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ABSTRACT ARTICLE HISTORY
Despite the practicality of quantile regression (QR), simultaneous Received 13 June 2023
estimation of multiple QR curves continues to be challenging. We Accepted 10 January 2024
address this problem by proposing a Bayesian nonparametric frame- KEYWORDS

work that generalises the quantile pyramid by replacing each scalar Simultaneous quantile
variate in the quantile pyramid with a stochastic process on a covari- regression; Bayesian

ate space. We propose a novel approach to show the existence nonparametrics; quantile
of a quantile pyramid for all quantiles. The process of dependent pyramids; stochastic
quantile pyramids allows for nonlinear QR and automatically ensures processes; non-crossing
non-crossing of QR curves on the covariate space. Simulation stud- quantiles

ies document the performance and robustness of our approach. An

application to cyclone intensity data is presented.

1. Introduction
1.1. Quantile regression

Quantile regression (QR) has drawn increased attention as an alternative to mean regres-
sion. QR was motivated by the realisation that extreme quantiles often have a different
relationship with covariates than do the centres of the response distributions. QR can tar-
get quantiles in the tail of the distribution and is more robust to outliers than is mean
regression. The advantages of QR can be substantial and have led to its use in many areas,
including econometrics, finance, medicine, and climatology.

The seminal work of Koenker and Bassett (1978) extended median regression, which
dates back at least as far as Edgeworth (1888), to QR by allowing asymmetry in the
objective function defining the regression. That is, when one is interested in the
quantile (0 < 7 < 1) for the response Y; and the covariate x; € RPT!, i=1,...,n,
and assuming independent responses, the estimated QR surface is x! b*, where b* =
arg ming,cpp+1 Z?:l pr (Y; — xin), and p; (1) = u(t — 1¢<0)) is the (asymmetric) check
loss function. This method is implemented in the R package ‘quantreg’ (Koenker 2005)
and has led to a wide range of developments. A recent overview of the area is provided in
Koenker (2017).

The Bayesian counterpart of quantile regression was introduced by Yu and Moy-
eed (2001) who used the asymmetric Laplace distribution (ALD) for the sampling density
of Y|x as a device to focus on the QR for the 7" quantile. The ALD has density f(u) =
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7(1 — 7) exp(—p, (1)) which can be seen as a scaled and exponentiated check loss func-
tion. This substitution of a loss function for the log-density is an early example of the gen-
eralised Bayes technology developed in Bissiri et al. (2016). Kozumi and Kobayashi (2011)
made use of the reparametrization of the ALD illustrated in Kotz et al. (2001) and
Tsionas (2003) to create an efficient Gibbs sampling algorithm. The method is imple-
mented in the R package ‘bayesQR’ (Benoit and Van den Poel 2017). Many authors have
followed the approach of Yu and Moyeed (2001), describing properties of the method. See,
for example, Geraci and Bottai (2007), Reich et al. (2010), Lum and Gelfand (2012), and
Waldmann et al. (2013). Some have appealed to a semi- or nonparametric approach. Kottas
and Krnjaji¢ (2009), for instance, proposed two approaches to model the error distribution
nonparametrically in QR, using a Dirichlet process (DP) mixture of uniform densities and
a dependent DP mixture of normal densities. Chen and Yu (2009) developed a QR function
in a nonparametric fashion using piecewise polynomials.

1.2. Crossing quantiles

When more than one quantile level is considered, however, fitting a QR curve for each level
by itself does not correspond to an encompassing model, may not respect the monotonicity
of the quantile function, and can result in crossing quantiles. Researchers have suggested
various approaches to handle this issue. Rodrigues and Fan (2017) constructed a likelihood
inspired by the approach of Yu and Moyeed (2001), while ensuring monotonocity of quan-
tiles with an additional adjustment step. Semi- or nonparametric Bayesian approaches to
simultaneous QR include Taddy and Kottas (2010) who suggested an approach to estimate
the entire joint density of (x, y) and then extract the QR from this density. This ensures
monotonicity of quantiles since the inference of quantiles is based on a single density. Reich
etal. (2011) and Reich (2012) model the entire quantile process using Bernstein polynomial
basis functions in spatial and spatiotemporal settings. In both papers, the prior is specified
to satisfy the monotonicity constraint on the quantile function. Kadane and Tokdar (2012)
developed a characterisation of the quantile function that induces monotonicity in the joint
estimation of linear QR models for a univariate covariate. Yang and Tokdar (2017) extended
this to any bounded covariate space in R” via reparameterization. Chen and Tokdar (2021)
generalised this to incorporate spatial dependence.

Hjort and Walker (2009) proposed the quantile pyramid (QP) for nonparametric infer-
ence for a single distribution and briefly mentioned a possible extension to QR. Most
similar to our approach, Rodrigues et al. (2019a) used the QP for QR. In their work,
independent QPs are used to specify the prior distribution for quantiles at (p + 1) piv-
otal locations in a bounded p dimensional covariate space. For each quantile, a linear QR
is then constructed as the hyperplane passing through the specified quantile at each of the
pivotal locations. Rodrigues et al. (2019b) adapted this idea to a spline regression setting.

1.3. Our contribution

We generalise the construction of Hjort and Walker (2009) by incorporating dependence
in the QPs across the covariate space and by allowing for non-binary splits in the pyramids.
Our approach allows direct and flexible modelling of the quantiles over covariate spaces
and, by construction, naturally respects the monotonicity of QR curves.
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Our contribution is twofold: (1) a novel approach to show the existence of a single QP,
and (2) extension of the QP from a model for a single distribution to a model for a col-
lection of distributions that vary with the covariate. The first point is a stepping stone to
generalise the idea of QP. With an eye to the second point, it also involves expansion of
the mathematical framework to move from a single QP to a process of QPs, with greater
attention to mappings between the interval [0,1] and the real line.

The rest of this article is organised as follows. In Section 2, we introduce the idea of a
process of dependent quantile pyramids (DQPs) and a canonical construction of the model.
Section 3 provides theoretical results. Section 4 describes prior specification and posterior
inference. Simulation studies appear in Section 5 and application to real data appears in
Section 6. Section 7 presents discussion and directions for future work.

2. A process of dependent quantile pyramids

In this section, we briefly recap the QP of Hjort and Walker (2009) and introduce a DQP.
The following remark comes from Parzen (2004).

Remark 2.1: For a random variable Y whose distribution function is F(-), its quantile
function is defined as a left-continuous function Q(r) = F~!(z) = inf{y : F(y) > t} that
satisfies F(y) > tifand onlyify > Q(7) for0 < 7 < 1.

In other words, if we define the quantile function, there exists a random variable with the
corresponding distribution function. This fact is useful to understand how constructing
quantile functions can lead to a distribution over distribution functions.

2.1. Binary quantile pyramid

Hjort and Walker (2009) created the QP, a Bayesian nonparametric model that focuses on
the quantiles of a distribution. The QP provides a distribution over distribution functions,
and so it is suited to be used as a prior distribution for an unknown distribution function.
The quantile function, Q(-), on the unit interval [0, 1], is at the heart of the QP. Q(0) = 0
and Q(1) = 1.

The pyramid is built in levels for dyadic quantile levels, as a binary tree. The 07 level
is the unit interval [0, 1]. At the first level, the median of the unit interval is drawn from
some density, which divides the interval into two subintervals. Intervals are recursively split
into smaller subintervals, doubling the number of subintervals with each new level. Thus,
at level m, we have specified the 2" — 1 quantiles, Q™ (i/2™), i = 1,2,...,2™ — 1. The
quantiles Q™ (j/2™) = Q™7 1(j/2™), j = 2,4,...,2™ — 2, are inherited from level m—1.

The new quantiles at the m™ level can be expressed, forj = 1,3,...,2™ — 1, as
Q"(j/2™) = Q"G = D/2") (A = Vi) + Q"G + D/2") Vinyy (1)
where Vi, j,j = 1,3,...,2™ — 1, are a set of mutually independent random variables with

support [0, 1]. Figure 1(a) contains a visualisation of this idea with three quantiles. For
T € (0,1), less the specified quantile levels, Q(7) is filled in by linear interpolation.

There is scope for a wide variety of choices for the distribution of the conditional medi-
ans of the subintervals (the V). If the V,;, ; are assumed to have mean 1/2, for example,
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Figure 1. (a) A binary QP following Hjort and Walker (2009) with three quartiles; (b) An oblique QP with
four quantiles following Rodrigues et al. (2019a); (c) A general QP with four quantiles; (d) A process of
DQPs, where there is a QP at each value of x. Each node in a tree structure corresponds to a subinterval.
The first node is the unit interval. The rhombi represent quantiles pinned down in each subinterval.

then Q™(7) forms a martingale sequence and has a limit almost surely by Doob’s mar-
tingale convergence theorem. Moreover, if V,, ; are chosen so that max;<,m{Q"(j/2") —

Q™M((j—1)/2™) EN 0, Hjort and Walker (2009) showed that there exists a continuous
limiting quantile process to which Q" converges.

While Hjort and Walker (2009) primarily focussed on quantiles at the dyadic levels, we
take inspiration from the oblique pyramid construction method introduced by Rodrigues
et al. (2019a). In the oblique pyramid, quantile levels in a binary pyramid are not limited
to dyadics.

2.2. General quantile pyramid

Rodrigues et al. (2019a) focus on finite quantile pyramids, where a pyramid has only M
levels. They begin with scenarios where 2! quantiles are generated at the m™ level of
a pyramid, ensuring that each subinterval contains one specified quantile. This constraint
leads to exactly 2™ — 1 quantiles in an M-level pyramid. They then proceed to the oblique
pyramid, a pyramid in which some subintervals contain a quantile but others do not. An
M level pyramid may be unbalanced, specifying fewer than 2M — 1 quantiles.

Rodrigues et al. (2019a) specify a rule for how the pyramid is constructed. We provide
a brief example and refer the reader to their paper for full details. Consider the case of
four quantiles, denoted as Q(7;) < ... < Q(74). Since there are an even number of quan-
tiles, there are two quantiles positioned in the middle. Following the rule of Rodrigues
et al. (2019a), the smaller quantile serves as the middle quantile level. Thus, Q(z;) is
specified at the first level of the pyramid. Moving on to the second level, we have two subin-
tervals. In the left subinterval, we specify Q(t), while the right subinterval contains two
quantiles. The smaller quantile, Q(73), is specified at this level of the pyramid. In the third
level, there are four subintervals: (0, Q(11)), (Q(71), Q(12)), (Q(12), Q(73)), (Q(73),1). In
this level, we specify the remaining quantile, Q(t4), in the last subinterval, while the other
three subintervals remain empty. This example is illustrated in Figure 1(b).

We introduce additional flexibility by permitting non-binary splits. This yields the gen-
eral quantile pyramid, and it empowers the user to fully customise the pyramid according
to their preference. For instance, in the case of four quantiles, one can create a pyramid with
Q(72) at the first level and the remaining three quantiles at the second level, distributing
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one quantile to the left subinterval and two to the right subinterval. This concept is visually
represented in Figure 1(c). The move from a binary pyramid to a general pyramid requires
novel notation which is introduced in the next section.

2.3. Dependent quantile pyramids

In the sequel, we extend the QP from a single distribution to a collection of distributions,
creating a process of dependent quantile pyramids (DQPs). To do so, we construct a QP at
each value of x in some index set, X'. We replace each scalar V,,; in Equation (1) with an
appropriate stochastic process, say { Vi m,j, x € X'}. This leads to a collection of QPs that
may exhibit dependence across X'. Formally, we construct a distribution-valued stochastic
process. For modelling purposes, the index set of the process is identified with the covari-
ate space, as in QR. Alternatively, the index set may be described as containing values of
predictors, spatial locations, constructed features, or time, to name a few possibilities. The
important part is that, conditional on x, we have a model for a QP. We construct QPs on the
unit interval [0, 1] following Hjort and Walker (2009) and use a general quantile pyramid
scheme of Section 2.2. Figure 1(d) contains the visualisation of an example of a process of
DQPs.

2.3.1. Notation

We write Q(7) for the 7-quantile at x. For any x, {Q(7),7 € (0,1)} forms a complete
quantile pyramid. For any 7, {Qx(7),x € X'} provides the T-quantile surface over the
covariate space. We refer to this as a QR curve. The DQP is constructed sequentially. To
provide intuition behind the DQP and to facilitate proofs of its existence, we establish two
distinct sets of notation.

The first set of notation matches the recursive construction of the DQP. We begin with a
DQP with m—1 levels, where the quantile surfaces have been specified for T € 7,,,_;. That
is, forx € X and v € 7,1, the function {Q,(7),x € X, 7 € 7;,_;} hasalready been deter-
mined in the sequential construction. The ordered quantilelevelsare 7,,, 1 = {t]",..., 7]},
with 7/ < ... < 7]. At the next level, these quantile levels remain. The corresponding
quantiles define a set of bands within which the quantiles newly specified at level m of the
pyramid must lie (at a given x, the band is merely an interval). For example, the QR curve
for a quantile T € (7}, r;) that is newly specifed at level m must lie in the band with lower
boundary {Q«(7]), x € X'} and upper boundary {Q,(z}),x € X'}. Atlevel m, the specified
quantiles are renumbered to form 7, and preserve the ordering of the 7/*.

The second set of notation is preferred when describing the probability space that under-
lies the DQP. For this, we need to have each variable (with subscripts) refer to a single
random element in the construction of the DQP. These variables appear in different posi-
tions in the pyramid. We introduce the ‘e-notation’ to capture the position in the pyramid
and to handle the potentially non-binary splits in the general quantile pyramid. Consider a
pyramid with m levels. The sequential construction of the pyramid will place the quantile
Qx,e, atlevel 1, Qxe, ¢, at level 2, and so on. The length of the sequence indicates the level
at which the quantile was specfied. The notation also conveys the structural relationship
between quantiles. The parent quantiles of Qy¢,. ¢, are Qxe, .., , and Qxe, . (e,,_1+1)- If
there are K quantiles specified in the interval between the parent quantiles, €,, takes a value
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Figure 2. An example of a DQP with covariate x with three levels and 13 quantiles. Both
% and e-notation is shown. At level 0, the interval at each x is [0, 1]. At level 1, K = 2 quantiles are
specified, creating three subintervals. At level 2, four quantiles are newly specified, leading to a total
of 7 subintervals. Notation for the newly specified quantiles is shown. At level 3, one quantile is speci-
fied within each subinterval. Both notations are shown for all quantiles in (0, 1). Collecting the quantiles
across x gives the QR curves. The corresponding tree structure is the same across all values of x. It is shown
in the right panel. Dots and rhombi represent subintervals and quantiles, respectively.

intheset1,..., K. Theleftand right parent quantiles have¢,, = 0 and €,,, = K + 1, respec-
tively. The quantiles are increasing in €,,. This results in two distinct sequences €; . . . €,
for a quantile that serves as both the left endpoint and the right endpoint of adjacent subin-
tervals. As the construction proceeds, we use the left-endpoint sequence for which €, = 0.
For convenience, a shortforme = €, - - - €, will be used for the (m — 1) length sequence
throughout the paper. Figure 2 illustrates both notations for a three-level DQP with a given
value of x.

The oblique DQP is a special case in which all subintervals are split in two. In this case,
K = 0 or 1 for all subintervals. For a dyadic, binary DQP, K = 1 for all subintervals and
the quantile Qy,...¢,, () at level m is the T = Z:’il €271 quantile of the distribution at x.

2.3.2. Definition
DQPs come in two main varieties. The first is the process of finite dependent quantile
pyramids (FDQP) while the second, arrived at from a countable sequence of FDQPs, is
termed the limit process of dependent quantile pyramids (LDQP).

We begin with the FDQP. The FDQP focuses on a finite number of quantiles. As with
the QP, the FDQP is defined sequentially. We focus on the quantiles in a single interval
(e.g. the centre interval at level 2 in Figure 2). The description applies to all such intervals.

Definition 2.1: We call QM = { QxM ,x € X'} aprocess of Finite Dependent Quantile Pyra-
mids (FDQP) with M levels if there exists an M-level QP valued stochastic process whose
distribution Q™ follows. That is, for each x € X, ny is an M-level QP on [0, 1], and,
for each n and distinct x1,...,x, € X, Kolmogorov’s permutation and marginalization
conditions are satisfied.

Definition 2.2: We call FM¥ = {FM,x € X} a set of conditional distribution functions
induced by a process of FDQP with M levels, if for every x € X, FM is a distribution
function and FfCVI(QxM(T)) =t forallt € (0,1).
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The FDQP with M levels is given by its quantile functions, {QxM (1), xe X,t €[0,1]}. 1t
is defined sequentially, beginning with level 1 of the pyramid. Assume that K quantiles are
to be drawn at level m, for m = 1, ..., M, in a subinterval that comes from level m—1. The
subinterval is (Qyc0, Qx,e(k+1)) for x € X' and € = €7 - - - €;4—1. The endpoints Qo and
Qx.e(k+1) are quantiles inherited from level m—1 of the pyramid. When m = 1, Qye0 = 0
and Qyek+1) = 1. Let {Vy¢,...e,.» ¥ € X} be a multivariate stochastic process with index
set X. Foreachx € X and € = €1 - - - €1 arandom vector (Vy1,. .., Vxex+1)) follows
a distribution with the following conditions: (1) 0 < Vy ¢ < 1,fork =1,...,(K + 1);and
(2) Zf:ll Viek = 1. That is, the vector lies in the interior of the K-dimensional simplex.
The quantiles for the K specified quantile levels in the subinterval are

k k
Qx,ek = Qx,eO 1— Z Vx,ej + Qx,e(K—H) Z Vx,ej , k=1,...,K. (2)
=1 j=1

A finite number of quantiles, 7 < - - - < 77, is specified in the M-level pyramid. Quantiles
that are not specified directly in the pyramid are given by linear interpolation. For all t €
(t/, 7))t = 0,..., T, we linearly interpolate Qy(f), ie.

Q¥ (r) = QM) + QY (r) ) — QY HI(x — 1)/ (e — ).

The sequential construction and interpolation together define the conditional quantiles
given x for all quantile levels 7 € (0, 1).

In practice, when determining the number of quantiles, T, of an FDQP, we recognise
that there is a tradeoff between the number of quantiles considered and computational
efficiency. Our primary recommendation is to focus on the key quantiles of interest. A
secondary, generic recommendation is to prioritise symmetric quantiles such as the three
quartiles or the nine deciles.

The construction of the FDQP leads to its existence, which is formally proven in
Lemma 3 in Section 3.2. At each value x, the distribution is defined by a finite collection of
real valued random variates. The use of stochastic processes that are well-defined ensures
that the QP construction for a single x extends to X'. We restrict attention to cases defined
on a single probability space where the FDQP with M levels is the marginal distribution for
each of the FDQPs with more than M levels, with appropriate renumbering of the quantiles
in UM_, 7, where 7,,, is the set of quantile levels specified at level .

With some sufficient conditions, the limit may exist, in which case we have an infinite
pyramid, leading to the LDQP. Our concern is with cases where a set of quantiles that is
dense in [0, 1] is determined in the limit, and so we have no need for interpolation. The
existence of the LDQP is established in Section 3.2. When the limit of a sequence of FDQPs
exists as m — oo, the limit process of dependent quantile pyramids (LDQP) is defined.

Definition 2.3: We call Q = {Qy,x € X'} a limit process of Dependent Quantile Pyra-
mids (LDQP) if there exists a QP valued stochastic process whose distribution Q follows.
That is, for each x € X, Q, is a QP on [0, 1], and, for each n and distinct x1,...,x, € X,
Kolmogorov’s permutation and marginalisation conditions are satisfied.
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Definition 2.4: We call F = {F,,x € X} a set of conditional distribution functions
induced by a process of LDQP, if for every x € X, F, is a distribution function and
Q«(r) = inf{y: Fx(y) > t}forall T € (0, 1).

2.4. Canonical construction

In this section, we provide a canonical construction of the quantiles in an arbitrary subin-
terval at level m of a process of DQPs. To do so, we construct U-processes and V-processes
and then make use of Equation (2) in Section 2.3. We begin under the assumption that the
choice of quantiles has been made and that this choice is consistent, matching the correct
ordering of the quantiles. By repeatedly sampling U-processes and V-processes, we can
proceed to sequential construction of the entire process of pyramids.

2.4.1. U-processes induced from Gaussian processes

Suppose that we are interested in obtaining K quantiles at level m for a subinterval
(Qx,c0> Que(k+1))» m € N. For each sequence ek fork = 1,...,K 4+ 1, we consider a Gaus-
sian process (GP) {Zyck,x € X'} with zero mean, unit variance, and some correlation
function A(x,x"), so that Z, .k ~ GP(0, A(x,x)). The correlation function governs the
interdependence of quantiles across the covariate space. We note that the correlation
function can differ for different ek.

We then construct the U-processes, {Uy ¢k, x € X}, k=1,...,K + 1 for the subinter-
val, using the normal cumulative distribution function (cdf) transformation element-wise,
i.e. for each x € X, Uy ek = P (Zy k), where @ (-) denotes the cdf of the standard normal
distribution.

2.4.2. V-processes induced from U-processes via gamma variates

We construct the V-processes, {Vycr,x € X}, k=1,...,K+ 1, from the U-processes.
Let Gyex(-) be the gamma distribution function with shape oy > 0 and scale 1,
for k=1,...,K+ 1. For each x € X and combination € = €1 - - - €,,_1, define Y, o =
G;,elk(Ux,ek)- Define Y, = Ik<:+11 Y. ck- Then, for each x € X and €, we set

PRI

Yiel Yie+1
(Vx,eb cees Vx,e(K+1)) = ( i e )

Yy Yy
which forms a Dirichlet(oye1, .. ., 0xek+1)) random vector. Lastly, collecting V, c«
together across x € &X', we have constructed a vector-valued process {(Vie1, . . . » Vxe(k+1))»

x € X'} with component processes {Vyci,x € XL, k=1,...,K+ 1. When o, ¢k and Gy ¢
do not depend on x, we omit the subscript x to simpify notation.

2.4.3. V-processes induced from U-processes via beta variates

The Dirichlet distribution can be derived from the product of independent beta ran-
dom variates. This fact leads to a second construction of the V-processes. Define
Olxels- - ->0xe(K+1) as before. Let Gyck(-) be the distribution function of a beta vari-

ate with parameters o, ¢, and Z]K:;rl Uy cj. Define Yy = G;elk(U k) for each x and
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k=1,...,K.Set

k—1

Viek = Yaek H(l - Yx,ej),
j=1

with the conventions that an empty productis 1 and that Vi ¢(x41) =1 — Zle Viyek- The
vector (Viets .. .» Viek+1)) follows a Dirichlet(axets . . ., @xe(k+1)) distribution.

Once V-processes are generated, we can proceed to the quantiles Qye1,. .., Qxex in
the subinterval, using Equation (2). Given the left and right endpoints of the subinterval,
the conditional quantiles at the same quantile level can be expressed as a simple linear
transformation of the V-processes. This observation also implies the preservation of the
dependence structure. In other words,

Corr(vx,eka Vx/,ek) = Corr ([Qx,ek | Qx,05 Qx,e(K+1)]> [Qx’,ek | Qx/ 0> Qx’,e(K—I—l)])

foranyx,x’ € X' and¢€,and forallk = 1,...,K. When K = 1 and the construction in this
section is used, the random variable V., follows a beta distribution. It is a continuous,
monotonic transformation of Uy (1. For measures of dependence that are invariant under
such a transformation, the (conditional) dependence of V. and V, (; matches that of
Uxer and Uy ¢1.

2.4.4. Martingale construction

One construction of the dyadic QP in Hjort and Walker (2009) relies on a martingale. At
each level of the QP, each interval is split in half. In this canonical construction, K =1
and the martingale property requires that oy ¢ = x> for a beta distribution. Allowing
for splits that do not bisect the interval, this becomes, at level m of the pyramid, oy =
Cx,m(Te1 — Teo) and Uxe2 = Cem(Te2 — Tel) for some Cx,m > 0.

For a non-binary split of an interval, the values of o, ¢ need to be mapped to the relevant
subintervals. Assume that a subinterval at the m™ level contains quantiles associated with K
specified quantile levels 7 < ... < tck. Let i for k = 1,. .., K denote the scaled quan-
tile levels in the subinterval. The quantile levels of left and right endpoints of the subinterval
are denoted by 7.9 and 7 (x+1), respectively. Then

Vek = (Tek - TGO)/(TE(K—O—I) - TGO)’ k= L...,K.

From this, we can derive the values of o, ¢k satisfying the martingale condition. That
is, dy ek = Cxm(Tek — Tek—1)) for k =1,...,K 4 1 and some ¢y, > 0. We note that the
chosen quantile levels t.x do not depend on x.

2.5. Quantile mapping for transitioning to the response space

Assume that the DQP has been constructed on (0, 1) and denote the QP at x by Q. (7). As
briefly mentioned in Hjort and Walker (2009), we can transform the scale as for a proper
response space, say, a real line using the inverse normal cdf transformation. Defining trend
parameters (i, and scale parameters oy, we have the canonical DQP regression model,



10 e H. AN AND S. N. MACEACHERN

centred on a normal theory regression:

LocalFluctuation
Qi) = px + 00 @7 (Qu(1)), x € X}, (3)

Trend  Scale

The trend parameter p, is shared across the quantiles and controls the overall trend of
quantiles throughout the covariate space. The scale parameter controls the dispersion of the
distributions while the realised QPs determine the departures from normality. Together,
the scale and QP determine the departure (or local fluctuation) from a set of constant
variance normal models with centres given by 1.

Various choices can be made for the trend and scale. If one believes that there is no sig-
nificant global trend, 1, can be set to a constant. Alternatively, a linear regression model,
tx = x ' B, may provide an effective choice. The model is compatible with more compli-
cated models for the trend. Similarly, models for o, can range from a simple constant
scale to more complex forms. The trend and scale parameters can be incorporated into
Markov chain Monte Carlo (MCMC) procedures used to fit the model. Alternatively, to
save computational effort, estimates can be plugged in and the parameters treated as fixed.

3. Theoretical results

The novel notation used in this section is formally defined in Appendix 1 while proofs of
the results appear in Appendix 2.

3.1. A novel approach to existence of quantile pyramid

Hjort and Walker (2009) provide two different proofs for the existence of the QP. The
following results establish the existence of the QP under slightly weaker conditions than
those of Hjort and Walker (2009). They also apply to the oblique pyramid of Rodrigues
et al. (2019a).

The QP is a probability measure for a distribution-valued random element. To show
its existence, we wish to show that the sequence of probability measures that define the
finite quantile pyramids (FQPs) converges to a limiting probability measure. Our argu-
ment relies on two key facts. First, the space of probability measures over distribution
functions with support contained in [0, 1], when equipped with the Prokhorov metric, is
compact (Parthasarathy 1967). Second, and yet to be established, the sequence of proba-
bility measures forms a Cauchy sequence. Together, these facts lead to the conclusion that
the sequence of FQPs converges to a limit and that the limit is a probability measure on
distribution-valued elements.

A first lemma bounds the Lévy distance, di (-, -), between two distribution functions
that share a set of quantiles. Let 0 = 75 < 7 < 75 <... < 77 < 7, = 1 be ordered
quantile levels. The largest gap between consecutive quantile levels appears in the bound
below.

Lemma 3.1: Define € = max;—1, r+1(t; — 1, ). Assume that F and G are two distribu-
tion functions such that there exist yy, . . ., yr for which F(y;) = G(y;) = v/ fort =1,...,T.
Then, d;.(F,G) < €.
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The construction of the QP proceeds through a sequence of FQPs, indexed by m, the
number of levels in the pyramid. These FQPs are defined on a single probability space
(2, B, ). Each w € Q defines a sequence of FQPs with m = 1,2,. .. levels. The distribu-
tions in the sequence all have support contained in [0, 1] and share values of the quantile
function at certain specified quantile levels, as described in Section 2.2. In particular, the
Te,.e,, quantiles in F""(w) and F"™ k() are identical for all @ and for any positive integer
k. B is the Borel o -field generated by the open sets under the Lévy metric.

The next lemma shows that the sequence of probability measures arising from the FQPs
is Cauchy. The measure p,, provides the probability distribution on F™. The distance
between 1., and p, is measured by the Prokhorov metric, dp(ft s, ttn)-

Lemma 3.2: Suppose that U}y _,T,, is dense in [0, 1]. Then, under the Prokhorov metric dp,
the sequence {[L,} 5, is a Cauchy sequence.

A Cauchy sequence on a compact set converges to a limit in the set. In this case, the
sequence of measures /t,, converges to a limit measure ;. The limit measure is a probability
measure on distribution-valued elements where the distributions have support contained
in the interval [0, 1]. This reasoning leads to the existence of the QP, stated formally in
the next theorem. We note that the dyadic construction of the QP satisfies the denseness
condition in Lemma 3.2.

Theorem 3.1: Suppose that US;_ 7Ty, is dense in [0,1]. Then, the QP constructed as in
Section 2.1 or 2.2 is a random element whose distribution is determined by (2, B, it).

3.2. Existence of a process of dependent quantile pyramids

The existence of a process of DQPs follows from consideration of the joint distributions
of the QPs at finite sets of indices in the index set. The construction of the FDQP in
Section 2.3 ensures the existence of the joint distribution of the corresponding sequence of
FQPs. From here, the argument parallels that of the previous section, with the Lévy met-
ric and Prokhorov metric replaced with their suprema over the finite set of indices. This
ensures the existence of a probability space on which the limiting DQPs satisfy the requisite
permutation and marginalisation conditions.

The DQP relies on a countable collection of real-valued stochastic processes, V., all
of which have index set X'. Each of these processes satisfies Komogorov’s consistency
axioms. The processes are defined on a single probability space. Selecting a finite set
of distinct indices, say, xj,...,x, € X, the sequence of FDQPs at these indices is gen-
erated by a countable collection of real-valued random variables. The permutation and
marginalisation conditions follow immediately. This establishes the following lemma.

Lemma 3.3 (Existence of FDQP): Under the conditions in the previous paragraph, for
each m € N, there exists a distribution-valued stochastic process, F" = {F',x € X'}, with
the specified finite dimensional distributions.

Define the suprema of the Lévy metric and Prokhorov metric over a set S to
be dr,(F", F") = sup, g dr (F{', F}) and dp, (1™, u") = sup,cqdp(uy’, ), respectively.

X2 Xx
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Lemma A.1 appearing in Appendix 2 shows that dy, and dp, are metrics. We first reprise
Lemma 3.1.

Lemma 3.4: Define € = max;—1, 141(t; — 1, ). Assume that Fx and Gy, x € S, are two
sets of distribution functions such that, for each x € S, there exist yy1,...,yx1 for which
Fx(yxt) = Gx(yxy) = 1/ fort =1,..., T. Then, d; (F,G) < €.

The construction of the FDQPs ensures that, for all w, for each x € {x1,...,x,} the
Tey e, quantiles in F}' (w) and F,’Z““k(a)) are identical for every positive integer k. This lets
us apply the lemma. With a suitable choice of quantile levels, the sequence of probability
measures for the set of n FQPs is Cauchy.

Lemma 3.5: Suppose that USC_ T, is dense in [0, 1]. Then, with S = {x1,...,x,}, under
the supremum Prokhorov metric dp,, the sequence {j,m},-_, is a Cauchy sequence.

Finally, noting that the set of distributions with support contained in [0, 1]" is com-
pact under di, by Tychonoff’'s Theorem, we know that s, converges to some probability
measure /. This ensures the existence of the limiting DQP.

Theorem 3.2: Suppose that U}>_,T,, is dense in [0, 1]. Then, forany S = {x1,...,x,} € &,
the DQP for x € S constructed as in Section 2.3 is a random element whose distribution is
determined by (2, B, v). Furthermore, there exists a stochastic process defined for all x € X
whose finite dimensional joint distributions on the QPs are exactly these.

4. Posterior inference

In this section, we discuss how to specify the DQP prior and the likelihood under the
canonical construction. Suppose we have T quantiles of interest, 7 < - -- < 77, to be spec-
ified on the DQP. For simplicity, we work with the binary pyramid. A similar formulation
can be laid out in the general case. Recall that with the canonical construction of the DQP
in Section 2.4 and the canonical transformation in Section 2.5, quantiles are generated in
the uniform scale and are transformed to the real line. For notational simplicity, we omit
the superscript R from the quantile in (3) and let Q,(7) denote the quantiles in the real
line scale in this section.

4.1. Prior specification

ADQP {Qx(7), T € (0,1)} is defined for all x € A" as a stochastic process. Then, the finite-
dimensional distributions of the DQP ({Qy, (), 7 € (0,1)},...,{Qy, (7),T € (0,1)}) can
be defined for each n-tuple (x;, . . ., x,) of distinct elements of X’ (Billingsley 1968). While
the n-tuple can be arbitrary, in practice, we choose the coordinates to be covariate values
for the data points.

Let the quantiles of interest be denoted by Q. For convenience, we view Q asa T x n
matrix. The " row of Q (denoted by th*) is the vector of the 7/ quantiles at xy, . . ., x,, for
t=1,...,T. The 7/ quantile at x; is denoted by Qy, .= fori = 1,..., n. The parent quan-
tiles that defines the left and right endpoints of the interval on which Q,, ;» is generated
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are denoted by Qﬁi,rf‘ and in e The vectors ng and th* have Qii»ft* and Qi o 3 their
elements, respectively.

Write ., for the vector of trend transformation parameters and oy for the vector of
scale transformation parameters, where p,, and oy, denote the element of u, and oy,
respectively, corresponding to the value of x;.

For a GP with zero mean given the input points (xi,...,x,), denoted by Z, let A =
[)‘Xi,xj]gjzl be the correlation matrix, where Axip = A(xi, xj) is the correlation between x;
and xj and Ay, = 1. Let W(-; a, b) denote the cdf of the beta(a, b) distribution and ®(-)
and ®(-; 1, v) denote the cdfs of the N(0, 1) and the N(, v?) distribution, respectively.

Given the parameters A, [y, Oy, the joint conditional density of the finite dimensional
distribution of the specified quantile levels of the DQP at (x1, ..., xy,) is

T

T (QI A, s 0w) = [ [ {bn (m1(Quy ) - Bn( Q)3 0, A) x [1(2)]}

t=1

where ¢,(;1, V) denotes the probability distribution function (pdf) of the n-variate
Normal, N, (1, V), the back-transformed quantiles to the Z-scale

h (QX; 'L') - h (QX, Tlel T2 Qxl T2 /Lx, OX;)
= ¢! (qj <$ (Q"i’f; Mxi,axj) —° (Qém; Mxi’axi);ar,br)> ,

(Q’IS"’T; Mxi,le-) - @ (QJLci,r; Mxi’GXi)

and the determinant of the Jacobian matrix is of the form

1(Qx,T|Qx 'L') )IC{‘[)
()] = -
ll:! 8Qxi,t

. 1—[ (Qxir; Mx,-)axi) - (chl,‘[; Mxi’o.xi)_ a-. b
¢(zx,f) U

(Qx > Mxp> O'x,) (Qxl-[a Mx;> le)

¢ (Qx,-,ri Mox;»> O'xz)

(Qx, > M le) (Qx > Mxp axl)
where ¢(-) and ¥ (;a, b) denote the pdfs of the N(0, 1) and the beta(a, b) distribution,
respectively. The beta distribution parameters a,; and b; can be established using the
canonical choice outlined in Section 2.4. Given that we are working with the binary pyra-
mid in this section where one quantile is estimated per subinterval, we can denote 7;* as
T¢1 using the e-notation with an appropriate € value. For T = 7,1, we set a; = a1 and
br =1— Oxel-

4.2. Updating

Since we use the normal distribution for the transformation from [0, 1] to R, the con-
ditional density of the response variable is piecewise-normal. Given the values of the
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covariate X = [x] - - - x,] | and the parameters Q, iy, and oy, the pdf of Y is

f1Queod =111 2 D (Qu (1,); fhs Oy) — P(Qy (T 1) s Ox,)

" [T“ (t" = 71) X T (7). Quy () 0) X ¢(yi;uxi>0x,v)}
i=1 Lt=1

where I4 (x) is an indicator function whose value is one when x € A and zero otherwise.

Utilizing the information present in the data through the likelihood, we can update the
prior in Section 4.1 viaa MCMC procedure with a Metropolis-Hastings step. More details
can be found in Appendix 3. If desired, variations on the basic algorithm can be used to
improve the mixing of the Markov chain.

4.3. Inference for the DQP

Posterior inference can be made based on the DQP prior and likelihood using the MCMC
procedure in Appendix 3. An estimate of a set of QR curves under squared error loss is
obtained by taking the posterior mean of the sample of quantiles at each x.

The dependence across the covariate space is fundamental to the DQP framework.
The conditional quantiles are intrinsically dependent on one another through both the
GP correlation structure, A, and the pyramid structure. Typically, increasing the level of
dependence results in smoother QR curves, while reducing dependence leads to more
flexible and bumpier QR curves.

4.3.1. Linearized inference under the DQP

Bayesian methods allow one to distinguish between beliefs about a quantity, say a QR curve,
and inference about the quantity. One strategy that has proven successful is to perform
modelling in a large space and to impose parsimony through a restriction on the inference
(e.g. MacEachern 2001; Hahn and Carvalho 2015). In contrast, practitioners of classical
statistics generally impose parsimony by working in a smaller model space or through
model selection.

Much of the literature on QR, both classical and Bayesian, focuses on linear QR. The
DQP model naturally produces a posterior distribution that assigns probability one to non-
linear QR curves. To linearise inference, one needs a distribution over the covariate and a
set of draws from the posterior distribution of the QR curve.

As a criterion, we minimise the integrated squared difference between the nonlinear QR
curves and a linear QR curve. That is, with x following a distribution G and a quantile level
of interest 7, and presuming the following integrals are finite,

fu(®) = argmin < f / (Qer — 27 B*)? dP(Qyr) dG(x))

= argmin ( / (Ba[Qur] — x" B2 dG(x)) , (4)

where P(-) denotes a posterior distribution function of Q, ; and [E,[-] denotes the expec-
tation of the quantity at each x.

In practice, if lacking a distribution G, we use the empirical cdf of x for G and the pos-
terior mean of the conditional quantiles to estimate [E,[Q, . ]. With this particular choice,
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this minimisation is obtained as a least squares fit on the posterior mean of the conditional
quantiles. The same f1(7) can be obtained in a second fashion. First, map the nonlinear
QR curve at each MCMC iterate to the best fitting linear QR curve with a least squares fit.
Then map this collection of linear QR curves values to the overall best linear QR curve via
a second least squares regression of the least squares fits on x. More details are contained
in Appendix 3.

4.3.2. Quantile prediction for a new x value
We can obtain a posterior predictive distribution of quantiles for a new x value, denoted as
x*. This is achieved by following a two-step algorithm. First, we run an MCMC algorithm
to sample mapping parameters and DQPs from their joint posterior distribution at the
covariate locations where data points exist, namely x;, ..., x,. Next, for a given MCMC
iterate, we sample the DQP at the new value x* from its conditional posterior distribution.
We empasize one important point. In the event that there is no existing data point at
x*, the conditional posterior distribution is just the conditional prior distribution. By col-
lecting the sampled quantiles at the new value x*, we are able to construct the marginal
posterior predictive distribution of quantiles for that specific location. For details on how to
perform the posterior sampling of quantiles and mapping parameters from their respective
posterior distributions, please refer to Section 4.2.

5. Simulation study

We conducted simulation studies to evaluate how the DQP performs. We considered two
sets of quantiles: T = 3 (0.25,0.50,0.75) and T = 7 (0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95).
The covariate is x;; = i and the response is Yj; for i=1,...,10 and j=1,...,r. Let
N(0, 1) denote the standard normal distribution and 4 a t-distribution with df degrees
of freedom. We considered the following three scenarios for the simulation study.

- i

Scenario 1. (Homogeneous Error) Yj; = x;; + €;;, where €;; ~F
. id | V10F if5<i<6
Scenario 2. (Heterogeneous Error) Y;; = x;; + €;;, where €;; < - -
F otherwise

Scenario 3. (Nonlinear association between the covariate and the response)
i
(1) Yj; = sin(x;) + €5, where €; &~ N(0,1)
iy
(2) Y = exp(1/x;) + €jj, where €;; ~ N(0,1)

For Scenarios 1 and 2, (1) F = N(0,1); (2) F = ty0; (3) F = t3. Scenario 1 examines
the case where the error variance is homogeneous and the normality assumption used in
the mapping from (0,1) to R is satisfied (1-1), slightly violated (1-2), and more severely
violated (1-3). In Scenario 2, the error variance is not constant, with a larger variance for
certain covariate values, and the mapping is correctly specified (2-1), slightly misspecified
(2-2), or more severely misspecified (2-3). Finally, Scenario 3 showcases settings where the
error is normally distributed with homogeneous variance, but the covariate and response
variables have a nonlinear association.

For each setting, we used r = 10 and r = 30 replicates at each value of x, corresponding
to overall sample sizes of n = 100 and n = 300, respectively. In each of our 32 scenario-
T-sample size combinations, we generated S = 100 data sets, fit QRs, and calculated
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the empirical mean-squared error (MSE) for each quantile 7 at x € X: MSE,(7) =
é Z;g:l (/Q\jc(t) — Qy(1))?, where ch(t) is an estimated quantile for t level with s sim-
ulated data set at x. We further computed the MSE for the quantile, averaged over the
distribution of x as MSE(7) = Z}COZI 0.1 MSE(7), which again is averaged over t as
AMSE = Y[ 319 0.1 MSE,(2)/T.

We fit a binary FDQP with two levels for the T = 3 case and with three levels for the
T = 7 case based on the normal inverse cdf transformation from (3), centreing the FDQP
on a linear regression model with 11, = x ' . Regarding the dependence of the pyramids
between locations x and x” in the covariate space, we used the canonical construction for
the Gaussian processes with zero mean vector and Gaussian correlation function A (x, x') =
exp(—||x — x'||?/¢) with ¢ = 5. For the beta distribution at level m in the construction
of the binary pyramid prior, we used ae1 = ¢ (Te1 — Teo) and otez = ¢ (Te2 — Te1) With
¢m = (m + 5)2. The prior distribution for f is bivariate normal with mean o = (5,0) "
and variance matrix ¥, = diag(3, 3). For the scale transformation parameter oy, we used
the sample standard deviation at x as a plug-in estimator.

We compare our method to four alternatives: a classical QR approach by Koenker and
Bassett (1978) (‘quantreg’), a Bayesian QR approach by Yu and Moyeed (2001) imple-
mented by Benoit and Van den Poel (2017) (‘bayesQR’), a simultaneous linear QR by Yang
and Tokdar (2017) (‘qrjoint’), and its generalised variant incorporating spatial dependence
using a Gaussian process by Chen and Tokdar (2021) (‘JSQR-GP’). The estimators are eval-
uated by AMSE. For the MCMC runs of bayesQR, grjoint, JSQR-GP, and DQP, we used a
warmup of 1, 000 iterates followed by 100, 000 draws for estimation, thinned at a rate of 1
in 100.

The AMSE values are summarised in Figure 3, while the corresponding values and stan-
dard errors can be found in Tables A1 and A2 in Appendix 4. Examining Figure 3, the
linearised DQP (‘DQP-Im’) demonstrated competitive performance relative to the alter-
native approaches in Scenario 1. It either had the lowest AMSE or had an AMSE within a
two standard error range of the lowest value for all of the cases of Scenarios 1-1 and 1-2
except for the T = 7 and n = 100 case. This suggests that when the underlying relation-
ship between the response and covariates is believed to be linear, the DQP can be effectively
used for linear inference, yielding reasonable results. In Scenario 1, qrjoint had the lowest
AMSE in most cases, primarily because its linearity assumption in the model closely aligns
with the underlying truth and it simultaneously estimates multiple conditional quantiles.
We note that DQP struggled when the normal assumption in scale transformation of DQP
is severely violated (Scenario 1-3).

Under Scenarios 2-1 and 2-2, the DQP ourperformed all other methods. This is because
the DQP is not only robust to mild misspecification of the mapping from (0, 1) to the
response variable scale but can also account for the local nonlinearity arising from a larger
variance at specific locations of the covariate. Among the linear methods, DQP-Im per-
formed the best. This observation may be attributed to the fact that DQP-Im identifies
linear QR curves by leveraging the QR curves estimated within the nonlinear model space.
Even under Scenario 2-3, where the normal assumption in the DQP transformation is vio-
lated, the DQP still outperformed other methods in most of the cases except when n = 100
and T = 7.

Regarding the nonlinear association between the covariate and the response, repre-
sented by Scenarios 3-1 and 3-2, the DQP has lower AMSE than the other alternatives
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Figure 3. AMSE values for each combination of scenario-T-sample size.

for most combinations of # and the number of quantiles, except for the case of n = 100
and T = 7 under Scenario 3-2. This is because the DQP can capture the local nonlinearity
of quantiles, such as the cyclic movement in Scenario 3-1 and the sudden drop for small
covariate values in Scenario 3-2. The advantage of the DQP becomes more evident as n
increases.

6. Application

Elsner et al. (2008) observed that the trend in tropical cyclone intensity in the North
Atlantic Ocean from 1981 to 2006 is different for different quantiles. They fit separate linear
QRs for multiple quantiles using the R package ‘quantreg’ (Koenker 2005) and found that
the higher quantiles showed an upward trend, with statistically significant slopes above the
0.7 quantile. Lower quantiles had slopes closer to zero.

Kadane and Tokdar (2012) analysed the same data set and came to a different conclu-
sion. They developed a Bayesian approach to simultaneously fit a collection of linear QRs.
They found that the increasing trend in the cyclone intensity was significant for almost all
quantiles, not just the upper quantiles.

We analysed the data set (https://myweb.fsu.edu/jelsner/temp/Data.html) from Elsner
et al. (2008). The data consist of the lifetime maximum wind speeds of 291 North Atlantic
tropical cyclones derived from satellite imagery. The wind speeds are the response (Y) and
range from 29.8 to 159.5 ms . The year is the covariate (x).

We fit a binary FDQP with four levels and 15 quantiles at 7 = 0.05, 0.10, 0.20, 0.25, 0.30,
0.35, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.90, and 0.95. We used the binary canonical
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construction with Gaussian processes with zero mean vector and the exponential correla-
tion function A(x, x') = exp(—||x — x'||/¢) with ¢ = 5. For the beta distribution at level m
in the construction of V processes, we used a¢1 = ¢ (Te1 — Teo) and oe2 = ¢ (Te2 — Te1)
with ¢, = (m + 5)>. We again used the canonical transformation with linear regression
model for the trend parameter, i.e. iy = x' f. The prior distribution for 8 is bivariate
normal with mean o = (75,0.5) T and variance matrix ¥, = diag(15,2). For the scale
transformation parameter oy, we fitted an ordinary least squares model with the sample
standard deviation regressed on each year and then used the resulting fitted values. We ran
10, 000 warm up iterates of MCMC followed by 200, 000 iterates, thinned to 2, 000 iterates
for estimation. For the purpose of comparison, we also applied the alternative simultaneous
QR methods discussed in Section 5 to the same dataset.

Figure 4 displays the analysis results from the simultaneous QR methods, including our
approach. In panel (a), the grey lines provide the posterior means at each year and the
black lines the linearised fit. The lines are overlaid on the data points. The 95% credible
intervals for the slopes of the linearised fit are shown in the right panel of (a). The slopes
tend to be greater for greater quantiles, implying that stronger cyclones have been getting
stronger more quickly. Indeed, the 95% credible interval for the slope of the 0.95 quantile
is observed to be well above that of the 0.50 quantile. This means that the most intense
cyclones are increasing in strength at a significantly faster rate than the moderately strong
cyclones. The 95% credible intervals for the slope of the quantiles below 0.50 include zero.
The slopes do not significantly differ from zero for lower quantiles. Overall, our method
applied to these data shows the intensity of the upper half of the cyclones to be increasing,
with more powerful cyclones intensifying at a more rapid rate.

On the other hand, the outcome obtained from qrjoint in panel (b) reveals that all the
95% credible intervals lie above zero while overlapping with one another. This suggests
that cyclone intensities are increasing across all levels, although the rate of increase may
not significantly differ among cyclones with varying power. Meanwhile, the findings from
JSQR-GP in panel (c) indicate that only the slopes for the strongest cyclones have values
greater than zero, with their respective intervals also overlapping. While we lack knowledge
of the absolute ground truth, it becomes evident that all three models concur on one point:
the intensity of the strongest cyclones is increasing.

7. Discussion

We propose a nonparametric Bayesian approach to quantile regression, based on a process
of DQPs. The DQP generalises the QP of Hjort and Walker (2009) to allow dependence
across a predictor space. The flexibility of the model allows us to depart from linearity
and to handle regressions for multiple quantiles in unbounded predictor spaces without
quantile crossing.

The canonical construction can be adapted to account for a various features of the data.
As examples, the standard normal distribution used in the inverse cdf transformation can
be replaced with a distribution with different tails to handle thick or thin tailed data; skew-
ness in the quantiles can be handled by replacing the symmetric normal distribution with
an asymmetric distribution; and positively valued responses can be handled by basing the
transformation on a distribution supported on the half line. The linear regression model
for the mean can be replaced with a nonlinear form, resulting in large-scale nonlinearity
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Figure 4. Left column: 15 estimated quantiles of cyclone intensity with grey data points. Right column:
Estimated slopes of the quantile lines with 95% empirical credible intervals. In (a), grey lines are the
posterior means of the quantiles and black lines are the linearised fit of the posterior mean.
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of the QRs. Simple choices for this include the use of a deterministic form such as a fixed-
knot spline or a stochastic form such as a Gaussian process. Replacement of the linear form
for the scale factor (say, x ' ) with a form that ensures positivity, for example, exp(x y),
relieves concerns about the implications of unbounded X'.

In the simulation examples, we employed the sample standard deviation at the location
x as a plug-in estimator for the scale transformation parameter o,. An alternative is to
use a pooled sample standard deviation in situations where heterogeneity is not suspected,
such as Scenario 1. The results of this alternative will be included in our future work. The
simulations we report above rely on a single predictor. The stochastic processes used for
the FDQP are Gaussian processes that are then passed through transformations to arrive at
the FDQP. Extension to the case of multiple predictors is straightforward through the use
of Gaussian processes with a multivariate index. The Gaussian processes can be replaced
with other processes.
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Appendices

Appendix 1

(2, B, ) : = atriple that defines a probability space
e D = the space of all distributions with the support on [0, 1]
e Dg = the product space of all collections of (conditional) distributions with the support on [0, 1]
on some finite set S C X
B’ : = the Borel o -field of D, i.e. all Borel sets of distributions on D
B : = the Borel o-field of Dg
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e di(F,G) := Lévy metric between distributions F and G (F, G € D)

e dr(F,A) =inf{dr(F,G) |G € A} : = Lévy metric between a distribution F € D and a Borel set
Ael

o Ay ={FeD|d(F,A) <a} := the open « ball (¢« > 0) about A€ B’ (or Ay, ={F €
D|dp,(F,A) < a}for A € By)

e P ="P(B'):= all Borel probability measures on the Borel o -field of D

o Ps="Ps (Bg) := all Borel probability measures on the Borel o -field of Dg

e dp(it,v) : = the Prokhorov metric on P for u, v € P, that is

dp(u,v) = ing{a | (A) < v(Ag) +aand v(A) < u(Ay) +a forall A € B’}
o>

F™ .= an m-level FQP in Section 3.1 and FDQP in Section 3.2

Qam = {w| F"(w) € A} := an w-set with F" and A € B’

Qa,m = {w| F™"(w) € Ay} : = the « ball for F"*(w) about A € B’

Wm := a probability measure in P arising from all the m-level pyramids, which assigns
probabilities to subsets of D (or Dg for some § C X)

o um(A) = u(Q4a,m) : = the probability that the probability distributions induced from m-level
pyramids belong to A € B’

Appendix 2

Proof of Lemma 3.1: Consider y € [t ,,7/]. Then 7, < F(y),G(y) < 1. Thus F(y) —¢€
17 —e <1/, and so F(y) — € < G(y). Similarly, F(y) +€ > 7,2, +€ > 7/ and so F(y) + ¢
G(»). Thus F(y — €) — € < G(y) < F(y + €) + €. Repeating the argument above fort = 1,..., T
1 establishes that d; (F, G) < €.

W+ IVIA

Proof of Lemma 3.2: Fix € > 0. Choose M such that maxse(1,.. 1y,+1)(7; — 7,7 ,) < €. Applying
Lemma 3.1, we have di (F"(w), F"(w)) < € for all m,n > M and for all € Q. That is, F"(w) is
in the e-ball about F”*(w). Such an M always exists provided that US_, 7,, is dense in [0, 1] and each
F™(w) has the same pyramid structure.

Consider an arbitrary Borel set A € 3. Define the sets Q4,, = {w | F"(w) € A} and Q4 , =
{w | F"(w) € A¢}. For every o € Q4 m, F" (w) is in the e-ball about F”(w). Hence w € 24, , and so
QA,m C QAe,n-

Turning to the probability measures on the FQPs with m and n levels, we note that j,,(A) =
n(24,m) and puy(Ae) = 1(24,,n)- Since Qam C QA n wm(A) < n(Ae) < un(Ae) +€. A similar
argument shows that 1,,(A) < i, (A¢) + €. This holds for all Borel A, and so dp (i, n) < €. Thus,
for each € > 0, there is an M such that, for all m,n > M, dp(tm, iun) < €. The sequence {11},
is Cauchy. |

Proof of Theorem 3.1: By Lemma 3.2, the sequence {/4,},._, is Cauchy. Moreover, the space P
equipped with the Prokhorov metric is compact, and thus complete, since the space D equipped with
Lévy metric is compact (see Theorem 2.6.4 in Parthasarathy 1967). Therefore, the sequence {4},
is convergent. That is, there exists  to which w,, converges and that u provides a probability
distribution on lim,;,_, oo F™. Thus, a limit of QP exists. [ |

Lemma A.1: di, as defined in Section 3.2 is a metric on the space of distributions. dp, is a metric on
the space of probability measures over distributions. The set S need not have finite cardinality.

Proof: Symmetry, non-negativity, the triangle inequality, and the zero property follow from straight-
forward calculation. With a nod to the St. Petersburg paradox, we must show that d  (F™, F") < oo.
Since dr (FY', F?) < lforallx € S, wehavethatdr, (F™, F") < 1. Theargument for dp, is established
in the same way. |

Proof of Lemma 3.4: From Lemma 3.1, we have d (Fx, Gy) < € forall x € S. Thus d,(F, G) < €.
[ |
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Proof of Lemma 3.5: Replace d with d,, dp with dp,, and B’ with B in the proof of Lemma 3.2.
|

Proof of Theorem 3.2: The proof of the first part of the theorem follows that of Theorem 3.1. Kol-
mogorov’s permutation condition is satisfied at each step in the sequence of FDQPs since each
of the Vy processes satisfies the condition. His marginalisation condition is also satisfied. Since
{x1,...,x,} wasarbitrary, this ensures the existence of a stochastic process with the specified limiting
distributions (e.g. Billingsley 1968, chapter 7). |

Appendix 3
A.1 MCMC algorithms
(1) Sample Q = [Qy,5-- - Q,T]T given pux and oy
(i) Choose 1/ following the top-down pyramid structure.
(ii) Sample Q@t = (le)ft’ . ,Qﬁmn)—r given the neighbouring quantiles Q;, | = (Qy, 7, ;>
ey Qer ) and Qryy = (Quyryeys -+ > Quprey) T for £ = 1,..., T from a conditional
proposal density q(- | Q—r,, tx, Ox).

(iii) Accept the new proposal Q whose ™ row is replaced with Q% over the current value Q¢
with probability

s n(QP | Mxs O'x)f()’ I Q‘D) Mx> O—x) q(Q-C[[ | Q—‘[p Mx> Ux)
a =minJ 1, X .
T (Q | phxs Ux)f()’ | QF, x> Ox) q(Q}; | Q—z,> x> Ox)

(iv) Repeat (i)-(iii) until the bottom of the pyramid.
(2) Sample u, given Q and oy .
(i) Partition p, into I blocks. Call block 7 1}

(ii) Sample /x,(f)’P from a conditional proposal density g(- | u,(ci)’c) and accept with probability

(@i),p

“=min{1’ R (i),
(s i D 1Q 1% 0x) gl (™ | ™)

(s 1 O 01 Qo) gl 1) }

(iii) Repeat step (ii) fori =1,...,I.
(3) Sample o, given Q and u, following a similar step to 2.

Note that the sampling of Q can be further broken down to sampling of smaller blocks as in step
2. Doing so impacts the acceptance rate of the proposals and the mixing of the Markov chain.

A.2 Linearized inference

Throughout this derivation, we assume that the integrals are finite. This ensures the non-trivial
existence of a minimizing 8*.

Br(r) = arg Héin < / / (Qur —x' ") dP(Qx) dG(x)>
= arg I%Ln (/ /(Qx,t - Ex[Qx,r] + EX[QX,T] - xT,B*)Z dP(Qx,r) dG(x))
= argmin ( / / (Qer — Ex[Qur])? dP(Qr) dG(x)

+ f f (EalQur] — x7 B2 dP(Qur) dG()
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+ //Z(Qx,r - Ex[Qx,r])(Ex[Qx,r] - xTIB*) dP(Qx,t) dG(x))

—argmin [ B.10u:) =27 d6w ).

where P(-) denotes the posterior distribution function of Q.. ;, G(-) denotes the distribution function
of x, and E,[-] denotes the expectation of the quantity at each x. Moreover, if G(x) is the empirical
cdf of x, then the problem above becomes

"1
pu(r) = argmin D - BulQur] =5 597 ),
i=1

which is equivalent to the least squares linear regression problem.

Appendix 4

Table A1. AMSE values over 100 simulated datasets with standard errors in parentheses whenn = 100.

Scenario T quantreg bayesQR grjoint JSQR-GP DQP DQP-Im
1-1 3 0.0353 0.0293 0.0277 0.0314 0.0463 0.0301
(0.0035) (0.0029) (0.0028) (0.0038) (0.0032) (0.0031)

7 0.0574 0.0421 0.0350 0.0405 0.1076 0.0510
(0.0055) (0.0042) (0.0034) (0.0042) (0.0058) (0.0051)

1-2 3 0.0395 0.0323 0.0304 0.0328 0.0540 0.0331
(0.0035) (0.0030) (0.0028) (0.0029) (0.0035) (0.0033)

7 0.0702 0.0506 0.0404 0.0461 0.1293 0.0530
(0.0076) (0.0054) (0.0039) (0.0044) (0.0064) (0.0050)

1-3 3 0.0541 0.0449 0.0448 0.0534 0.2043 0.0959
(0.0066) (0.0055) (0.0049) (0.0059) (0.0176) (0.0108)

7 0.2531 0.1551 0.1113 0.1788 0.6842 0.1712
(0.0321) (0.0180) (0.0135) (0.0241) (0.0642) (0.0195)

2-1 3 0.2937 0.2809 0.2788 0.2809 0.0861 0.2636
(0.0059) (0.0049) (0.0050) (0.0085) (0.0058) (0.0038)

7 1.3685 1.1694 1.1271 1.2326 0.2460 1.1033
(0.0511) (0.0187) (0.0117) (0.0321) (0.0166) (0.0080)

2-2 3 0.3021 0.2917 0.2888 0.2844 0.1041 0.2762
(0.0061) (0.0056) (0.0054) (0.0049) (0.0069) (0.0041)

7 1.4621 1.2579 1.2129 1.3279 0.2958 1.1887
(0.0525) (0.0170) (0.0110) (0.0287) (0.0185) (0.0073)

2-3 3 0.3832 0.3679 0.3641 0.3828 0.4922 0.4434
(0.0087) (0.0073) (0.0068) (0.0112) (0.0944) (0.0206)

7 2.8263 2.2268 2.1619 2.4989 1.7753 2.1811
(0.1651) (0.0434) (0.0390) (0.0885) (0.3882) (0.0539)

3-1 3 0.5219 0.5192 0.5099 0.5486 0.3356 0.5105
(0.0053) (0.0048) (0.0041) (0.0074) (0.0063) (0.0041)

7 0.5869 0.6074 0.5684 0.6910 0.4031 0.5253
(0.0116) (0.0104) (0.0080) (0.0150) (0.0094) (0.0055)

3-2 3 0.1365 0.1302 0.1292 0.1384 0.1134 0.1324
(0.0035) (0.0033) (0.0030) (0.0042) (0.0037) (0.0030)

7 0.1661 0.1633 0.1408 0.1615 0.1756 0.1526

(0.0071) (0.0063) (0.0043) (0.0061) (0.0068) (0.0049)
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Table A2. AMSE values over 100 simulated datasets with standard errors in parentheses whenn = 300.

Scenario T quantreg bayesQR grjoint JSQR-GP DQP DQP-Im
1-1 3 0.0116 0.0105 0.0100 0.0113 0.0175 0.0092
(0.0012) (0.0011) (0.0010) (0.0012) (0.0010) (0.0009)

7 0.0183 0.0148 0.0133 0.0144 0.0367 0.0151
(0.0019) (0.0016) (0.0013) (0.0015) (0.0018) (0.0014)

1-2 3 0.0134 0.0121 0.0105 0.0120 0.0195 0.0106
(0.0014) (0.0013) (0.0010) (0.0011) (0.0012) (0.0010)

7 0.0239 0.0199 0.0153 0.0171 0.0417 0.0176
(0.0024) (0.0021) (0.0015) (0.0017) (0.0022) (0.0016)

1-3 3 0.0179 0.0163 0.0147 0.0269 0.0781 0.0343
(0.0017) (0.0017) (0.0014) (0.0092) (0.0075) (0.0036)

7 0.0765 0.0587 0.0401 0.0964 0.3621 0.1015
(0.0086) (0.0065) (0.0041) (0.0282) (0.0504) (0.0133)

2-1 3 0.2593 0.2571 0.2561 0.4969 0.0434 0.2409
(0.0026) (0.0026) (0.0024) (0.0922) (0.0035) (0.0015)

7 1.1491 1.1068 1.0972 1.3953 0.0965 1.0521
(0.0162) (0.0103) (0.0107) (0.0750) (0.0072) (0.0026)

2-2 3 0.2714 0.2681 0.2654 0.4406 0.0454 0.2503
(0.0030) (0.0031) (0.0025) (0.0901) (0.0039) (0.0014)

7 1.2422 1.1992 1.1776 1.4726 0.0986 1.1391
(0.0193) (0.0122) (0.0071) (0.0728) (0.0064) (0.0025)

2-3 3 0.3386 0.3359 0.3287 0.5408 0.2687 0.3596
(0.0040) (0.0040) (0.0032) (0.1143) (0.0557) (0.0097)

7 2.1926 2.0864 2.0261 3.0027 1.4277 21116
(0.0338) (0.0208) (0.0155) (0.5633) (0.4497) (0.0539)

3-1 3 0.4944 0.4937 0.4907 0.5675 0.1457 0.4790
(0.0023) (0.0024) (0.0020) (0.0109) (0.0034) (0.0013)

7 0.5555 0.5547 0.5427 0.7533 0.1866 0.4825
(0.0065) (0.0059) (0.0048) (0.0184) (0.0051) (0.0016)

3-2 3 0.1115 0.1102 0.1091 0.1191 0.0530 0.1083
(0.0014) (0.0014) (0.0011) (0.0024) (0.0017) (0.0010)

7 0.1232 0.1214 0.1158 0.1368 0.0755 0.1144
(0.0025) (0.0023) (0.0017) (0.0038) (0.0028) (0.0016)




