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Layered A-type antiferromagnets are composed of van der Waals 
sheets with intralayer ferromagnetic (FM) order and interlayer 
antiferromagnetic (AFM) coupling1. Upon the application of an 

external magnetic field, the interlayer AFM order can be switched 
to a field-induced FM configuration, accompanied by a change in 
optical and electronic properties2–6. This change of spin structure 
produces emergent phenomena, including giant tunnelling magne-
toresistance in vertical van der Waals spin filters4,7,8, giant second 
harmonic generation in the AFM state due to the breaking of inver-
sion symmetry by magnetic order9 and magnetic-order-dependent 
excitonic transitions arising from changes in interlayer hybrid-
ization2. For applications in spin-based electronics, ideal materi-
als should have functional semiconducting transport properties  
coupled with layered magnetism, which would allow for simul-
taneous control over charge and spin carriers. In studies of bulk 
magnetic semiconductors, magnetic defects and impurities play 
a crucial role in determining the magnetic and electronic proper-
ties. To further develop 2D magnetic semiconductors, it is thus  
critical to understand how magnetic order and magnetic defects 
couple to charge carriers10–12,15. In currently available 2D magnets, 
however, active modulation of charge transport properties via elec-
trostatic gating remains a challenge, and the role of defects is essen-
tially unexplored13–15.

In this work, we report the magnetotransport properties of 
atomically thin CrSBr, a 2D van der Waals material with strongly 

coupled, layered A-type AFM order and semiconducting trans-
port properties. Each CrSBr layer consists of two buckled rectan-
gular planes of CrS fused together, with both surfaces capped by 
Br atoms (Fig. 1a)3,16,17. Stacking of the layers along the c axis pro-
duces an orthorhombic structure with space group Pmmn. The 
paramagnetic (PM)-to-AFM phase transition includes substantial 
intralayer FM correlations developing above the Néel temperature 
(TN = 132 K) at a characteristic temperature (Tc = 160 K), as identi-
fied by heat capacity9 and magnetic susceptibility3 measurements. 
Below TN, the layers order ferromagnetically, with spins oriented 
along the b axis, and align antiferromagnetically along the stacking 
direction (Fig. 1a)3,16. Crystals of CrSBr can be mechanically exfoli-
ated, and a recent second harmonic generation study confirms that 
the bulk magnetic structure persists down to the FM monolayer and  
AFM bilayer9.

In bulk single crystals, CrSBr is an extrinsic semiconductor 
with a direct bandgap of ~1.5 eV and finite conductivity that can 
be measured down to liquid helium temperature3. We find that 
the transport properties of few-layer CrSBr are dominated by the 
interlayer magnetic order. When the flakes are polarized with an 
external magnetic field, their resistances decrease drastically due to 
differences in interlayer spin-flip scattering between the AFM and 
FM configurations. In monolayer CrSBr, spin-flip scattering arises 
only from intraplanar FM ordering, which manifests as a peak of 
negative magnetoresistance near the monolayer Curie temperature 
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(TC = 146 K (ref. 9)), followed by a drop to near zero upon cool-
ing to ~40 K. For all layer numbers, magnetoresistance measure-
ments reveal unexpected magnetic behaviour below 40 K, which 
we hypothesize originates from strong coupling between charge 
carriers and magnetic defects. In monolayer CrSBr we controlla-
bly switch between magnetoresistance mechanisms attributed to 
exchange interactions between free carriers and magnetic defects 
or magnetic polarons by varying the carrier density with an elec-
trostatic gate.

Atomically thin CrSBr flakes are prepared via mechanical exfo-
liation on Si wafers with a 285-nm-thick SiO2 layer (Supplementary 
Information for details)18,19. The thickness and crystallographic 
directions of exfoliated flakes are determined by optical con-
trast (Fig. 1b and Supplementary Figs. 1–3), atomic force micros-
copy (Fig. 1c and Supplementary Fig. 3) and Raman spectroscopy 
(Supplementary Figs. 4 and 5). Mesoscopic transport devices are 
fabricated using the via contact method20, whereby palladium elec-
trodes embedded in hexagonal boron nitride are transferred onto 
the desired CrSBr flakes using the dry-polymer-transfer process21 
(Fig. 1d; Supplementary Information for details). We performed 
electrical transport measurements as a function of temperature (T), 
magnetic field (B) and electrostatic gate voltage (VBG) on CrSBr 
flakes ranging in thickness from one to nine layers. Current was 
sourced along the crystallographic a axis for all measurements  

(Fig. 1d). Owing to the high resistance of the flakes over the entire 
T range (Supplementary Figs. 6 and 7), all data reported in the main 
text were measured in a two-terminal configuration. Some mea-
surements were repeated in a four-terminal configuration to con-
firm that the channel resistance dominates the transport properties 
(Supplementary Fig. 8).

Bilayer CrSBr displays an overall extrinsic semiconducting 
behaviour with conductance (G) decreasing with decreasing T  
(Fig. 1e). At T = 136 ± 4 K, there is a sharp dip in the second deriv-
ative of G versus T (d2G/dT2), which is attributed to the onset of 
AFM ordering at TN

3. The G shows a local maximum at the same 
T due to reduced scattering caused by spin fluctuations as CrSBr 
becomes antiferromagnetically ordered22,23. Thicker flakes display 
similar features, signalling the onset of AFM order (Supplementary 
Fig. 9). Within experimental error, the values of TN measured from 
transport for flakes ranging in thickness from two to nine layers 
are unchanged from the bulk value and independent of layer num-
ber (Supplementary Fig. 9). By contrast, monolayer CrSBr shows 
no dip in d2G/dT2 (Fig. 1f) but displays a zero crossing close to the 
expected monolayer TC

9. This is consistent with previous reports 
that monolayer CrSBr exhibits only intraplanar FM ordering9. Note 
that the low-T resistance for both bilayer and monolayer CrSBr is 
well described by Efros–Shklovskii variable range hopping, indicat-
ing that electronic transport is dominated by electron percolation 
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Fig. 1 | Crystal structure, device fabrication and transport signatures of CrSBr magnetic ordering. a, Crystal structure of CrSBr as viewed along the a  
axis. Orientations of the Cr spins in the AFM state are given by solid blue arrows. Blue, yellow and red circles correspond to Cr, S and Br, respectively.  
b, False-coloured optical image of an exfoliated CrSBr flake with thicknesses ranging from one to six layers. The corresponding layer numbers are 
denoted on the image. The orientation of the crystal axes is given in the upper right inset. c, Atomic force microscopy image of the CrSBr flake shown in 
b. The region where the image was taken is denoted by a dashed white box in b. The corresponding numbers of CrSBr layers are labelled on the image. 
d, Side-view (top) and top-view (bottom) schematics of the CrSBr device geometry. Colour code: hexagonal boron nitride (hBN), grey; Pd, yellow; SiO2, 
dark grey; CrSBr, blue; Si+ substrate, black. The orientation of the crystal axes relative to the electrodes is denoted. e,f, Conductance (solid black line) and 
second derivative of the conductance (solid red line) versus T at zero B for bilayer (e) and monolayer (f) CrSBr. The interlayer AFM, intralayer FM (labelled 
iFM or FM) and PM states are denoted by solid blue, solid green and white regions, respectively. TN is defined as the location of the dip in d2G/dT2. TC is 
defined from second harmonic generation measurements9. Cartoons of the spin orientation in each state are given in the insets. The white rectangles 
represent single CrSBr sheets, and the blue arrows represent the Cr spins.
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between hopping sites (Supplementary Fig. 10; Supplementary Fig. 
11 for additional characterization)24,25.

Figure 2a presents the magnetoresistance ratio (MRR) versus 
B and T for bilayer CrSBr. We define MRR =

R(B)−R(B=0)
R(B=0) × 100, 

where in this plot B is oriented along the c axis, and R is resistance. 
From 300 to ~175 K, the sample is in a PM phase characterized by a 
broad negative MRR (nMRR) due to the field-induced suppression 
of spin-flip scattering between conducting electrons and local mag-
netic moments26,27. The thermal fluctuations that prevent spins from 
aligning with B diminish with decreasing T, leading to an overall 
increase in the magnitude of the nMRR15,23,28. Below TN = 136 ± 4 K, 
we observe nMRR up to a well-defined saturation field (Bsat) beyond 
which the device resistance saturates with increasing B. This  

manifests as a dome of nMRR, the edges of which define Bsat 
(dashed black line in Fig. 2a). The magnitude of nMRR increases 
with decreasing T as the AFM state becomes more ordered, reach-
ing –23.5% at 10 K (Fig. 2b; Supplementary Fig. 12 for lower T). This 
giant nMRR followed by saturation for B > Bsat indicates that carrier 
scattering between layers is controlled by the interlayer magnetic 
configuration. In the AFM state at zero B, interlayer tunnelling is 
suppressed. As B increases, the spins are gradually canted towards 
the c axis, progressively breaking the AFM configuration and  
restoring interlayer tunnelling, which results in a decrease of the 
device resistance. At Bsat, the spins are fully polarized along the c 
axis, and a further increase of B has little effect on the resistance. 
Consistent with this understanding, all CrSBr samples thicker 
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Fig. 2 | Magnetoresistance of bilayer and monolayer CrSBr. a,c, MRR versus B at various T with B oriented along the c axis for bilayer (a) and monolayer 
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than one layer exhibit the same qualitative MRR behaviour 
(Supplementary Figs. 13–16).

Figure 2c plots the magnetoresistance of the FM CrSBr mono-
layer versus B and T. Between 300 and 170 K, monolayer CrSBr 
exhibits the same behaviour as the multilayer samples in regards 
to nMRR, which we attribute to the suppression of spin-flip scat-
tering in the PM state with increasing B, the magnitude of which 
increases as T decreases. As T is further lowered below 170 K, the 
magnitude of MRR decreases and approaches zero by 40 K (Fig. 2d).  
This is expected since the intralayer FM order reduces spin fluc-
tuations at zero B, diminishing spin-flip scattering. The compe-
tition between these two phenomena leads to a peak in nMRR 
versus T at 170 K (black line in Fig. 2c), which we denote as T*. 
This feature is present in all samples (black line in Fig. 2a for bilayer 
and bulk3), reflecting the onset of intraplanar FM correlations 
as it closely follows the monolayer TC measured by second har-
monic generation and the Tc determined from bulk heat capacity  

measurements9. T* is the same for bilayer and monolayer CrSBr, 
indicating that this feature is independent of the interlayer AFM 
coupling. The remarkable agreement between transport and previ-
ous second harmonic generation results demonstrates that magneto-
transport is a reliable probe of both FM and AFM order in CrSBr. 
Below 40 K (which we denote as TD), monolayer CrSBr exhibits a 
positive MRR (pMRR) that increases with decreasing T (Fig. 2d). 
While this feature is most prominent in monolayer samples, it is 
also observed in the bilayer CrSBr sample in Fig. 2a (and in bulk 
CrSBr3) as a small pMRR just below Bsat (Supplementary Fig. 17 for 
a detailed analysis). Note that CrSBr devices fabricated from flakes 
greater than one layer thick exhibit hysteresis in MRR in the AFM 
state (Fig. 2a and Supplementary Figs. 13–16), which we attribute to 
the field-induced canted AFM state29–31.

This low-T pMRR response is unexpected for a FM monolayer 
whose ordering temperature is well above 100 K. To better under-
stand the origin of the pMRR, we performed magnetometry on bulk 
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single crystals of CrSBr and complementary field-angle-dependent 
transport measurements on monolayer CrSBr (Fig. 3). The bulk 
magnetic susceptibility (χ) versus T curves (Fig. 3a) show the 
expected cusp at 134 ± 2 K associated with the AFM transition, fol-
lowed by a sharp increase of χ beginning at ~35 K, which is unusual 
for an A-type antiferromagnet. The crystal structure of CrSBr is 
unchanged across this transition3, and we observe an increase in 
χ for all B directions, which necessarily exempts structural trans-
formation or spin reorientation as the origin of this feature. We 
also note that the increase in χ at low T resembles a FM transition. 
Consistent with this hypothesis, there is a divergence between the 
zero-field-cooled and field-cooled traces of χ versus T across the 
transition (inset of Fig. 3a). In Fig. 3b, we plot the magnetization 
(M) versus B at 2 K. The overall response is dominated by the AFM 
behaviour3,16, characterized by a spin-flip transition at ~0.3 T along 
the easy b axis, and gradual canting of spins along the non-easy axes 
up to Bsat. However, if we focus on the low-B region along the easy 
axis, we observe the emergence of a small sigmoidal dependence 
below TD, consistent with FM behaviour. The development of an 
additional FM phase is further evidenced by plotting dM/dB versus 
B (Fig. 3c) across the susceptibility transition. Above the transition 
(40 K), dM/dB is constant for all B directions up to ~0.2 T, but below 
the transition (2 K), there is an additional contribution to dM/dB 
at low B values32. A possible explanation for the emergence of FM 

features at low T is the existence of an impurity phase trapped in the 
bulk CrSBr crystals. However, such a phase would not be present in 
exfoliated flakes. Considering that monolayer and bulk CrSBr show 
similar low-T pMRR features3, we believe the observed monolayer 
MRR anomalies at low T are related to the bulk susceptibility transi-
tion below TD.

The MRR of monolayer CrSBr depends on the direction of B 
below TD (Fig. 3e and Supplementary Fig. 18). The pMRR response 
is characterized by a quadratic dependence at low B followed by 
a saturation at Bsat when B is oriented along the intermediate axis  
(a axis) and the hard axis (c axis). When B is along the easy axis (b 
axis), there is negligible MRR, indicating that the spins are aligned 
along the b axis at zero B. The pMRR along the a and c axes there-
fore arises from a canting of the spins from the b axis towards the 
respective field directions, supported by the observation that the 
MRR saturation fields closely match the saturation fields in the bulk 
M-versus-B curves (Fig. 3b). The difference in magnitude of pMRR 
between the a and c axes is likely due to the anisotropic magnetoresis-
tance effect, which produces pMRR when the magnetization direc-
tion is parallel to the source current direction33. For 40 K < T < 100 K, 
the data are consistent with the anisotropic magnetoresistance effect; 
MRR > 0 for fields parallel to the a axis, and MRR ≈ 0 for fields paral-
lel to the c and b axes (Fig. 3d). Below 40 K, the MRR along the a and 
c axes increases drastically (Fig. 3d). The same anisotropy in MRR 
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was previously observed in bulk single-crystal transport measure-
ments, in which pMRR features emerge along the a and c axes below 
~40 K, but its origin was not explained3.

Our magnetotransport data suggest strong coupling between 
charge transport and magnetic defects in the CrSBr lattice34,35. In 
analogous bulk magnetic semiconductor systems, magnetic defects 
can order collectively as a result of exchange interactions with 
localized charge carriers36–38 or with the intrinsic magnetic lat-
tice39,40. In CrSBr, the low-T magnetic structure likely consists of the 
dominant Cr magnetic lattice and a sublattice of defect spins. The 
magnetometry data indicate that upon cooling below TN, Cr spins 
within each layer order ferromagnetically, but the defects remain 
unpolarized (Fig. 3f, top). Below TD, the magnetic defects appear to 
polarize and adopt a FM configuration (Fig. 3f, bottom). From the 
field-angle-dependent MRR measurements in monolayer CrSBr, we 
suspect the defect spins are aligned with the b axis. The fact that 
TD is much lower than TN suggests that the defect moments (red 
arrows in Fig. 3f, bottom) arise from self-trapped electrons near 
donor sites (known as magnetic polarons39,40), rather than intrinsic 
magnetic impurities. This is supported by energy-dispersive X-ray 
spectroscopy and X-ray photoelectron spectroscopy on parent 
CrSBr crystals, which show no evidence of foreign magnetic atoms 
(Supplementary Figs. 19 and 20).

The coupling between magnetic defects and charge carriers and 
the corresponding MRR response is predicted to depend upon car-
rier density, which in our device can be dynamically and reversibly 
tuned using an electrostatic gate (Supplementary Fig. 21). Figure 
4a presents the MRR of monolayer CrSBr versus B at different VBG 
values. Starting from 0 V, as we increase VBG (increase electron den-
sity), we observe an increase in the pMRR response, from 7.6% up 
to 16.4%. Conversely, decreasing VBG (decreasing electron density) 
decreases the pMRR, and a noticeable region of nMRR emerges 
below –20 V at low B. At a gate voltage of –60 V, the MRR reaches 
–0.4% with regions of nMRR followed by pMRR equal in magni-
tude when B < Bsat. Figure 4b plots the MRR versus VBG along with 
the extracted pMRR and nMRR contributions. There is a direct 
competition between the nMRR and pMRR regimes; increasing the 
electron density (VBG > 0) yields larger pMRR, while decreasing the 
electron density (VBG < 0) diminishes the pMRR contribution and 
induces nMRR. Together, these produce a MRR that depends lin-
early on VBG. The T dependence of the MRR at different VBG values 
(Fig. 4c and Supplementary Fig. 22) shows that the slope of MRR 
versus VBG decreases quickly with increasing T and is negligible 
above TD. A similar effect is observed in bilayer CrSBr, indicating 
the same defect-mediated MRR mechanisms are present in multi-
layer samples (Supplementary Fig. 23). The sensitivity to doping is 
further supported by the air sensitivity of monolayer CrSBr flakes. 
By exposing a monolayer device to air for a period of three weeks 
(Supplementary Fig. 24), we were able to change the doping level 
and the sign and magnitude of the MRR at low T and reproduce the 
behaviour of a second monolayer device with lower intrinsic carrier 
density (Supplementary Figs. 25–28). The carrier density at which 
the MRR crosses from pMRR to nMRR increases as T increases and 
is consistent between multiple samples (inset of Fig. 4c).

The sensitivity of the MRR to carrier density supports the 
hypothesis that the magnetotransport properties of CrSBr at low T 
are governed by the magnetic defects. The two competing magne-
toresistance features (pMRR and nMRR) indicate that the unique 
shapes of the MRR curves result from a competition between multi-
ple mechanisms that dominate within certain carrier density ranges. 
The nMRR component is characteristic of magnetic polarons34,35,41–43 
and is consistent with our observation that decreasing the carrier 
density enhances the nMRR44. Furthermore, the carrier density at 
which MRR crosses from pMRR to nMRR (inset of Fig. 4c) is close 
to the estimated magnetic defect density from bulk susceptibility  
measurements (Supplementary Information for calculations), 

implying that we observe nMRR when the free carrier density is 
less than the bulk magnetic defect density36. However, the forma-
tion of magnetic polarons is generally not associated with a large 
pMRR. In dilute magnetic semiconductors, pMRR often results 
from a B-dependent broadening of the defect density of states due to 
s–d exchange between magnetic impurities and separate electronic 
defect states34,35,42,43,45,46. Since the magnetic defects in CrSBr most 
likely arise from self-trapped charges instead of magnetic dopants, 
the observed pMRR ostensibly originates from exchange interac-
tions between mobile carriers and magnetic defects. The coexis-
tence of these two MRR mechanisms suggests that CrSBr contains 
both magnetic and non-magnetic defects. At low carrier densities, 
magnetic polarons dominate the MRR behaviour, but above some 
threshold carrier density, exchange interactions between free carri-
ers and magnetic defects result in pMRR. The formation of magnetic 
polarons in tandem with carrier-mediated exchange interactions is 
consistent with the emergence of bulk FM properties and electron 
transport in the variable range hopping limit34,35,41,45.

Magnetotransport is typically an indirect probe of magnetism, 
but in CrSBr, it reveals in striking detail a rich magnetic structure 
and its intricate and tunable coupling to charge carriers. For bilayer 
and thicker flakes, TN is independent of layer number, and a large 
nMRR emerges as the interlayer AFM configuration is broken. 
In monolayer CrSBr, intraplanar FM order gives rise to a peak of 
nMRR close to TC. This nMRR feature is also present in multilayer 
flakes, signalling the existence of intraplanar FM correlations above 
TN. We uncovered a hidden regime below 40 K resulting from cou-
pling between charge carriers and magnetic defects. In monolayer 
CrSBr, the magnetic defects dominate the low-T MRR, which can 
be linearly tuned using an electrostatic gate. These results highlight 
the utility of multilayer CrSBr as a 2D magnet with giant intrinsic 
nMRR. In the monolayer, the sensitivity of MRR to carrier density 
presents a unique opportunity not only for fabricating tunable spin-
tronic devices, but also for understanding and utilizing defects to 
engineer tunable properties in van der Waals magnets.
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Methods
Exfoliation and flake identification. CrSBr flakes were exfoliated onto 285 nm or 
90 nm SiO2/Si+ substrates using mechanical exfoliation with Scotch Magic tape47,48. 
For devices with greater than one layer of CrSBr, SiO2/Si+ substrates were exposed 
to a gentle oxygen plasma for 5 minutes to remove adsorbates from the surface and 
increase flake adhesion18. The exfoliation was done under ambient conditions by 
heating the mother tape for 3 minutes at 100 °C, letting it cool to room temperature 
and then peeling the tape from the substrate as quickly as possible18. For devices 
with monolayer CrSBr, the SiO2/Si+ substrates were passivated by depositing a 
thin layer of 1-dodecanol before exfoliation9. The exfoliation was done under 
inert conditions in a N2 glove box with <1 ppm O2 and <1 ppm H2O content. The 
mother tape was placed onto the SiO2/Si+ substrates without heating and removed 
as quickly as possible. CrSBr flake thickness was identified using optical contrast 
before encapsulation and then confirmed with atomic force microscopy after 
encapsulation with hexagonal boron nitride.

Optical contrast calbration. To more quickly and reliably identify the thickness 
of CrSBr flakes, a contrast calibration curve was developed for both 285 nm and 
90 nm SiO2/Si+ substrates. First, a series of images was collected of various CrSBr 
flakes with varying thicknesses using a Nikon Eclipse LV150N microscope and 
Nikon DS-Fi3 camera. The images were then shading corrected, in which the 
inhomogeneous illumination of the substrate across a single image was corrected 
by dividing by an optical image of a pristine area of the chip without CrSBr flakes. 
The contrast of the flakes was then extracted using Gwyddion to measure the 
difference in colour between the substrate and the desired flake. We found that the 
red colour contrast was the most substantial, so all reported optical contrasts are 
with respect to red. The series of extracted contrasts was binned into a histogram, 
and the histrogram was fitted to an N-peak Gaussian, where N is the number of 
expected flake thicknesses. The extracted positions of the Gaussian peaks provide 
the average red optical contrast for each CrSBr thickness (Supplementary Figs. 1 
and 2). The thicknesses of the flakes were confirmed with atomic force microscopy 
(Supplementary Fig. 3).

Atomic force microscopy. Atomic force microscopy was performed in a Bruker 
Dimension Icon using OTESPA-R3 tips in tapping mode. Flake thicknesses were 
extracted using Gwyddion to measure histograms of the height difference between 
the substrate and the desired CrSBr flake.

Transport device fabrication. Transport devices were fabricated from CrSBr 
flakes using the via contact technique20 in which hexagonal boron nitride with 
embedded palladium electrodes was placed onto the desired CrSBr flake using the 
dry-polymer-transfer technique21. For CrSBr flakes with greater than one layer, 
the transfer process was performed under ambient conditions. For monolayer 
CrSBr flakes, the transfer process was performed under inert conditions in a N2 
glove box with <5 ppm O2 and <0.5 ppm H2O. Bonding pads were then designed 
and deposited using conventional electron beam lithography and deposition 
techniques. All devices were diced by hand and bonded to a 16-pin dual in-line 
package socket for measurement in cryogenic systems. Between fabrication steps, 
one-layer devices were stored in the N2 glove box to avoid sample degredation.

Electrical transport measurements. Longitudinal resistance was measured in a 
two-terminal configuration using an SRS830 lock-in amplifier to source voltage 
and measure current using a 17.777 Hz reference frequency. Four-terminal 
longitudinal and Hall measurements were performed in a four-terminal 
configuration using SRS830 lock-in amplifiers to source voltage, measure 
current and measure the longitudinal/Hall voltage using a 17.777 Hz reference 
frequency. Due to the morphology of the exfoliated crystals, the current and 
longitudinal resistances were measured parallel to the a axis, and the Hall 
resistance was measured parallel to the b axis. Variable temperatures between 
1.6 K and 300 K and magnetic fields between –9 T and 9 T were achieved in a 
Janis pumped 4He cryostat. Sample temperature equilibrium was checked by 
monitoring sample resistivity for stability over time at a fixed temperature. 
Hysteresis in the superconducting magnet due to trapped fields was measured 
by identifying the zero-field shift from the forward and backward field scans 
measured in the non-magnetic state (at T = 300 K). This hysteresis was accounted 
for in all presented magnetoresistance measurements. For measurements without 
electrostatic gating, the silicon back gate was kept grounded using a grounding cap. 
For gate-dependent measurements, a Keithley 2400 was used to output voltages 
between –60 V and 60 V on the silicon back gate. A protection resistor of 100 kΩ 
was placed in series between the gate and the voltage source.

The field-direction-dependent transport measurements on monolayer CrSBr 
were performed using a homemade double-axis rotator in the Janis pumped 
4He cryostat. The angle was adjusted at room temperature inside the cryostat to 
avoid exposing the sample to air between measurement runs. Once the angle was 
set at room temperature, it was kept fixed for all transport measurements along 
the chosen crystallographic axis. The angle of the magnetic field relative to the 

crystallographic axes of CrSBr was determined by orienting the sample relative 
to the mounted dual in-line package socket by hand and aligning the dual in-line 
package socket to the probe axis by eye. We estimate an uncertainty in the field 
angle of ~3°.

Vibrating sample magnetometry. All vibrating sample magnetometry was 
conducted on a Quantum Design PPMS DynaCool system. A single CrSBr crystal 
was selected, and the surface was exfoliated mechanically to expose a pristine 
interface. The crystal was attached to a quartz paddle using GE varnish (which was 
cured at room temperature under ambient conditions for 30 minutes) and oriented 
with the a, b or c axis perpendicular to the length of the quartz paddle. The same 
crystal was used for all axial-orientated measurements. The variable temperature 
scans and field-dependent magnetic susceptibility curves for each axis were 
measured during the same measurement cycle. The crystal was removed using a 
1:1 ethanol/toluene solution, dried in air and then reoriented and reattached using 
the previously prescribed varnish method.

Data availability
The data that support the plots within this Article and other findings of this study 
are available from the corresponding authors upon reasonable request.
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