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A physics informed bayesian optimization approach for
material design: application to NiTi shape memory alloys
Danial Khatamsaz 1✉, Raymond Neuberger1, Arunabha M. Roy1, Sina Hossein Zadeh 1, Richard Otis 2 and Raymundo Arróyave1,3,4

The design of materials and identification of optimal processing parameters constitute a complex and challenging task,
necessitating efficient utilization of available data. Bayesian Optimization (BO) has gained popularity in materials design due to its
ability to work with minimal data. However, many BO-based frameworks predominantly rely on statistical information, in the form
of input-output data, and assume black-box objective functions. In practice, designers often possess knowledge of the underlying
physical laws governing a material system, rendering the objective function not entirely black-box, as some information is partially
observable. In this study, we propose a physics-informed BO approach that integrates physics-infused kernels to effectively
leverage both statistical and physical information in the decision-making process. We demonstrate that this method significantly
improves decision-making efficiency and enables more data-efficient BO. The applicability of this approach is showcased through
the design of NiTi shape memory alloys, where the optimal processing parameters are identified to maximize the transformation
temperature.
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INTRODUCTION
In many material design applications, complex computational
models and/or experiments are employed to gain a better
understanding of the material system under investigation or to
improve its performance. High-fidelity models, however, often
exhibit high non-linearity, effectively behaving as black-boxes that
hinder intuitive understanding beyond input-output correlations.
At the same time, experiments are inherently black-box in nature
as intermediate linkages between inputs (e.g. chemistry, proces-
sing protocols) and outputs (i.e. properties or performance
metrics) tend to be accounted for only in an implicit
manner–there are some exceptions as shown in ref. 1.
The ‘black-box’ nature of these interrogation tools is com-

pounded by the significant cost associated with using these
‘information sources’2 to query the materials space. An exhaustive
exploration of the materials design space using sophisticated
experimental or computational tools is thus infeasible. There is
thus a growing need for novel data-efficient approaches that can
effectively address these challenges while ensuring that the
discovery and/or design process remains comprehensible and
effective.
Recently, Bayesian optimization (BO) has emerged as a powerful

optimization technique for handling expensive black-box func-
tions, owing to its intrinsic capability to efficiently search the
design space with minimal data, employing heuristic-based
approaches to discover optimal design regions3–7. BO frameworks
typically consist of two main components: a surrogate model,
commonly a Gaussian process (GP)8, and an acquisition function.
The surrogate model represents our uncertain knowledge about
the underlying objective function(s) and offers a cost-effective
means of predicting outcomes at unobserved locations while
capturing the uncertainty in these predictions. The acquisition
function, which includes well-known examples such as Expected
Improvement (EI), Upper Confidence Bound (UCB), and Probability

of Improvement (PI)5, leverages the uncertainty estimates from
the surrogate model to guide the search for the next best
experiment.
By striking a balance between the exploration of the design

space (i.e., searching in uncertain regions) and the exploitation of
the system’s current knowledge (i.e., refining the search around
promising areas), BO utilizes GP’s probabilistic predictions to
determine the next best experiment through a heuristic-based
search or querying policy that maximizes the utility function. In
many engineering design applications, resource constraints
necessitate more data-efficient design approaches to reduce the
resource requirements of these design tasks. The data efficiency of
general BO approaches makes them appealing for solving
challenging problems across various fields of science and
engineering. In materials science, BO has emerged as a potent
paradigm driving much of the recent progress in efficient
materials discovery and design9.
Several approaches have been proposed to enhance the data

efficiency of BO frameworks. One of these approaches exploits
multi-fidelity BO techniques, which incorporate information fusion
techniques10–24 to exploit information about a quantity of interest
from multiple sources with varying fidelity and evaluation costs.
By leveraging the correlation between different information
sources, these techniques enable accurate inferences regarding
a system’s true response (i.e., ground truth) with fewer expensive
experiments by conducting cheaper ones. Applications of multi-
fidelity BO in materials design include optimization of processing
parameters, microstructure design, and materials selection1,25–28.
Another challenge in BO is the deterioration of its performance

when the design space’s dimensionality increases due to the
relatively large learning and searching space. Dimensionality
reduction techniques, such as subspace approximation meth-
ods29–32, can be employed to ease the learning process by
projecting the entire problem into a lower-dimensional space33–35.
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For instance, active subspace-based BO has been introduced in
refs. 27,36 to increase design efficiency by recognizing and
exploring more informative regions, thereby eliminating non-
informative or less-informative queries from the ground truth
models. This approach allows BO to focus on a smaller set of
dimensions that have the most impact on the optimization
process.
Furthermore, BO frameworks generally struggle to handle high-

dimensional design problems with very sparse supporting data
due to the GP’s inability to adequately represent underlying
objective functions. Although GP’s kernel parameters can be
obtained using methods such as maximum likelihood or cross-
validation, the minimal data typically available in many BO
scenarios—especially at the beginning of a design campaign—
means that these traditional methods do not yield reliable
solutions, as the GP surrogate’s hyperparameters (and their
predictions) are highly sensitive to the data used for training. To
address this issue, Batch Bayesian Optimization (BBO) has been
introduced37 and successfully implemented in materials design
applications, such as alloy design and phase stability predic-
tion26,38,39. In BBO, rather than identifying optimal hyperparameter
sets, a large number of GPs with varying hyperparameters are
constructed to consider diverse possible function representations
and smoothness levels. BBO remains agnostic regarding the
region of the hyperparameter space most consistent with the
limited available data, and consequently assumes that any region
in the hyperparameter space could contain the hyperparameters
that reflect the true behavior of the system being optimized. Once
the BO problem is solved for each hyperparameter set considered,
clustering is employed to reduce the number of selections to the
available batch size in the experimental or computational frame-
work, thereby enhancing the overall optimization process.
Despite the tremendous success of traditional BO algorithms in

materials design, state-of-the-art BO-based algorithms typically
treat the objective function as a black-box and rely solely on
statistical information in the form of input and output data. As the
number of design variables increases or the response surfaces
exhibit less-smooth behaviors, these methods require more
statistical information to accurately represent the attributes of a
black-box objective function.
In some cases, even though the complete structure of a black-

box objective function remains unknown, certain theoretical
information can be gleaned from expert opinion or data-driven
approaches. This allows for a partial understanding of the
principles that a black-box objective function may follow, such
as smoothness, the number of local and global extrema, periodic
or exponential behavior, and/or sensitivity to different input
variables. By inserting physically interpretable input-output
relationships within the system, significant performance improve-
ments can be achieved, which is not evident in purely data-driven
approaches40.
Incorporating physical information (or, more generally, prior

scientific knowledge) into design frameworks reduces their
dependency on statistical information, transforming black-box
optimization into gray-box optimization as the information inside
the box becomes partially observable41–44. Examples of gray-box
modeling for optimizing chemical processes and describing bio-
processes can be found in refs. 45–48. The Physics-Informed Neural
Network (PINN), for instance, is gaining popularity in numerous
engineering fields due to its increased accuracy, faster learn-
ing49–61, and the ability to employ smaller datasets for training55.
PINN combines traditional scientific computational modeling with
a data-driven ML framework to embed physics into neural
networks (NNs), enhancing the performance of learning algo-
rithms by leveraging automatic and data-driven NN estimates55.
Applications of PINN in engineering studies are diverse, including
predicting corrosion-fatigue crack propagation62, estimating
creep-fatigue life of components at elevated temperatures63,

and assessing bond quality and porosity in fused filament
fabrication64.
The intriguing question of whether domain knowledge can

enhance data-only Bayesian Optimization (BO) merits considera-
tion. In traditional BO, the function to optimize is treated as a
black-box; our understanding of it only expands as we query it.
Given that no initial information about the function’s shape is
available, learning its form is a sequential process based on
successive queries. Nevertheless, recent insights reveal situations
where partial information about the objective function can be
gleaned.
Leveraging this partial information could potentially bolster the

optimization process’s efficiency and speed. This has been
evidenced by the remarkable performance enhancement of
‘gray-box’ BO, as demonstrated in ref. 65,66. Specifically, ‘gray-
box’ BO has been applied to problems where the total objective
function can be dissected into nested functions. The studies65,66

underscore how partial knowledge of one such function can
dramatically expedite the convergence to the solution, out-
stripping the traditional ‘black-box’ BO approach.
The concept of a ‘gray-box’ holds profound potential for

extension within the context of scientific problem-solving, such as
in the field of materials discovery. Although the systems under
study may be too intricately complex to be explicitly simulated, it
is feasible to make robust assumptions about the underlying
physical or chemical principles that bind isolated queries to a
specific design space. Illustratively, these physical systems are
constrained by fundamental laws and symmetries, which include
but are not limited to invariance under symmetry operations,
conservation of energy and momentum, and the requisite
positivity in entropy production.
In a purely data-driven ‘black-box’ approach, a standard BO

algorithm may struggle to fully grasp or learn these laws solely
from data, particularly in a sparse data situation. Nevertheless,
harnessing this knowledge could significantly accelerate the
recovery of the underlying objective function. Consequently, the
neglect of such knowledge could incur significant costs, high-
lighting the value of the ‘gray-box’ approach in the realm of
complex scientific problem-solving.
In the application of Bayesian Optimization (BO), statistical data

is supplied to Gaussian Processes (GPs) to construct models of the
underlying objective function. The promising strategy here lies in
adopting a gray-box approach, wherein GPs are fine-tuned using
prior theoretical knowledge. This method seeks to augment their
modeling capabilities, thereby enhancing the efficiency of the
design process.
Gaussian Processes (GPs) are characterized by a mean function,

which is typically set to a constant, often zero. The GP’s response
essentially converges to its mean at locations distant from any
training data and outside the correlation zone established by
length-scales. A basic manipulation of GPs involves shifting the
mean function to match the average target value, thereby
marginally enhancing the GP’s performance. A more flexible
strategy is proposed by Ziatdinov et al.67, wherein they substitute
the GP mean with a function of input variables, allowing it to vary
across the space. These functions are constructed based on known
physics of the target objective function, introducing a method
termed “augmented BO." This approach enables designers to
incorporate prior knowledge, such as the number of local extrema,
gradient, and lower fidelity approximation of the true objective
function. Consequently, a GP response converges to this prior
knowledge in the absence of high-fidelity observations. Moreover,
the GP is guided to capture the potential trend of objective
function variability across the space using the augmented mean
function. Some of the present authors have already demonstrated
the utility of augmenting GP models by physics-informed prior
means in the context of accelerated alloy modeling and
discovery68.

D. Khatamsaz et al.

2

npj Computational Materials (2023) 221 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



Kernel manipulation is another technique that modifies the GP’s
behavior by establishing the correlation between data points to
predict outcomes at unknown locations. In Ladygin et al.’s work69,
GPs are used to reconstruct free-energy functions, and the kernel
functions are modified based on the known physics of these free
energy functions. The term “physics" here refers to the relation-
ship between free energy and different variables. Integrating
physical (theoretical) information with the statistical information
of an objective function can significantly reduce the data
dependency of GPs. In materials science, this physical information
often exists in the form of prior knowledge or expert opinion.
Incorporating such information into computational frameworks
can significantly enhance their modeling capabilities, particularly
in cases with limited data availability.
In light of the challenges and limitations inherent in existing

Bayesian Optimization (BO)-based design frameworks, this study
proposes a physics-informed BO framework. This framework
introduces physics into the Gaussian Process (GP) kernel to
explore potential efficiency enhancements in material system
design and the discovery of optimal processing parameters. The
proposed approach combines the advantages of traditional BO
techniques—specifically, the extraction of complex relationships
from data—with the benefits of employing known governing
equations for physical modeling.
This work lays a foundation for the application of physics-

infused kernel design within the BO framework, opening up new
possibilities across various materials science applications. Initially,
we illustrate how the modeling capability of GPs is enhanced
when equipped with physics-infused kernels, using synthetic
function examples. Subsequently, we apply this concept to
construct a physics-informed BO, utilizing it to design NiTi shape
memory alloys aimed at maximizing phase transformation
temperature, while ensuring prescriptive characteristics of the
distribution of second-phase (i.e. Ni4Ti3) strengthening particles.

RESULTS AND DISCUSSION
Incorporating physical information into Bayesian
optimization
The performance of BO is largely dependent on the GP’s ability to
model the underlying objective function accurately. While
expanding the statistical information, such as training data or
observations, can enhance GP’s probabilistic modeling perfor-
mance, for many applications (such as materials discovery/
optimization), generating sufficient data could pose a significant
computational burden, potentially creating a bottleneck in the
process.
As previously noted, adequately modeling the underlying

function and its accompanying uncertainty is essential for a
prudent selection of the next optimal experiment within a BO
framework. GPs employ the concept of distance to draw
correlations between existing observations and unobserved
locations in the design space, using a kernel function. However,
in black-box surrogate modeling, distance serves as the sole
metric to establish the correlation between observed and
unobserved locations, and to capture the input-output relation-
ship. This approach does not inherently promote the incorpora-
tion of any accessible physical information, which could
potentially enhance the model’s efficacy.
Next, we’ll illustrate how incorporating physical principles into

kernels can enhance the probabilistic predictions made by GPs. In
each scenario, kernels can be meticulously adjusted to incorporate
the physical information intrinsic to the input-output relationship
of the underlying objective function. This alteration can be
perceived as adjusting the input space along various dimensions
to govern the correlation between two points, taking into account
not only their relative distance but also their specific locations.

To put this into practice, we’ve implemented our proposed
physics-informed BO (PIBO) framework to efficiently identify
processing parameters for NiTi shape-memory alloys. The
objective is to maximize the temperature at which the shape-
memory transformation occurs, thereby optimizing the perfor-
mance of these materials.

Demonstration on synthetic functions
In this study, we have created two test scenarios to demonstrate
how blending theoretical and statistical information can bolster
the probabilistic modeling capabilities of GPs. For both black-box
and physics-informed scenarios, we generate GP predictions using
identical statistical information, that is, the same training data. In
Gaussian Processes (GPs), the concept of distance plays a pivotal
role in correlating an unobserved location with observed ones (i.e.,
training data) to estimate the response. This correlation is
quantified using a kernel function, the behavior of which is
governed by its hyperparameters. A deep comprehension of the
response’s characteristics can guide the selection of an appro-
priate kernel for modeling the objective function. Notably, the
squared exponential kernel is frequently chosen as it adeptly
captures the variability inherent in many physical systems; these
systems typically do not exhibit jagged response surfaces.
Furthermore, the infinitely differentiable nature of the squared
exponential kernel renders it a valuable covariance function.
Alternative kernels, such as the Matern and Ornstein-Uhlenbeck
covariance functions70,71, provide additional means to regulate
the smoothness of the modeled objective function and to depict
response surfaces with increased irregularities.
In the black-box modeling example, we employ the squared

exponential kernel function, and for the physics-informed case, we
use a modified version of this function. This kernel modification
transforms the space along various dimensions, ensuring that the
correlation between observations depends not just on their
relative (Euclidean) distance but also on the location of each point,
offering a more comprehensive perspective. The schematic of
both scenarios is illustrated in Fig. 1.
Our first example is given by Eq. (1). In contrast with black-box

modeling—where the only information available is a limited set of
observations linking some x values to their corresponding f(x)
values—, in the physics-informed scenario we can introduce
additional knowledge about the relationship between

ffiffiffi
x

p
and f(x).

On the other hand, in black-box modeling, the correlation
between different observations solely depends on their relative
distance, disregarding their actual location. However, given the
same distance, it’s reasonable to assume a stronger correlation
between observations with larger x values as the function’s rate of
change diminishes with increasing x.

f ðxÞ ¼ 1þ 2 ´
ffiffiffi
x

p
(1)

As a result, we can adjust the kernel function to use
ffiffiffi
x

p
instead

of x for correlation calculations, as shown in Eq. (2). In essence,
we’re compressing the input space so that points within the same
distance in this compressed space will have the same correlations.
The kernel function does more than just control correlation; it also
transforms the response into a linear form. This linear representa-
tion is advantageous because linear functions are among the
simplest to model with minimal observations. Therefore, the
process of learning a linear function and subsequently mapping it
back to the original space proves to be substantially more efficient
than attempting to learn the form of the original objective
function directly. As such, the kernel function is tailored so that
the transformed objective function aligns closely with a linear
representation when the exact equation is known. In cases where
the objective function’s variability is only partially understood, the
kernel ensures the function manifests as a smoother curve,
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mirroring a quasi-linear behavior.

kðx; x0Þ ¼ σ2
s exp �ð ffiffiffi

x
p � ffiffiffiffi

x0
p Þ2

2l2

 !
(2)

Figure 2 showcases a comparison between black-box and
physics-informed modeling across various length scales. Evidently,
with the same set of training data, physics-informed modeling
excels in tracking the function’s variability trend. This superior
performance is attributed to the refined correlation computations
achieved by kernel modification. Our experiments with different
length scales reveal that while enhancing the correlation strength
uniformly might improve smoothness, it doesn’t guarantee a more
precise capture of function variability. Though such an approach
may seem effective in this specific instance, it could compromise
the GP’s probabilistic modeling, especially on irregular response
surfaces, thereby risking issues of underfitting.
The second example delves into a more complex mathematical

representation, as depicted in Eq. (3). In this scenario, we assume a
partial awareness of the underlying theoretical (or physics-based)
information, particularly regarding the relationship among g(x), 1x,
and logðxÞ. This test problem mirrors scenarios frequently
encountered in real-world design tasks, where the exact impact
of design variables might remain elusive. Nonetheless, a designer
might possess preliminary understanding or insights related to the
physical principles at play, such as the association between the
outcome and the inverse of a design variable.

gðxÞ ¼ exp
2
x

� �
´ 1� exp

x1:4 � logðxÞ
x

� �� �
(3)

Accordingly, the kernel is modified as in Eq. (4) to import partially-
known physical information to the kernel. This includes the impact
of 1

x and logðxÞ on g(x).

kðx; x0Þ ¼ σ2
s exp �

1
x � 1

x0
� �2 þ ðlogðxÞ � logðx0ÞÞ2

2l2

 !
(4)

Figure 3 showcases the results obtained using various length
scales for both black-box and physics-informed scenarios. While

increasing smoothness aids in achieving a better fit in this
instance, it doesn’t necessarily capture the correct form of the
response surface. In contrast, physics-informed modeling excels,
adeptly capturing the pronounced decrease near the input space’s
lower boundary and precisely representing the extremum of g(x).

Demonstration on precipitation modeling
Tailoring the transformation temperature of NiTi shape-memory
alloys is a materials design problem that has received significant
attention in recent years due to the many potential applications of
shape-memory actuators with finely controlled transformation
temperatures72–74. The transformation temperature of near-
equiatomic NiTi is known to be highly sensitive to the amount
of free nickel in the matrix, with an increase of 1% Ni
corresponding to as much as a 90 K decrease in the transforma-
tion temperature75. Furthermore, the Ni-content of the matrix —
and thus, the transformation temperature of the SMA—can be
controlled through the use of heat treatments to form Ni-rich
Ni4Ti3 precipitates76. It’s noteworthy that beyond simply regulating
the transformation temperature, the attributes of the strengthen-
ing precipitate population, such as interparticle distance, offer
additional means to adjust the transformation’s characteristics. For
instance, shorter interparticle distances can mitigate the hysteresis
of the transformation, owing to the elastic strain fields surround-
ing coherent Ni4Ti3 precipitates77,78. A testament to this
approach’s efficacy can be seen in recent work that leveraged
this strategy to achieve stable transformation in additively
manufactured NiTi alloys79.
The precipitation behavior during heat treatment–which

influences the final matrix composition and transformation
temperature–is intricately governed by initial composition, time,
and temperature. Historically, finding the best heat treatments for
precipitation-strengthened SMAs has relied on extensive experi-
mentation due to a lack of predictive physics-based models
linking chemistry, processing history, and microstructure80. Even
when such models exist, utilizing them optimally can be
computationally burdensome. Previously, one of our authors,
along with collaborators, applied non-physics-aware Bayesian

Fig. 1 Schematic representation comparing black-box and gray-box Bayesian optimization. In the gray-box approach, the Bayesian
optimization framework is enriched with underlying physical information derived from within the system under study. By integrating
statistical data with physical insights, a more data-efficient design framework is achieved. Consequently, the optimum design is uncovered
with fewer experimental iterations, and the overall modeling uncertainty is significantly reduced.
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Optimization (BO) to pinpoint the best microstructures in SMAs81.
However, this method primarily addressed the property-
microstructure relationship without delving into the crucial
linkage between microstructure and its origin in chemistry/
processing.
Given the complexity of Ni4Ti3 precipitate evolution within off-

stoichiometric NiTi-based SMAs, optimizing heat treatment is
daunting. This makes NiTi-based SMAs an exemplary candidate to
illustrate the potential of our proposed Physics-Informed Bayesian
Optimization (PIBO) method. We emphasize that while our
framework targets computational ‘black-boxes’, it’s adaptable to
purely experimental scenarios: For PIBO, the origin of the data isn’t
vital, since the connections between inputs and outputs are
established through stochastic models—e.g. Gaussian Processes
(GPs)—that act as surrogates of the real (or virtual) system to
optimize.
To model the impact of heat treatments on transformation

times, Kawin82, an open-source implementation of the
Kampmann-Wagner Numerical (KWN) model for phase precipita-
tion, was used to model the volume fraction and distribution of
Ni4Ti3 precipitates resulting from a given heat treatment. KWN is a
mean-field precipitation approach that traces the evolution of
precipitate populations in a bulk volume, rather than individual
particles. In this model, a particle size distribution is represented as
a continuous function, with particles binned based on their size.
During each simulation step, processes like nucleation, growth,
and dissolution are accounted for to update the particle size
distribution, while ensuring adherence to mass balance and
continuity equations. Nucleation is framed according to the
Classical Nucleation Theory (CNT) where nucleation events are
driven by heterophase fluctuations in a metastable solid solution,
determining the critical nucleus size and driving force for

nucleation. Precipitate growth is modeled by coupling the matrix
composition to the growth of the precipitate, whose coupling is
given by the growth rate equation:

dR
dt

¼
X
j

Dij

R

x1j � xαj

xβi � xαi
(5)

where R is precipitate radius, Dij is the diffusivity, x1j is far-field
composition, xαj is the interfacial composition in the matrix phase,
and xβi is the interfacial composition in the precipitate phase. The
model naturally encapsulates coarsening as smaller particles
dissolve, shifting rightward the overall size distribution. Numeri-
cally, particles below a specific size are deemed fully dissolved and
excluded from further computations. In this work, the thermo-
dynamic and kinetic model for Ni-Ti from83 is used. Further details
on the general numerical modeling approach can be found in the
Kawin paper82. For each simulated heat treatment condition, a
final matrix composition was calculated and used with the model
for NiTi transformation temperature developed by Frenzel et. al.
(Eq. (6))75:

TmsðxNiÞ ¼ Aþ B � xNið Þ
at

%þ C � DxNi=at%�50

� �
(6)

where A= 4511.2373, B=−83.42425, C=−0.04753, and
D= 204.86781. Tms(xNi) is the start temperature for the martensitic
transformation of NiTi and was used as the observable to optimize
in the following Bayesian Optimization. The design space in
question was defined by initial compositions ranging from 0.50 to
0.52 Ni, heat treatment temperatures ranging from 650K to 1050K,
and heat treatment times ranging from 0 to 18,000 s (five hours).
Given that the precipitation of second-phase particles is the

phenomenon that ultimately affects the transformation

Fig. 2 Comparison of physics-informed and black-box modeling of Eq. (1). All Gaussian processes are initialized with identical training data
at different length scales to examine the impact of smoothness as well as utilization of physics-infused kernel. These results show that
increasing smoothness does not have the same impact as importing physics in modeling a function and may result in underfitting issues in
more complex examples.
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temperature, it is crucial to understand how the volume fraction of
precipitates affects the transformation temperature of the matrix.
In this context, we can assume that the transformation
temperature depends on the composition of the matrix, which
can in turn be modulated through the precipitate volume fraction
—in short, the higher the volume of precipitates, the greater the
depletion of Ni in the matrix, which subsequently results in a
decrease in transformation temperature. The precipitate distribu-
tion is a function of time (as well as temperature and initial
solution-annealed matrix composition)84,85. The precipitation
process, in turn, is due to nucleation and growth where the
growth is a time-varying diffusion-controlled process.
To this end, if we assume that atoms in a solid are transported

through long-range diffusion, a random walk can be a simplistic,
yet effective, first approximation to capture atomic diffusion in a
lattice86,87. It is noteworthy to mention that the phenomenological
Langevin equation that represents a minimalist description of the
stochastic motion of a random walk reveals that diffusion-
controlled processes must be proportional to

ffiffiffiffiffiffiffiffiffi
xtime

p 88. We can
thus exploit this scientific prior knowledge to design the kernel
used to describe the dependence of observations on time.
We note that there are several other monotonically increasing

forms (i.e. power laws) describing diffusional processes that could
be potential candidates to design our kernel. For example, cubic
law dependence (i.e.,

ffiffiffiffiffiffiffiffiffi
xtime

3
p

) is typically observed when examin-
ing the diffusional growth of (oxide) layers in which the dominant
transport mechanism is through grain boundary diffusion89,90. In
cases in which grain boundary diffusion is accompanied by grain
coarsening—such as concurrent intermetallic layer growth91—the
power law describing diffusional processes can take the formffiffiffiffiffiffiffiffiffi
xtime

4
p

. However, these other types of power laws depend on

processes that are not directly mapped to random bulk diffusion
and do not constitute the most straightforward or fitting
assumptions for a plausible kernel structure for this specific
problem.
The relationship between heat treatment temperature and

precipitate volume fraction can also be exploited to further refine
our kernel function. Every set of (composition, temperature) inputs
corresponds to an equilibrium precipitate phase fraction. While
the rate at which the equilibrium phase fraction is approached
(and the final volume fraction attained within the proscribed
treatment time) is highly non-monotonic and dependent on the
kinetics, the equilibrium phase fraction itself is always inversely
proportional to the heat treatment temperature. At higher
temperatures the solubility limit of the matrix increases, decreas-
ing the driving force for precipitation and the equilibrium volume
fraction. As such, simply scaling our kernel function by 1/T can
provide a decent first approximation of the overall trend between
temperature and phase fraction even though the true nature of
this relationship is more complex and hard to quantify.
Composition, on the other hand, is best left directly propor-

tional to the objective in the kernel function. Increasing solute
concentration will also increase the driving force for precipitation,
equilibrium phase fraction, and growth rate of the precipitates,
directly increasing the final volume fraction. While this is again
only a simplistic approximation of the true relationship, it
describes the overall trend between composition and precipita-
tion behavior across the input space.
From these three relationships a modified squared exponential

kernel function can be created, shown in Eq. (7), that adjusts the
design space along the dimensions of heat treatment time and
temperature to better account for the impact of each variable on

Fig. 3 Comparison of physics-informed and black-box modeling of Eq. (3). All Gaussian processes are initialized with identical training data
at different length scales to examine the impact of smoothness as well as utilization of physics-infused kernel. As shown, using a physics-
infused kernel helps to catch the correct form of function variability and extremum approximations. When the function displays irregular
variability between observations, black-box modeling is insufficient to accurately represent the function’s true form.
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precipitation behavior.

kðx00; x0Þ ¼ σ2s exp �ðx00comp � x0compÞ2
2l2comp

 !
´ exp �ð ffiffiffiffiffiffiffiffiffi

x00time

p � ffiffiffiffiffiffiffiffiffi
x0time

p Þ2
2ltime

 !

´ exp � 1
x00temp

� 1
x0temp

 !2

´
ltemp

2

2

 !

(7)

To ensure that the BO produces non-trivial solutions, constraints
were imposed on the design problem. Trivial solutions were
defined as input sets that result in a negligible amount of Ni4Ti3
phase precipitation, with the transformation temperature being
dominated only by the initial composition rather than the heat
treatment parameters. Two classifiers were constructed to filter
the design space, using labeled data from previously evaluated
precipitation simulations across 2000 sets of compositions and
processing parameters. The feasible space was defined as regions
where the Ni4Ti3 volume fraction was greater than 0.01 and the
mean inter-particle distance was lower than 5 × 10−8 m. Only
potential inputs within the space identified by the classifiers and
satisfying these conditions were considered for the BO.
To evaluate the efficacy of both black-box and physics-informed

BO, we carried out 50 design simulations, each encompassing 30
iterations. Figure 4 presents the results, illustrating the average
transformation temperature achieved at each iteration, complete
with 95% confidence intervals. As evident from the figure, the
physics-informed BO consistently surpasses the black-box BO.
Specifically, it identifies combinations of compositions and
processing parameters that lead to higher transformation
temperatures in fewer iterations. On average, the physics-
informed approach reaches the peak theoretical transformation
temperature (around 340K) in just 15 iterations. In contrast, the
black-box BO doesn’t achieve this benchmark even within the
span of 30 iterations. This disparity arises because the black-box
method lacks insights into the fundamental physics of the
problem, necessitating more iterations to pinpoint optimal design
regions.
The solution sets corresponding to each run are shown in Fig. 5.

It can be seen that physics-informed BO is able to explore the
design space more effectively by producing a wider range of
solutions within the same number of iterations. This also indicates

that numerous potential combinations of time, temperature, and
composition can be used to produce the same final transforma-
tion temperature, a conclusion that might be missed using only
black-box BO.
For each of these solutions, Fig. 6 illustrates the volume fraction

and mean inter-particle distance of the precipitates, verifying the
classifiers used by showing that all values are within the desired
ranges defined by this design problem. Figure 7 displays the
optimal regions pinpointed by both physics-informed and black-
box BO approaches. Leveraging the underlying physics, the PIBO
framework excels in navigating the design space, consistently
identifying superior solutions compared to the physics-agnostic
BO, as illustrated in Fig. 4. PIBO’s proposed solutions showcase
greater variance, especially evident along the ‘treatment time’ axis.
In contrast, the black-box BO tends to confine its explorations to a
limited window, yielding less optimal solutions. The informed
assumptions that the time and temperature axes should scale asffiffi
t

p
and 1/T respectively nudges PIBO to consider designs with

extended treatment durations and more varied temperatures.
Meanwhile, black-box BO seems hesitant to venture too far along
either axis.

Fig. 4 Maximum transformation temperature found using
physics-informed and black-box BO. The results are averaged over
50 replication of simulations, showing the mean and 95%
confidence intervals. Each simulation ran for 30 iterations. About
15–-20 iterations are sufficient for physics-informed BO to reach the
maximum.

Fig. 5 The solutions corresponding to maximum transformation
temperature in all 50 replications of simulations. Panels (a) and (b)
show the initial composition and time as the solutions to 50
replications of each scenario. In the case of physics-informed BO, the
design space has been searched more effectively to discover sets of
processing parameters and compositions that result in the
maximum transformation temperature. Black-box BO hesitates to
explore as it is solely relying on statistical information, and our
investigation shows that 30 iterations are not sufficient to discover
optimum solutions in the design space under a physics-agnostic
scheme.
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The final concentration of Ni left in the matrix after heat
treatment, which is directly linked to the transformation
temperature via Eq. (6), is ultimately dependent on the kinetics
of the precipitation reaction and distribution of precipitates
throughout the matrix as the reaction passes successively through
the nucleation, growth, and coarsening-dominated regimes. While
some sets of conditions initially rapidly approach the equilibrium
(maximum) phase fraction, slower reactions dominated by growth
instead of coarsening may reach a higher phase fraction (and
therefore lower matrix Ni% and higher transformation tempera-
ture) within the same heat treatment period.
This phenomenon can be clearly seen in Fig. 5, where the lack

of scaling led the black-box BO to consistently pick solutions with
a similarly low initial composition, temperature, and heat-
treatment time. These solutions correspond to a scenario where
low temperature creates a high nucleation driving force, leading
to the rapid creation of a fine dispersion of small particles
throughout the matrix (seen in Fig. 6 as a small inter-particle
distance). Once enough solute has been depleted to halt the
nucleation of new particles, the reaction becomes largely driven
by sluggish low-temperature coarsening kinetics, and the rate at
which transformation temperature increases slows considerably.
As seen in Fig. 7 the physics-informed BO was instead able to

generate a wide variety of potential solutions ranging from high-
temperature, high-duration solutions with a smaller number of

particles growing consistently in a controlled manner to low-
temperature, low-duration solutions that nucleated rapidly but
efficiently, leaving little excess solute behind after the initial
nucleation phase. From a materials design standpoint, many of
these solutions are more desirable than those found via black-box
BO because precipitation occurs in a more controlled manner,
helping to identify regions of the input space where the final
property (transformation temperature) can potentially be finely
tuned.
Adjusting the kernel function in BO frameworks slightly affects

computational cost. Yet, the physics-informed approach may
extend simulation times, exploring a broader design space. On
average, using Intel Xeon 6248R, 3.0GHz processors, a BO run
takes about 24 min for 30 iterations, while a PIBO run takes
roughly 26 min, and such a difference is shown in Fig. 5b. It’s
worth noting that this doesn’t directly translate to efficiency. In
our tests, PIBO rapidly achieved the maximum transformation
temperature, whereas black-box BO failed to do so within 30
iterations.
Our study highlights the importance of incorporating physical

knowledge into BO frameworks to improve their performance in
discovering optimal design regions. By infusing statistical informa-
tion with theoretical insights, we strengthened the GP’s probabil-
istic modeling capability, resulting in reduced data dependency
and faster convergence to the optimal design. This is particularly
important when experimental data collection is required instead
of computational simulations. The incorporation of physical
knowledge not only improves the performance of BO frameworks,
but also allows for a deeper understanding of the underlying
physics governing the system, which can lead to more informed
and efficient design decisions. A future research direction could
focus on developing data-driven approaches that can autono-
mously comprehend and leverage physical laws, without the need
for human intervention, to further improve the performance of BO
frameworks in materials design applications.

METHODS
In this study, we proposed to inject partially known physics of
precipitation to BO by manipulating GP’s kernel function. As a
result, the precipitation model is assumed as a gray-box rather

Fig. 6 Volume fraction and mean inter-particle distance of
discovered sets of solutions shown in Fig. 5. Panels (a) and (b)
show the final volume fraction and mean inter-particle distance
values as the design constraints associated with solutions of 50
replications of each scenario. The results confirm all solutions satisfy
the design constraints as both volume fraction and mean inter-
particle distances are within the desired range that results in non-
trivial solutions.

Fig. 7 Optimal solutions discovered by physics-informed and
black-box BO scenarios. While physics-informed scenario can
explore the design space efficiently to discover any optimal
solutions, black-box BO is not capable of getting close to those
regions within the 30-iteration limit. Larger marker size indicates a
higher heat treatment temperature which is also emphasized by the
color.
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than a black-box due to partially known information inside the
box. In the following, the different components of the BO
framework and precipitation model are discussed.

Gaussian process regression
Gaussian processes are widely used for modeling objective
functions in various fields due to their ability to provide
probabilistic predictions with low computational costs8. The
underlying concept of GPs relies on the correlation between data
points in an input space, which enables the prediction of model
uncertainty. This property is essential in Bayesian approaches that
require probabilistic predictions in unobserved regions of the
input space. Additionally, GPs are flexible and can be easily
manipulated to suit the modeling requirements of different
applications.
Assuming there are N previously observed data denoted by

{XN, yN}, where XN= (x1,…, xN) and yN ¼ f ðx1Þ; ¼ ; f ðxNÞð Þ, then
the GP prediction at unobserved location x is given by the normal
distribution:

fGPðxÞjXN; yN � N μðxÞ; σ2
GPðxÞ

� �
(8)

where

μðxÞ ¼ KðXN; xÞT½KðXN;XNÞ þ σ2
nI��1yN

σ2
GPðxÞ ¼ kðx; xÞ � KðXN; xÞT½KðXN;XNÞ þ σ2

nI��1KðXN; xÞ
(9)

with k as a real-valued kernel function, K(XN, XN) as a N × N matrix
with m, n entry as k(xm, xn), and K(XN, x) is a N × 1 vector with mth

entry as k(xm, x). The term σ2
n is used to model observation error. A

popular choice for kernel function is squared exponential:

kðx; x0Þ ¼ σ2
s exp �

Xd
h¼1

ðxh � x0hÞ2
2l2h

 !
(10)

where d is the dimensionality of the input space, σ2
s is the signal

variance, and lh, where h= 1, 2,…, d, is the characteristic length-
scale to determine correlation strength between observations
within dimension h.

Precipitation modeling
Kawin, the software utilized in this framework to model
precipitation behavior, is based on the Kampmann-Wagner
Numerical (KWN) model83 for phase precipitation. This model
employs discretized size “bins" to simulate the evolution of a
particle size distribution during nucleation, growth, and coarsen-
ing. It strikes a balance between the computational efficiency of
mean-field modeling and the data accuracy of phase-field
modeling.
The KWN model is rooted in classical nucleation theory, which

calculates the size and nucleation rate of particles at each time
step based on the thermodynamic and physical properties of the
matrix and precipitate phases. The model discretizes the particle
size distribution into size “bins" and adds newly nucleated
particles to the corresponding bin. All particles within a bin are
assumed to have the same radius. The model then simulates
growth and coarsening as the flux between size bins caused by
diffusion-controlled growth and the Gibbs-Thomson effect. The
matrix composition and size distribution are then updated using
mass-balance and continuity equations. Overall, the KWN model
provides a balance between the computational efficiency of
mean-field modeling and the data fidelity of phase-field modeling.
Ni4Ti3 is a metastable phase that exists in a state of high lattice

distortion, forming semi-coherent plate-shaped precipitates
oriented only along the 〈111〉 planes of the B2 matrix phase92.
Kawin was chosen to model this behavior because of its native
elastic energy calculations and ease with which it could be
modified to suit such an atypical precipitation case. The

thermodynamic characterization of the NiTi system was obtained
from Povoden–Karadeniz et. al.93, crystallographic information
from Naji et. al.94, elastic properties from Wagner and Windl95, and
diffusivity from Bernardini et. al.96.
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