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Parkinsonian Tremor as Unstable Feedback in a
Physiologically Consistent Control Framework

Christopher R. Kelley™ and Jeffrey L. Kauffman

Abstract— Parkinson’s disease (PD) is characterized by
decreased dopamine in the basal ganglia that causes
excessive tonic inhibition of the thalamus. This excessive
inhibition seems to explain inhibitory motor symptoms
in PD, but the source of tremor remains unclear. This
paper investigates how neural inhibition may change the
closed-loop characteristics of the human motor control
system to determine how this established pathophysiology
could produce tremor. The rate-coding model of neural
signals suggests increased inhibition decreases signal
amplitude, which could create a mismatch between the
closed-loop dynamics and the internal models that over-
come proprioceptive feedback delays. This paper aims
to identify a candidate model structure with decreased-
amplitude-induced tremor in PD that also agrees with
previously recorded movements of healthy and cerebellar
patients. The optimal feedback control theory of human
motor control forms the basis of the model. Key addi-
tional elements include gating of undesired movements
via the basal ganglia-thalamus-motor cortex circuit and
the treatment of the efferent copy of the control input as
a measurement in the state estimator. Simulations con-
firm the model’s ability to capture tremor in PD and also
demonstrate how disease progression could affect tremor
and other motor symptoms, providing insight into the exis-
tence of tremor and non-tremor phenotypes. Altogether, the
physiological underpinnings of the model structure and the
agreement of model predictions with clinical observations
provides support for the hypothesis that unstable feed-
back produces parkinsonian tremor. Consequently, these
results also support the associated framework for the neu-
roanatomy of human motor control.

Index Terms— Tremor,
feedback.

Parkinson’s disease, control,

. INTRODUCTION
HE human motor system produces voluntary movements
through some combination of feedback and model-based
control [1], [2], [3]. Sensory feedback takes time to travel
from sensory receptors to the central nervous system (CNS)
and back to muscles: typical closed-loop feedback delays are
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on the order of 50-100 ms [4]. This delay is too high to
execute stable feedback control directly from measurements;
however, the CNS uses internal models to predict future
states and enable feedback with effectively zero delay [5].
Significantly, the accuracy of these internal models affects
controller stability [6]. Pathological tremor is the undesired,
approximately rhythmic movement of body parts—this oscilla-
tory movement resembles unstable feedback with control input
saturation [7], [8]. However, most research towards under-
standing pathological tremor investigates physiological aspects
of tremor generation like neural activity rather than aiming to
understand the system-level dysfunction. This paper explores
a contrasting fundamental question: can control-system roles
of brain regions and the control-system dysfunction of move-
ment disorder pathophysiology mutually inform each other to
improve our understanding of both?

The key movement disorder feature addressed in this work
is tremor in Parkinson’s disease (PD). Dopamine depletion in
the basal ganglia is a defining characteristic of PD [9]. This
decreased dopamine shifts the balance of basal ganglia output
to the thalamus towards inhibition: the internal portion of the
globus pallidus (GPi) projects excessive tonic inhibition to the
anterior portion of the ventral lateral thalamus (VLa). Natu-
rally, excessive inhibition of the motor thalamus is thought
to play a critical role in the increased reaction times and
slowness of movement that are characteristic motor symptoms
in PD [10]. Recent research demonstrates reduced motor vigor
in PD, while motor vigor models provide insight into how
reduced dopamine may affect system-level parameters [11],
[12]. However, the pathophysiology of parkinsonian tremor is
less clear: how does excessive inhibition translate to undesired
motion? The overarching hypothesis of this work is that
excessive tonic inhibition from GPi to VLa produces unstable
feedback in PD. Significantly, this theory implies a single
physiological mechanism (excessive inhibition of VLa) can
produce both tremor and movement inhibition in PD.

In contrast to this approach, existing theories for parkin-
sonian tremor pathophysiology do not link tremor to
inhibitory movement symptoms; current leading theories
include pacemaker and dimmer-switch hypotheses [13]. Pace-
maker hypotheses suggest tremor originates from oscillatory
cells in the basal ganglia or thalamus, but they fail to address
how deep brain stimulation (DBS) targeting either region
reduces tremor [13]. The dimmer-switch hypothesis identifies
roles for both regions, suggesting the basal ganglia trig-
gers tremor while the cerebello-thalamo-cortical (CTC) circuit
drives tremor [9]. Overall, these theories use neural activity
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observed in clinical studies to identify possible drivers of
tremor, but do not address the cause of dysfunction explicitly.

The neuroanatomy of motor control provides insight into
how PD pathophysiology may affect the control system.
Key general regions for motor control are the motor cortex,
parietal cortex, cerebellum, and basal ganglia. Shadmehr and
Krakauer [14] applied evidence from movement studies to
develop a prospective framework for motor control that lever-
ages the optimal feedback control theory of human movement
introduced by Todorov and Jordan [15]. In their framework,
the basal ganglia determines the cost and reward structure
of the task, the motor cortex implements feedback control
given a state estimate, and the parietal cortex produces the
state estimate given sensory measurements along with forward
predictions from the cerebellum. This general framework
remains the leading high-level system model for motor control,
with recent work extending the model to include additional
behavior [8], [16], [17], [18].

The standard computational neuroanatomy framework can-
not capture the excessive inhibition of the thalamus from
the basal ganglia in PD. Indeed, these types of studies often
overlook the role of the thalamus, but it is a critical piece of PD
pathophysiology. The thalamus relays signals among the basal
ganglia, cerebellum, and cortex, possibly integrating signals
or performing other computations along the way [19]. Thus,
excessive inhibition of the thalamus likely affects activity
of the cortex and cerebellum. The “gating” model captures
one potential mechanism of basal ganglia control of thalamus
activity: GPi suppresses VLa activity to prevent undesired
movements and allows desired movements through disinhi-
bition [19], [20]. Many studies indicate the basal ganglia is
involved in motor response inhibition and selecting among
competing motor programs [21]. Integrating the gating model
into the computational neuroanatomy framework could iden-
tify how excessive inhibition produces tremor in PD. However,
the vast interconnectivity among brain regions makes including
this component nontrivial.

Recently, the authors and other researchers modeled uncom-
pensated delays as a mechanism of unstable feedback
stemming from excessive inhibition [7], [8], [22], [23]. While
simulations and model structure generally agree with clinical
observations, it is unclear how excessive inhibition could
produce a signal delay. This paper presents another possible
mechanism for unstable feedback: mismatch between internal
models and actual dynamics due to decreased signal levels.
Tonic inhibition decreasing signal levels has a much more
straightforward physiological underpinning: lower firing rates
represent lower signals for rate-coded information [24], [25],
[26]. This signal distortion can cause unstable feedback when
forward predictions become out-of-phase with the actual state
dynamics. Overall, the need for model-based delay compensa-
tion is a key component for the potential to produce unstable
feedback. However, the dysfunction does not have to be a
change in the delay value, but any change that causes a
mismatch between the internal model and actual dynamics.
While [14] acknowledges the existence of a sensory delay,
the implemented model does not address delay compensation.
This factor is a key element included in this work.

Similar to delay-induced tremor, the tremor theory in this
work (and likely any theory based on unstable feedback)
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Fig. 1. Sensory feedback may take many pathways through the CNS.

meshes well with the observations that motivate the dimmer-
switch hypothesis [8]. Considering the anatomical connections
among brain regions and their prospective control-system roles
facilitates the development of a new candidate motor control
model that includes the key elements for parkinsonian tremor.
Altogether, this paper centers about two primary contributions.
First, this study identifies potential control-system dysfunction
mechanisms in PD to develop a new control-system framework
of human motor control. Key additions to the standard com-
putational neuroanatomy framework include the basal ganglia
gating model and the inclusion of the efferent copy of the
control input as a measurement in the state estimation process.
Second, the evaluation of model predictions provides insight
into the characteristics of PD and computational support for
the candidate model.

[I. TONIC INHIBITION AND UNSTABLE FEEDBACK

The first step in modeling the hypothesis that excessive
GPi inhibition of VLa causes unstable feedback in PD is
identifying where the pathological behavior affects the control
system. Figure 1 illustrates some of the key pathways involved
in human motor control to provide insight into this question.
Note that the motor cortex regions include the primary motor
cortex (M1), supplementary motor area (SMA), and premotor
cortex (PM) while key parietal cortex regions include the
primary somatosensory area (S1) and the posterior parietal
cortex (PPC). In addition to VLa, the key thalamus regions
include the ventral anterior nucleus (VA), the posterior portion
of the ventral lateral nucleus (VLp), the ventral posterolateral
nucleus (VPL), and the thalamic reticular nucleus (TRN).

CNS processing of proprioceptive feedback takes two path-
ways: one through the spinocerebellum and another beginning
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Fig. 2. Block diagram of the candidate human motor control model with tremor in PD generated by a decreased gate value.

at VPL and continuing to S1 [27]. The spinocerebellum
pathway sends signals directly to the brainstem, enabling
input to effectors. From S1, the feedback signal may take
a number of pathways before producing effector inputs at
the motor cortex: through the PPC, the cerebrocerebellum
pathway, the thalamus, or directly to the motor cortex. The
interconnectivity of these regions makes it difficult to identify
complete pathways: virtually all cortex regions are connected,
thalamocortical radiations and the TRN enable connections
across the thalamus and cortex, and the cerebellum receives
input from multiple cortical areas [27]. Excessive inhibition
of VLa may affect these pathways by

1) Changing VLa excitation of the motor cortex.

2) Spreading inhibition to VLp via the TRN, thereby
changing VLp excitation of the motor cortex.
Spreading inhibition to VPL via the TRN, thereby
changing VPL excitation of S1.

The variety of hypothesized roles of brain regions further
obscures the potential locations of PD pathology in control-
system models. A key factor to produce unstable feedback
is the use of forward models for fast feedback control that
overcomes sensory delays. However, studies link forward
models to the cerebellum, parietal cortex, and primary motor
cortex, obscuring where PD pathology may exist relative to
forward models [5], [14], [28]. The three excessive inhibition
theories described above applied to the model of Shadmehr
and Krakauer [14] would change the signal near the feedback
controller, after the forward model, and before the forward
model, respectively.

Given potential locations, the next step is identifying how
the pathological behavior affects the control system. Recall,
the key pathology is excessive tonic inhibition of VLa. This
tonic inhibition affects ambient GABA concentration that ulti-
mately increases membrane conductance, thereby decreasing
the membrane time constant [29]. For a typical integrate-and-
fire neuron system, decreasing the membrane time constant
decreases the firing rate [30]. For rate-coded signals, lower
firing rates are equivalent to decreased signal amplitudes [24].
This fact points towards the effect of excessive tonic inhibition
on VLa being a decrease in a signal amplitude somewhere in
the control system. Further specification of the location and
role of excessive inhibition of VLa is not easily defined from
existing CNS knowledge and is the key task addressed in the
following section.

3)

[1I. CANDIDATE MODEL

The goal of the following candidate model is to cap-
ture both healthy and pathological movement characteris-
tics while retaining consistency with human neuroanatomy.
Figure 2 illustrates the block diagram for the model includ-
ing control-system components and associated physiological
structures. The model is mostly inspired by the neuroanatomy
framework of Shadmehr and Krakauer [14], but slightly
increases the resolution of system roles to capture all of the tar-
geted behavior. The parietal cortex and cerebellum implement
Kalman filters that produce an estimate of the current state
given delayed measurements and efferent copies of the control
input. The motor cortex implements feedback control using
this state estimate, but also includes an open-loop component
to enable fast responses to known dynamics without waiting
for delayed measurements. The complete feedback pathway
could be a combination of the sensory and cerebrocerebellum
pathways in Fig. 1. The PPC sends processed sensory informa-
tion to the cerebellum for forward predictions. The cerebellum
sends the forward predictions to the cortex for feedback
control that enables an adaptive response to disturbances and
unknown dynamics.

Two key components enable modeling of tremor in PD.
First, the model includes a “gate” based on the basal ganglia
gating model. Tasks are gated by basal ganglia input: in the
healthy state, the gate is either open or closed, facilitating
and blocking desired and undesired movements, respectively.
In PD, the gate “opens” only partially, decreasing the signal.
Second, the Kalman filters treat the descending control input as
a state measurement. The model assumes the “known” control
input in the filter equations is known because the cerebellum
and parietal cortex know the feedback gains, not because it
is supplied by the efferent copy of the motor cortex output.
The efferent copy of the motor cortex output enables rapid
compensation for control input disturbances. This structure
allows the healthy control system to overcome variations
in control input without waiting for delayed measurements.
However, it also produces a mismatch between internal model
and actual parameters in PD to produce unstable feedback.
The Discussion section includes more information on the
motivation of this model structure and its agreement with
previous movement studies.

To summarize, this candidate model includes four key
changes to the model of Shadmehr and Krakauer [14]:



2668

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

1) Delay compensation: The model in [14] includes a single
Kalman filter that receives non-delayed measurements,
which does not address how an internal model extrap-
olates delayed measurements to produce non-delayed
states. However, inclusion of this process is critical for
capturing feedback instability.

2) Efferent copy of control input: The “known” control
input is often considered to be captured by the efferent
copy of the control input. However, this efferent copy
represents the implemented input rather than the the-
oretically calculated input. The efferent copy provides
additional information for delay compensation and is
included here as a “measurement” for the Kalman filters.

3) Separates open-loop and feedback control: Delay com-
pensation uses internal models to implement feedback
with estimates of the non-delayed states. However,
a non-feedback component executes without delay,
requiring explicit inclusion of feedforward and feedback
components.

4) Gating model: This addition represents the key dys-
function in PD. Excessive basal ganglia inhibition of
the thalamus decreases rate-coded signals that normally
facilitate movement in healthy motor control.

Significantly, this model approximately reduces to the
Shadmehr and Krakauer [14] model when assuming perfect
delay compensation and healthy gating. The explicit separation
of open-loop and feedback control produces the same control
inputs as a standard stochastic optimal feedback controller
if the internal model matches the actual dynamics. These
factors help to motivate the overall model structure because
it inherently captures movement characteristics shown in [14]
and other similar models based on optimal feedback control.

A. Model

1) Dynamics: Simulations of a single degree-of-freedom
(SDOF) joint model demonstrate the characteristics of the
candidate motor control model. The equations of motion
include joint inertia J, damping G, and stiffness K with
angle 6, muscular torque f, and external torque f,. The
implemented control input u,, represents muscle activation as
a second-order low-pass filter with intermediate state g and
time constants 71 and 13:

JO+GO+KO=f+f.
nf+f=g
TIg+g=1un. (D

The implemented control input u,, includes the input calcu-
lated via feedback control upg and open-loop control uor
along with the disturbance u :

Uy = b(uoL + urp + ug) )

The gate parameter b blocks inputs for undesired tasks (b = 0)
and facilitates inputs for desired tasks (b = 1). The control
system treats uy as a state: this setup allows the controller
to overcome variations in the implemented control input,
as observed in saccades [31].

The control system computes an input # using methods from
optimal control theory. First, write the dynamics in standard

linear form:
X = Ax + Bu (3)
The known control input is
u = b(uoL + urp). 4)

Augment the state with the desired position 6*:

x=[9 6 f g fo ug 9*]T

) 1 0 0 0 0 07
“K)J —GJJ 1]J 0 1/J 0 0
0 0 —1l/v lm 0 0 0
A=]| 0 0 0 —1/u 0 b/y 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
) 0 0 0 0 0 0]
B=[0 00 b/7y 00 0]". (5)

Approximating the dynamics over the small sample interval
At enables discrete control design:

A~ 1T+ AAt
B, ~ AtAyB. (6)

The dynamics may also include linear process noise & ~

N(0, Q5):
Xk+1 = Apxg + Bruy + & (N

The noise terms allow the estimator to track states with
uncertain dynamics, like f, and uy. Altogether, writing the
dynamics in this standard linear form enables calculation of
estimator and controller gains using LQG equations.

2) Bayesian Estimator: A Kalman filter estimates the full
state from a partial-state measurement with noise oy ~

N, Q°):
Yk = Hxy + Duy + oy. ¥

Assume muscle spindles measure 6 and 6 via the muscle
stretch and stretch rate while Golgi tendon organs measure
torque f via muscle force [32]. The measurement also includes
the efferent copy of the implemented control input u,,. There-
fore, the observation matrices are

1000000

40100000

=10010000
00000b 0

p=[000 b]". 9)

A Kalman filter creates a state estimate x; using fixed gains
at each time step Kx:

Xit1 = ArXk + Brug + Ki(ye — HXx — Dug) + i (10)

where n, ~ N(0, Q") allows noise to be included in the
estimator. A forward pass in time calculates the optimal
estimator gains K given known initial state estimate x; with
known covariance Pj:

Ky = AcP H (HPLHT + Q©)7!

Pyt = QF + Q"+ (Ax — K H)PLAL . (11)
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3) Forward Model: The previously calculated state estimate
represents the state at k — nge], where ngel is number of time
steps of the delay in the loop due to transmission time of
signals to and from the CNS. A forward model overcomes
this feedback delay to obtain a state estimate at the current
time step. Another Kalman filter implements this component,
operating in the same way as the previous filter but with the
only “measurement” being the efferent copy of the control
input. Thus, H = [0 0 0 0 0 » 0] and D = b in
the forward model filter. The forward model runs through nge|
iterations at every time step to obtain the state estimate at the
current time step given the state estimate at k — nge; and uy,
from k — nge; to k — 1.

4) Controller: Human motor control demonstrates elements
of both open-loop and closed-loop control. Some controller
structures capture both of these elements implicitly—for
example, a typical stochastic optimal control (SOC) system
creates inputs that blend predictive and feedback components.
However, the presented candidate model separates the con-
troller contributions explicitly by including a model-based
feedback component and an open-loop component. This struc-
ture allows the internal model of the feedback controller
to include the open-loop input trajectory, providing more
information to optimize feedback inputs. Furthermore, this
structure better captures how the closed-loop response will
change when the feedback controller has incorrect information
about the open-loop controller, as in this PD model. Recent
work by Berret et. al [18] demonstrates the importance of
explicitly separating open-loop and feedback components to
capture certain behaviors, labeling such systems as “stochastic
optimal feedforward-feedback control” (SFFC). The net effect
is very similar to SOC for many situations, but SFFC pro-
vides insight when the relative contributions and calculations
for predetermined open-loop inputs and feedback inputs are
important.

Both controllers apply optimal control theory with the
classical quadratic form for the cost function:

N

Cost = Z(x,;r Qixr + u,;rRkuk)
k=1

12)

where Oy and R; may vary with time. The effort weighting
matrix Ry is a scalar since the model includes only one input.
The matrix Qy captures the state-dependent task goals. This
study simulates tasks to achieve or maintain a target position
6*, requiring minimization of (9 — #*)2. The corresponding
matrix is

Qr=[100000 —1]'[t000O0O —1].
(13)

For a rest task, this Qy value holds for all k. For a reaching
task, the feedback controller implements Q; = 0 when k <
Nreach to capture that the state is only required to reach the
target at and after the target reaching time. The Qj value holds
for all k£ even for reaching for the open-loop controller. This
format produces reaches that more closely resemble previously
recorded wrist reaching in healthy and PD states, likely due to
the stiffness-dominated dynamics of the wrist model. Note that
this cost function form is used for mathematical convenience
and quadratic cost functions do not accurately capture some

aspects of human motor control [12]. For example, optimizing
movement duration using a squared force energy term implies
the acceptance of excessively long durations for small rewards.
In contrast, an empirically determined function for energetic
cost does have a global minimum that rejects long movements
for small rewards. However, the quadratic form is sufficient
to evaluate the ability of the candidate model structure to
capture tremor in PD because the qualitative behavior stems
from the existence of model-based feedback. The intricacies
of the feedback gains might affect higher-order behavior but
retain the key qualitative features.

Both controllers determine the input u; from the state
estimate and controller gains Ly:

up = —LiXxk (14)

Known final value Sy = Qp enables calculation of the
optimal gains backward in time from final time step N:

T o
L= (Re+ B See1Be) B SevrAx
Sk = Ok + A/ Skt1(Ax — BiLy).

The open-loop controller gains and inputs are calculated before
task execution using the initial state estimate and model of task
dynamics. In other words, the gains produce all uor values
based on the expected path and these values are known and
available for the feedback controller. Receding horizon optimal
control (RHOC) implements the feedback controller to capture
the ability of human motor feedback to adapt in real time.
Thus, the feedback gain Ly is calculated at each time step as
the optimal initial gain matrix for an optimal gain trajectory
from the current time step to Nrpoc steps in the future.
Significantly, the RHOC calculation includes the expected
open-loop inputs in the system dynamics by augmenting the
state: the additional state is always 1 and Ax(4,8) = %MOL
at each time step. The addition of this trivial state means
the internal model used to calculate optimal feedback gains
includes information about how the open-loop input changes
the dynamics. The augmented A; matrix affects the optimal
feedback gains through the L; calculations. Therefore, feed-
back primarily addresses deviations from the expected motion
to achieve task goals despite unknown disturbances.

5) Gate: The gate is motivated by the basal ganglia gating
model whereby the basal ganglia effectively inhibits and
facilitates undesired and desired movements, respectively. For
healthy individuals, the gate value b = 0 for undesired move-
ments and b = 1 for desired movements. Since simulations
represent desired actions, the model used by the control system
always has b = 1. However, this study characterizes PD
by setting the implemented b < 1 to represent a decreased
signal amplitude—the control system is unaware of this patho-
logical change and implements control believing b = 1.
This mismatch between internal model parameters and actual
parameters can produce unstable feedback. Physiologically,
a GABA-modulated multiplicative change in neural gain could
implement this type of multiplicative gating effect [33]. This
gain modulation may be shifted towards lower gains through
the excessive inhibition of VLa in PD.

This study defines a PD parameter Xpp to better visualize
the effect of PD on model simulations. This parameter ranges
from O to 1 with O representing a healthy individual and

15)
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1 representing the highest possible level of PD pathology.
Greater pathology means greater dopamine depletion, which
reduces the gate value b in the presented model. This paper
implements a straightforward relationship between Xpp and b:

b=1- Xpp. (16)

The actual relationship between disease progression and gate
value is likely nonlinear and is subject to future research. Still,
this linear relationship provides qualitative insight into how
movement dysfunction may change during progression of PD.

B. Simulations

In the following simulations, model parameters repre-
sent wrist flexion-extension: J = 0.00276 Nmsz/rad, G =
0.03 Nms/rad, and K = 0.992 Nm/rad with muscle time
constants 71 = 1o = 40 ms [34]. The control input saturates
at u = 2 to produce stable oscillations during unstable
feedback. The discretization time step is At = 1 ms and the
measurement delay is tgey = 100 ms. The nonzero process
noise covariance matrix values used to calculate gains are
Q5(1,1)=1.75x 1077, Q5(2,2) =8.53 x 1077, Q5(3,3) =
1.16 x 1077, Qf(4,4) = 1.39 x 1077, Q4(5,5) = 1.16 x
1079, and ©%(6,6) = 1.39 x 10~°. Nonzero measurement
noise covariance matrix values are Q®(1,1) = 1.75 x 107+
Q?(2,2) = 853 x 1074, Q®3,3) = 1.16 x 1074, and
Q°4,4) = 1.39 x 10~*. These values were selected based
on average value changes per step of a typical reaching
trajectory. All other noise and covariance terms are zero. For
reaching simulations, gains were calculated using Npegch =
250, Nruoc = 500, and Ry = 5 x 1072, For rest simulations,
uoL =0, Ry = 1 x 107*, and Nrpoc = 500.

First, reaching and rest simulations with varying levels
of Xpp demonstrate the ability of the model to capture
healthy movement and tremor in PD. Figure 3 presents these
simulations for a healthy case (Xpp = 0) and five PD
cases with increasing levels of pathology. Rest simulations
include a small perturbation to engage a controller response.
Healthy parameters produce accurate reaching and maintain
rest position. Rest tremor appears above some threshold
Xpp value, then decreases as Xpp increases, at least for
this set of parameters. Significantly, PD cases with rest
tremor still accomplish the reaching task and appear to have
longer reaching durations consistent with reduced motor vigor.
Furthermore, these simulated reach traces appear remarkably
similar to previously recorded PD wrist movements [35].

Figure 4 highlights the variability of rest tremor sever-
ity given PD severity. The figure presents the rest tremor
amplitude and frequency for several sets of control gains
across the range of possible disease parameters Xpp. The
only parameter changed in each gain set is Ry, ranging from
about 6 x 107 to 1 x 1073, Higher values of Ry produce
lower magnitudes of controller gains while lower Ry values
produce higher gains. These different sets of gains demon-
strate how different individuals might be affected differently
by PD pathophysiology. Each datapoint represents a single
simulation for that combination of control gains and disease
parameter, with datapoints connected to provide visual clarity.
Thus, the rest tremor simulations in Fig. 3 map onto Fig. 4
as six datapoints. Higher controller gains produce a large
jump in tremor amplitude above a threshold Xpp value,
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Fig. 3. Simulations of reaching and rest for varying disease parameter
values. Reach target shown as dotted line.

here about 0.25. Then, increasing pathology decreases tremor
amplitude and increases tremor frequency. In contrast, lower
controller gains produce a more gradual tremor progression
and a decreasing tremor frequency. Interestingly, all gain sets
converge towards a single frequency as Xpp increases: in
this case, about 6 Hz. Overall, these results indicate that
tremor progression can vary among different individuals due to
different inherent controller parameters. Furthermore, tremor
expression can vary in an individual as controller gains change
for different situations. Figure 4 also illustrates the fraction
of time for which the controller input is saturated for each
simulation. Saturation fraction does not change significantly
across disease parameters for a given set of gains. Gain sets
exhibiting the “increasing-frequency” characteristics have very
high saturation fractions above about 0.95. Further simulations
(not illustrated) investigated the effects of saturation amplitude
and feedback delay magnitude. Higher saturation amplitudes
produce higher tremor amplitudes without changing tremor
frequency, similar to the effects of delay-induced unstable
feedback [7]. Changing the delay magnitude changes the
tremor amplitude (greater delay produces greater tremor) but
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also changes the frequency for which the different gain sets
converge, with longer delays producing lower frequencies.
For example, a 140 ms sensory delay produces tremor that
converges towards 5 Hz as Xpp increases. Future work will
perform an in-depth parameter analysis to gain further insight
into how key parameters affect system characteristics.
Reaching simulations in Fig. 3 hint at the candidate model’s
ability to capture both tremor and reduced vigor with a
single disease parameter. Figure 5 verifies this observation
by determining the movement duration as the 5% settling
time for reaches: higher disease parameters reduce motor
vigor (i.e., increase movement duration). The model can also
recreate results similar to the study by Mazzoni et al. [11]
that demonstrates a reduced willingness of PD patients to
move fast. For example, the peak velocities from the displayed
reaching simulations for Xpp = 0 and Xpp = 0.2 are
2.78 rad/s and 2.34 rad/s, respectively. Consider the case where
the target peak reach velocity is 3 rad/s and the CNS adapts by
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Fig. 6. Inclusion of control input multiplicative noise produces
time-varying tremor amplitude.

decreasing Ry by 5% of its original value after each failed trial
(therefore, increasing gains to move faster on the subsequent
trial). The PD case (with Xpp = 0.2) takes 17 iterations
for a trial to reach the target velocity while the healthy case
(Xpp = 0) takes 8 trials to produce a movement with the target
velocity. Thus, it takes this theoretical PD patient 9 additional
trials to reach the target velocity.

The simulated model aims to capture the qualitative char-
acteristics of PD movement dysfunction. Multiplicative noise
is a well-established factor in human motor control but is not
included in this initial model. The optimal control equations
and Kalman filter equations are only optimal for linear noise
and the inclusion of multiple filters and controller calculations
makes the model incompatible with previous SOC deriva-
tions for multiplicative noise [36]. However, simulations with
multiplicative control input noise still provide insight into
how this noise might affect the system. Reaching simulations
produce qualitatively similar results as without noise (but with
greater variation). However, as illustrated in Fig. 6, multiplica-
tive noise produces time-varying tremor amplitude that more
closely resembles tremor observed in patient recordings. This
result helps to illustrate how a single high-level control system
parameter can produce the complex limb oscillations observed
in PD patients.

Finally, this model structure is motivated by PD but may
provide insight into other movement dysfunctions. A brief
example is provided here for cerebellum dysfunction. Consider
the saccades study by Xu-Wilson et al. [31] where saccade
targets were repeated to effectively decrease motivation. Sim-
ulations in Fig. 7 recreate these results with the presented
wrist model adjusted to have control similar to saccades. Set
Q@ values to be very high for 6, é, and f since saccades
suppress sensory feedback. The decreased motivation to move
is captured here by setting b = 0.7. In other words, reduced
motivation decreases task reward enough to cause the basal
ganglia gate to open only partially. In healthy subjects, unex-
pectedly low initial control inputs are overcome by feedback
of the implemented control values u,,. However, the forward
model in cerebellar patients is dysfunctional, implemented
here by removing upp altogether since now there is no reliable
feedback information. Figure 7 shows model simulations agree
with the observed saccades for healthy and cerebellar patients
from [31]: cerebellar patients are unable to overcome the low
initial control inputs and fall short of the target. The treatment
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of the implemented control input as a measurement in the
forward model Kalman filter is a key component for capturing
this behavior. Future work will aim to further analyze how this
type of model structure could provide insight into PD and other
sources of movement dysfunction.

IV. DISCUSSION

To start, the motivation of the model structure is based
on the physiological underpinnings of the gating model of
basal ganglia control of the thalamus. Tonic inhibition sup-
press thalamic output to the cortex while disinhibition allows
thalamic excitation of the cortex. Excessive inhibition in PD
decreases thalamus firing rates in the “disinhibited” state
relative to healthy firing rates. This signal may act as a
nonlinear “on/off” gain factor for activation in the cortex. The
shift in firing rate in PD causes the system to operate in the
transition region of the on/off gate, decreasing the level of
the control input. Of course, this example gating mechanism
is very speculative and represents only one of many potential
mechanisms for unstable feedback through decreased signals.
The control-system roles and connectivity of brain regions
implies that this type of decrease in control signal would occur
in the cortex via the thalamus or directly in the thalamus—
these facts informed model development. However, the model
does not explicitly require this function to happen in any
specific region. Overall, the key physiological motivation for
this model is the fact that excessive inhibition in PD would
decrease the amplitude of rate-coded signals. The rest of
the model structure is informed by previous clinical studies
regarding theory for roles of brain regions, previous evidence
that the brain uses internal models to overcome sensory delays,
and previous evidence that unstable feedback could produce
tremor.

The candidate model aligns well with existing knowledge
about parkinsonian tremor. First, the theory does not preclude
the dimmer-switch hypothesis since the observed neural activ-
ity that motivates the dimmer-switch hypothesis may represent
lower-level implementation of higher-level motor control [9].
In other words, the basal ganglia triggering tremor is analo-
gous to initiating a motor program to complete a task while
CTC oscillation represents the oscillatory state in feedback
control. The basal ganglia and CTC circuit still trigger and
drive tremor, respectively, but there is more insight into the
source of dysfunction. The model also captures the potential

mechanisms for PD treatment effectiveness. Dopaminergic
medications raise dopamine levels to directly increase the
gate value by reducing net inhibition of VLa. Some patients
have dopamine-resistant tremor, which could be the result
of effectively decreasing Xpp in Fig. 4, but not enough to
get past the threshold that produces tremor. In addition, it is
possible other mechanisms may make it appear as if dopamine
treatment is ineffective [37]. DBS targeting the basal ganglia
also reduces net inhibition by disrupting inhibition stemming
from GPi or the subthalamic nucleus (STN) [38], [39]. DBS
of VLp disrupts the feedback loop, disrupting the instability
that causes tremor but requiring the motor system to rely
on open-loop control or implement alternative mechanisms
of feedback control [40]. One possibility is the state estimate
skips forward estimation in the cerebellum: the PPC processes
delayed measurements and directly sends a delayed state
estimate to the motor cortex. This setup still allows movements
to adapt, but less rapidly. This setup may also produce similar
movements as cerebellar patients, which may be investigated
in future studies.

In addition to DBS treatment, a recent study evaluated the
effect of electrical stimulation of thalamic and basal ganglia
regions at different frequencies (other than the > 100 Hz
frequencies of DBS) [41]. Stimulation activates all synapses
at the stimulation location, so firing rates increase for regions
with relatively more excitatory synapses (thalamic regions)
and decrease for regions with relatively more inhibitory
synapses (basal ganglia regions). Therefore, stimulation of
either region has an excitatory effect on the thalamus and likely
increases movement (though whether movement was produced
was not reported). Overall, thalamic output depends on the
net effect of inhibitory and excitatory contributions. Thus,
increased inhibition will decrease firing rate. Both regions
experience reduced firing at high stimulation frequencies
(> 100 Hz) due to synaptic fatigue, which is consistent with
the effectiveness of DBS as described previously.

Previous studies on how tremor changes in different context
provides further insight into the efficacy of the candidate
model. First, fixing the affected limb in a cast reduces or
eliminates tremor EMG activity [42]. This reduced EMG
activity shows that tremor is not driven by purely central
drivers and feedback must play a role (otherwise, the central
oscillator would continue to excite muscles at the same level
even if the limb cannot move). In the context of the model,
the inability to amplify the feedback signals prevents unstable
feedback control and eliminates tremorous activation. Other
studies indicate a potential modulatory (but not driving) role
of peripheral feedback, with one source of evidence being that
added mass does not change tremor frequency [43]. Signifi-
cantly, model simulations with an order-of-magnitude increase
in inertia produce less than a 0.5 Hz shift in tremor frequency.
In addition, studies show the long-latency strech reflex (LLSR)
includes information about internal models and likely includes
cortical processing [44], [45], [46]. Thus, the LLSR might
implement an equivalent of the feedback component of the
control framework in this paper. This idea highlights how
peripheral feedback through the CNS that becomes unstable
could produce tremor.

Next, increased stress and cognitive load both increase
tremor amplitude [47], [48]. Stress increases movement speed,
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which may represent an increase in controller gains [49], [50].
This change could be represented through a decrease in Ry in
the model to produce a higher magnitude of control inputs
for both the open-loop and feedback components. Thus, stress
would increase tremor amplitude as seen in the higher gain
cases in Fig. 4. With this interpretation, stress should also
decrease tremor frequency. However, [47] did not show a
significant change in frequency. Perhaps stress also affects the
level of dysfunctional gating to increase amplitude while coun-
teracting the change in frequency. This discrepancy requires
further investigation in future work. Cognitive load decreases
movement accuracy, which may represent decreased state
estimation accuracy due to reduced cognitive resources [51].
Increased measurement noise could represent this change,
which skews feedback to weigh internal models more heavily,
increasing tremor amplitude since the internal model does
not accurately represent the actual dynamics. The increased
cerebral integration observed during cognitive load may reflect
this increased reliance on the internal model since multiple
brain regions are sharing and collaborating with the same
internal model [3], [48].

Previous clinical studies on the effect of disease progression
on tremor produce mixed conclusions. One longitudinal study
on PD tremor frequency found that frequency decreases by
approximately 0.1 Hz per year, on average [52]. However,
a significant change in frequency was only observed in about
half of the patients, with 30% of those patients exhibiting
a frequency increase rather than decrease. Unfortunately,
this longitudinal study did not measure tremor amplitude or
severity. Another study evaluating patients with asymmetrical
tremor symptoms found tremor disability scores increase over
time, on average [53]. A review on DBS effectiveness over
time found that tremor severity increased the least among
all symptoms and decreased in a quarter of studies [54].
A study on the effectiveness of levodopa over time found
tremor decreased on average, especially in the non-tremor
subtype but also in tremor-dominant patients [55]. Altogether,
this variation of tremor amplitude and frequency progression
across patients and studies is not surprising in the context of
Fig. 4. Different patients will have different effective controller
parameters, which affects how tremor will change due to
increased pathology.

Continuing this discussion, it is also known that some
tremor-dominant patients lose their tremor as the disease pro-
gresses [56]. Another study observed high variation in tremor
amplitude for tremor-dominant patients, but low variation for
high-rigidity patients [57]. In addition, high-rigidity patients
with no visible tremor still had measurable tremor. The loss
of tremor for high disease parameters explains the existence
of tremor and non-tremor phenotypes and the transition of
some patients from the tremor to non-tremor phenotype. The
tremor-dominant phenotype is associated with less severe
symptoms and less depletion of dopaminergic cells [58]. Thus,
non-tremor patients have high disease parameters that are past
the tremor-producing region. Tremor-dominant patients that
lose tremor have dopaminergic cell depletion that advances
them to the non-tremor portion of Fig. 4.

The candidate model demonstrates that tremor can extend
from the same pathology as bradykinesia (through basal
ganglia dopamine depletion). Decreased dopamine increases

thalamic inhibition that decreases the gate value to produce
slow volitional movements and unstable feedback at rest. Since
the basal ganglia is also believed to define the costs and
rewards for a task [14], decreased dopamine could also reduce
the represented value of the task to further decrease motor
vigor [12]. Rigidity—the other key PD motor symptom—
could be a response to instability, similar to the increased
stiffness and damping from co-contraction observed in healthy
individuals in uncertain environments [59], [60]. Rigidity
could also play a role in modifying tremor as disease pro-
gresses [57]. The general inhibition of movement for severe
PD could be a combination of the effects of reduced vigor
and increased rigidity. Finally, while this paper focuses on
movement dysfunction of upper limbs, the model could pro-
vide insight into gait dysfunction in PD. Gait is predominantly
feedforward-controlled due to the longer sensory delays as
compared to the upper-limbs [61]. Consequently, there is
less opportunity for feedback to overcome the decreased
amplitudes of pathologically gated open-loop input. This effect
could appear as characteristic PD gait symptoms like shuffling
or freezing of gait as the legs do not reach the full scale
of their desired trajectory [62]. Future work will investigate
the potential for this type of model to characterize PD gait
symptoms.

In addition to PD, the candidate model captures move-
ment characteristics of healthy individuals as well as other
movement dysfunctions, particularly since it largely follows
the form of Shadmehr and Krakauer’s model [14]. Cerebellar
movements that cannot overcome decreased motor gains rep-
resent a key feature the updated model captures which was
not explicitly captured previously [31]. Figure 7 illustrates
how the model captures the inability of cerebellar patients
to incorporate the descending control input into a forward
model to overcome unexpectedly low inputs. Extensions of
the candidate model could capture other cerebellar effects like
essential tremor, which could be the result of faulty delay
compensation in the cerebellum [6].

Future studies could further advance these control frame-
work models of human motor control to improve our
understanding of qualitative roles of brain regions. In addi-
tion, longitudinal studies measuring tremor amplitude and
frequency along with the severity of bradykinesia and rigidity
can provide insight into disease progression and support for the
proposed mechanism of tremor generation. Future research can
also use the predicted tremor progression trends to improve
diagnosis and treatment. Analysis of tremor frequency over
time could indicate the level of disease progression and
identify when a patient is approaching the rigid phenotype.
Alternative treatments could exploit knowledge of system
dynamics to develop mechanical or neurological rehabilitation
approaches to improve symptoms. For example, patients can
reduce tremor amplitude through volitional suppression, which
is associated with decreased muscular activation [63]. This
volitional suppression could be the result of a voluntary
change in the control parameters (e.g., reducing the value of
maintaining target position to decrease gains). Knowledge of
the expected control system structure and dysfunction could
identify cues to train patients to mitigate their symptoms. One
possibility is improving bradykinesia by training patients to
imagine reaching for something that is much more valuable
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than the actual item, thereby improving motor vigor. Even
simply making patients aware of how dysfunction affects
their motor control could enable volitional compensation of
symptoms.

The model can provide insight into new pharmaceutical
treatments that aim to increase the gate value or otherwise
improve closed-loop stability. One possibility is the use of
drugs that increase motor impulsivity, which could correspond
to a more easily opened gate. Indeed, levodopa is associated
with increased impulsivity and dyskinesia when treating PD
patients [64]. Those side effects could represent an overshoot
of the desired effect of fully opening the gate more easily.
Research shows that serotonin is also affected by PD: inter-
estingly, serotonin depletion increases impulsive movements
and is linked to tremor-dominant PD [65], [66]. These two
observations point towards the possibility that serotonin works
in concert with dopamine to characterize the costs and rewards
for a task. Treatment approaches that modulate serotonin
levels—even decreasing serotonin—could benefit patients by
restoring the correct ratio and could depend on where the
patient is in the disease progression life cycle.

Finally, while this study provides promising results towards
improved understanding of PD, it is important to highlight that
this initial theory development requires much further analysis
through future studies. This paper develops a low-order model
motivated by qualitative roles and connectivity. The CNS is
extremely complex and such a low-order model cannot capture
all features of human motor control. Furthermore, while sim-
ulations demonstrate clinically observed characteristics, other
models or mechanisms could also capture the same features.
Future work should identify movement studies that would
show clear differences in recorded movements consistent with
the proposed model as opposed to other potential candidate
models for human motor control. These types of movement
studies could also identify potential diagnosis strategies that
exploit predicted differences in PD and healthy movement.

V. CONCLUSION

In summary, augmenting a computational neuroanatomy
framework to include a mechanism of unstable feedback in PD
captures healthy control, parkinsonian tremor, and other mech-
anisms of movement dysfunction. Key additions to the control
system framework include the basal ganglia gating model
and the treatment the efferent copy of the control input as a
measurement, similar to proprioceptive feedback. The model
captures excessive thalamic inhibition in PD as a reduced
gate value since inhibition is expected to reduce rate-coded
signal amplitude. This reduced gate value can produce unstable
feedback since the internal model is unaware of the patholog-
ical change. Significantly, the proposed mechanism of tremor
generation allows dopamine depletion to cause all of the
primary motor symptoms in PD: rigidity, bradykinesia, and
tremor. Tremor severity and frequency vary over the life cycle
of disease progression in a way that matches the inconsistent
results of longitudinal studies. Simulations show the disap-
pearance of tremor for severe disease cases, representing the
non-tremor PD phenotype and the disappearance of tremor
in some patients. Altogether, the proposed mechanism of PD
tremor generation along with the computational neuroanatomy
framework provide insight into treatment effectiveness, disease

progression, and pathways towards improved understanding of
human motor control.
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