel

{
∑

r↑Im
∑

k↑Z φ(t↑ t
P

kr
)}R

r=1 Multi-dimensional input to the dendrites across all KC neurons

x
KCD
m Normalized dendritic output current of the m-th KC neuron

xKCD = {x
KCD
m }

M
m=1 Multi-dimensional normalized dendritic output current across all KC

neurons
∑

k↑Z φ(t↑ t
K

km
) Output of the m-th KC neuron, where (tK

km
)k↑Z is the set of spike

times generated by the m-th KC BSG

{
∑

k↑Z φ(t↑ t
K

km
)}M

m=1 Multi-dimensional output across all KC neurons
∑

k
φ(t↑ t

P

kr
) PN spike outputs

I
KCD Synaptic outputs of the KC dendrite (see Eq (18) and Eq (19))

∑
k
φ(t↑ t

K

km
) KC spike output

Table 3. Mathematical notation of the Mushroom Body Calyx circuit model.

3 I/O CHARACTERIZATION OF ODOR SIGNAL PROCESSING IN THE MB CALYX

In what follows, our goal is to characterize the I/O of the MB Calyx, the last building block of the OEM287

cascade depicted in Figure 2. Given the prior modeling of the space of odorants in Section (2.1), the odorant288

encoding process in the Antenna described in Section (2.2) and, the odor signal processing taking place in289

the Antennal Lobe and detailed in Section (2.3), the input to the Mushroom Body Calyx can be readily290

evaluated as the PN response at the output of the Antennal Lobe for pure and odorant mixtures.291

Recall that, we evaluated the odorant encoding process described in Section (2.2) with 110/23292

odorant/receptor pairs stored in the DoOR dataset (Münch and Galizia, 2016). Each of the 110 odorants293

was associated with a 23-dimensional affinity vector whose entries were estimated using the algorithm294

advanced in (Lazar and Yeh, 2020). Given the PN output provided by the Antennal Lobe model (Lazar295

et al., 2023), we shall investigate whether the Mushroom Body Calyx extracts semantic information, i.e.,296

the identity of pure odorants and odorant mixtures, faithfully and distortion free.297

This section is organized as follows. In section 3.1 we evaluate the effect of the PN-KC connectivity on298

the KC dendritic input for both pure (mono-molecular) and odorant mixtures. In section 3.2 we evaluate299

the effect of the KC-APL feedback on the KC dendritic output for both pure and odorant mixtures. Finally,300

in section 3.3 we show how the Calyx extracts and represents semantic information in the spike domain.301
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3.1 The Effect of the PN-KC Connectivity on the KC Dendritic Input for Pure and Odorant302

Mixtures303

A key descriptor of the Calyx circuit is the connectivity between PNs and KCs, i.e., the adjacency matrix304

of the PN-KC bipartite graph. The topology of the bipartite graph is determined by two factors. First, each305

KC receives inputs from a number of Q PNs. Second, the PNs are randomly selected in an individual fly306

(Caron et al., 2013). This determines how the KC dendritic trees sample the R-dimensional space of the307

PN responses to odorants.308

We first evaluate the dependency of the KC dendritic inputs on Q. Biologically, the value of Q corresponds309

to the number of claw-like endings of the KC dendrites (Schürmann, 1974; Yusuyama et al., 2002). Each310

KC claw receives dense synaptic inputs mostly from a single PN. Therefore, the number of dendritic claws311

of a KC largely determines the number of different PNs that the KC receives inputs from.312

A recent experimental study has examined the effect of the number of KC claws on fly’s ability to313

discriminate odorants (Ahmed et al., 2023). Genetic manipulation allowed the authors to obtain flies that314

have an increased or decreased number of dendritic claws. Here we evaluate the effect of computationally315

changing the value of Q.316
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Figure 7. Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input for
aal:aAcetone. (A) Acetone affinity in descending (ranking) order. Affinity is normalized by the sum of all
affinity values across receptor types. (B) Steady-state responses of OSNs to Acetone at 4 different constant
amplitude concentration levels. (C) Steady-state responses of PNs to Acetone at 4 different constant
concentration levels. (D) Dendritic inputs to each KC in descending order of input strength, at 4 different
different constant concentration levels. (D1) Q = 3, (D2) Q = 6, (D3) Q = 9. The horizontal axis lists the
KCs in ranking order.

3.1.1 The Effect of the PN-KC Connectivity on the Dendritic KC Input for Pure Odorants317

In this section we evaluate the dependence of the KC dendritic inputs on Q (number of claw-like endings318

of the KC dendrites) for pure odorants. In Figure 7, we evaluate our model for Acetone at 4 constant319

amplitude concentration levels: 50ppm, 100ppm, 150ppm and 200ppm, and examined the respective320

steady-state responses at the OSNs, PNs and KC dendritic inputs. In Figure 7A, the affinity value of each321

of the 23 receptors normalized by the sum of all affinity values is shown in descending (ranking) order.322
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Note that the responses presented in ranking order provide a more intuitive representation of the structure323

of the response vectors. The OSN and PN spike train responses are shown in Figure 7B and Figure 7C,324

respectively. Consistent with (Lazar et al., 2023), while both OSN and PN responses are sensitive to odorant325

concentration, the dependency at the PN level is markedly reduced.326

Visualizing the KC responses in Figure 7D1-D3, we observe that the number of KCs activated by a given327

odorant is strongly influenced by the Q values: Q = 3, Q = 6 and Q = 9.328

We note that the ranking of the KC dendritic inputs is largely determined by the number of top responding329

PNs. For example, if the Q = 6 inputs to a KC originate from the top 6 responding PNs, then that KC330

is ranked tops among all other KCs. Since only 1 PN (DM4 PN) out of the 23 PNs strongly responds to331

Acetone, the KCs that receive inputs from the DM4 PN have significantly higher total dendritic input than332

the other KCs (see also Figure 7D1-D3). This results in a large gap in the dendritic input-rank curve. As Q333

increases from 3 to 9, the number of KCs that have DM4 PN dendritic input also increases. This increase334

leads to a larger percentage of KCs with larger inputs while the total number of KCs remains unchanged.335
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Figure 8. Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input for
nerol. (A) Nerol affinity in descending order. Affinity is normalized by the sum of all affinity values across
receptor types. (B) Steady-state responses of OSNs to Nerol at 4 different constant amplitude concentration
levels. (C) Steady-state responses of PNs to Nerol at 4 different constant concentration levels. (D) Dendritic
inputs to each KC in descending order of input strength, at 4 different constant concentration levels. (D1)
Q = 3, (D2) Q = 6, (D3) Q = 9. The horizontal axis lists the KCs in ranking order.

In Figure 8, we characterize responses to the odorant Nerol in the same way as in Figure 7 for the odorant336

Acetone. We note that the affinity values of 3 receptors are relatively higher. This creates a different337

signature in the ordered ranking of the KC inputs. The general trend is similar to the case when Acetone is338

presented. With a smaller Q value, less KCs receive enough inputs to generate spikes, as experimentally339

observed in Ahmed et al. (2023).340

With an increasing number of PNs responding to a pure odorant, the dendritic input-ranking curve341

becomes smoother. See for example, the results for Diethyl Succinate and Ethyl Butyrate shown,342

respectively, in Supplementary Figure S3 and S4. Ethyl Butyrate elicits responses in a wide range of PNs,343

and the dendritic input-rank curves are smoother without noticeable gaps between KC dendritic inputs.344
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Figure 9. Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input
with mixtures of Acetone and Diethyl Succinate. Concentration of Acetone is kept at 100ppm, and the
concentration of Diethyl Succinate changes in each column such that the ratio of the two odorants are
(column 1) 4:1, (column 2) 2:1, (column 3) 1:1, (column 4) 1:2 (column 5) 1:4. The mixtures are
presented at constant concentration levels, and the steady-state responses are shown. (A) Effective affinity
of the mixture at different component ratios. (B) OSN responses. (C) PN responses. (D) KC dendritic
inputs for (blue) Q = 3, (orange) Q = 6 and (green) Q = 9. The horizontal axis lists the KCs in ranking
order.

Similar dendritic input-rank plots can be obtained for randomly instantiated PN-KC bipartite graphs (see345

Supplementary Figure S5). Note, however, that for random connectivity, the exact ranking order of each346

KC might differ. Since the connectivity between PNs and KCs has been shown to be random and may347

differ from fly to fly (Caron et al., 2013), the preservation of the input-ranking for different odorants across348

concentration amplitudes applies across individual flies.349

3.1.2 The Effect of the PN-KC Connectivity on the KC Dendritic Input for Odorant Mixtures350

In Figure 9, we evaluate the dependence of the KC dendritic inputs on the connectivity parameter Q when351

a binary odorant mixture consisting of Acetone and Diethyl Succinate is presented. The concentration of352

Acetone is kept at 100ppm, and the concentration of Diethyl Succinate changes in each column such that353
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the ratio of the two odorants are, respectively, 4:1, 2:1, 1:1, 1:2 and 1:4. The mixtures are presented at354

constant amplitude concentration levels, and the steady-state responses are shown.355

We observe that across all Q values, the ordered KC dendritic input exhibits different characteristics356

when the component concentration amplitude ratio shifts from 4:1 to 1:4. This characteristic is largely357

preserved for different Q values at a particular component concentration ratio. In particular, the range of358

magnitude of KC dendritic inputs are similar across 3 Q values, as there are only 3 large components in the359

affinity vectors.360

Concluding, the connectivity between the PNs and KCs modeled by a bipartite graph with parameter Q361

changes the distribution of the ranking of the output of dendritic KCs. In Figures 7, 8 and 9 higher rank KC362

input values gravitate and are grouped together. These groupings can be more easily distinguished from363

lower rank values that also gravitate together. In addition, these response properties are preserved despite364

the randomness of the connectivity between PN and KC across individual flies.365

3.2 The Effect of the KC-APL Feedback on the KC Dendritic Output for Pure and Odorant366

Mixtures367

In this section we analyze the dependence of the Mushroom Body Calyx circuit on the APL feedback. We368

focus on the effect of APL feedback on the KC dendritic outputs that drive the KC spike generation. For369

simplicity, we set the connectivity parameter of the PN-KC bipartite graph to Q = 6, a number consistent370

with average of PN-to-KC connections observed in the connectome (Scheffer et al., 2020). We show that371

the APL feedback facilitates the extraction of semantic odorant information by normalizing KC responses372

and by reducing odorant concentration dependence of the KC dendritic output.373

3.2.1 The Effect of the KC-APL Feedback on the KC Dendritic Output for Pure Odorants374

We first note that the differential DNP described by eqs. (18) and (20) is, in steady-state, approximately375

characterized by a monotonically increasing sigmoid function of KC dendritic inputs. Therefore, we expect376

that the ranking of the magnitude of KC dendritic inputs is preserved by the KC dendritic outputs.377

In Figure 10, we depict the transformation of KC dendritic inputs (left column) into dendritic outputs378

(middle column) in the presence of APL feedback. Each row of Figure 10 shows the transformation for379

one of the 4 odorants that we tested (Acetone, Diethyl Succinate, Nerol and Ethyl Butyrate) each with 4380

different constant amplitude concentration values. The dendritic output amounts to x
KCD
m in steady-state.381

Here the KC spiking threshold was chosen to be 0.5. Thus, the KCs that have dendritic output greater than382

0.5 will generate spikes that contribute to the magnitude of the amplitude of the APL feedback.383

As shown in Figure 10, the presence of APL feedback largely removes the concentration dependence384

of the KC dendritic output if the latter is above threshold. This demonstrates that the proposed divisive385

normalization circuit is capable of further reducing the variability of KC responses to odorants of different386

concentration levels (Prisco et al., 2021) beyond the normalization effect induced by the Local Neurons387

of the Antennal Lobe (Lazar et al., 2023), thereby further separating odorant semantic information from388

syntactic information (Lazar et al., 2023). The aggregation of the KC responses in Figure 10(right column)389

will be discussed in Section 3.3.390

3.2.2 The Effect of the KC-APL Feedback on the KC Dendritic Output for Odorant Mixtures391

APL feedback is equally effective for extracting the semantic information of odorant mixtures. In392

Figure 11, we consider a binary mixture consisting of acetone and diethyl succinate at different393

componentconstant amplitude concentration ratios. For each component ratio, we also varied the total394
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Figure 10. APL feedback facilitates the extraction of odorant semantic information by normalizing KC
responses and by reducing odorant concentration dependence of the KC dendritic output. The connectivity
parameter of the PN-KC bipartite graph is Q = 6. Odorant semantics in row (A) Acetone, (B) Diethyl
Succinate, (C) Nerol, and (D) Ethyl Butyrate. (left column) Ranking of KC dendritic inputs. (middle
column) Ranking of KC dendritic outputs. (right column) Odorant semantics encoded in the time domain
across the population of KCs. The first spikes of each of the active KCs in response to each odorant are
collected onto a single row for each of the odorant concentration amplitude values.

concentration while keeping the ratio fixed. The OSN responses to the mixtures are shown in Figure 11A.395

PN responses, as shown in Figure 11B, exhibited reduced variability to constant concentration ratios. The396

KC dendritic inputs and and the dendritic outputs are, respectively, shown in Figure 11C and Figure 11D.397

While the magnitude of dendritic inputs varies across component ratios and total concentration, the398

dendritic outputs display a markedly reduced variability across concentration amplitudes. Among the399

different component ratios tested, the overall range of responses at the KC dendritic outputs are also similar.400

Normalized KC dendritic outputs naturally maintain the number of active KCs with a single spiking401

threshold. From Figure 10 and Figure 11, we can see that about 20% of the KCs are above the spiking402

threshold. With a different threshold or Q value, the percentage of active KCs can easily be controlled. This403
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Figure 11. By normalizing KC responses and by reducing odorant concentration dependence of the
KC dendritic output, APL feedback reduces the variability of KC responses to component concentration
ratios of odorant mixtures. (A) OSN responses to mixture of Acetone and Diethyl Succinate at 5 different
component ratios and different total concentration levels. Legend shows the concentration of Acetone.
Concentration of Diethyl Succinate can be derived from the component ratio. (B) PN responses. (C) KC
dendritic inputs. (D) KC dendritic outputs. Ratios of Acetone to Diethyl Succinate are (column 1) 4:1,
(column 2) 2:1, (column 3) 1:1, (column 4) 1:2, (column 5) 1:4. The horizontal axes in rows (C) and (D)
list the KCs in ranking order. The connectivity parameter of the PN-KC bipartite graph is Q = 6.

demonstrates that the spatio-temporal DNP model of the MB Calyx circuit is a more natural mechanism404

for ensuring the sparsity of KC responses, as opposed to an artificial winner-take-all mechanism that has405

been used by other models of the mushroom body for enforcing the sparseness of KC responses (Dasgupta406

et al., 2017; Saumweber et al., 2018; Gkanias et al., 2022).407
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3.3 The Calyx Extracts and Represents Odorant Semantic Information in the Spike408

Domain409

Ranking the dendritic input and output KCs in Figure 10 and Figure 11 provides insights into the structure410

of the affinity vector of pure and mixture odorants under consideration. The ranking operation, however,411

exhibits a combinatorial complexity. This forbidding complexity can be computationally readily avoided412

by mapping, for each KC, the dendritic output into the spike domain. The proposed code takes the first413

spike of each active KC and joins them all together at generation time into a single first spike sequence.414

Figure 10(right column) shows the first spike sequences for 4 different odorants, each at 4 different415

concentration levels. We note that these spike sequences are not generated by a single neuron. Rather,416

each sequence consists of a train of spikes received by, e.g., a Mushroom Body Output Neuron (MBON)417

(or APL neuron) innervating its presynaptic KCs in a MB compartment. Therefore, the order of the KC418

dendritic output that is invariant to odorant concentration can be naturally read out by an MBON (or APL)419

based on the timing of the proposed first spike sequence.420

Since the KC dendritic output is largely concentration invariant for the KCs with dendritic output above421

the threshold, the variability of the sequence of spikes across a range of concentration amplitude values is422

small. The first spike sequences in Figure 10(right column) are clearly different when due to two different423

odorants but rather similar when due to two different concentration waveforms of the same odorant. In the424

Supplementary Figure S6, we display the ranked KC dendritic inputs, the ranked KC dendritic outputs, the425

first spike sequence and the cumulative interspike intervals for all 110 odorants whose OSN responses have426

been characterized for 23 ORs at a single concentration level in the DoOR dataset (Münch and Galizia,427

2016). Note that the cumulative interspike distance plots are largely concentration invariant. This is amply428

displayed in the last column of the Supplementary Figure S6 for 110 mono-molecular odorants evaluated at429

4 different concentration amplitude values. Thus, we hypothesize that the sequence of first spikes generated430

by each individual KC represents the odorant semantic information in the time domain largely unaltered by431

the syntactic information of the odorant concentration waveform.432

The key advantage of the first spike sequence code across the active KCs in the spike domain is that the433

readout of the sequence of spikes arriving at the MBONs does not require the knowledge of the KCs that434

the spike originated from. The entire sequence becomes a single code. Therefore, the code remains the435

same for different flies with different instantiations of the PN-KC bipartite graph.436

The first spike sequence code can also be used to distinguish odorant mixtures with different mixture437

ratios. Figure 12(right column) shows the first spike sequence code for mixtures of Methanol and Benzyl438

Alcohol at 5 different ratios. For each fixed ratio, the concentration of the mixture components are presented439

at 4 different Methanol concentration levels. Again, the first spike sequence code shows different patterns440

for each ratio but similar patterns for different concentration ampitudes of the same ratio. The corresponding441

cumulative interspike intervals are shown in Supplementary Figure S7. The response of the OEM to two442

other binary mixtures are shown in Supplementary Figure S8 and S9.443
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Figure 12. Odorant semantics information of a mixture of Methanol and Benzyl Alcohol with different
constant concentration amplitude ratios encoded in the time domain across the population of KCs. The
mixtures are presented at a fixed ratio in row (A) 4:1, (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:4. For each fixed
ratio, 4 Methanol concentration levels are used, (red) 50ppm, (green) 100ppm, (orange) 150ppm and (blue)
200ppm. (left column) Ranking of KC dendritic inputs. (middle column) Ranking of KC dendritic outputs.
(right column) Odorant semantics encoded in the time domain across the population of KCs. The first
spikes of each of the active KCs in response to each odorant are collected onto a single row for each of the
odorant concentration amplitude values.
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4 DISCUSSION

The early olfactory sensory circuits evolved to encode and identify odorants in various ecological niches,444

thereby raising the structure and features of the odorant space to be key determinants of the encoding445

mechanisms adapted in the olfactory pathways. Despite its importance, however, an explicit modeling of446

the odorant space has often been neglected when discussing odor signal processing in the early olfactory447

circuits (Endo and Kazama, 2022).448

In the present work, we explicitly modeled odorant stimuli in terms of their semantic and syntactic449

information content, and explored how the early olfactory system of the fruit fly separates semantic and450

syntactic information. Recall that, Shannon (Shannon, 1948) made a clear distinction between meaning451

(semantic) and syntactic information. He felt, rightly so, that syntactic information can be formalized and452

that led to, among others, key concepts in information theory such as channel capacity, coding theorems,453

etc. One of his main arguments was that “a bit is a bit” and there is no meaning associated with “bits”. He454

did not address the challenges of formalizing the concept of semantic information.455

In accordance to Shannon’s distinction between syntax and semantics, our key prior research results456

(Lazar and Yeh, 2020; Lazar et al., 2023) have pointed out that the traditional application of methods of457

information theory, signal processing and control theory to odor signal processing is lacking the notion of458

“meaning” or semantics. An example might help clarify our point of view. When a neuroscientist applies459

a mono-molecular odorant such as Acetone, to the Antennae of the fruit fly, and only provides single460

OSN recordings to a second neuroscientist without mentioning the odorant identity, the recordings alone461

provide no clues that the odorant in question is Acetone. This is because different odorant identity and462

concentration pairs can lead to the same OSN spike train response (Lazar and Slutskiy, 2012). Most of463

the experiments in the olfactory literature, assume that the odorant identity is known. As such, prior arts464

(Blazing and Franks, 2020b; Endo and Kazama, 2022; Bandyopadhyay and Sachse, 2023) have primarily465

focused on the representation of odorant syntactic information (i.e., concentration amplitude) and cannot,466

therefore, serve as baseline methods without a formal computational/theoretic model of odorant identity.467

In contrast we argue that odor signal processing in the Early Olfactory System (EOS) of the fruit fly, is468

mostly focussed on extracting semantic information. Consequently, we argue that olfactory research needs469

to shift from solely focusing on processing syntactic (or Shannon) information to processing semantic, i.e.,470

odorant identity information.471

To that end, by extending our previous work on the functional logic of odor signal processing in the472

Antennal Lobe (Lazar et al., 2023), we have established that the Antennal Lobe and Calyx jointly remove473

the concentration dependency of the odorant information from the confounding representation of the474

Antenna (Lazar and Yeh, 2020). We demonstrated that these circuits separate the odorant semantics from475

syntax, thereby undoing the multiplicative coupling of these two information streams in the Antenna.476

We showed that in the Calyx the sought after semantic information underlies the ranking of the477

KC dendritic output after the KC dendritic input undergoes the PN-KC random connectivity and the478

spatio-temporal feedback provided by the APL neuron. Consequently, expansion recoding in the Calyx479

characterizes the structure of vector PN responses by computing fixed mean random additive combinations,480

and use their ranking as a simple yet powerful way of extracting the semantic information of the odorant.481

More importantly, we addressed the combinatorial complexity of ranking by mapping, for each KC, the482

concentration-invariant dendritic output into the spike domain. The proposed time code takes the first483

spike of each active KC and joins them all together at generation time into a single first spike sequence.484

Clearly, the order of the first spikes across the population of KCs reflects the ranking order at negligible485
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complexity. The existence of such concentration-invariant spike code is supported by increasing evidence486

in the Antenna and Antennal Lobe (Haddad et al., 2013; Wilson et al., 2017; Zwicker, 2019; Chong et al.,487

2020; Egea-Weiss et al., 2018), the piriform cortex (Bolding and Franks, 2018), the visual system (Rullen488

and Thorpe, 2001; Gollisch and Meister, 2008), and at the neuron level in general (Branco et al., 2010).489

Time is an intrinsic variable of the concentration waveform, but not of the odorant object identity.490

Interestingly, the key result of the modeling and characterization of the early olfactory system we advanced491

here asserts that the semantic information is mapped into the time domain by the Calyx circuit, in the form492

of the first spike sequence code. This allows a low complexity single readout of the semantic information at493

the downstream MBONs regardless of the exact connectivity between PNs and KCs in individual flies. The494

code itself is temporally bounded, making it possible for timely memory access in the MB compartments.495

Overall, our work argues that the main information pattern processed by the early olfactory system is496

supplied by the odorant semantics and not the syntax. The odorant semantics is mapped by the Calyx circuit497

into a first spike sequence in the time domain. This is, clearly, central to understanding the functional logic498

of the neural circuits involved in odor signal processing in the EOS of the fruit fly brain. Our approach,499

backed up by the analysis of the fist spike sequence code and the robustness of the cumulative interspike500

intervals of 110 odorants in the DoOR dataset (Münch and Galizia, 2016), represents a radical departure in501

understanding the logic of odor signal processing in the EOS. Among others, it calls for recordings of the502

KCs in the MB with the ultimate goal of addressing the existence of the first spike sequence code that we503

advanced here.504

Furthermore, we extended the model of mono-molecular odor signal processing in the Antenna, Antennal505

Lobe and Calyx to odorant mixtures. Our model covers the syntopic interactions (Rospars et al., 2008)506

among odorants competing for the unbound receptors in the OSN cilia while abstracting additional resources507

(e.g., the number of permeable pores on the surface of sensilla binding proteins (Larter et al., 2016)) into508

the peri-receptor processes. No further interactions between odorants and the same receptor type have been509

modeled that may result in binding/dissociation facilitation or suppression (Singh et al., 2019). We note510

that alternative extensions to the OTP model may be developed for describing other phenomena of odorant511

mixture encoding, such as masking (Reddy et al., 2018), and ephaptic coupling (Su et al., 2012; Wu et al.,512

2022; Pannunzi and Nowotny, 2021). However, despite recent insight into the structure of Machili hrabei513

olfactory receptor (del Mármol et al., 2021), additional recording datasets are required to determine which514

model most accurately describes odorant mixture binding to Drosophila olfactory receptors.515

Algorithmically, our model of the first three stages of the EOS anchors on Divisive Normalization516

Processors (DNPs). DNPs are models of biological neural circuits (Lazar et al., 2020b; Lazar and Zhou,517

2023) with spatio-temporal feedforward and/or feedback control. The power of DNPs in modeling key518

computational building blocks in the early olfactory system suggests their applicability in many other519

sensory processing systems in and beyond those of the fruit fly brain.520
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SCOPE STATEMENT

Associative memory in the Mushroom Body (MB) of the fruit fly brain depends on the encoding and708

processing of odorants in the first three stages of the Early Olfactory System: the Antenna, Antennal Lobe709

and MB Calyx. The Kenyon Cells (KCs) of the Calyx provide the MB compartments the identity of pure710

and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains711

is a major challenge in neuroscience.712

We model the space of odorants using constructs of both semantic and syntactic information. A key713

question that early olfactory systems must address is how to disentangle odorant semantics from syntax. To714

address this challenge we devised an Odorant Encoding Machine (OEM) modeling the first three stages of715

the early olfactory processing as a cascade of Divisive Normalization Processors (DNPs). By extensively716

modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we demonstrate717

that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant718

concentration, thereby separating odorant semantic information from syntactic information. We advance719

the first spike sequence code at the output of the KCs that represents the odorant semantics in the spike720

domain.721
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