

1 **Social foraging and the associated benefits of group-living in**
2 **Cliff Swallows decrease over 40 years**

3

4 **Charles R. Brown^{*1}, Mary B. Brown^{*†}, Stacey L. Hannebaum^{*}, Gigi S. Wagnon^{*}, Olivia M.**
5 **Pletcher^{*}, Catherine E. Page^{*}, Amy C. West^{*}, and Valerie A. O'Brien^{*}**

6

7 *Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma
8 74104 USA

9

10

11 ¹Corresponding author. E-mail: charles-brown@utulsa.edu

12 [†]deceased, 24 August 2019

13 *Open Research Statement:* Original data are available in Dryad (Brown et al. 2024): DOI:
14 10.5061/dryad.6djh9w17x.

15 **Abstract**

16

17 Animals that feed socially can sometimes better locate prey, often by transferring
18 information about food that is patchy, dense, and temporally and spatially unpredictable.
19 Information transfer is a potential benefit of living in breeding colonies where unsuccessful
20 foragers can more readily locate successful ones and thereby improve feeding efficiency. Most
21 studies on social foraging have been short-term, and how long-term environmental change
22 affects both foraging strategies and the associated benefits of coloniality is generally unknown.
23 In the colonial Cliff Swallow (*Petrochelidon pyrrhonota*), we examined how social foraging,
24 information transfer, and feeding ecology changed over a 40-year period in western Nebraska.
25 Relative to the 1980's, Cliff Swallows in 2016-2022 were more likely to forage solitarily or in
26 smaller groups, spent less time foraging, were more successful as solitaries, fed in more variable
27 locations, and engaged less in information transfer at the colony site. The total mass of insects
28 brought back to nestlings per parental visit declined over the study. The diversity of insect
29 families captured increased over time, and some insect taxa dropped out of the diet, although the
30 three most common insect families remained the same among the decades. Nestling Cliff
31 Swallow body mass at 10 days of age and the number of nestlings surviving per nest declined
32 more sharply with colony size in 2015-2022 than in 1984-1991 at sites where the confounding
33 effects of ectoparasites were removed. Adult body mass during provisioning of nestlings was
34 lower in more recent years, but the change did not vary with colony size. The reason(s) for the
35 reduction in social foraging and information transfer over time are unclear, but the consequence
36 is that colonial nesting may no longer offer the same fitness advantages for Cliff Swallows as in

37 the 1980's. The results illustrate flexibility of foraging behavior and dynamic shifts in the
38 potential selective pressures for group-living.

39

40 **KEYWORDS**

41

42 *coloniality; diet composition; group-living; information transfer; Petrochelidon pyrrhonota;*
43 *social behavior; social foraging*

44

45 INTRODUCTION

46

47 One of the major potential benefits of living in groups is enhanced foraging efficiency
48 (Alexander 1974, Pulliam and Millikan 1982, Brown and Brown 2001, Evans et al. 2016).
49 Individuals in groups can improve their foraging success in different ways, and one of the best
50 studied is social foraging and information transfer on the whereabouts of patchily distributed but
51 locally abundant food (Ward and Zahavi 1973, Waltz 1982, Giraldeau and Caraco 2000, Barta
52 and Giraldeau 2001, Kohles et al. 2022). That social animals, especially those living in breeding
53 colonies, use information exchange during foraging has been documented in various species
54 (Brown 1986, Waltz 1987, Marzluff et al. 1996, Buckley 1997, Burger 1998, Thiebault et al.
55 2014, Jones et al. 2018), and the benefits of social foraging—as measured mostly by prey intake
56 rates—under certain ecological conditions have been well established (Giraldeau and Caraco
57 2000, Brown 2016, Kohles et al. 2022). When information transfer occurs at a fixed site, such as
58 a breeding colony, it may favor or at least maintain colonial nesting (Waltz 1982, Wittenberger
59 and Hunt 1985, Barta and Szep 1992, 1995, Brown and Brown 2001).

60 The relatively few studies that have examined social foraging and information transfer in
61 relation to the fitness benefits of particular group sizes (Horn 1968, Hoogland and Sherman
62 1976, Brown 1988a, Brown and Brown 1996, Mariette and Griffith 2013) have been largely
63 short-term, focusing on only one or a few seasons. Almost all research has sought to determine
64 food intake rates, typical foraging group size, or extent of information transfer on a scale of
65 minutes, hours, or days (reviewed in Giraldeau and Caraco 2000), and foraging studies spanning
66 multiple years are rare (Miles 1990, Scheuerell et al. 2005, Szigati et al. 2018). Yet with
67 environmental change that may disrupt trophic structure (Wagner 2020), and the fact that other

68 benefits and costs of group-living can fluctuate among seasons (Brown et al. 2016, Riehl and
69 Fox 2002), long-term studies are critical for evaluating whether the advantages of foraging in
70 groups potentially change over time and how those changes may alter the adaptive significance
71 of group-living.

72 Temporal shifts in foraging behavior are especially relevant for species that feed on
73 insects, given the reported declines in insect taxa in some areas (Wagner 2020). As insect
74 biodiversity is reduced by habitat loss through landscape change (Evans et al. 2007, Attwood et
75 al. 2008, Bellavance et al. 2018, Musters et al. 2021), increasing pesticide use (Nocera et al.
76 2012, Hallman et al. 2014, Sharma et al. 2020, Brühl et al. 2021, Sánchez-Bayo 2021), and
77 climate change (Grüebler et al. 2008, Ewald et al. 2015, Imlay et al. 2018, Funghi et al. 2019,
78 Berzins et al. 2021, Halsch et al. 2021), the effects on organisms in upper trophic levels could be
79 profound (Harvey et al. 2023).

80 Socially foraging birds and bats that rely on aerial insects and that actively or passively
81 share information on the whereabouts of food (Brown 1986, Brown et al. 1991, Chantler 2000,
82 Johnson et al. 2016, Kohles et al. 2022) might be particularly good candidates to exhibit
83 behavioral changes in response to altered insect distributions. For example, a fundamental
84 assumption underlying much of social foraging theory is that food is locally abundant enough to
85 support multiple individuals that feed together, at least after food discovery. That animals
86 eschew social foraging when food is scarce is generally assumed but not often empirically
87 reported (Davies 1976). The variation in food availability is the basis for the well-known ideal-
88 free distribution that leads to higher densities of foragers in some areas than others (Sutherland
89 1983, Kennedy and Gray 1993, Giraldeau and Caraco 2000). In addition, effective information
90 sharing often requires a patchy distribution of food resources with certain characteristics (Waltz

91 1982, Giraldeau and Caraco 2000, Kohles et al. 2022). Quantitative and/or qualitative changes
92 in flying insect distribution and abundance could thus lead to either increases or decreases in
93 social foraging and temporal shifts in the fitness payoffs associated with group-living.

94 In this study, we use a 40-year dataset to examine temporal changes in social foraging
95 and information transfer and the associated fitness advantages of coloniality in Cliff Swallows
96 (*Petrochelidon pyrrhonota*). Our goals are to document (1) how social foraging behavior has
97 changed over time, (2) whether taxa in the diet have exhibited quantitative or qualitative shifts
98 that could explain any temporal changes in social foraging and information transfer, and (3) to
99 what extent foraging-associated fitness measures for birds in different colony sizes have changed
100 over the 40 years of the study. We rely on direct observations of foraging birds and the behavior
101 of birds following others at the colony site to examine temporal change in social foraging and
102 information transfer; the number of parental foraging trips, the amount of food delivered to
103 nestlings, and diet samples to address quantitative and qualitative changes in food resources; and
104 clutch size, reproductive success, and body mass of nestling and adult birds to measure fitness
105 changes for birds in different sized colonies.

106 Our general prediction is that increases in social foraging over time should lead to greater
107 benefits of coloniality, whereas decreases in social foraging should diminish the advantages
108 associated with colonial nesting. Our study thus provides a rare test of the relative importance of
109 social foraging in colonial animals; we are aware of no other work that has measured foraging
110 behavior and its consequences over such a long-term scale. The results allow insight into
111 potential temporal change in the selective pressures favoring coloniality and indirectly address
112 how changing insect populations (Wagner 2020) may affect the costs and benefits of group-
113 living in a socially foraging insectivore.

114 The Cliff Swallow is a highly colonial passerine bird that often forages in groups on
115 aerial insects (Emlen 1952, Brown 1988b, Brown et al. 1991). Extensive research on our study
116 population in western Nebraska in the 1980's showed that social foraging conferred benefits to
117 Cliff Swallows through greater food intake and more rapid location of food sources, and these
118 advantages increased in larger breeding colonies (Brown and Brown 1996), in part because
119 colonies acted as information centers that promoted efficient foraging (Brown 1986).
120 Fluctuation in foraging-associated benefits of different colony sizes are probably one reason that
121 individual survival varies both among and within years (Brown and Brown 1996, 2004b),
122 leading to selection on colony size that oscillates between years (Brown et al. 2016, Brown and
123 Brown 2018).

124 Here we focus on Cliff Swallows after the birds have settled in breeding colonies and
125 primarily during the period of feeding nestlings, a time when social foraging and information
126 transfer was most common in the 1980's (Brown 1986, Brown et al. 1992, Brown and Brown
127 1996). As in other work on temporal ecological change (Brown et al. 2021), we rely on
128 retrospective analyses of data collected in the 1980's originally for other purposes. We used the
129 same protocols for collecting more recent data that we used in the earlier years—even when
130 modification might have been desirable—to allow direct temporal comparisons. In some cases,
131 we re-analyzed the older data with newer statistical methods. Because blood-feeding
132 ectoparasites represent the single greatest cost of coloniality in Cliff Swallows (Brown and
133 Brown 1986, 1996, 2002a) and the dynamics of these parasites and their swallow hosts have also
134 shown long-term temporal change (Brown et al. 2021), for fitness analyses we used only
135 fumigated (parasite-free) colonies in this study to better infer potential consequences of foraging
136 shifts on Cliff Swallow fitness in the absence of the confounding effects of ectoparasites.

137

138 **METHODS**

139

140 **Study animal and study site**

141

142 The Cliff Swallow is a migratory, sparrow-sized passerine bird found commonly throughout the
143 Great Plains and westward to the Pacific coast of North America (Brown et al. 2020).

144 Historically, these birds built their gourd-shaped mud nests underneath horizontal overhangs on
145 the sides of steep cliffs, but now many Cliff Swallows nest under the sides of bridges and
146 buildings or inside concrete culverts underneath roads (Brown et al. 2013). The birds arrive in
147 our study area beginning in late April, with most colony sites being first occupied in May and
148 early June, but colonies can begin as late as mid-July. Most birds have completed nesting by
149 early August. The species winters in southern South America (Brown et al. 2020). Cliff
150 Swallows feed exclusively on flying insects caught on the wing from 1-50 m above the ground
151 (Brown and Brown 1996, Brown et al. 2020).

152 We studied Cliff Swallows near the Cedar Point Biological Station (41°12'34.91"N,
153 101°38'51.50"W) in western Nebraska, USA, along the North and South Platte rivers. The study
154 area includes portions of Keith, Garden, Deuel, Lincoln, and Morrill counties. Our work was
155 done primarily at Cliff Swallow colonies on highway bridges and box-shaped culverts
156 underneath roads or railroad tracks (Brown et al. 2013). Colonies were defined as birds from
157 groups of nests that interacted at least occasionally in defense against predators or by feeding in
158 the same general area (Brown and Brown 1996). Typically, all the nests on a given bridge or
159 culvert constituted a single colony. Colony size varied widely, ranging from 1 (solitary nests) to

160 6000 nests (mean \pm SD: 398 ± 618 , $n = 4051$ colonies). Colony size in all cases refers to the
161 maximum number of active nests at a site in a season, with an active nest defined as one
162 containing one or more eggs. See Brown and Brown (1996) and Brown et al. (2013) for details
163 on determining colony sizes. We use the term “colony” to refer to the collection of birds
164 occupying a structure in a given year, whereas “colony site” refers to the physical substrate.

165

166 **Fumigation procedures**

167

168 We removed parasites, principally swallow bugs (Hemiptera: Cimicidae: *Cimex vicarius*), from
169 Cliff Swallow nests by fumigation with an organophosphate insecticide, naled (Dibrom 8).
170 Some colony sites were fumigated in their entirety, while others had a split design, with some
171 nests fumigated and others left untouched. For analyses involving specific nests, only those from
172 the fumigated sections of split colonies were used in this study. Fumigation methodology is
173 given in Brown and Brown (1986, 1996) and Brown et al. (2021). Naled works primarily as a
174 contact insecticide, although for semantic convenience we use the term “fumigation.” There was
175 no experimental evidence that swallow bugs at the fumigated sites had developed resistance to
176 naled over the course of the study (Runjaic et al. 2017).

177

178 **Years included**

179

180 The years included in this study were generally the periods of 1983-1991 and 2015-2022 when
181 comparable data were collected in the same ways; in most cases no observations were available
182 in the intervening years (see Brown et al. 2021). A continuous-year data set (1984-2009) was

183 used only in the analysis of transient birds because we had no transient estimates for the years
184 beyond 2009 but wished to determine if any temporal trend in these observations was consistent
185 with the other analyses. Differences in the years included within the 1983-1991 and 2015-2022
186 periods in different analyses simply reflected what years relevant data were collected.

187

188 **Climate comparisons**

189

190 For climatic comparisons among different time periods of the study, we used the Palmer
191 Drought Severity Index (PDSI), an integrative measure of temperature and rainfall that predicts
192 Cliff Swallow breeding time and annual survival (Brown and Brown 2014, Brown et al. 2016):
193 colonies start earlier in drier years, while annual survival is affected by an interaction between
194 drought conditions and colony size. PDSI metrics were retrieved from the National Climate
195 Data Center of the National Oceanic and Atmospheric Administration (NOAA; available online:
196 <https://www.ncdc.noaa.gov/cag>). We used PDSI calculated for Nebraska's Climate Division 7
197 (southwest Nebraska), corresponding to the location of our study area (Brown and Brown 2014).
198 NOAA currently provides PDSI for 1-month intervals, and here we used the PDSI for June
199 because that is the month when most Cliff Swallows in the study area were feeding nestlings and
200 parental foraging was at a maximum.

201 The mean (\pm SE) Palmer Drought Severity Index (PDSI) for June was 0.79 (\pm 0.99, $n = 8$
202 years) for the 1982-1989 decade, compared to -0.532 (\pm 0.87, $n = 8$ years) for the 2015-2022
203 decade; although the trend was for the later years to be drier, the difference was not significant
204 (Wilcoxon test, $Z = 0.5776$, $P = 0.56$). Across the entire 41-year period of the study, the June

205 PDSI showed no significant directional change (Spearman rank correlation, $r_s = -0.11$, $P = 0.49$,
206 $n = 41$ years).

207

208

209 **Observing foraging birds**

210

211 For foraging observations, we selected Cliff Swallow colonies that were situated in open terrain
212 with unobstructed, level views for distances of at least a 1-km radius from the site (Appendix S1:
213 Fig. S1; Brown 1986, 1988b, Brown et al. 1992). The visibility allowed us to see with
214 binoculars any Cliff Swallows feeding around these sites and their relative positions. We used
215 the same sets of sites for observations in the 1980's and in 2016-2022: one set of observations
216 came from a single colony site in a road culvert (Whitetail) active in all years of the study
217 (Appendix S1: Fig. S1) and the other set from four colony sites (Canal) all situated on similar
218 concrete bridges along an irrigation canal in roughly linear fashion within a distance of ≤ 3.35
219 km from each other. These four sites were used as a set because, although they varied from year
220 to year in whether Cliff Swallows occupied them, they were all in similar habitat and of the same
221 sort of nesting substrate. Land use at Whitetail changed during the study as cultivated crops
222 replaced nearby pasture (Appendix S1: Fig. S1). At the Canal colonies, adjacent land was
223 mostly pasture, cedar (*Juniperus virginiana*)-clad bluffs, or a riparian corridor of deciduous trees
224 along the North Platte River. These habitats were unchanged over time (other than the trees
225 becoming larger). Details of the sites used each year and observation effort at each are given in
226 Appendix S1: Table S1.

227 Because Cliff Swallow foraging behavior can be affected by colony size (Brown and
228 Brown 1996), for observations we selected colonies from 2016-2022 that matched as closely as
229 possible the size of those at the same sites in the 1980's (Appendix S1: Table S1). The Whitetail
230 site was fumigated to remove parasites in each year of this study, while none of the Canal
231 colonies was fumigated. Analyses of foraging behavior used a 2-factor categorical variable
232 denoted as site (Whitetail, Canal) to investigate potential behavioral differences between birds
233 using the two locations.

234 Surveys (scans) of foraging birds' positions were made at successive 10-min intervals for
235 continuous periods of 1.5-4 h/day, in both mornings and afternoons (Brown et al. 1992). A
236 single scan was typically accomplished within 3-4 min, so each scan was considered an
237 instantaneous record of where all foraging was occurring at that time. A disturbance to the
238 colony (predators, people) occasionally would require skipping 1-2 intervals before resuming
239 once the birds returned to normal activity. The observer was positioned at the colony site sitting
240 above the nests or on a road surface. The surrounding landscape was scanned 360° around the
241 colony site. Foraging Cliff Swallows could be identified by their characteristic twisting and
242 turning movements as they pursued prey (Brown 1985, 1988b; Video S1). Typically, birds could
243 be easily designated as foraging solitarily or within a group based on proximity to other birds (<
244 10-15 m) and on birds staying together in the same place (Video S1). Birds commuting between
245 the colony site and foraging areas were not included, as commuters generally flew in straight
246 lines without stopping or turning and were recognizable as non-foragers (Brown et al. 1992).
247 The size of a foraging group was recorded or estimated for large groups, with group size ranging
248 from 1 to 1500 birds. Data were collected only on days with \leq 50% cloud cover, as Cliff
249 Swallow foraging and activity at a colony site were reduced on cloudy days (Brown 1998,

250 Brown et al. 2021). Each colony was observed on 2-14 days per year, and we observed a total of
251 16,383 foraging groups (counting solitaires as group size 1) among 1820 10-min scans during
252 this study (Appendix S1: Table S1).

253 When a foraging group or solitary bird was first spotted, the compass direction (relative
254 to the colony site) at that moment and proximity to a nearby landmark (e.g., stop signs, utility
255 poles, road intersections, clumps of trees, irregularities of a creek bank) were noted. We plotted
256 the one-way distance from each foraging group/solitary to the colony site on Google Earth Pro
257 and considered this the travel distance while foraging. Distances from the colony site estimated
258 strictly using landmarks in the 1980's (Brown et al. 1992) were re-calculated on Google Earth
259 Pro to make them comparable to the more recent data. If a foraging group was large and
260 relatively spread out, we used the compass heading of the group's center and calculated the
261 distance based on the proximity of the center to the nearest landmark. In calculating average
262 one-way distance from the colony site to a foraging group per scan, we weighted each distance
263 by the number of birds in each group (or 1 for solitaires).

264 We could see Cliff Swallows up to a radius of about 1 km from each site. From doing
265 surveys around colony sites by vehicle at 1-2 km away, we rarely saw birds foraging more than 1
266 km away and thus are confident we were not routinely overlooking more distant birds (Brown et
267 al. 1992). Total forager counts within a scan were always lower than the number of birds that
268 lived in the colony. For one analysis we divided the total number of foragers per scan by the
269 colony size (number of nests \times 2) to determine the percentage of the colony foraging in any 10-
270 min interval. Any colonies at sites that might have shared their foraging range with birds at a
271 nearby site (Brown and Brown 2002b) were not used for these observations. All scans were
272 made by two observers only (CRB, MBB). The observers closely calibrated their estimates of

273 foraging group size and proximity to landmarks by repeatedly scoring the same foraging groups
274 on the same day at the same site with little difference between the observers (Brown et al. 1992).

275 Prey capture attempts for individuals within groups and for solitary foragers were
276 observed at Whitetail in 2017-2018 using the methods of Brown (1988b) and by the same
277 observer (CRB) in both decades. Prey capture attempts were designated from the birds' behavior
278 as described in Brown (1988b). Birds were watched for as long as possible, usually between 45
279 s and 5 min. An observation was stopped when a bird terminated foraging and began flying back
280 to the colony, disappeared from view, or switched from solitary to group foraging or vice versa.

281 Prey capture rates were expressed in attempts per minute and computed for separate foraging
282 bouts. We defined a foraging bout as a period of time (usually 1-2 h) on a given day during
283 which weather conditions were unchanging for the entire time and during which prey capture
284 rates for different birds were considered comparable (Brown 1988b). With so few birds foraging
285 solitarily at Whitetail in the 1980's (Fig. 1), we had to compare the success of solitary foragers at
286 Whitetail in 2017-2018 to that of solitary foragers at other sites in the 1980's (Brown 1988b).
287 Further details on observational methods are provided in Brown (1988b).

288

289 **Estimating change in transient birds**

290

291 Because our observations suggested that parental Cliff Swallows might adjust their foraging
292 behavior in response to the number of transient Cliff Swallows passing through colonies and
293 investigating nests, we used our intensive mark-recapture data (Roche et al. 2013, Brown et al.
294 2016, Brown and Hannebaum 2022) to estimate the relative proportion of transient birds among
295 those caught each year and how that might have changed over time. Transients are defined as

296 birds not resident at a colony that pass through the site on a temporary basis. Those individuals
297 caught only once at a colony include the transient class, but they also may include some residents
298 who were not re-caught a second time.

299 The proportion of transients (τ) was determined with the method of Pradel et al. (1997).
300 By fitting an age-dependent survival model to the capture data, the “first-year” age class was
301 used to approximate the transients, who, by virtue of not reappearing at a site, had much lower
302 apparent survival, ϕ , than the residents who tended to be caught multiple times. The proportion
303 of transients (τ) in each time interval (t) was calculated as $1 - (\phi_{1t} / \phi_{2t})$, where ϕ_{1t} was the
304 apparent annual survival probability of the “first-year” age class, and ϕ_{2t} was the apparent
305 annual survival probability of the “beyond first-year” age class (Pradel et al. 1997, Brown and
306 Brown 2004a). The calculation of τ for each year thus accounted for the fraction of one-time
307 captures attributed to residents who were never caught again that season. The survival model
308 used year-specific recapture probabilities, given that recapture effort varied with year (Roche et
309 al. 2013).

310 Survival parameters were produced with program MARK (White and Burnham 1999).
311 Here we combined birds from all colonies within a season and estimated one overall value of τ
312 for each year. All Cliff Swallows caught at least once in a season as an adult were included in
313 this data set, which consisted of 159,095 individuals across all years and varied from a low of
314 1207 (in 1985) to a high of 8900 (in 2004). Because continuous mark-recapture ended in 2013,
315 the last year-cohort for which we had estimable age-specific annual survival parameters (and
316 thus estimates of τ) was 2009. The years 1982 and 1983 were not included because of sparse
317 data for generating survival estimates.

318

319 **Scoring information sharing at the colony site**

320

321 In 2019 we repeated observations from 1984 (Brown 1986) to determine if Cliff Swallows
322 unsuccessful at foraging returned to their nests and then followed neighboring birds to food
323 sources, and if so, were they likely to follow previously successful birds. The same methodology
324 was used, in which we observed groups of about 40 nests at a time and scored (1) whether a focal
325 bird that returned to its nest either had food and fed its nestlings or did not have food, and
326 subsequently (2) whether the focal bird followed another bird upon its departure from its nest
327 and (3) whether a focal bird was followed by another bird upon departure. We defined following
328 as departure within 5 s of the other individual in the same direction (Brown 1986). Observations
329 were conducted when colonies were in later stages of nestling feeding, when nestlings sat in
330 (blocked) the entrances of the gourd-shaped nests and parents clung to the outside upon their
331 return; thus, whether a returning bird had food was easily determined by whether it fed a
332 nestling. We used only periods when all birds in the colony were foraging, and we suspended
333 observations if colony residents began to gather mud for nest maintenance or if transient birds
334 (see Estimating change in transient birds) appeared around the focal nests. No birds were color-
335 marked, and, as in the original study (Brown 1986), some individuals were likely represented
336 multiple times, although we tried to watch as many different nests in a colony as possible. In
337 1984, we conducted these observations at two colonies of 450 and 800 nests, and in 2019 we
338 used four colonies of 203, 218, 525, and 1700 nests. For these observations, we used only non-
339 fumigated colonies on highway bridges over rivers in which nests were on the outer beams with
340 good visibility, and all consisted of a single long row of nests underneath the beam overhang.

341

342 **Determining amount of food delivered and diet composition**

343

344 Parental food deliveries by Cliff Swallows were recorded as the number of times either parent
345 visited a nest and fed nestlings. Visits in which no food was brought were not counted. We
346 observed only nests (usually 5-20/h) for which we knew the brood size and age of nestlings,
347 because both of these variables affect feeding rates (Brown and Brown 1996). Cliff Swallow
348 foraging is strongly dependent on local weather conditions, and thus we included hourly weather
349 covariates (temperature, wind speed, and extent of sunshine, measured as solar radiation in
350 watts/m²) in our analyses of food deliveries (see Brown et al. 2021 for details). Because the
351 extent of ectoparasitism affects parental provisioning rates (Brown et al. 2021), in this study we
352 used only parental food delivery rates at nests in fumigated colonies (see Fumigation procedures)
353 to better measure consequences of foraging strategies over time in the absence of potentially
354 confounding effects of ectoparasitism. Food-delivery data were recorded in 1985-1989 from
355 four fumigated colonies ranging in size from 22 to 2200 nests and in 2016-2018 from seven
356 fumigated colonies ranging in size from 44 to 1920 nests (see Brown et al. 2021 for details on
357 these colonies).

358 Cliff Swallows typically deliver a tightly compressed mass (bolus) of insects to one
359 nestling per visit. We used pipe cleaners loosely fitted around a nestling's neck to prevent it
360 from swallowing the bolus (Orians and Horn 1969). Ring-collaring does not harm nestlings if
361 collars are adjusted correctly, and it does not normally affect their growth (Henry 1982).

362 Nestlings were ring-collared for up to 40 min, after which we removed any boluses from the
363 nestlings with forceps and placed the boluses in 70% alcohol. The wet weight of each bolus
364 provided a relative index of the amount of food delivered per trip (Brown and Brown 1996,

365 Brown et al. 2021). We typically ring-collared nestlings that were 10-12 days old, as ring-
366 collaring was ineffective on younger or older nestlings. Ring-collaring was never done at a site
367 during the same time that food deliveries were being counted. We had bolus data from nine
368 colonies ranging in size from 2 to 345 nests in 1984-1988 and 17 colonies ranging in size from 7
369 to 1920 nests in 2016-2018.

370 After each bolus was weighed, its contents were processed for identification using field
371 guides, taxon-specific keys, or a web resource (<http://bugguide.net>). We identified each
372 individual in a bolus (where possible) to family, except for spiders that were all designated as
373 Araneae. Samples from the 1980's had been retained in alcohol, and although these had been
374 identified earlier (Brown and Brown 1996), all were re-identified in this study using current
375 information and taxonomy, primarily by one person (GSW). We recorded the total number of
376 individuals of each family in a bolus sample, but we did not distinguish size or biomass of
377 different taxa. Family-level diversity was calculated for each bolus using the Shannon Index (H)
378 and the number of individuals of each family in the bolus.

379

380 **Determining foraging-related fitness measures**

381

382 Nests were numbered and their contents monitored by periodic checks using a dental mirror and
383 flashlight inserted through the nest's entrance hole. This technique allowed us to determine
384 laying date, clutch size, hatching date, and nestling survival for all nests. The actual number of
385 nestlings reaching 10 days of age in each nest was a relative index of nestling survival to
386 fledging (Brown and Brown 1986, 1996). Survival was measured only for nests followed from
387 the time of egg-laying, and nests failing before hatching or reaching 10 days were treated as

388 having 0 nestlings surviving. We had reproductive success data from 29 colonies in 1984-1991
389 (colony size 1 to 2200 nests) and 28 colonies in 2015-2022 (colony size 12 to 1920 nests). Cliff
390 Swallows are generally single-brooded in southwestern Nebraska (Brown et al. 2021), and our
391 measure of reproductive success was for presumed first broods only.

392 For nests with at least one nestling surviving to day 10, we weighed each nestling with a
393 Pesola scale (to the nearest 0.5 g) to determine body mass (Brown and Brown 1996). Nestlings
394 were banded with U. S. Geological Survey bands. Nestlings were weighed in the same way
395 throughout the study, with the same person (CRB) doing or supervising data collection in all
396 years. We had nestling body mass data from 23 colonies (colony size 5 to 2200 nests) in 1984-
397 1989 and 21 colonies (colony size 32 to 1920 nests) in 2015-2018. Only nests at fully fumigated
398 sites or within the fumigated portions of other sites (Brown et al. 2021) were used in the analyses
399 of reproductive success and nestling body mass.

400 Body mass of adult Cliff Swallows was recorded in the course of mark-recapture for
401 other purposes (Brown 1998, Roche et al. 2013, Brown et al. 2016, Brown and Hannebaum
402 2022). For this study we used data from birds caught in 1984-1989 and 2013-2021. Each time
403 an adult was captured in a mist net, we recorded its sex (by presence/absence of a brood patch or
404 cloacal protuberance) and its body mass to the nearest 0.5 g using a Pesola scale. The colony's
405 nesting stage has a greater effect on adult mass than absolute date (C. R. Brown, *unpublished*
406 *data*), so for each capture the stage was designated as early, middle, or late, depending on the
407 colony's activity on that date. Early was the period when most birds were nest-building or egg-
408 laying, middle the period of incubation, and late the period when parents were feeding nestlings.
409 Because nesting is highly synchronous within each Cliff Swallow colony (Brown and Brown

410 1987, 1996), using a single designation for all birds caught on a date at a site reflected the
411 probable status of each bird relatively well.

412 Only adults caught on their day of initial banding were used in this data set; if the same
413 bird was caught multiple times within the same nesting stage that year, a mean body mass was
414 used for that stage. For individuals caught in multiple years, we used only their first year of
415 capture, and thus each bird was represented in only one year for each nesting stage. Only Cliff
416 Swallows captured at colonies that were fully or partially fumigated were used in these analyses.
417 Birds were caught at 20 colonies ranging in size from 30 to 2200 nests in 1984-1989 and at 8
418 colonies ranging in size from 44 to 1975 nests in 2013-2021. We had body-mass data for adults
419 in the intervening years but did not use those data in order to make the analyses more consistent
420 with others that had a temporal gap. This study was not intended as a comprehensive
421 investigation of all factors potentially influencing adult body mass in Cliff Swallows (*sensu*
422 Paquette et al. 2014), which will be explored elsewhere, but rather to look for general trends over
423 time that might be related to changes in foraging behavior.

424

425 **Statistical analyses**

426

427 Analysis of all non-circular data used primarily mixed-model regression implemented with Proc
428 MIXED in SAS (SAS Institute 2004). Independent covariates (fixed effects) were identified a
429 priori based on past work and presented for each analysis (Appendix S1). In some cases, we also
430 included one or more relevant interaction terms related to decade, but interactions that were not
431 significant were dropped and only models with main effects and significant interactions are
432 presented and used for inference. Models with significant interactions contained the same

433 variables as main effects, but in those cases the main effects were not interpreted. Because
434 colony size can sometimes affect fitness in curvilinear ways (Brown et al. 2016, Brown and
435 Brown 2018), analyses included a colony-size*colony-size interaction term. We designated a 2-
436 level categorical variable of decade, with data from 1982-1991 considered as one and those from
437 2015-2022 the other. Year itself was treated as a random effect (see below). Because we had a
438 biological rationale for all of the independent predictor variables used (Grueber et al. 2011), we
439 did no model selection for these analyses (other than excluding non-significant interactions).
440 Date within the season was treated as a continuous variable, with 1 May = 1, 1 June = 32, etc.
441 Proc PLM in SAS was used to generate predicted regression lines (which held other fixed effects
442 in the mixed model at their average values); whenever model-predicted lines are shown, we also
443 present the actual data as represented by means.

444 To account for non-independence of observations (and potential pseudoreplication), we
445 used the following random intercept variables: **colony site**, coded as the same site designation
446 for all years, to account for potential spatial dependence of a colony site's physical location
447 across years; **colony-by-year**, coded the same for all observations at a colony site in the same
448 year but different between years, to account for dependence of observations at a single colony
449 within a year; **nest identity**, coded the same for all observations within the same nest in a given
450 year at a given colony but different among years at that colony, to account for potential
451 dependence among nestlings or behavioral observations from the same nest; and **year**, coded the
452 same for all observations in a given year, to account for year-specific variation in cases where a
453 categorical fixed-effect of decade was used. Analyses of foraging behavior also used an
454 **observation-session** random effect, to account for non-independence of bird foraging activity
455 within a given observation session (set of 10-min scans) at a colony on a single day; each 2-3 h

456 session at a given colony was coded uniquely. Most analyses could not include all of these
457 potential random effects, either because of model structure, sample size, data distribution, or
458 missing data. The random effects were coded to implicitly describe a nested data structure (e.g.,
459 year and colony-by-year, colony-by-year and nest identity), as described by Schielzeth and
460 Nakagawa (2013).

461 The compass bearings of foraging groups (relative to the colony site) were initially
462 analyzed with circular statistics implemented in Oriana (Kovach 2011). We used the circular
463 standard deviation of compass heading for all foraging groups (or solitaries) as a measure of
464 group clustering in space around the colony site. Typically, most birds along a given compass
465 bearing on a scan were in the same foraging group, although rarely two groups had the same
466 bearing. The circular standard deviation of compass bearings for each scan was averaged across
467 the observation session to yield the within-scan standard deviation. The mean compass heading
468 for each scan was used to calculate the within-day circular standard deviation. For scan-level
469 calculations, each compass bearing was weighted by the number of birds in foraging groups with
470 that bearing, and for within-day calculations each scan's mean compass bearing was weighted by
471 the total number of birds in all foraging groups seen on that scan. Finally, we took the average
472 of the daily compass bearings to determine the between-day circular standard deviation for each
473 colony that year. Once calculated with circular methods, the standard deviations for scan, day,
474 and colony permitted analysis with linear models as described above (e.g., Brown and Brown
475 1996). Circular graphs (Appendix S1: Figs. S2, S3) were constructed with Oriana (Kovach
476 2011).

477

478 **RESULTS**

479

480 **Changes in social foraging and information transfer**

481

482 Extent of social foraging

483

484 In the 1980's, Cliff Swallows foraged at Whitetail and the Canal colonies in well-defined groups
485 over relatively open habitat that surrounded each site (e.g., Appendix S1: Fig. S1). While
486 feeding nestlings, birds commuted from the colony site to foraging areas in direct, rapid flights,
487 and those that departed in close proximity (≤ 5 s) tended to travel together until reaching a
488 foraging site, where they began feeding together and often as part of a group that was already
489 present. Birds rarely made any attempts at prey capture while commuting either to or from the
490 colony site. Foraging groups at any given time could be easily located by the streams of birds
491 going out from the colony site directly to the feeding sites.

492 In contrast, in 2016-2022 groups were more diffuse and shorter-lasting at any one
493 location; birds leaving the colony site together often veered in different directions at short
494 distances from the colony site and rarely traveled together in streams. Cliff Swallows often
495 made abortive prey capture attempts while traveling to foraging sites in 2016-2022, and thus
496 commuting flights were less direct in those years. Foraging groups in both decades often fed at
497 heights of 50 m or more, although solitaires and small groups (especially in 2016-2022) were
498 more likely to feed relatively low, often < 3 m above the ground.

499 The size of foraging groups and the extent of solitary foraging changed over time (Fig.
500 1). Cliff Swallows in the 1980's rarely fed as solitaires at the focal colonies, and groups of 100-
501 200 birds were most common, whereas by 2016-2022 solitary foraging or as groups of 2-5 birds

502 was predominant, and this pattern held at both Whitetail and the Canal sites (Fig. 1). These
503 distributions yielded large differences in mean foraging group size (Fig. 2A). The largest
504 foraging group observed in the 1980's was 1500 birds, compared to 500 birds in 2016-2022.
505 With the mean foraging group size per 10-min scan as the dependent variable, we found that the
506 categorical fixed effect of decade was significant, but date within the season and site (Whitetail,
507 Canal) were not (Appendix S1: Table S2). There was a curvilinear effect of colony size on
508 foraging group size (Fig. 2B; Appendix S1: Table S2), with the largest foraging groups occurring
509 at colonies of about 1100-1300 nests. The curvilinear effect did not vary significantly with
510 decade (Appendix S1: Table S2). This analysis controlled for the significant effect of the total
511 number of birds seen on a scan (Appendix S1: Table S2), because, with a limited foraging area,
512 group size might be expected to increase when more birds were foraging during a 10-min period.
513 The random effects of colony-by-year and observation-session were significant or almost
514 significant (Appendix S1: Table S2).

515 In 1982-1986, prey capture attempts per min were 3.6 (± 0.3 , $n = 504$ birds, $n = 29$ bouts)
516 for solitary foragers, versus 5.9 (± 1.4 , $n = 1615$ birds, $n = 29$ bouts) for group foragers (Brown
517 1988b). At Whitetail in 2017-2018, mean (\pm SE) prey capture attempts per min per foraging
518 bout was 4.8 (± 0.20 , $n = 196$ birds, $n = 10$ bouts) for solitary foragers, versus 3.8 (± 0.3 , $n = 75$
519 birds, $n = 10$ bouts) for group foragers. Based on overlap of 95% confidence intervals, solitary
520 foragers were more successful (i. e., captured more insects) in 2017-2018 than they were in
521 1982-1986, but there was no difference between the decades for group foragers. Solitary
522 foragers were significantly less successful than group foragers, on average, in 1982-1986 (Brown
523 1988b), but solitary foragers were significantly more successful than group foragers in 2017-
524 2018 (based on overlap of confidence intervals).

525 We found no detectable change over time in the one-way foraging distance from the
526 colony site (Fig. 2C). Foraging distance increased significantly as the season wore on and at
527 larger colonies, and was greater at Whitetail than at the Canal colonies, but decade was not
528 significant nor were interactions involving decade or colony size (Appendix S1: Table S3). The
529 random effects of colony-by-year and observation-session were significant (Appendix S1: Table
530 S3).

531

532 Time spent foraging

533

534 The percentage of the residents of a Cliff Swallow colony that were foraging during any 10-min
535 scan showed a steep decline between the decades (Fig. 2D). Decade and date within the season
536 were significant predictors of the percentage of the colony foraging, but there was no effect of
537 colony size or site, nor were any of the interactions among the fixed effects significant
538 (Appendix S1: Table S4). The random effects of colony-by-year and observation-session were
539 significant (Appendix S1: Table S4).

540 Transient Cliff Swallows often passed through colonies, stopping to investigate existing
541 nests by clinging to the entrances or perching on the tops. Such activity seemed to peak later in
542 the season when most colonies were engaged in nestling feeding. Parental Cliff Swallows
543 vigorously defended their nests whenever transients were present and often ceased making
544 foraging trips to and from the nest as long as transients remained nearby.

545 The proportion of transients (τ) in our mark-recapture study generally increased over the
546 period of 1984-2009 (Fig. 3). Over all years, the increase was not statistically significant, but
547 when 1984 (the first year) was excluded, the increase was significant (Fig. 3). Although we did

548 not have mark-recapture data suitable for estimating transients in the 2015-2022 time period
549 considered here in other analyses, the proportion of transients per year in the 1980's (except
550 1984) was lower than in the other years of the study.

551

552 Spatial clustering during foraging

553

554 The within-scan circular standard deviation in compass bearings of foraging groups/solitaires
555 around the colony per 10-min scan did not vary significantly with decade, colony size, or site
556 (Whitetail, Canal), nor were there any significant interactions among these variables (Appendix
557 S1: Table S5, Fig S2). The random effect of observation-session was significant but that of
558 colony-by-year was not (Appendix S1: Table S5). However, the within-day circular standard
559 deviation of mean compass bearings per scan varied with decade in a colony-size interaction
560 (Fig. 4; Appendix S1: Table S6, Fig. S3). The within-day standard deviation declined with
561 colony size in 2016-2022 but hardly changed with colony size in 1984-1988 (Fig. 4). The
562 standard deviation tended to be smaller (or the same) in the 1980's than during 2016-2022 at
563 most colony sizes. Neither the fixed effect of site (Whitetail, Canal) nor the random effect of
564 year had a significant effect on within-day circular standard deviation, and there were no other
565 significant interactions among the fixed effects (Appendix S1: Table S6). For the between-day
566 circular standard deviation per colony within a season, the Whitetail colonies had a significantly
567 higher mean value (mean = 76.0, SE = 10.7, n = 10 colonies) than the Canal colonies (mean =
568 41.0, SE = 6.2, n = 8 colonies; $F_{1,15} = 6.65$, $P = 0.021$), but decade had no significant effect ($F_{1,15}$
569 = 0.05, $P = 0.83$) on between-day variability in foraging location.

570

571 Information sharing at the colony site

572

573 One characteristic of Cliff Swallow foraging behavior in the 1980's was information transfer at
574 the colony site, often among birds that occupied nests in close physical proximity within a
575 colony. Birds returning to their nest without food (presumably unsuccessful) were significantly
576 more likely to follow other birds on the next foraging trip than were birds that returned with food
577 (Table 1A), and previously successful birds were significantly more likely to be followed on the
578 next trip than previously unsuccessful birds (Table 1C). However, this pattern had disappeared
579 in 2019, with prior success having no significant effect on whether a bird followed another on
580 the next trip (Table 1B) or whether it was followed (Table 1D). In 1984, 74.9% of previously
581 unsuccessful birds ($n = 1809$) followed others, whereas in 2019 only 21.1% did so ($n = 601$); this
582 difference was highly significant ($\chi^2_1 = 550.9, P < 0.0001$). Overall success did not differ
583 significantly over time: in 1984, 63.4% of returning birds ($n = 4943$) had been successful,
584 compared to 63.7% ($n = 1687$) in 2019 ($\chi^2_1 = 0.04, P = 0.85$). In comparing each of the four
585 categories of birds (followed, did not follow, was followed, was not followed) separately with
586 respect to prior success (Table 1), in all cases the distributions differed significantly between
587 1984 and 2019 (chi-square contingency tests, $P < 0.0001$ for all).

588 Because some of the colonies included in the 2019 observations were smaller or larger in
589 size than those in 1984, we also examined these results separately for the two colonies of the
590 closest size in these years (one of 450 nests in 1984 and one of 525 nests in 2019). We found the
591 same pattern at these two sites, with following or being followed dependent on success in 1984
592 but not in 2019 (Appendix S1: Table S7). Similar to the overall data set, at these two sites alone,

593 78.6% of unsuccessful birds ($n = 740$) followed others in 1984, whereas only 20.1% ($n = 388$)
594 did so in 2019 ($\chi^2_1 = 359.4$, $P < 0.0001$).

595

596 Quantitative and qualitative changes in diet

597

598 Amount of food collected

599

600 Based on 1-h watches at nests combined across all fumigated colonies, the mean (\pm SE) number
601 of parental food deliveries/h/nest was 12.25 (± 0.19 , $n = 1185$ watches) in 1985-1989 and 12.02
602 (± 0.16 , $n = 1661$ watches) in 2017-2018. Food deliveries varied significantly with brood size,
603 nestling age, and weather variables such as wind speed and extent of sunshine, but decade had no
604 significant effect (Appendix S1: Table S8).

605 Using the food boluses collected from nestlings at fumigated nests, we found a reduction
606 across the decades in the amount of food per delivery: mean (\pm SE) bolus mass was 0.56 g (\pm
607 0.051, $n = 106$) in 1984-1988, compared to 0.31 g (± 0.013 , $n = 246$) in 2017-2018. Decade was
608 a highly significant predictor of bolus mass ($B = 0.2384$, $SE = 0.04321$, $F_{1,349} = 30.43$, $P <$
609 0.0001, relative to 2016-2018 decade as baseline), but neither colony size ($F_{1,349} = 0.09$, $P =$
610 0.77) nor colony-size*colony-size ($F_{1,348} = 0.66$, $P = 0.42$) were significant.

611 The change in bolus mass accompanied an apparent reduction in the total number of
612 insects per bolus. Using data from all colonies, the mean (\pm SE) number of insects per bolus was
613 66.1 (± 12.4 , $n = 322$) in 1983-1988, compared to 51.2 (± 6.0 , $n = 396$) in 2016-2018. There was
614 a significant interaction between decade and colony size (Appendix S1: Table S9), with the
615 number of insects delivered per trip increasing with colony size in the 1980's but no apparent

616 relationship with colony size in 2016-2018 (Fig. 5). Colony-by-year was a significant random
617 effect (Appendix S1: Table S9). However, the statistical interaction between decade and colony
618 size (Appendix S1: Table S9) was driven largely by the colony of 1400 nests in 1988 and the
619 colony of 32 nests in 2016 (Fig. 5), because excluding the 29 samples from these two sites
620 resulted in a non-significant interaction term ($P = 0.95$) and no effect of decade ($P = 0.48$).
621 These two colonies were not anomalous in any obvious biological way.

622

623 Diet composition

624

625 Family-level insect diversity per food bolus as measured by the Shannon Index (H) averaged (\pm
626 SE) 1.14 (± 0.0697 , $n = 232$) in 1983-1988, compared to 1.83 (± 0.0560 , $n = 397$) in 2016-2018.
627 Decade was a significant predictor of diversity, but colony size was not, and there was no
628 decade*colony-size or colony-size*colony-size interactions (Appendix S1: Table S10). Colony-
629 by-year was a significant random effect (Appendix S1: Table S10).

630 Qualitative change in the Cliff Swallow's diet over time was assessed with the five most
631 common families per decade, based on total insects in all boluses. For all colonies combined,
632 three families were represented in the top five in both decades (Fig. 6), although their rank order
633 varied slightly. The other two families in the top five for each decade were represented by
634 relatively few individuals of those families in the other decade (Fig. 6). For two sites that were
635 sampled in both decades, one site (Whitetail, Fig. S4A) shared only two of its five most common
636 families between decades, and the other site (Clary, Fig. S4B) had only one of its five most
637 common shared between decades. The single most common family at each site in each decade
638 was different, and in some cases the more common families were barely represented by those

639 families in the other decade (Fig. S4). Overall, across all sites and years, the two most common
640 families in the Cliff Swallow's diet were the hemipteran families Cicadellidae (leafhoppers) and
641 Aphididae (aphids). There were 56 total families represented in 1983-1988 and 64 in 2016-2018.

642

643 **Changes in foraging-related fitness measures**

644

645 Fitness components that could be influenced by changes in foraging efficiency include clutch
646 size, reproductive success as measured by the number of nestlings surviving to 10 days of age,
647 and body mass of nestlings and adults. Clutch size in Cliff Swallows was significantly predicted
648 by colony size and laying date but not by decade (Appendix S1: Table S11). The random effect
649 of colony-by-year was also significant (Appendix S1: Table S11). The effect of colony size was
650 negative, indicating birds laid fewer eggs in larger colonies, but this was irrespective of decade,
651 as there was no significant interaction between decade and colony size (Appendix S1: Table
652 S11). Across all nests and sites, the mean (\pm SE) clutch size per nest in the 1980's was 3.49 eggs
653 (\pm 0.012, n = 5972 nests), compared to 3.56 eggs (\pm 0.018, n = 2725 nests) in 2015-2022.

654 Reproductive success varied significantly with decade, colony size, laying date, and
655 clutch size (Appendix S1: Table S12). Both laying date and colony size interacted with decade
656 (Fig. 7, Appendix S1: Table S12). Reproductive success declined more steeply with laying date
657 in 2015-2022 than in 1984-1991 (Fig. 7A). Colony size had no obvious effect on reproductive
658 success in 1984-1991, but in 2015-2022 success declined with colony size (Fig. 7B). The
659 random effect of colony site was significant, although colony-by-year was almost significant
660 (Appendix S1: Table S12). Across all nests and sites, the mean (\pm SE) survival to 10 days per

661 nest in 1984-1991 was 2.44 nestlings (± 0.019 , $n = 5461$ nests), compared to 2.53 nestlings (\pm
662 0.027, $n = 2622$) in 2015-2022.

663 Nestling Cliff Swallow body mass at 10 days of age was significantly predicted by brood
664 size, hatching date, and an interaction between decade and colony size (Fig. 8; Appendix S1:
665 Table S13). The effect of colony size was curvilinear, and nest identity, colony-by-year, and
666 year were significant random effects (Appendix S1: Table S13). The interaction between colony
667 size and decade showed that nestling body mass at 10 days declined more with colony size in
668 2015-2018 than in 1984-1989 (Fig. 8). Across all nests and sites, the mean (\pm SE) 10-day body
669 mass for nestlings was 22.89 g (± 0.027 , $n = 10688$ nestlings) in the 1980's, compared to 21.65 g
670 (± 0.081 , $n = 1665$ nestlings) in 2015-2018.

671 Adult Cliff Swallow body mass during the late stage (feeding of nestlings) was
672 significantly predicted by decade and sex (Appendix S1: Table S14), with both sexes weighing
673 less on average in 2013-2021 than in 1984-1989 during this nesting stage (Fig. 9). Colony size
674 had no significant effect on body mass during the late stage (Appendix S1: Table S14). Adult
675 body mass during the middle stage (incubation) was significantly predicted by sex but did not
676 vary significantly between the decades (Fig. 9; Appendix S1: Table S15). There was a
677 significant effect of colony size on middle-stage body mass, with mass decreasing with colony
678 size, but the colony-size effect was independent of decade (Appendix S1: Table S15). For the
679 early period (nest-building and egg-laying), body mass (Fig. 9) showed a significant three-way
680 interaction between decade, sex, and colony size (Appendix S1: Table S16). Both sexes in 1984-
681 1989 were more likely to exhibit a negative effect of colony size on body mass, and females in
682 2013-2021 a positive effect of colony size, relative to the baseline of males in 2013-2021
683 (Appendix S1: Table S16). However, in an analysis without interactions, decade alone had no

684 significant effect on adult body mass during the early period ($P = 0.49$). The random effect of
685 colony-by-year was significant for all three nesting stages (Appendix S1: Tables S14-S16).

686

687 **DISCUSSION**

688

689 This study revealed 40-year changes in the foraging behavior of Cliff Swallows: relative to the
690 1980's, birds now fed less socially and solitary foragers were more successful; foraging locations
691 were more predictable and birds less clustered in space; and less use was made of breeding
692 colonies as information centers. Although qualitative change in the diet was not pronounced
693 across the study area as a whole, less total food was collected for nestlings, and foraging-related
694 fitness benefits of larger colonies declined. The temporal shifts in behavior are generally
695 consistent with changes in the distribution and abundance of the flying insects that Cliff
696 Swallows eat, although we had no direct measures of insect availability and other interpretations
697 are possible. The reduced reliance on social foraging and information transfer at present suggest
698 less benefit to occupying the larger colonies than in the 1980's.

699

700 **Changes in social foraging**

701

702 Social foraging in Cliff Swallows in the 1980's was thought to result from birds' concentrating at
703 localized dense swarms of insects and, based on prey capture attempts of individuals in the
704 center versus on the edges of a foraging group, did not seem to reflect grouping to avoid
705 predators (Brown 1988b, Brown and Brown 1996). Still, could the shift to more asocial foraging
706 over time be related to changes in predation pressure? The American Kestrel (*Falco sparverius*)

707 is the Cliff Swallow's primary aerial predator that sometimes attacks foraging groups. Kestrels
708 have neither increased nor decreased in the study area (Brown et al. 2012, Silcock and Jorgensen
709 2022) or Nebraska more generally (Sauer et al. 2020) over time. The Cooper's Hawk (*Accipiter*
710 *cooperii*) has increased since the 1980's as its breeding range has expanded southward to include
711 western Nebraska (Brown et al. 2012, Silcock and Jorgensen 2022), but Cooper's Hawks
712 typically hunt Cliff Swallows only at or very close to a colony site. Unless the increased
713 presence of Cooper's Hawks has made social foraging away from colonies riskier now than in
714 the 1980's, which seems unlikely, there is no evidence that shifts in predation have driven the
715 changes in foraging behavior documented here.

716 In the 1980's, Cliff Swallows fed on patches of insects that aggregated in mating swarms
717 or around livestock and on swarms that formed by local convection currents and thermals
718 (Brown and Brown 1996). These insect swarms were presumably dense enough and insects
719 abundant enough within them to support large numbers of foraging Cliff Swallows, often for an
720 hour or more. Some foraging groups reached > 1000 birds in the 1980's, and prey capture
721 attempt rate was significantly higher for birds in groups than for solitary foragers (Brown
722 1988b). In contrast, by 2016-2022, groups ≥ 200 birds had almost disappeared (Fig. 1). This
723 change could not be accounted for by differences in colony size or colony site, as we used
724 colonies of similar sizes and at the same sites for the behavioral observations of foraging in each
725 decade (Appendix S1: Table S1). Consistent with the much greater incidence of solitary
726 foraging in 2016-2022, solitary foragers were more successful than were birds in groups in the
727 later years. These observations suggest that insect swarms by 2016-2022 were likely not
728 sufficient enough to support group foraging, or if they were, they did not last long enough at any
729 one location to allow foraging Cliff Swallows to accumulate in large groups. We should note

730 that although solitary foraging did occur in the 1980's (Brown 1988b), it was at colonies smaller
731 than any observed in 2016-2022, likely reflecting the relatively few birds in the smaller colonies
732 and consequent dearth of opportunities for foraging socially (Brown and Brown 1996).

733

734 **Changes in time spent foraging**

735

736 Another major change in Cliff Swallow foraging strategy over the study period was a reduction
737 in the percentage of a colony's residents feeding in any given 10-min interval. This indicates
738 birds spent more time at their nests and less time foraging away from the colony by 2016.

739 Smaller brood sizes could explain this if parents had less food demand from their nestlings.

740 Although brood sizes did decline between the decades, as indicated by the number of nestlings
741 surviving to 10 days (Fig. 7B), this effect was small and probably could not account for such
742 large changes in parental time budgets.

743 Foraging decisions could be partly based on a parent's perceived threat of nest usurpation
744 by other Cliff Swallows. As the Cliff Swallow population in the study area has increased since
745 1982 (Brown et al. 2013), the number of non-breeding transient Cliff Swallows has also
746 increased (Fig. 3; Brown 1998). By the mid-1990's, we estimated hundreds to over a thousand
747 transients passing through a colony in a single day, based on mark-recapture (Rannala 1995,
748 Brown 1998, Brown and Brown 2004a). The increase in transients over time may indicate a
749 growing population that is exceeding the capacity of the available nesting sites to accommodate
750 them, or, because most arrive later in the summer, increasing difficulty for birds on the wintering
751 grounds to achieve molt completion and/or good enough body condition to migrate early enough
752 in the season to breed. The transients, who are likely prospecting for future nesting sites, appear

753 mostly while colonies are feeding nestlings (Brown 1998, Brown et al. 2000, 2007, Roche et al.
754 2013), and parents seem obsessed at defending their nests from them, even while nestlings beg
755 for food. The deleterious consequences of leaving nests unattended and having conspecifics
756 intrude earlier in the season (Brown and Brown 1988, 1989) may have led to intense selection
757 for nest guarding that is manifested even when nestlings are older and do not need continual
758 defense against other Cliff Swallows.

759 While controlling for brood size, nestling mass at 10 days decreased between the
760 decades, suggesting that nestlings might pay some of the cost of a reduction in parental effort
761 because of transients. In addition, the reduction over time in adult body mass during feeding of
762 nestlings could also indicate that breeding adults experience a foraging-related cost of transients.
763 We cannot at present determine if the increasing transient presence is leading to changes in
764 parental foraging behavior independent of any changes in food resources. However, if the Cliff
765 Swallow population continues to increase in the study area, transient presence (and its effect on
766 foraging) may also increase. The number of transients seems to directly track population size, a
767 conclusion supported by the dip in the number of transients in 1996 and for several years
768 thereafter (Fig. 3) following an unusual weather-related mortality event that eliminated about
769 50% of the breeding population (Brown and Brown 1998). A cost of large colonies in general
770 could be that, because they attract more transients (Brown and Brown 2004a), residents spend
771 less time foraging for their young. However, we found no significant effect of colony size on
772 percent of residents foraging (Appendix S1: Table S4), suggesting either that transients *per se*
773 are not directly responsible for changes in foraging or that the number of transients did not vary
774 enough among the colonies where we conducted these observations (which were mostly large
775 colonies, Appendix S1: Table S1) to result in a colony-size effect.

776

777 **Changes in spatial clustering of foraging**

778

779 Social foraging in the 1980's was thought to be beneficial because groups were better able to
780 locate insect patches, or track the patches' movements, due to the increased number of foraging
781 individuals (Brown 1988b, Brown et al. 1991). This implies that insect swarms were closely
782 enough spaced that when one swarm was depleted or vanished because convection stopped, a
783 Cliff Swallow foraging group could locate and shift to another nearby insect swarm without
784 disbanding. That no longer appeared to be the case by 2016; even when relatively large groups
785 formed, they usually did not persist for long in any one location and rarely collectively moved
786 nearby. As a consequence, observed variability in foraging locations (Figs. S2, S3) was higher
787 in 2016-2022 than in the 1980's, indicating that at present birds move through the foraging
788 habitat and visit more parts of it. Although inferring insect distributions solely from the activity
789 of foraging birds can be difficult (Brown 1988b, Brown and Brown 1996), these results taken
790 together suggest that the aerial insects on which Cliff Swallows feed are now distributed in
791 smaller and more widely spaced patches than in the 1980's.

792

793 **Changes in use of colony-based information centers**

794

795 Resource patches that are small, short-lasting in time, and widely dispersed do not promote
796 information sharing, either at or near the colony site via an information center or through local
797 enhancement on the foraging grounds (Waltz 1982, Clark and Mangel 1984, 1986, Beauchamp
798 and LeFebrve 1988, Barta and Szep 1992, Giraldeau and Caraco 2000, Kohles et al. 2022). In

799 these cases, animals cannot easily gain by recruiting to a patch because it cannot support many
800 foragers or will not last long enough for some individuals to find it and for others then to learn of
801 it, and because fewer nearby alternative patches are available if one follows another forager to a
802 patch that is in decline. A food resource distribution with these characteristics is consistent with
803 the changes we documented in information sharing among Cliff Swallows at colony sites. We
804 found that unsuccessful Cliff Swallow foragers at present relatively rarely followed successful
805 birds from the colony site—and when they did, they were unlikely to go to the same foraging
806 location—despite this sort of information transfer at the colony site being a predominant part of
807 the birds' foraging strategy in the 1980's (Brown 1985, 1986, Brown and Brown 1996). Lack of
808 information-center foraging is also consistent with the now-reduced benefits of group foraging
809 and the increased benefits of solitary foraging, both as measured by prey capture attempts.

810 In the 1980's, Cliff Swallows shared information on the foraging grounds when birds
811 gave specific food calls that recruited other foragers to the location. Brown et al. (1991)
812 hypothesized that calling was a benefit to the caller by increasing the likelihood that an insect
813 swarm could be tracked in space when more foraging birds were present. We heard these calls
814 relatively often among foraging Cliff Swallows in the 1980's (Brown et al. 1991). However, by
815 2016-2022 food calls were rarely if ever given in any circumstance (C. Brown, *pers. obs.*).
816 Quantitative data on call frequency were not collected, but the birds' apparent abandonment of
817 the use of food calls over time was consistent with the food resource becoming less patchy, less
818 abundant, and shorter-lived at any given location.

819

820 **Changes in distribution, abundance, or types of flying insects?**

821

822 The marked changes in Cliff Swallow foraging behavior are largely consistent with insect
823 distributions not being the same as they were 35-40 years ago in western Nebraska. Possible
824 reasons for these foraging shifts include a quantitative reduction in flying insect abundance, as
825 reported elsewhere (Hallman et al. 2017, Møller 2019, Sánchez-Bayo and Wyckhuys 2019,
826 Wagner 2020), and/or a qualitative change in the insect taxa being fed on, with insects present
827 today being less likely to occur in patchy swarms. We acknowledge that no comparative insect
828 sampling has been done across time in our study area, in part because aerial insects—particularly
829 the many families represented in the Cliff Swallow’s diet—are difficult logistically to sample in
830 a meaningful way (Johnston 1967, Brown and Brown 1996). Without such sampling, we cannot
831 know with certainty whether insect populations have changed quantitatively or qualitatively over
832 time, and making such statistical inferences even with relevant data can be difficult (Didham et
833 al. 2020).

834 Although Cliff Swallows in our study area have been increasing since the 1980’s (Brown
835 et al. 2013), which would not be expected if insect abundance was declining drastically, evidence
836 of fewer insects at present was the reduction in bolus weights from 1983-1988 to 2016-2018
837 among the fumigated nests in this study. With no change in the rate of parental food deliveries
838 across the decades, nestlings presumably are receiving less food now than in the 1980’s. This
839 inference, however, is somewhat complicated by our also finding that Cliff Swallows in colonies
840 that were not fumigated (i.e., exposed to natural infestations of swallow bugs) have increased
841 their rate of food delivery over time to the extent that the total amount of food provided is not
842 different now than in the 1980’s (Brown et al. 2021). While it is not clear why such a
843 modulation in parental effort depends on parasite load, it may indicate that food now is harder
844 enough to find that a correspondingly greater effort is required to maintain nestlings at some

845 threshold level of condition (perhaps mediated in part by adults' reactions to ectoparasites in the
846 nest).

847 Across all colonies sampled for food boluses delivered to nestlings, the evidence for
848 qualitative changes in the insects in the diet was mixed: three of the top five most common
849 families remained the same in both decades, with the remaining two in each decade being
850 relatively uncommon in the other decade (Fig. 6). At specific sites sampled in both decades,
851 family-level turnover was more obvious (Appendix S1: Fig. S4). For example, mosquitoes
852 (Culicidae) disappeared in the bird's diet at Whitetail over time, while phorid flies (Phoridae)
853 greatly increased. Aphids (Aphididae) in general were well represented in both decades study-
854 area-wide, but at Clary they almost disappeared in the later decade after being the most common
855 family in the 1980's (Appendix S1: Fig. S4). The most common families in both decades
856 included taxa that can be gregarious in various contexts, and some are pest species subject to
857 outbreaks (Freeman 1945, Downes 1969, Southwood and Jepson 1962, Kuroli and Németh 1987,
858 Evans 1988, Disney 1994, Brown and Brown 1996, Pires et al. 2000, Biedermann 2003). Thus,
859 Cliff Swallows even in 2016-2018 were still foraging on insects that potentially may swarm or
860 occur in localized concentrations.

861 On the other hand, the fact that within-bolus family-level diversity increased over time
862 could suggest that Cliff Swallows more recently rely less on large patches of the same taxa and
863 forage on more kinds of insects in less concentrated patches, consistent with our finding fewer
864 insects per bolus and with their shift in foraging behavior. However, despite the difference in
865 diversity and the qualitative differences in insects detected between the decades, and in the
866 absence of generic- or species-level identification, we do not have sufficient evidence to

867 conclude that the diet has shifted to non-swarming taxa to the extent that such a change *per se*
868 could account for the differences in Cliff Swallow foraging behavior.

869 In Tree Swallows at a site in Canada, weather conditions deemed “good” for foraging
870 decreased over a 43-year period, resulting in fewer nestlings fledged over time (Cox et al. 2020),
871 a possible consequence of the effects of global climate change. However, we found no evidence
872 of strong climate change over the years of our study in Nebraska: the decades did not differ
873 significantly in average Palmer Drought Severity Index, a metric that predicts Cliff Swallow
874 breeding time (Brown and Brown 2014). Furthermore, we detected no directional shift in the
875 PDSI for the month of June (when Cliff Swallows are foraging to the greatest extent) over the 41
876 years of the study. While climate change may be affecting insects in other areas (Halsch et al.
877 2021, Harvey et al. 2022), it does not appear to be a compelling correlate of the changes in Cliff
878 Swallow foraging ecology we observed.

879 Changes in land use are hypothesized to affect insect distribution and abundance, largely
880 through conversion of native habitat to agriculture-intensive uses (Ghilain and Bélisle 2008,
881 Paquette et al. 2013, 2014). Some recent conversion to agriculture has occurred in western
882 Nebraska, with cultivation of corn increasing over time at the expense of areas formerly used for
883 livestock grazing. The area surrounding Whitetail (Appendix S1: Fig. S1), all pasture with
884 horses and cattle in 1982-1988, now contains agricultural land (alternating between corn, cereal
885 crops, or alfalfa) on two sides of the colony site, with almost no livestock grazing within the
886 colony’s foraging range anymore. However, whether land use changes have altered insect
887 abundance in the study area is unclear, because crop monocultures do not always have lower
888 (and sometimes have higher) insect abundance than more diverse areas such as pasture (Andow
889 1991).

890 Changes in land use could also affect insect patchiness by reducing the formation of
891 thermals that concentrate insects and that the birds often cue on in foraging (Brown and Brown
892 1996). Convection is more likely on surfaces that warm easily (Wallington 1961, Drake and
893 Farrow 1988), and the conversion of pasture to relatively tall row crops at sites like Whitetail
894 may have decreased the formation of thermals that move insects upward. However, these
895 potential consequences of land use change would not apply to the Canal colonies, where the
896 surrounding land use has not changed over time yet the birds' behavior has changed.

897 Pesticide use is another possible driver of insect change (Sharma et al. 2020) that could
898 potentially affect populations of insectivorous birds such as Cliff Swallows. Insecticides and
899 herbicides can directly reduce insect abundance or alter communities by selectively removing
900 certain taxa, and application of fungicides may also negatively affect insects (Tamburini et al.
901 2021). The application of pesticides to agricultural landscapes over which the birds forage could
902 expose Cliff Swallows to chemically contaminated food and lead to the lower fitness we
903 observed for birds in the most recent decade (Fig. 7B). In our study area, corn is the principal
904 crop that is routinely sprayed, with aerial application usually occurring at least once per field
905 during the Cliff Swallow's breeding season. That our results could be explained in general by
906 increasing pesticide use seems unlikely, though, given that insecticide and herbicide application
907 to corn in the United States has declined over time as use of genetically engineered corn varieties
908 has increased (Fernandez-Cornejo et al. 2014). In addition, a study on Tree Swallows found no
909 effect of local pesticide use (that did lead to bolus contamination) on the birds' reproductive
910 performance (Poisson et al. 2021).

911

912 **Changes in foraging-related fitness benefits of coloniality**

913

914 Given the changes in foraging behavior over time, are Cliff Swallows in western Nebraska more
915 food-stressed now than in the 1980's? Three fitness components—the number of nestlings
916 surviving to 10 days of age, the body mass of nestlings at 10 days, and late-season adult body
917 mass—declined over the decades, especially in the larger colonies, suggesting that the birds now
918 might be finding less total food. Earlier work showed declines in annual survival of adult birds
919 over the period 1984-2013 at the same fumigated colonies used in this study (Brown et al. 2021),
920 possibly reflecting the reduction in adult body mass.

921 In addition, later nesting appears costlier now than in the 1980's with fewer nestlings
922 surviving to 10 days of age as the season progresses. Late nesting was originally thought to be
923 disadvantageous to Cliff Swallows primarily because increased ectoparasite infestations later in
924 the summer reduced nestling survival before fledging (Brown and Brown 1986, 1996), but late
925 nesting also lowers annual survival of both nestlings and adults at sites where swallow bugs are
926 removed (Brown et al. 2015). Our results here, from fumigated colonies, are consistent with
927 reductions in food resources that constrain nestling survival prior to fledging at later dates, and
928 this effect has clearly increased over time (Fig. 7A). Whether aerial insects are less abundant
929 later in the summer at our study site is unknown in the absence of direct sampling on a wide
930 scale, but studies elsewhere on other swallows have shown that insects are more abundant later
931 in the breeding season (Johnston 1967, Bryant 1975). For whatever reason(s), the widespread
932 avian pattern of nesting success decreasing during the summer (Perrins 1970, Rowe et al. 1994,
933 Verhulst and Nilsson 2008) has apparently intensified for Cliff Swallows in recent years even in
934 the absence of ectoparasites. One possible explanation could be phenological mismatch

935 (Parmesan 2006, Saino et al. 2011), if warmer springs have recently accelerated flying insects'
936 phenology more than the birds can compensate for by earlier arrival or egg-laying.

937 However, despite these greater fitness costs that are consistent with reduced food
938 availability, four other lines of evidence argue against Cliff Swallows being highly food-stressed.
939 (1) We detected no effect of decade on average distance traveled to foraging locations at
940 Whitetail and the Canal colonies. Distance traveled while foraging is one of the more direct
941 indices of resource depletion around a site for central-place foragers (Andersson 1978, 1981),
942 and longer travel distances presumably mean food is insufficient closer to the colony (Hamilton
943 and Watt 1970, Orians 1971, Furness and Birkhead 1984, Patterson et al. 2022). We found no
944 significant lengthening of travel distance (Fig. 2C) that might be expected from greater food
945 stress. (2) Clutch size did not differ between the decades. To the extent that the number of eggs
946 laid reflects the resources available to a female Cliff Swallow prior to laying (Bryant 1975,
947 Hussell and Quinney 1987, Brown and Brown 1999, Ward and Bryant 2006), it does not appear
948 that adults now have less food available to them early in the season. (3) Despite the observed
949 decline in adult survival over time at fumigated colonies, the opposite pattern was observed at
950 non-fumigated sites (Brown et al. 2021). The reason for the difference is unclear but may
951 include relaxation of parasite-driven selection on birds at colony sites that are perennially
952 fumigated (Brown et al. 2021). Regardless of cause, when averaged across non-fumigated and
953 fumigated sites, adult survival in general does not seem to be declining in the study area as a
954 whole.

955 (4) The most important argument against food stress is the reduction in time spent
956 foraging by adult Cliff Swallows in the 2016-2022 time period, relative to the 1980's, as
957 measured by the percent of a colony's residents foraging at any one time (Fig. 2D). Food stress

958 should lead to more time investment in foraging, and the fact that Cliff Swallows apparently
959 invest less now may suggest food might be more available than in the 1980's. Even if the
960 increased presence of transients causes parents to reduce foraging in order to guard nests more,
961 the cost of this heightened level of parental neglect still seems relatively minor, judging by the
962 lack of change in the number of food deliveries to nestlings over the decades. Nevertheless, the
963 reduction in the amount of food brought back per trip with no change in travel distance or
964 frequency of trips implies that Cliff Swallows are now probably decreasing the total time in each
965 food patch, possibly to allow more time at the nest to ward off transients. They conceivably
966 could also be spending more time searching for a patch. Time-budget studies of marked birds
967 are needed to discriminate among these possibilities.

968 The most closely similar studies to ours, on Tree Swallows (*Tachycineta bicolor*;
969 Paquette et al. 2014, Berzins et al. 2021), found declines in adult body mass over time at a
970 magnitude comparable to those we observed. However, those studies found that mass declines in
971 adults were unrelated to breeding-habitat quality, and neither nesting success nor nestling body
972 mass declined over time. Paquette et al. (2014) suggested that changes in adult mass in Tree
973 Swallows were perhaps more likely related to carry-over effects from the non-breeding season
974 caused by habitat degradation and reduction in insects on the wintering range. While we have no
975 information on potential changes in habitat or food availability for Cliff Swallows on their
976 wintering range, the fact that early-season body mass did not change between the decades
977 suggests that Cliff Swallows are not arriving on the breeding grounds in worse shape now than in
978 the 1980's, despite a long-term trend for earlier nesting (Brown and Brown 2014).

979

980 **Is social foraging still an advantage of coloniality?**

981

982 Based on studies in the 1980's that showed frequent information transfer at colony sites and
983 more food brought back by parents in larger colonies, enhanced foraging efficiency seemed to be
984 a major benefit of coloniality for Cliff Swallows (Brown et al. 1991, Brown and Brown 1996,
985 2018). Foraging advantages are at least partly expressed in both daily (Brown and Brown
986 2004b) and yearly survival, which varies with colony size depending on annual climatic
987 conditions (Brown et al. 2016). Previous work indicated that other potential benefits of
988 coloniality in Cliff Swallows (predator avoidance, limited nesting sites) were minor in magnitude
989 compared to foraging advantages, and that ectoparasitism is the greatest cost that co-varies with
990 colony size (Brown and Brown 1996). Thus, fitness differences among colony sizes and/or time
991 periods at fumigated colonies (i.e., without ectoparasites), as in this study, should reflect mostly
992 benefits associated with foraging. Given the changes in social foraging and information transfer
993 documented here, and the potentially greater food-related fitness costs of larger colonies at
994 present, do Cliff Swallows no longer receive the same advantages of colonial nesting as in the
995 1980's?

996 A full exploration of the different costs and benefits of coloniality in Cliff Swallows
997 (Brown and Brown 1996, 2001) and how each may have changed over time (Brown et al. 2016,
998 2021) is beyond the scope of this paper. Yet, the cessation of widespread information sharing at
999 the colony site, the shift to more frequent solitary foraging, the smaller amounts of food brought
1000 back, and the decline in nestling mass and survival with colony size, all suggest that foraging-
1001 related advantages of group living might be less now than 40 years ago. If these patterns
1002 continue, selection on fecundity could favor birds nesting in smaller colonies and those earlier in
1003 the season, and might result in directional shifts toward smaller colonies, on average, and earlier

1004 laying dates (or at least against later laying dates). There was evidence for a cost of larger
1005 colonies (reduced food availability) even in the 1980's despite the birds' use of information
1006 transfer: for example, we detected an increase in brood reduction (loss of some but not all
1007 nestlings in a nest) with colony size among fumigated nests and (in a different data set) longer
1008 travel distances in larger colonies (Brown and Brown 1996). Average laying dates have become
1009 earlier since the study began in 1982 (Brown and Brown 2014), but the distribution of colony
1010 sizes has remained stable (Brown et al. 2013, C. Brown, *unpublished data*). Cliff Swallows are
1011 better tolerating their ectoparasites now than in the 1980's (Brown et al. 2021), and the
1012 amelioration of the parasite-driven costs of larger colonies (that were formerly severe) could
1013 reduce selection for smaller colonies despite the greater foraging-related costs of larger colonies.

1014 We were unable to investigate potential annual variation in the costs and benefits of
1015 social foraging, with sample sizes of fumigated colonies and the laborious nature of collecting
1016 the foraging observations forcing us to group years together into discrete decades for most
1017 analyses. Annual survival of both adult and first-year Cliff Swallows varies among years and
1018 often fluctuates in direction for different colony sizes in different years (Brown et al. 2016). To
1019 the extent that these survival differences reflect foraging success (Brown et al. 2016), we could
1020 be obscuring important annual variation in the costs and benefits of social foraging with the
1021 decadal analyses. However, even with the inevitable variability among years, the differences
1022 between decades documented here seem too large to be explicable by yearly variation alone.

1023 The changes in social foraging documented here could also reflect in part the sudden shift
1024 to the use of artificial nesting sites that began in the 1980's just as the Cliff Swallow study
1025 commenced (Brown et al. 2021). The abandonment of ancestral cliff nesting sites in the study
1026 area was almost complete by 1990, with relatively few birds occupying cliffs since then (Brown

1027 et al. 2013). Information sharing and social foraging as documented in the 1980s may have been
1028 more important on cliff nesting sites. This is because cliff nesting sites (at least in our study
1029 area) are usually on cliff faces adjacent to water bodies, and Cliff Swallows tend to avoid
1030 foraging over water except in bad weather (Brown and Brown 1996). Foraging space near a cliff
1031 colony site is more spatially restricted because of the water and thus affects travel distance
1032 (Wittenberger and Dollinger 1984, Brown et al. 1992). Spatial restrictions could have favored
1033 social foraging and information transfer in the more “ancestral” cliff-nesting conditions when
1034 birds had to routinely travel farther. Social foraging clearly continued to be manifested in the
1035 early years of the transition to artificial sites (Brown and Brown 1996, this study). However,
1036 with the almost complete shift to colony sites that are mostly surrounded by terrestrial foraging
1037 habitat, selection may no longer be as strong for social foraging and information transfer,
1038 especially in the larger colonies.

1039

1040 **Conclusions**

1041

1042 Cliff Swallows exhibited flexibility in their foraging strategy over the course of this 40-year
1043 study, shifting from a high degree of social foraging promoted by information transfer at the
1044 colony site to more asocial feeding that did not seem to rely on sharing of information. To our
1045 knowledge, no other study has shown such a long-term change in the extent of social foraging.
1046 These behavioral shifts may reflect a change in the distribution and/or abundance of the birds'
1047 aerial insect food sources, and support recent inferences of major flying-insect decline.
1048 However, insect populations in general exhibit extreme local variability in space and over short
1049 time scales (Grüebler et al. 2008, Shortall et al. 2009, Ewald et al. 2015, Haan et al. 2020,

1050 Musters et al. 2021), and this has often complicated attempts both to document insect declines in
1051 statistically rigorous ways (Didham et al. 2020) and to explain population parameters of
1052 insectivore predators such as swallows (Ghilain and Bélisle 2008, Paquette et al. 2013, 2014,
1053 Imlay et al. 2017, Michelson et al. 2018). Regardless of cause, the long-term changes in
1054 foraging behavior and information transfer in Cliff Swallows illustrate that the costs and benefits
1055 of group-living can be dynamic and exhibit directional shifts across ecological time.

1056

1057 **ACKNOWLEDGMENTS**

1058

1059 We thank over 80 research assistants for help in the field; Amy T. Moore for mark-recapture data
1060 management; the University of Nebraska-Lincoln for use of the Cedar Point Biological Station;
1061 the Oren Clary family, Duane Dunwoody, Dave and Deb Knight, and Loren Soper for access to
1062 land; and Christian Hof, John Hoogland, and two anonymous reviewers for helpful comments on
1063 the manuscript. Birds were handled under authority of the Bird Banding Laboratory of the
1064 United States Geological Survey (permit 20948) and a series of Scientific Permits from the
1065 Nebraska Game and Parks Commission. Animal use was approved by a series of Institutional
1066 Animal Care and Use Committees of Yale University, the University of Nebraska-Lincoln, and
1067 primarily the University of Tulsa. This work was supported by the National Science Foundation
1068 (BSR-8600608, BSR-9015734, DEB-9613638, IBN-9974733, DEB-0075199, DEB-0514824,
1069 DEB-1019423, DEB-1453971, IOS-1556356, DEB-1930803), the National Institutes of Health
1070 (R01AI057569), the National Geographic Society, the Erna and Victor Hasselblad Foundation,
1071 the National Academy of Sciences, the Chapman Fund of the American Museum of Natural

1072 History, the American Philosophical Society, Sigma Xi, the University of Tulsa, Yale
1073 University, and Princeton University.

1074

1075 REFERENCES

1076

1077 Alexander, R. D. 1974. The evolution of social behavior. *Annual Review of Ecology and
1078 Systematics* 5:325-383.

1079 Andersson, M. 1978. Optimal foraging area: size and allocation of search effort. *Theoretical
1080 Population Biology* 13:397-409.

1081 Andersson, M. 1981. Central place foraging in the Whinchat, *Saxicola rubetra*. *Ecology* 62:538-
1082 544.

1083 Andow, D. A. 1991. Vegetational diversity and arthropod population response. *Annual Review
1084 of Entomology* 36:561-586.

1085 Attwood, S. J., M. Maron, A. P. N. House, and C. Zammit. 2008. Do arthropod assemblages
1086 display globally consistent responses to intensified agricultural land use and
1087 management? *Global Ecology and Biogeography* 17:585-599.

1088 Barta, Z., and T. Szep. 1992. The role of information transfer under different food patterns: a
1089 simulation study. *Behavioral Ecology* 3:318-324.

1090 Barta, Z., and T. Szep. 1995. Frequency-dependent selection on information-transfer strategies at
1091 breeding colonies: a simulation study. *Behavioral Ecology* 6:308-310.

1092 Barta, Z., and L.-A. Giraldeau. 2001. Breeding colonies as information centers: a reappraisal of
1093 information-based hypotheses using the producer-scrounger game. *Behavioral Ecology*
1094 12:121-127.

1095 Beauchamp, G., and L. Lefebvre. 1988. Food finding in colonially nesting birds. *Journal of*
1096 *Theoretical Biology* 132:357-368.

1097 Bellavance, V., M. Bélisle, J. Savage, F. Pelletier, and D. Garant. 2018. Influence of agricultural
1098 intensification on prey availability and nestling diet in Tree Swallows (*Tachycineta*
1099 *bicolor*). *Canadian Journal of Zoology* 96:1053-1065.

1100 Berzins, L. L., A. K. Mazer, C. A. Morrissey, and R. G. Clark. 2021. Pre-fledging quality and
1101 recruitment in an aerial insectivore reflect dynamics of insects, wetlands and climate.
1102 *Oecologia* 196:89-100.

1103 Biedermann, R. 2003. Aggregation and survival of *Neophilaenus albipennis* (Hemiptera:
1104 Cercopidae) spittlebug nymphs. *European Journal of Entomology* 100:493-499.

1105 Brown, C. R. 1985. *The Costs and Benefits of Coloniality in the Cliff Swallow*. Ph.D.
1106 dissertation. Princeton University, Princeton, New Jersey, USA.

1107 Brown, C. R. 1986. Cliff Swallow colonies as information centers. *Science* 234:83-85.

1108 Brown, C. R. 1988a. Enhanced foraging efficiency through information centers: a benefit of
1109 coloniality in Cliff Swallows. *Ecology* 69:602-613.

1110 Brown, C. R. 1988b. Social foraging in Cliff Swallows: local enhancement, risk sensitivity,
1111 competition and the avoidance of predators. *Animal Behaviour* 36:780-792.

1112 Brown, C. R. 1998. *Swallow Summer*. University of Nebraska Press, Lincoln, Nebraska, USA.

1113 Brown, C. R. 2016. The ecology and evolution of colony-size variation. *Behavioral Ecology and*
1114 *Sociobiology* 70:1613-1632.

1115 Brown, C. R., and M. B. Brown. 1986. Ectoparasitism as a cost of coloniality in Cliff Swallows
1116 (*Hirundo pyrrhonota*). *Ecology* 67:1206-1218.

1117 Brown, C. R., and M. B. Brown. 1987. Group-living in Cliff Swallows as an advantage in
1118 avoiding predators. *Behavioral Ecology and Sociobiology* 21:97-107.

1119 Brown, C. R., and M. B. Brown. 1988. The costs and benefits of egg destruction by conspecifics
1120 in colonial Cliff Swallows. *Auk* 105:737-748.

1121 Brown, C. R., and M. B. Brown. 1989. Behavioural dynamics of intraspecific brood parasitism in
1122 colonial Cliff Swallows. *Animal Behaviour* 37:777-796.

1123 Brown, C. R., and M. B. Brown. 1996. *Coloniality in the Cliff Swallow: the Effect of Group Size
1124 on Social Behavior*. University of Chicago Press, Chicago, Illinois, USA.

1125 Brown, C. R., and M. B. Brown. 1998. Intense natural selection on body size and wing and tail
1126 asymmetry in Cliff Swallows during severe weather. *Evolution* 52:1461-1475.

1127 Brown, C. R., and M. B. Brown. 1999. Fitness components associated with clutch size in Cliff
1128 Swallows. *Auk* 116:467-486.

1129 Brown, C. R., and M. B. Brown. 2001. Avian coloniality: progress and problems. Pages 1-82 in
1130 V. Nolan and C. F. Thompson, editors. *Current Ornithology, Vol. 16*. Plenum, New
1131 York, NY, USA.

1132 Brown, C. R., and M. B. Brown. 2002a. Ectoparasites cause increased bilateral asymmetry of
1133 naturally selected traits in a colonial bird. *Journal of Evolutionary Biology* 15:1067-
1134 1075.

1135 Brown, C. R., and M. B. Brown. 2002b. Does intercolony competition for food affect colony
1136 choice in Cliff Swallows? *Condor* 104:117-128.

1137 Brown, C. R., and M. B. Brown. 2004a. Empirical measurement of parasite transmission
1138 between groups in a colonial bird. *Ecology* 85:1619-1626.

1139 Brown, C. R., and M. B. Brown. 2004b. Group size and ectoparasitism affect daily survival
1140 probability in a colonial bird. *Behavioral Ecology and Sociobiology* 56:498-511.

1141 Brown, C. R., and M. B. Brown. 2014. Breeding time in a migratory songbird is predicted by
1142 drought severity and group size. *Ecology* 95:2736-2744.

1143 Brown, C. R., and M. B. Brown. 2018. Extreme group sizes in a colonial bird favored during a
1144 rare climatic event. *Ecosphere* 9:e02428.

1145 Brown, C. R., M. B. Brown, and E. Danchin. 2000. Breeding habitat selection in Cliff Swallows:
1146 the effect of conspecific reproductive success on colony choice. *Journal of Animal
Ecology* 69:133-142.

1148 Brown, C. R., M. B. Brown, S. L. Hannebaum, G. S. Wagnon, O. M. Pletcher, C. E. Page, A. C.
1149 West, and V. A. O'Brien. Data from "Social foraging and the associated benefits of
1150 group-living in Cliff Swallows decrease over 40 years." Dryad, DOI:
1151 10.5061/dryad.6djh9w17x.

1152 Brown, C. R., M. B. Brown, and A. R. Ives. 1992. Nest placement relative to food and its
1153 influence on the evolution of avian coloniality. *American Naturalist* 139:205-217.

1154 Brown, C. R., M. B. Brown, A. T. Moore, and N. Komar. 2007. Bird movement predicts Buggy
1155 Creek virus infection in insect vectors. *Vector-Borne and Zoonotic Diseases* 7:304-314.

1156 Brown, C. R., M. B. Brown, P. Pyle, and M. A. Patten. 2020. Cliff Swallow (*Petrochelidon
1157 pyrrhonota*), version 1.0. In P. G. Rodewald, editor. *Birds of the World*. Cornell Lab of
1158 Ornithology, Ithaca, New York, USA. <https://doi.org/10.2173/bow.cliswa.01>.

1159 Brown, C. R., M. B. Brown, and E. A. Roche. 2013. Spatial and temporal unpredictability of
1160 colony size in Cliff Swallows across 30 years. *Ecological Monographs* 83:511-530.

1161 Brown, C. R., M. B. Brown, E. A. Roche, V. A. O'Brien, and C. E. Page. 2016. Fluctuating
1162 survival selection explains variation in avian group size. *Proceedings of the National
1163 Academy of Sciences USA* 113:5113-5118.

1164 Brown, C. R., M. B. Brown, and M. L. Shaffer. 1991. Food-sharing signals among socially
1165 foraging Cliff Swallows. *Animal Behaviour* 42:551-564.

1166 Brown, C. R., and S. L. Hannebaum. 2022. Birds of a feather flock together: extent of long-term
1167 consistency of colony-size choice in Cliff Swallows. *Frontiers in Ecology and Evolution*
1168 10:860407.

1169 Brown, C. R., S. L. Hannebaum, V. A. O'Brien, C. E. Page, B. Rannala, E. A. Roche, G. S.
1170 Wagnon, S. A. Knutie, A. T. Moore, and M. B. Brown. 2021. The cost of ectoparasitism
1171 in Cliff Swallows declines over 35 years. *Ecological Monographs* 91:e01446.

1172 Brown, C. R., E. A. Roche, and V. A. O'Brien. 2015. Costs and benefits of late nesting in Cliff
1173 Swallows. *Oecologia* 177:413-421.

1174 Brown, M. B., S. J. Dinsmore, and C. R. Brown. 2012. *Birds of Southwestern Nebraska*.
1175 Conservation and Survey Division, University of Nebraska, Lincoln, Nebraska, USA.

1176 Brühl, C. A., N. Bakanov, S. Köthe, L. Eichler, M. Sorg, T. Hörren, R. Mülethaler, G. Meinel,
1177 and G. U. C. Lehmann. 2021. Direct pesticide exposure of insects in nature conservation
1178 areas in Germany. *Scientific Reports* 11:24144.

1179 Bryant, D. M. 1975. Breeding biology of House Martins *Delichon urbica* in relation to aerial
1180 insect abundance. *Ibis* 117:180-216.

1181 Buckley, N. W. 1997. Spatial-concentration effects and the importance of local enhancement in
1182 the evolution of colonial breeding in seabirds. *American Naturalist* 149:1091-1112.

1183 Burger, A. E. 1997. Arrival and departure behavior of Common Murres at colonies: evidence for
1184 an information halo? *Colonial Waterbirds* 20:55-65.

1185 Chantler, P. 2000. *Swifts: A Guide to the Swifts and Treeswifts of the World*. 2nd ed. Yale
1186 University Press, New Haven, Connecticut, USA.

1187 Clark, C. W., and M. Mangel. 1984. Foraging and flocking strategies: information in an
1188 uncertain environment. *American Naturalist* 123:626-641.

1189 Clark, C. W., and M. Mangel. 1986. The evolutionary advantages of group foraging. *Theoretical
1190 Population Biology* 30:45-75.

1191 Cox, A. R., R. J. Robertson, W. B. Rendell, and F. Bonier. 2020. Population decline in Tree
1192 Swallows (*Tachycineta bicolor*) linked to climate change and inclement weather on the
1193 breeding ground. *Oecologia* 192:713-722.

1194 Davies, N. B. 1976. Food, flocking and territorial behaviour of the Pied Wagtail (*Motacilla alba
1195 yarrellii* Gould) in winter. *Journal of Animal Ecology* 45:235-253.

1196 Didham, R. K., Y. Basset, C. M. Collins, S. R. Leather, N. A. Littlewood, M. H. M. Menz, J.
1197 Müller, L. Packer, M. E. Saunders, K. Schönrogge, *et al.* 2020. Interpreting insect
1198 declines: seven challenges and a way forward. *Insect Conservation and Diversity*
1199 13:103-114.

1200 Disney, R. H. L. 1994. *Scuttle Flies: the Phoridae*. Chapman and Hall, London, UK.

1201 Downes, J. A. 1969. The swarming and mating flight of Diptera. *Annual Review of Entomology*
1202 14:271-298.

1203 Drake, V. A., and R. A. Farrow. 1988. The influence of atmospheric structure and motions on
1204 insect migration. *Annual Review of Entomology* 33:183-210.

1205 Emlen, J. T., Jr. 1952. Social behavior in nesting Cliff Swallows. *Condor* 54:177-199.

1206 Evans, J. C., S. C. Votier, and S. R. X. Dall. 2016. Information use in colonial living. *Biological*
1207 *Reviews* 91:658-672.

1208 Evans, J. W. 1988. Some aspects of the biology, morphology, and evolution of leafhoppers
1209 (Homoptera: Cicadelloidea and Membracoidea). *Great Basin Naturalist Memoirs* 12:61-
1210 66.

1211 Evans, K. L., J. D. Wilson, and R. B. Bradbury. 2007. Effects of crop type and aerial invertebrate
1212 abundance on foraging Barn Swallows *Hirundo rustica*. *Agriculture, Ecosystems, and*
1213 *Environment* 122:267-273.

1214 Ewald, J. A., C. J. Wheatley, N. J. Aebischer, S. J. Moreby, S. J. Duffield, H. Q. P. Crick, and M.
1215 B. Morecroft. 2015. Influences of extreme weather, climate and pesticide use on
1216 invertebrates in cereal fields over 42 years. *Global Change Biology* 21:3931-3950.

1217 Fernandez-Cornejo, J., R. Nehring, C. Osteen, S. Wechsler, A. Martin, and A. Vialou. 2014.
1218 *Pesticide Use in U.S. Agriculture: 21 Selected Crops, 1960-2008*. Economic Research
1219 Service, Department of Agriculture, EIB-124, Washington, DC. USA.

1220 Freeman, J. A. 1945. Studies in the distribution of insects by aerial currents. *Journal of Animal*
1221 *Ecology* 14:128-154.

1222 Funghi, C., L. S. C. McCowan, W. Schuett, and S. C. Griffith. 2019. High air temperatures
1223 induce temporal, spatial and social changes in the foraging behaviour of wild Zebra
1224 Finches. *Animal Behaviour* 149:33-43.

1225 Furness, R. W., and T. R. Birkhead. 1984. Seabird colony distributions suggest competition for
1226 food supplies during the breeding season. *Nature* 311:655-656.

1227 Ghilain, A. and M. Bélisle. 2008. Breeding success of Tree Swallows along a gradient of
1228 agricultural intensification. *Ecological Applications* 18:1140-1154.

1229 Giraldeau, L.-A., and T. Caraco. 2000. *Social Foraging Theory*. Princeton University Press,
1230 Princeton, New Jersey, USA.

1231 Grueber, C. E., S. Nakagawa, R. J. Laws, and I. G. Jamieson. 2011. Multimodel inference in
1232 ecology and evolution: challenges and solutions. *Journal of Evolutionary Biology*
1233 24:699-711.

1234 Grüebler, M. U., M. Morand, and B. Naef-Daenzer. 2008. A predictive model of the density of
1235 airborne insects in agricultural environments. *Agriculture, Ecosystems and Environment*
1236 123:75-80.

1237 Haan, N. L., Y. Zhang, and D. A. Landis. 2020. Predicting landscape configuration effects on
1238 agricultural pest suppression. *Trends in Ecology and Evolution* 35:175-186.

1239 Hallman, C. A., R. P. B. Foppen, C. A. M. van Turnhout, H. de Kroon, and E. Jongejans. 2014.
1240 Declines in insectivorous birds are associated with high neonicotinoid concentrations.
1241 *Nature* 511:341-343.

1242 Hallmann, C. A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A.
1243 Müller, H. Sumser, T. Hörren, T., *et al.* 2017. More than 75 percent decline over 27 years
1244 in total flying insect biomass in protected areas. *PLOS One* 12:e0185809.

1245 Hamilton, W. J., III, and K. E. F. Watt. 1970. Refuging. *Annual Review of Ecology and*
1246 *Systematics* 1:263-286.

1247 Halsch, C. A., A. M. Shapiro, J. A. Fordyce, C. C. Nice, J. H. Thorne, D. P. Waetjen, and M. L.
1248 Forister. 2021. Insects and recent climate change. *Proceedings of the National Academy*
1249 *of Sciences USA* 118:e2002543117.

1250 Harvey, J. A., K. Tougeron, R. Gols, R. Heinen, M. Abarca, P. K. Abram, Y. Bassett, M. Berg, C.

1251 Boggs, J. Brodeur, *et al.* 2022. Scientists' warning on climate change and insects.

1252 *Ecological Monographs* 93:e1553.

1253 Henry, C. 1982. Etude du regime alimentaire des passereaux par la methode des colliers. *Alauda*

1254 50:92-107.

1255 Hoogland, J. L., and P. W. Sherman. 1976. Advantages and disadvantages of Bank Swallow

1256 (*Riparia riparia*) coloniality. *Ecological Monographs* 46:33-58.

1257 Horn, H. S. 1968. The adaptive significance of colonial nesting in Brewer's Blackbird (*Euphages*

1258 *cyancephalus*). *Ecology* 49:682-694.

1259 Hussell, D. J. T., and T. E. Quinney. 1987. Food abundance and clutch size of Tree Swallows

1260 *Tachycineta bicolor*. *Ibis* 129:243-258.

1261 Imlay, T. L., H. A. R. Mann, and M. L. Leonard. 2017. No effect of insect abundance on nestling

1262 survival or mass for three aerial insectivores. *Avian Conservation and Ecology* 12:19.

1263 Imlay, T. L., J. M. Flemming, S. Saldanha, N. T. Wheelwright, and M. L. Leonard. 2018.

1264 Breeding phenology and performance for four swallows over 57 years: relationships with

1265 temperature and precipitation. *Ecosphere* 9:e02166.

1266 Johnson, A. E., J. S. Mitchell, and M. B. Brown. 2017. Convergent evolution in social swallows

1267 (Aves: Hirundinidae). *Ecology and Evolution* 7:550-560.

1268 Johnston, R. F. 1967. Seasonal variation in the food of the Purple Martin *Progne subis* in

1269 Kansas. *Ibis* 109:8-13.

1270 Jones, T. B., S. C. Patrick, J. P. Y. Arnould, M. A. Rodriguez-Malagón, M. R. Wells, and J. A.

1271 Green. 2018. Evidence of sociality in the timing and location of foraging in a colonial

1272 seabird. *Biology Letters* 14:20180214.

1273 Kennedy, M., and R. D. Gray. 1993. Can ecological theory predict the distribution of foraging
1274 animals? A critical analysis of experiments on the ideal free distribution. *Oikos* 68:158-
1275 166.

1276 Kohles, J. E., M. T. O'Mara, and D. K. N. Dechmann. 2022. A conceptual framework to predict
1277 social information use based on food ephemerality and individual resource requirements.
1278 *Biological Reviews* 97:2039-2056.

1279 Kovach, W. L. 2011. *Oriana – Circular Statistics for Windows, Vers. 4*. Kovach Computing
1280 Services, Pentraeth, Wales, UK.

1281 Kuroli, G., and I. Németh. 1987. Examination of swarming and changing of the population of
1282 aphid species on winter wheat, maize, broad bean, potato and sugar beet in west Hungary.
1283 *A Mosonmagyaróvári Mezőgazdaságtudományi Kar Közleményei* 29:133-152.

1284 Mariette, M. M., and S. C. Griffith. 2013. Does coloniality improve foraging efficiency and
1285 nestling provisioning? A field experiment in the wild Zebra Finch. *Ecology* 94:325-335.

1286 Marzluff, J. M., B. Heinrich, and C. S. Marzluff. 1996. Raven roosts are mobile information
1287 centres. *Animal Behaviour* 51:89-103.

1288 Michelson, C. I., R. G. Clark, and C. A. Morrissey. 2018. Agricultural land cover does not affect
1289 the diet of Tree Swallows in wetland-dominated habitats. *Condor: Ornithological*
1290 *Applications* 120:751-764.

1291 Miles, D. B. 1990. The importance and consequences of temporal variation in avian foraging
1292 behavior. *Studies in Avian Biology* 13:210-217.

1293 Møller, A. P. 2019. Parallel declines in abundance of insects and insectivorous birds in Denmark
1294 over 22 years. *Ecology and Evolution* 9:6581-6587.

1295 Musters, C. J. M., T. R. Evans, J. M. R. Wiggers, M. van 't-Zelfde, and G. R. de Snoo. 2021.

1296 Distribution of flying insects across landscapes with intensive agriculture in temperate

1297 areas. *Ecological Indicators* 129:107889.

1298 Nocera, J. J., J. M. Blais, D. V. Beresford, L. K. Finity, C. Grooms, L. E. Kimpe, K. Kyser, N.

1299 Michelutti, M. W. Reudink, and J. P. Smol. 2012. Historical pesticide applications

1300 coincided with an altered diet of aerially foraging insectivorous Chimney Swifts.

1301 *Proceedings of the Royal Society B* 279:3114-3120.

1302 Orians, G. H. 1971. Ecological aspects of behavior. Pages 513-546 in D. S. Farner and J. R.

1303 King, editors. *Avian Biology, Vol. 1*. Academic Press, New York, NY, USA.

1304 Orians, G. H., and H. S. Horn. 1969. Overlap in foods and foraging of four species of blackbirds

1305 in the potholes of central Washington. *Ecology* 50:930-938.

1306 Paquette, S. R., D. Garant, F. Pelletier, and M. Bélisle. 2013. Seasonal patterns in Tree Swallow

1307 prey (Diptera) abundance are affected by agricultural intensification. *Ecological*

1308 *Applications* 23:122-133.

1309 Paquette, S. R., F. Pelletier, D. Garant, and M. Bélisle. 2014. Severe recent decrease of adult

1310 body mass in a declining insectivorous bird population. *Proceedings of the Royal Society*

1311 *B* 281:20140649.

1312 Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. *Annual*

1313 *Review of Ecology, Evolution, and Systematics* 37:637-669.

1314 Patterson, A., H. G. Gilchrist, S. Benjaminsen, M. Bolton, A. S. Bonnet-Lebrun, G. K. Davoren,

1315 S. Descamps, K. E. Erikstad, M. Frederiksen, A. J. Gaston, *et al.* 2022. Foraging range

1316 scales with colony size in high-latitude seabirds. *Current Biology* 32:1-8.

1317 Perrins, C. M. 1970. The timing of birds' breeding seasons. *Ibis* 112: 242-255.

1318 Pires, C. S. S., P. W. Price, and R. C. de Oliveira. 2000. Distribution of the spittlebug *Deoïs*
1319 *flavopicta* Stal (Homoptera: Cercopidae) on wild and cultivated host species. *Anais da*
1320 *Sociedade Entomológica do Brasil* 29:401-412.

1321 Poisson, M.-C., D. R. Garrett, A. Sigouin, M. Bélisle, D. Garant, L. Haroune, J.-P. Bellenger,
1322 and F. Pelletier. 2021. Assessing pesticides exposure effects on the reproductive
1323 performance of a declining aerial insectivore. *Ecological Applications* 31:e02415.

1324 Pradel, R., J. E. Hines, J.-D. Lebreton, and J. D. Nichols. 1997. Capture-recapture survival
1325 models taking account of transients. *Biometrics* 53:60-72.

1326 Pulliam, H. R., and G. C. Millikan. 1982. Social organization in the nonreproductive season.
1327 Pages 169-197 in D. S. Farner, J. R. King, and K. C. Parkes, editors. *Avian Biology, Vol.*
1328 *6*. Academic Press, New York, NY, USA.

1329 Rannala, B. H. 1995. *Demography and Genetic Structure in Island Populations*. Ph.D.
1330 dissertation. Yale University, New Haven, Connecticut, USA.

1331 Riehl, C., and Z. F. Smart. 2022. Climate fluctuations influence variation in group size in a
1332 cooperative bird. *Current Biology* 32:4264-4269.

1333 Roche, E. A., C. R. Brown, M. B. Brown, and K. M. Lear. 2013. Recapture heterogeneity in
1334 Cliff Swallows: increased exposure to mist nets leads to net avoidance. *PLOS One*
1335 8:e58092.

1336 Rowe, L., D. Ludwig, and D. Schluter. 1994. Time, condition, and the seasonal decline of avian
1337 clutch size. *American Naturalist* 143:698-722.

1338 Runjaic, J., I. J. Bellovich, C. R. Brown, and W. Booth. 2017. No detectable insecticide
1339 resistance in swallow bugs (Hemiptera: Cimicidae) following long-term exposure to
1340 naled (Dibrom 8). *Journal of Medical Entomology* 54:994-998.

1341 Saino, N., R. Ambrosini, D. Rubolini, J. von Hardenberg, A. Provenzale, K. Hüppop, O.
1342 Hüppop, A. Lehikoinen, E. Lehikoinen, K. Rainio, et al. 2011. Climate warming,
1343 ecological mismatch at arrival and population decline in migratory birds. *Proceedings of
1344 the Royal Society, B* 278:835-842.

1345 Sánchez-Bayo, F. 2021. Indirect effect of pesticides on insects and other arthropods. *Toxics*
1346 9:177.

1347 Sánchez-Bayo, F., and K. A. G. Wyckhuys. 2019. Worldwide decline of the entomofauna: a
1348 review of its drivers. *Biological Conservation* 232:8-27.

1349 SAS Institute. 2004. *SAS/STAT User's Guide, Version 9.1*. SAS Institute, Cary, North Carolina,
1350 USA.

1351 Sauer, J. R., W. A. Link, and J. E. Hines. 2020. *The North American Breeding Bird Survey 1966-
1352 2019 Analysis*. United States Geological Survey. [http://mbr-
1353 pwrc.usgs.gov/bbs/reglist19v3.html](http://mbr-pwrc.usgs.gov/bbs/reglist19v3.html).

1354 Scheuerell, J. M., D. E. Schindler, M. D. Scheuerell, K. L. Fresh, T. Sibley, A. H. Litt, and J. H.
1355 Shepherd. 2005. Temporal dynamics in foraging behavior of a pelagic predator.
1356 *Canadian Journal of Fisheries and Aquatic Sciences* 62:2494-2501.

1357 Schielzeth, H., and S. Nakagawa. 2013. Nested by design: model fitting and interpretation in a
1358 mixed model era. *Methods in Ecology and Evolution* 4:14-24.

1359 Sharma, A., A. Shukla, K. Attria, M. Kumare, P. Kumarf, A. Sutteeg, G. Singhb, R. P. Barnwala,
1360 and N. Singlaa. 2020. Global trends in pesticides: a looming threat and viable
1361 alternatives. *Ecotoxicology and Environmental Safety* 201:110812.

1362 Shortall, C. R., A. Moore, E. Smith, M. J. Hall, I. P. Woiwod, and R. Harrington. 2009. Long-
1363 term changes in the abundance of flying insects. *Insect Conservation and Diversity*
1364 2:251-260.

1365 Silcock, W. R., and J. G. Jorgensen. 2022. Birds of Nebraska Online.
1366 <http://www.BirdsofNebraska.org>.

1367 Southwood, T. R. E., and W. F. Jepson. 1962. Studies on the populations of *Oscinella frit* L.
1368 (Dipt: Chloropidae). *Journal of Animal Ecology* 31:481-495.

1369 Sutherland, W. J. 1983. Aggregation and the 'ideal free' distribution. *Journal of Animal Ecology*
1370 52:821-828.

1371 Szigeti, V., Á. Kőrösi, A. Harnos, and J. Kis. 2018. Lifelong foraging and individual
1372 specialisation are influenced by temporal changes of resource availability. *Oikos*
1373 128:649-658.

1374 Tamburini, G., M.-H. Pereira-Peixoto, J. Borth, S. Lotz, D. Wintermantel, M. J. Allan, R. Dean,
1375 J. M. Schwarz, A. Knauer, M. Albrecht, and A.-M. Klein. 2021. Fungicide and
1376 insecticide exposure adversely impacts bumblebees and pollination services under semi-
1377 field conditions. *Environment International* 157:106813.

1378 Thiebault, A., R. Mullers, P. Pistorius, M. A. Meza-Torres, L. Dubroca, D. Green, and Y.
1379 Tremblay. 2014. From colony to patch: processes of prey searching and social
1380 information in Cape Gannets. *Auk: Ornithological Advances* 131:595-609.

1381 Verhulst, S., and J. A. Nilsson. 2008. The timing of birds' breeding seasons: a review of
1382 experiments that manipulated timing of breeding. *Philosophical Transactions of the
1383 Royal Society B* 363:399-410.

1384 Wagner, D. L. 2020. Insect declines in the Anthropocene. *Annual Review of Entomology*
1385 65:457-480.

1386 Wallington, C. E. 1961. *Meteorology for Glider Pilots*. Murray, London, UK.

1387 Waltz, E. C. 1982. Resource characteristics and the evolution of information centers. *American*
1388 *Naturalist* 119:73-90.

1389 Waltz, E. C. 1987. A test of the information-centre hypothesis in two colonies of Common
1390 Terns, *Sterna hirundo*. *Animal Behaviour* 35:48-59.

1391 Ward, P., and A. Zahavi. 1973. The importance of certain assemblages of birds as 'information
1392 centers' for food-finding. *Ibis* 115:517-534.

1393 Ward, S., and D. M. Bryant. 2006. Barn Swallows *Hirundo rustica* form eggs mainly from
1394 current food intake. *Journal of Avian Biology* 37:179-189.

1395 White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations
1396 of marked animals. *Bird Study* 46:S120-S139.

1397 Wittenberger, J. F., and M. B. Dollinger. 1984. The effect of acentric colony location on the
1398 energetics of avian coloniality. *American Naturalist* 124:189-204.

1399 Wittenberger, J. F., and G. L. Hunt, Jr. 1985. The adaptive significance of coloniality in birds.
1400 Pages 1-78 in D. S. Farner and K. C. Parkes, editors. *Avian Biology, Vol. 8*. Academic
1401 Press, San Diego, CA., USA.

1402

1403

1404 Table 1. Number of times a Cliff Swallow departed from the nest and whether its success on the
 1405 previous foraging trip influenced whether the bird followed or did not follow others on the
 1406 subsequent trip, and whether its success on the previous foraging trip influenced whether it was
 1407 followed or was not followed by others on the subsequent trip, in 1984 (A, C)^{*} and 2019 (B, D).

		<u>Previous trip</u>	
Subsequent trip		Successful	Unsuccessful
A. 1984^a			
Followed		524	1355
Did not follow		2610	454
B. 2019^b			
Followed		229	127
Did not follow		835	474
C. 1984^c			
Was followed		1378	172
Was not followed		1756	1637
D. 2019^d			
Was followed		204	116
Was not followed		870	497

1408 *data from 1984 taken from Brown (1986).

1409 ^a $\chi^2_1 = 1648, P < 0.0001$

1410 ${}^b\chi^2_1 = 0.35, P = 0.85$

1411 ${}^c\chi^2_1 = 633, P < 0.0001$

1412 ${}^d\chi^2_1 = 0.001, P = 0.97$

1413

1414 Fig. 1. Percentage distribution of Cliff Swallow foraging group sizes (solitary foragers = group
1415 size 1) in 1984-1988 versus 2016-2022 at (A) Whitetail (same site used each year) and (B) the
1416 Canal colonies, a collection of 4 sites in similar habitat near each other (see text).

1417

1418 Fig. 2. (A) Mean (\pm SE) Cliff Swallow foraging group size per 10-min scan at Whitetail and the
1419 Canal colonies in 1984-1988 versus 2016-2022. Decade significantly affected foraging group
1420 size while controlling for other variables (Appendix S1: Table S2). Actual means denoted by
1421 solid bars and predicted ones after controlling for other predictors in the model by shaded bars.
1422 (B) Curvilinear relationship between foraging group size and Cliff Swallow colony size while
1423 controlling for other variables (Appendix S1: Table S2). Solid lines indicate predicted values (\pm
1424 SE) and dots the actual mean (\pm SE) foraging group size for each colony size. (C) Mean (\pm SE)
1425 one-way distance from the colony site to a Cliff Swallow foraging group (or solitary forager) per
1426 10-min scan at Whitetail and the Canal colonies in 1984-1988 versus 2016-2022. Decade did not
1427 affect travel distance while controlling for other variables (Appendix S1: Table S3). Actual
1428 means denoted by solid bars and predicted ones after controlling for other predictors in the
1429 model by shaded bars. (D) Mean (\pm SE) percent of a Cliff Swallow colony's residents (based on
1430 colony size) foraging per 10-min scan at Whitetail and the Canal colonies in 1984-1988 versus
1431 2016-2022. Decade significantly affected the percent of a colony's residents foraging while
1432 controlling for other variables (Appendix S1: Table S4). Actual means denoted by solid bars and
1433 predicted ones after controlling for other predictors in the model by shaded bars. Numbers above
1434 bars indicate number of scan means for each.

1435

1436 Fig. 3. The proportion (\pm SE) of non-breeding transient Cliff Swallows (τ) each year based on
1437 mark-recapture from all colonies throughout the study area. τ was derived from the formula in
1438 Pradel et al. (1997) based on age-specific survival estimates. τ did not increase significantly over
1439 time when using all years ($r = 0.33$, $P = 0.10$, $n = 26$ years) but increased significantly when
1440 1984 was excluded ($r = 0.43$, $P = 0.031$, $n = 25$ years). 1984 was the first year of widespread
1441 mark-recapture, and our methods were not fully standardized at that time. Line indicates best-fit,
1442 least-squares regression (with 1984 excluded).

1443

1444 Fig. 4. Circular standard deviation of mean compass bearings per 10-min scan of foraging Cliff
1445 Swallow groups or solitaires within a day in relation to colony size in 1984-1988 and 2016-2022.
1446 Lines indicated predicted values (\pm SE) based on the model presented in Appendix S1: Table S6
1447 and dots the actual mean (\pm SE) circular standard deviation for each colony size.

1448

1449 Fig. 5. Number of insects contained per bolus for Cliff Swallows feeding nestlings in relation to
1450 colony size in 1983-88 and 2016-2018. Lines indicated predicted values (\pm SE) based on the
1451 model presented in Appendix S1: Table S9 and dots the actual mean (\pm SE) number of insects
1452 for each colony size. The interaction between decade and colony size was driven largely by two
1453 colonies (see text).

1454

1455 Fig. 6. Percentage of total insects represented in the 5 most common families per decade from
1456 Cliff Swallow food bolus samples in 1983-1988 and 2016-2018 at all colonies combined.
1457 Corresponding percentage from the other decade is shown for each.

1458

1459 Fig. 7. Number of nestling Cliff Swallows surviving to 10 days of age in relation to (A) laying
1460 date and (B) colony size in 1984-1991 and 2015-2022 at fumigated colonies. Lines indicate
1461 predicted values (\pm SE) based on the model presented in Appendix S1: Table S12 and dots the
1462 actual mean (\pm SE) number of nestlings for each laying date or colony size.

1463

1464 Fig. 8. Nestling Cliff Swallow body mass (g) at 10 days of age in relation to colony size in
1465 1984-1989 and 2015-2018 at fumigated colonies. Lines indicate predicted values (\pm SE) based
1466 on the model presented in Appendix S1: Table S13 and dots the actual mean (\pm SE) nestling
1467 body mass for each colony size.

1468

1469 Fig. 9. Mean (\pm SE) adult body mass of (A) female and (B) male Cliff Swallows in 1984-1989
1470 and 2013-2021 in relation to colony nesting stage (early, nest-building and egg-laying; middle,
1471 incubation; late, nestling-feeding). Mass varied significantly with decade for the late stage
1472 (Appendix S1: Table S14) but not for the middle or early stages after controlling for other
1473 variables (Appendix S1: Tables S15, S16). Numbers above bars indicate sample size (number of
1474 birds).

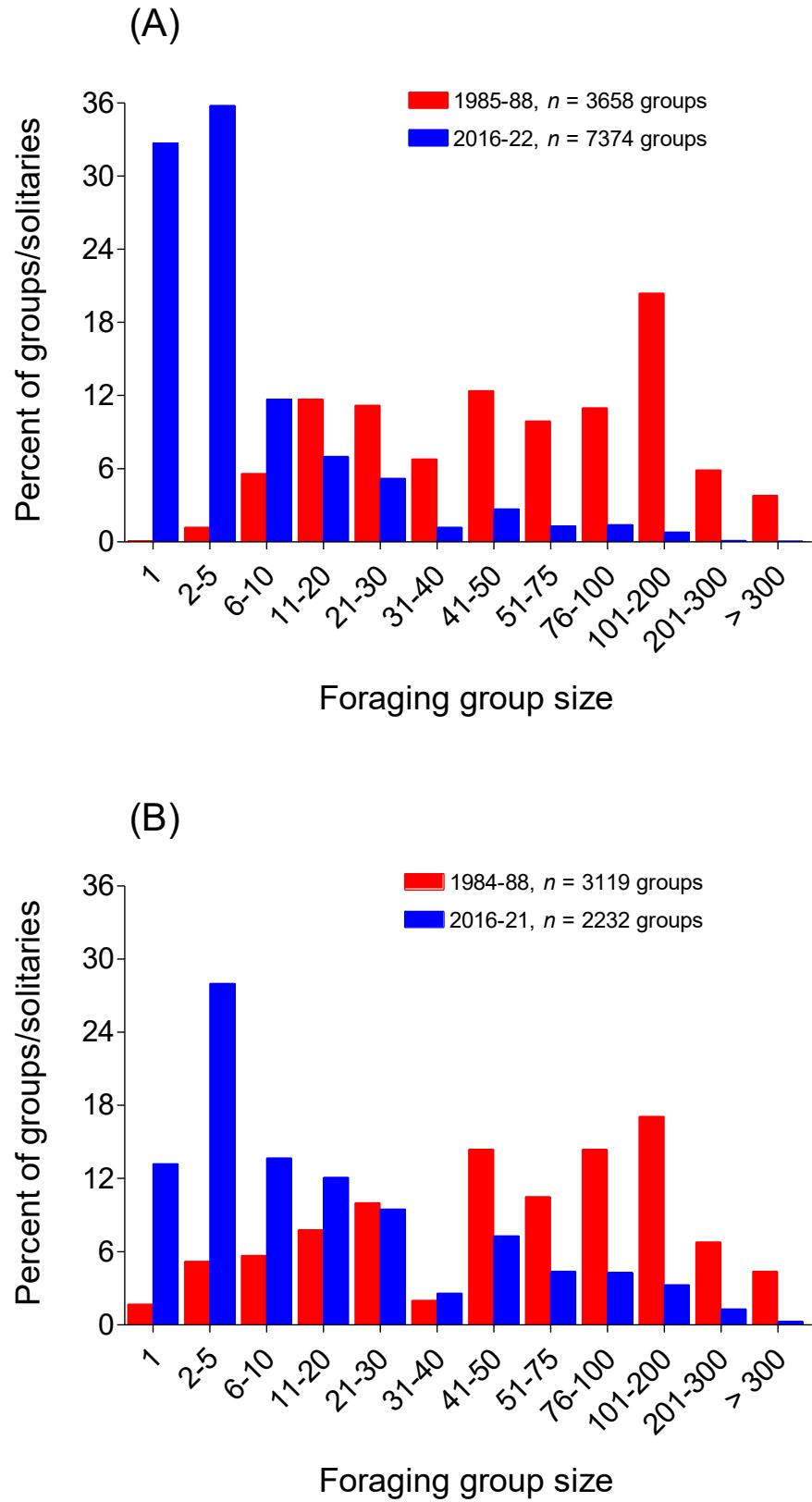


Fig. 1

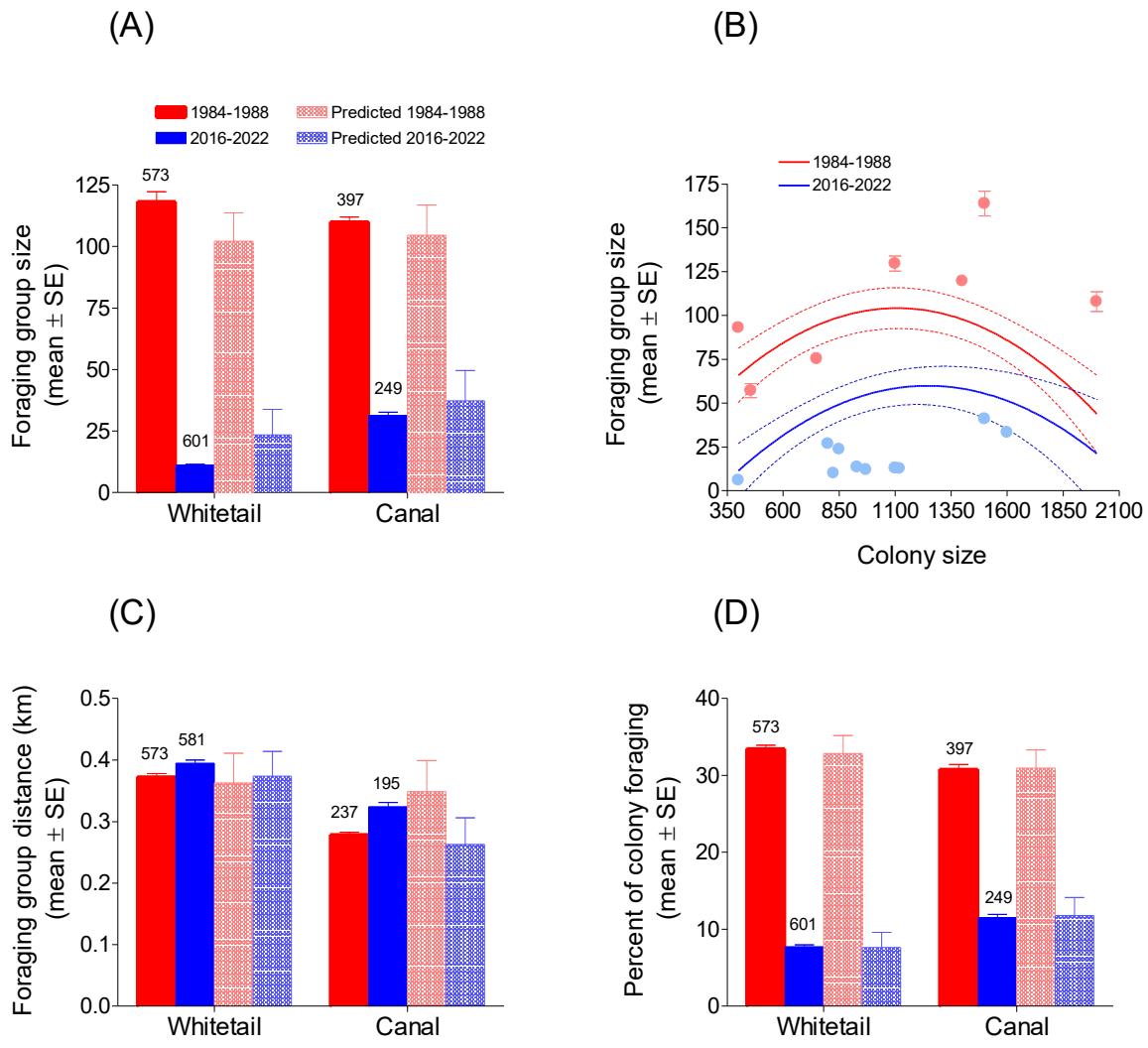


Fig. 2

Fig. 3

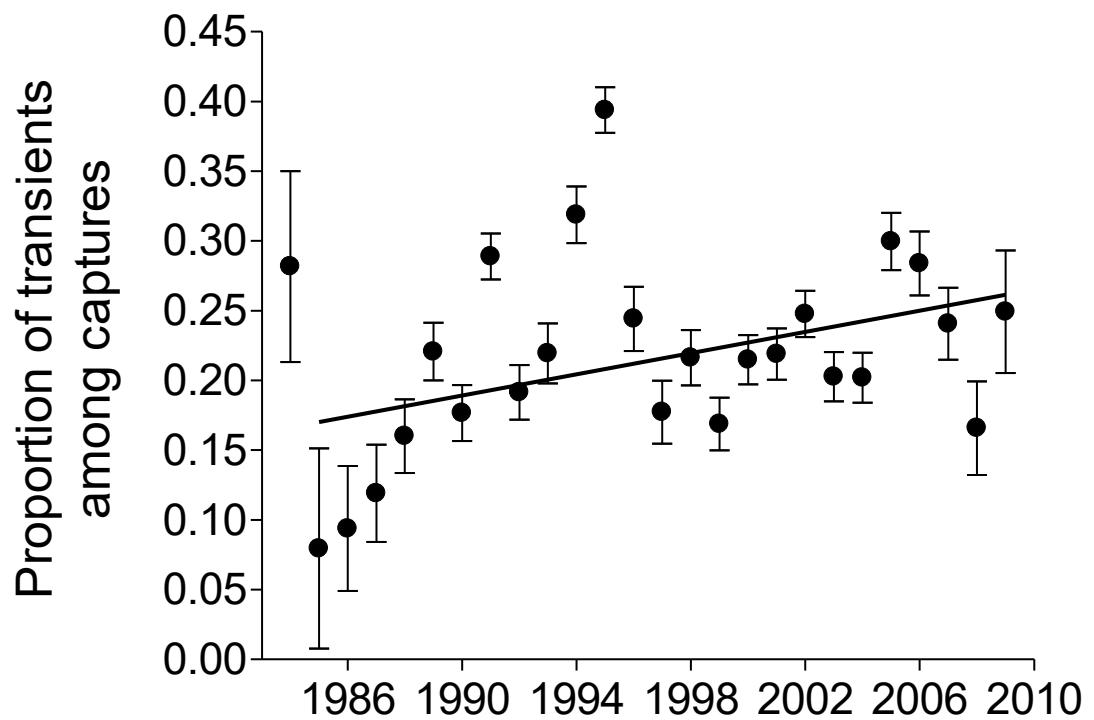
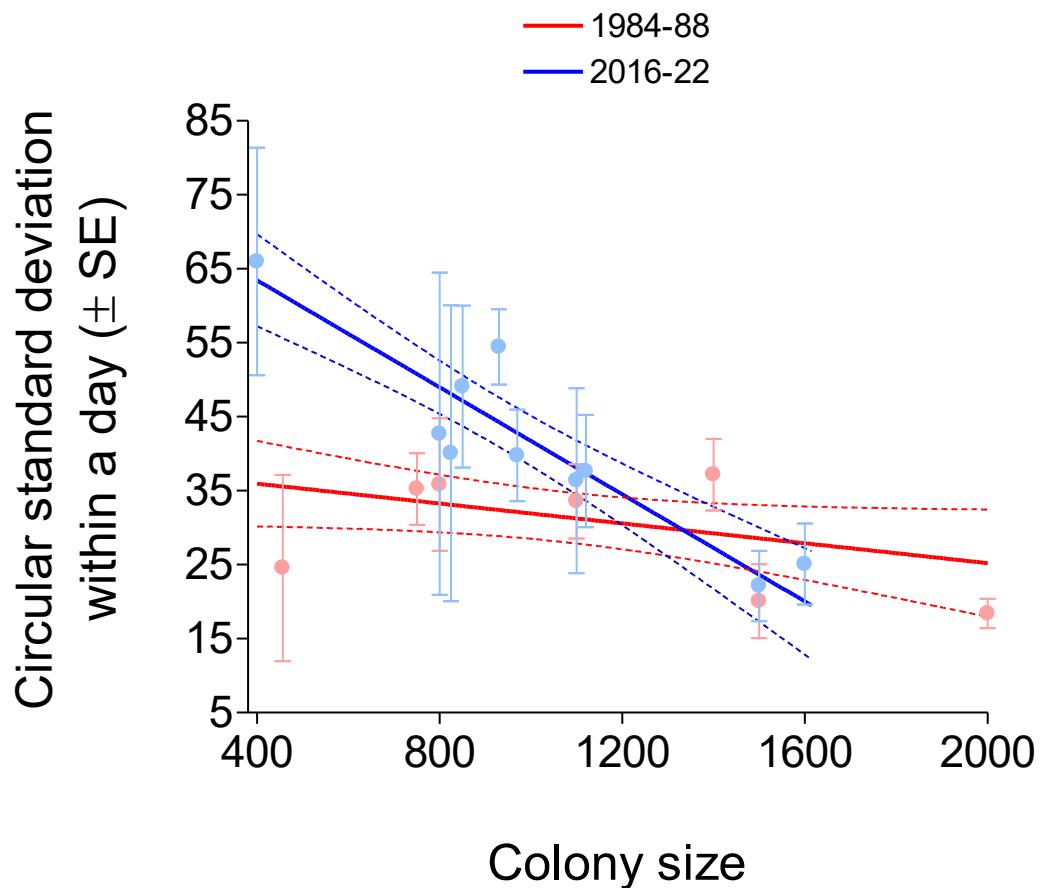



Fig. 4

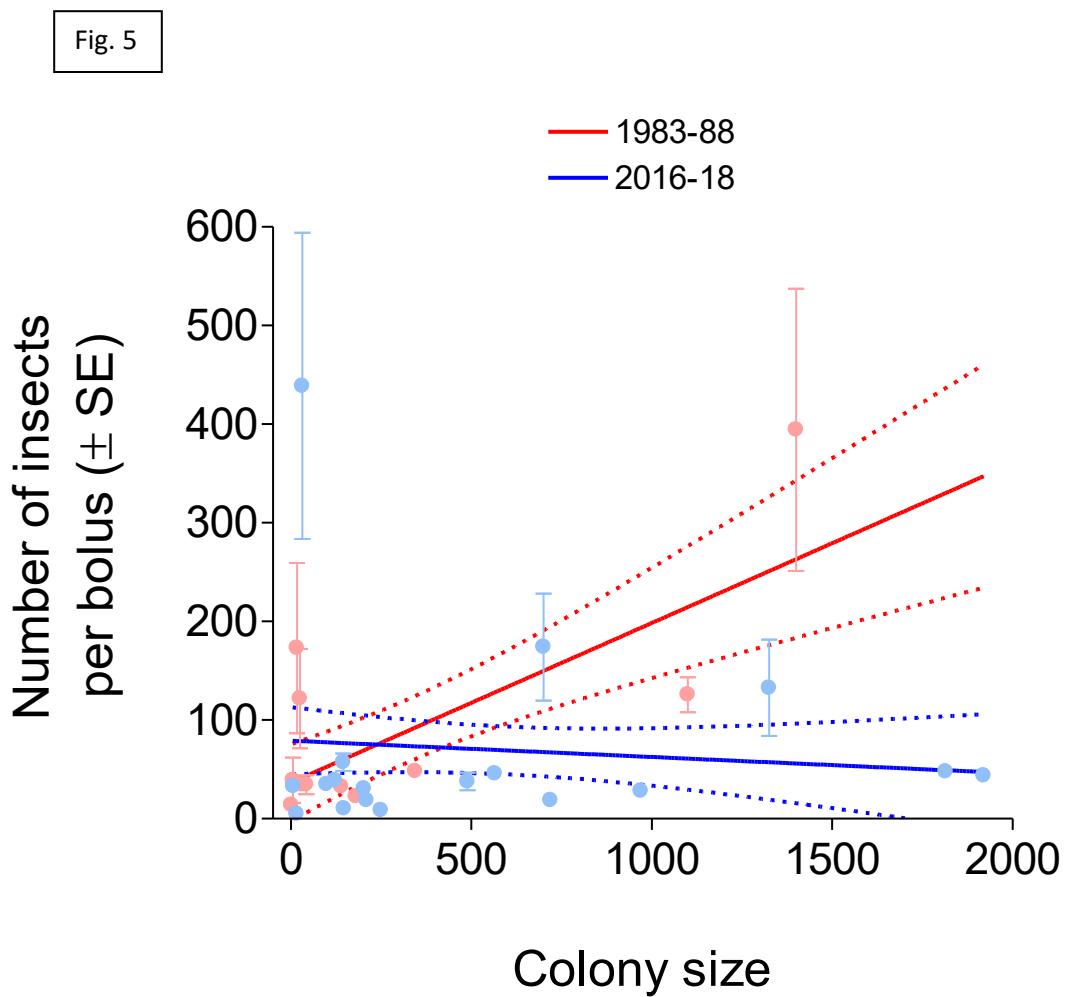


Fig. 6

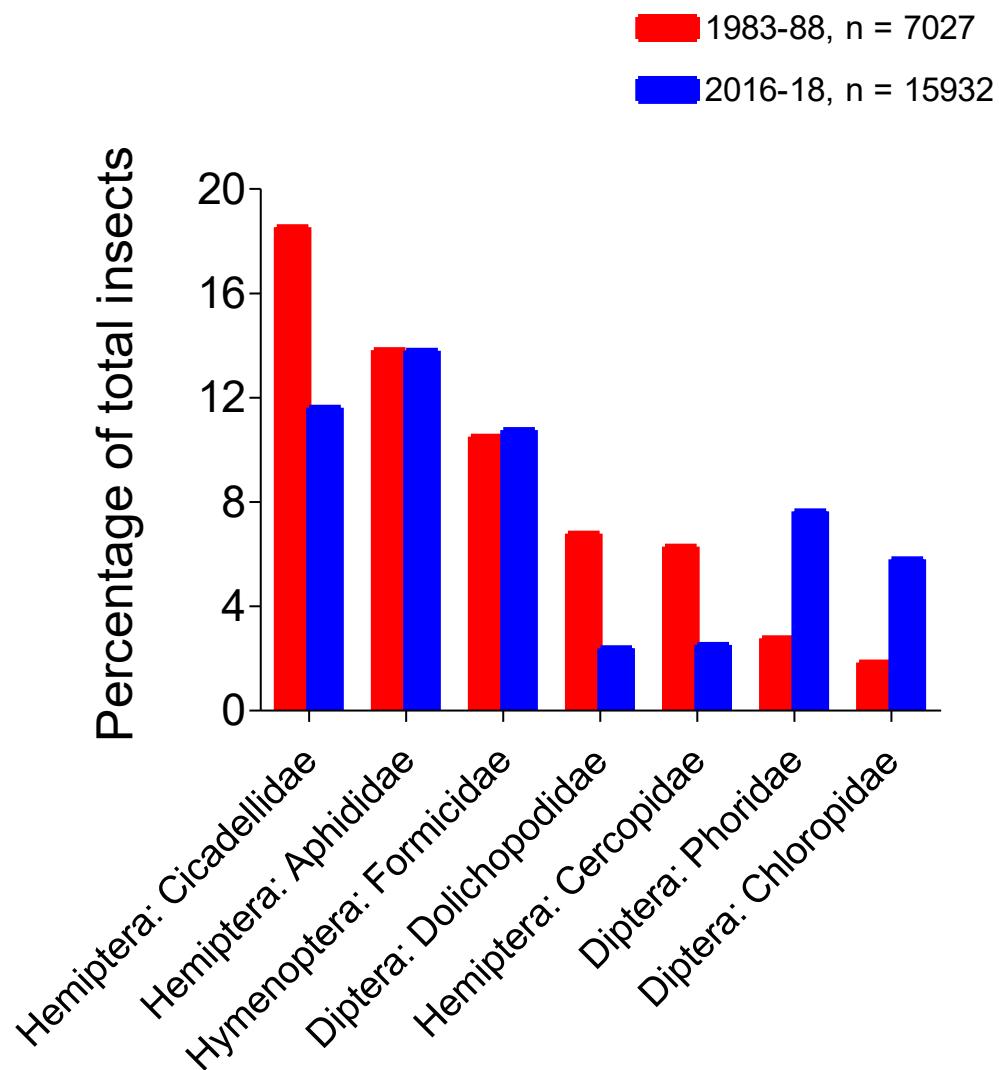


Fig. 7

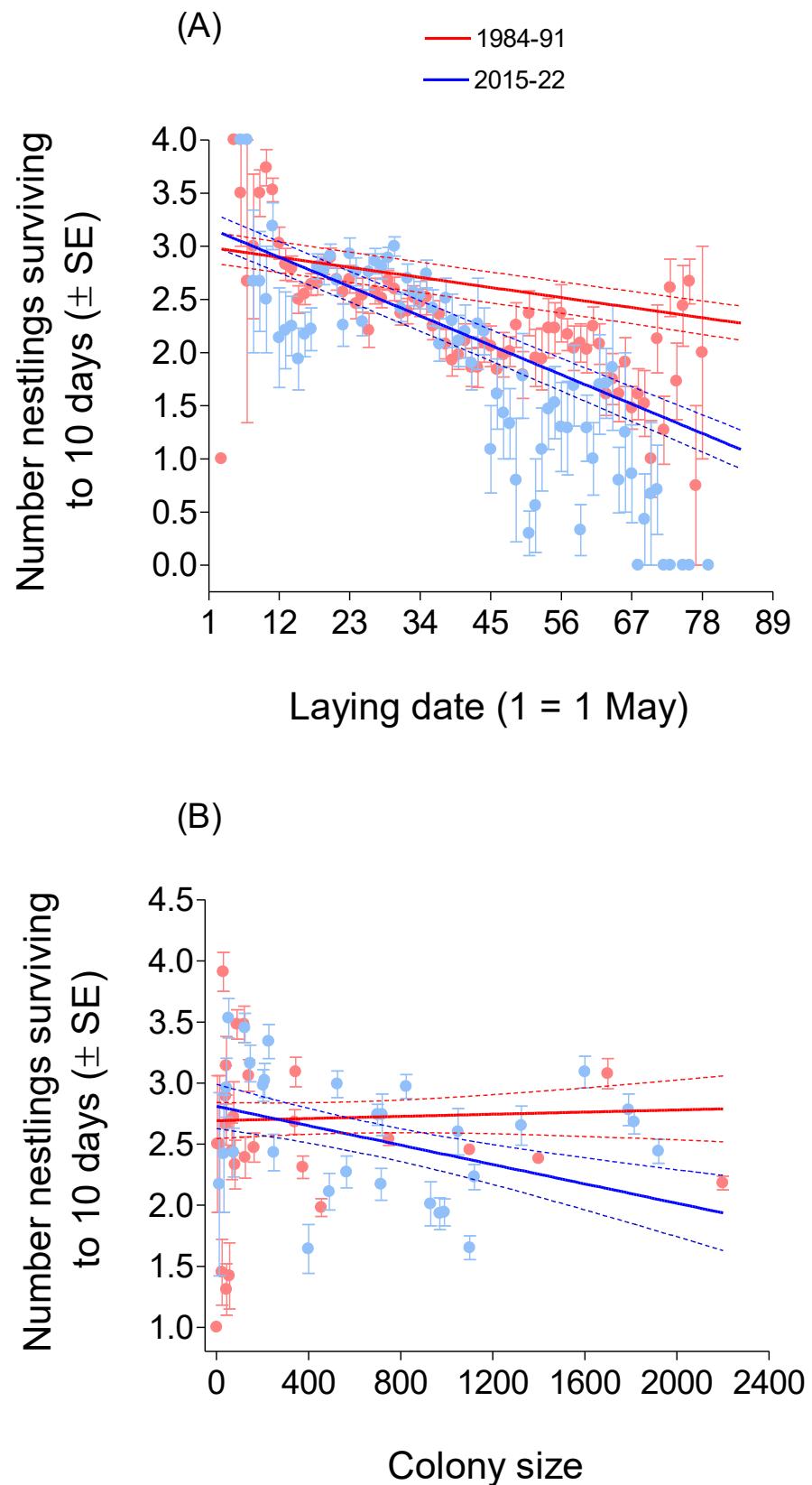


Fig. 8

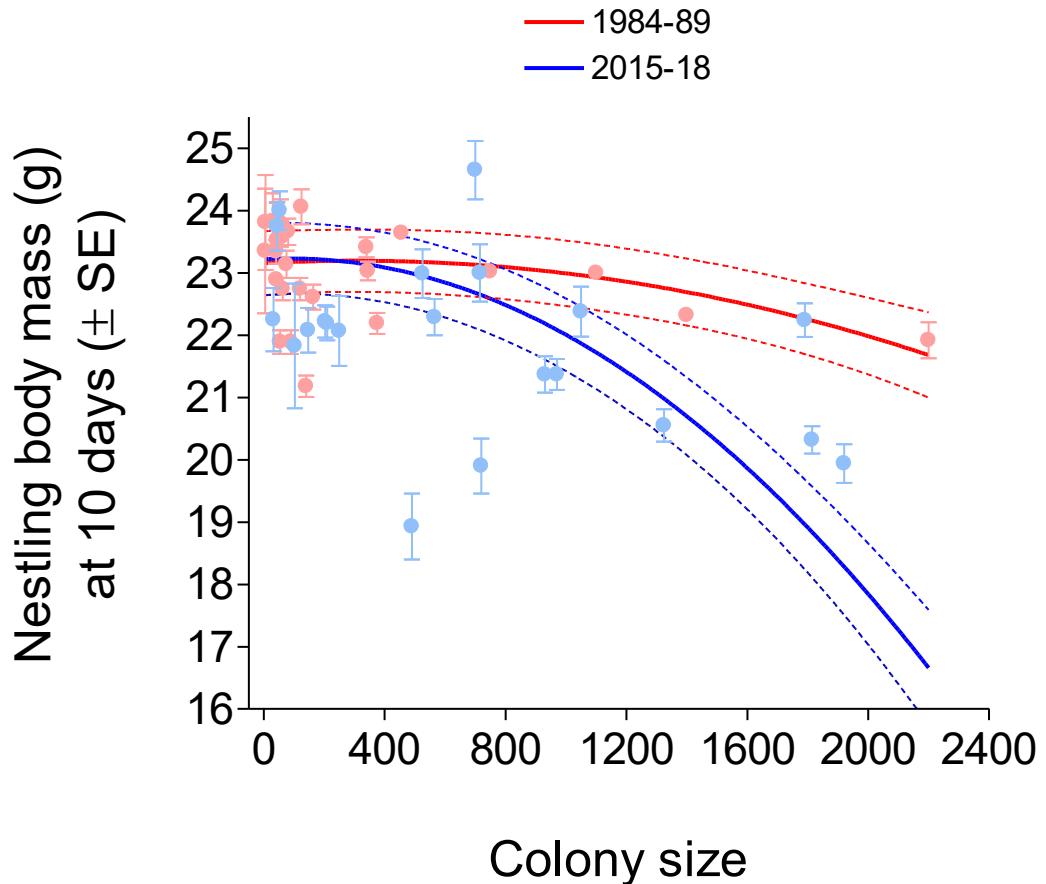
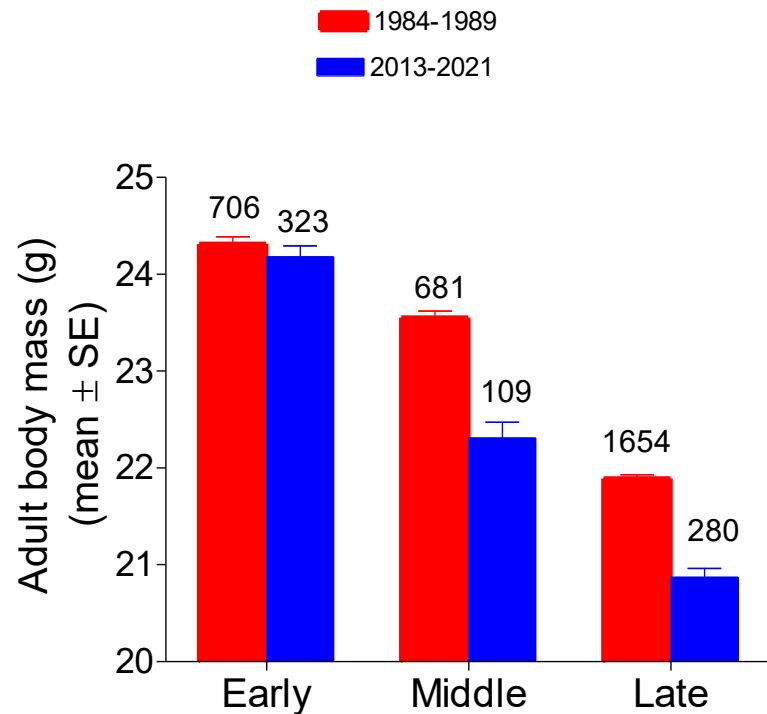
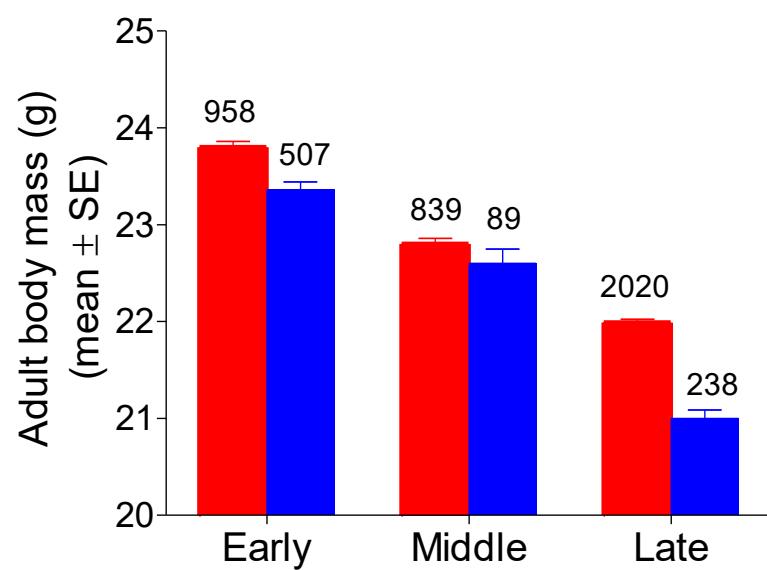




Fig. 9

(A)

(B)

