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ABSTRACT
Facial expression recognition (FER) plays a critical role in human-
computer interaction and affective computing. Traditional FER
methods typically rely on comparing the difference between an
examined facial expression and a neutral face of the same person
to extract the motion of facial features and filter out expression-
irrelevant information. With the extensive use of deep learning, the
performance of FER has been further improved. However, existing
deep learning-based methods rarely utilize neutral faces. To address
this gap, we propose a novel deep learning-based FERmethod called
Generative Neutral Features-Disentangled Learning (GNDL), which
draws inspiration from the facial feature manifold. Our approach
integrates a neutral feature generator (NFG) that generates neutral
features in scenarios where the neutral face of the same subject
is not available. The NFG uses fine-grained features from exam-
ined images as input and produces corresponding neutral features
with the same identity. We train the NFG using a neutral feature
reconstruction loss to ensure that the generative neutral features
are consistent with the actual neutral features. We then disentan-
gle the generative neutral features from the examined features to
remove disturbance features and generate an expression deviation
embedding for classification. Extensitive experimental results on
three popular databases (CK+, Oulu-CASIA, and MMI) demonstrate
that our proposed GNDL method outperforms state-of-the-art FER
methods.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Image
representations.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612014

KEYWORDS
Facial expression recognition, neutral feature generator, facial fea-
ture manifold, disturbance-disentangling

ACM Reference Format:
Zhenqian Wu, Yazhou Ren, Xiaorong Pu, Zhifeng Hao, and Lifang He. 2023.
Generative Neutral Features-Disentangled Learning for Facial Expression
Recognition. In Proceedings of the 31st ACM International Conference on
Multimedia (MM ’23), October 29–November 3, 2023, Ottawa, ON, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3581783.3612014

1 INTRODUCTION
Facial expression is a dominant and all-encompassing channel of
communication that humans use to convey their emotions and in-
tentions [6], and it provides a crucial insight into our psychological
and physiological well-being [17]. To understand and interpret the
complex nature of facial expressions, researchers have developed
the Facial Action Coding System (FACS) [9]. FACS categorizes facial
movements into 44 action units that represent distinct movements
of facial muscles, such as the inner brow raiser, nose wrinkler, and
upper lip raiser, among others. These action units can be combined
to describe a range of facial expressions, thereby marking a signifi-
cant milestone in the field of facial expression recognition (FER).

The facial action units play a critical role in intuitive recognition
of facial expressions. Traditional methods for feature extraction
in facial expression recognition mainly rely on contrasting these
units from an expressionless neutral face to that of an expressive
face. For example, Pantic et al. [28] use a multidetector to extract
landmark points from facial expression images, while Cohn et al. [5]
utilize a hierarchical optical flow method [23]. These points localize
the contours of eyes, nose, and mouth, etc. By contrasting these
landmark points with those in neutral face of the same person, they
correspond to different facial muscle movements to recognize facial
expressions. Huang et al. [12] calculate the difference between the
model feature parameters of the examined facial expression and the
neutral face of the same person to generate action parameters for
FER. Kimura et al. [15] propose a Potential Net to model a neutral
face as reference. By comparing the Potential Net of an image
showing expression with the reference, they can extract the motion
flow of expression. Kotsia et al. [16] define the difference of each
Candide grid node coordinates between the examined expression
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and the neutral face as geometrical displacement, which is used as
an input to a classifier.

There are two main benefits for these methods to compare the
representations of examined images with those of the same sub-
ject’s neutral images. Firstly, they can filter out information that is
unrelated to the facial expression. Secondly, they can extract facial
feature motion that conforms to the FACS. However, despite the
significant performance improvement in FER task [40, 44] with the
rise of convolutional neural network (CNN) [18, 36], most deep
learning-based methods focus on individual images or image se-
quences [20, 31], with little attention paid to neutral faces.

Inspired by these traditional methods, in this paper, we intro-
duce a deep learning-based FER method called Generative Neutral
Features-Disentangled Learning (GNDL), which aims to disentangle
neutral features from the examined facial features. Specifically, we
use a backbone CNN to extract feature vectors from the examined
and neutral images with the same identity. Then, the neutral feature
vector will be disentangled from the examined feature vector by a
simple subtraction. Based on the prior study on facial feature mani-
fold [3, 34], the features of examined and neutral facial images with
the same identity distribute on the same manifold in the feature
space, and they are composed of their respective expression-related
features and shared disturbance features (shown in Figure 1). Thus,
the final disentangled feature vector contains no disturbance fea-
tures and captures the difference between the initial state and the
apex state of the expression. However, the same subject’s neutral
face cannot always be obtained, to address which we propose a neu-
tral feature generator (NFG). The NFG takes the examined feature
vector as input and generates a neutral feature vector. A neutral
feature reconstruction loss will be used for quantifying the distance
between the generative neutral feature vector and the real neutral
feature vector. With the trained NFG, the neutral feature disentan-
gling will be practiced between the examined feature vector and the
generative neutral feature vector, since only the examined images
are fed into the model during validation. The main contributions
of this paper can be summarized as follows:

1) Based on the manifold of facial features in the feature space,
we propose a novel method to filter out expression-irrelevant
features and extract expression deviation features, which is
achieved by disentangling the generative neutral features from
the examined feature vector.

2) Our approach involves a generator specifically designed to pro-
duce neutral features. This feature-level generator takes facial
expression images as input and outputs their corresponding
neutral feature vector, which can be fed into FER models as an
additional source of information at a relatively low cost.

3) We achieved 99.69%, 90.14%, and 89.08% recognition accuracies
respectively on three popular databases (i.e., CK+, Oulu-CASIA,
and MMI), which outperforms the state-of-the-art FER methods.

2 RELATED WORKS
In this section, we will introduce some recent deep learning-based
FER methods, including those based on static facial images and
image sequences. Additionally, we will present several methods
that utilize neutral facial images.

+=

+=

Features  of 
Examined face 

Expression-related 
features

Disturbance features

Disturbance features
Expression-related 

features
Features  of 
Neutral face 

Figure 1: Features of examined and neutral faces are com-
posed of their respective expression-related features and
shared disturbance features. We use facial images to repre-
sent the corresponding features.

Methods for static images. These methods usually take the
apex frame of a facial expression as the input. Devries et al. [7]
employ a multi-task learning approach to classify facial expressions
and predict facial landmark points simultaneously. The landmark
points guide the network to focus on expression-related regions.
Ali et al. [1] use features of a facial expression image and an one-
hot encoding that represents identity, to modify the identity of the
facial expression image. This approach will guide the network to
extract features disentangled from identity information. Ruan et al.
[32] train a network on databases for face recognition, facial pose
recognition, etc., and transfer the learned knowledge to another
network to disentangle multiple disturbing factors from facial ex-
pression images. Zhang et al. [42] propose an identity-disentangled
model. They freeze a network pre-trained on a face recognition
database to extract the identity information, which is then disen-
tangled from the facial feature vector of the same image. Shao et
al. [35] pre-train a generator to output label distributions of facial
expressions, which are used as ground-truth for label distribution
learning. A self-paced learning strategy is also employed. They
address the issues of label ambiguity and label noise in FER.

Methods for image sequences. These methods use the entire
image sequence of a facial expression from the initial state to the
apex state as input. Liu et al. [21] convolve the input sequence with
3D filters and then use a set of filters corresponding to 13 facial
parts that are manually defined to learn part-based representations.
They then apply spatial constraints to refine the representations
and achieve more reasonable results. Jung et al [13] employ 3D
filters varying in importance over time to extract features from
image sequences, while using a multi-layer perceptron (MLP) to
extract features from concatenated coordinates of landmark points
of each frame. They propose a joint fine-tuning method to combine
these two models. To distinguish more representative frames dur-
ing training, Meng et al. [25] propose self-attention weights and
relation-attention weights for each frame’s feature vector, which is
extracted by a CNN. Wang et al. [38] propose a dual path network
to represent sparsely sampled frames, which uses CNNs to extract
weighted consecutive frame-level features, and further applies a
dual path long short-term memory (LSTM) module to learn and
aggregate channel-aware and temporal-aware features.
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Methods using neutral facial images. A few deep learning-
based methods, like ours, use neutral expressions during training
and exclude them during validation. Kim et al. [14] propose an
encoder-decoder network to generate neutral expressions from
examined images and calculate element-wise distance between their
features for classification. They use three reconstruction losses to
ensure the effectiveness of the extracted features: one to generate
the neutral expression from the input image, another to reconstruct
the input image from its own feature map, and a third to reconstruct
the generative neutral expression from its own feature map. Yang
et al. [39] introduce an adversarial generative network (GAN) that
generates neutral expressions from input facial expression images.
They emphasize the importance of recording individual-specific
expression information in the intermediate layers of the generator.
Therefore, they employ a local CNN model to extract features from
the generator’s intermediate layers. Unlike the aforementioned
methods, which extract neutral features from generative neutral
expression images, our proposed GNDL reconstructs the neutral
features directly, rather than the neutral images. The GNDL is more
efficient, straightforward, and easier to train.

3 PROPOSED METHOD
3.1 Overview
Figure 2 presents an overview of our Generative Neutral Features-
Disentangled Learning (GNDL)method, which showcases the frame-
works employed in both the training and validation stages.

The training model takes as input both examined expression im-
ages to be recognized and their corresponding neutral expression
images. They are simultaneously fed into a facial feature extraction
network, and normalization will be performed between them at
each convolutional layer, aiming to make them distributed on the
same manifold in the feature space. The network outputs examined
feature vectors 𝑭𝑒𝑥𝑎𝑚 and neutral feature vectors 𝑭𝑛𝑒𝑢 separately.
Meanwhile, we train a Neutral Feature Generator (NFG) to trans-
form the examined feature vectors into their corresponding neutral
feature vectors, which are represented by 𝑭

′
𝑛𝑒𝑢 . NFG’s architecture

will be introduced in Section 3.3. To train NFG, we propose a neutral
feature reconstruction loss, which measures the distance between
𝑭𝑛𝑒𝑢 and 𝑭

′
𝑛𝑒𝑢 . Then, we achieve neutral feature disentangling,

which will be explained in Section 3.2, by subtracting 𝑭
′
𝑛𝑒𝑢 from

𝑭𝑒𝑥𝑎𝑚 . At last, expressive deviation feature vectors that are free
from disturbance features will be obtained for classification.

The facial feature extraction network used for the validation
model does not involve any normalization as it only processes
examined expression images. The expression deviation feature vec-
tors are obtained by subtracting the neutral feature vector, which
is generated by the trained NFG.

3.2 Neutral Feature Disentangling
The features or feature vector 𝑭𝑒𝑥𝑎𝑚 of an examined facial image
can be defined as a linear combination of expression-related features
𝑭𝑒𝑥𝑝 and expression-unrelated (disturbance) features 𝑭𝑑𝑖𝑠 [2, 4]:

𝑭𝑒𝑥𝑎𝑚 = 𝑭𝑒𝑥𝑝 + 𝑭𝑑𝑖𝑠 . (1)

Removing disturbance features and utilizing features highly cor-
related with facial expressions for classification leads to better ac-
curacy. However, it remains challenging to eliminate 𝑭𝑑𝑖𝑠 or obtain
𝑭𝑒𝑥𝑝 directly. Therefore, we focus our study on the early analysis
of the facial expression manifold, as proposed in [3, 34].

An 𝑁 -dimensional feature vector of a facial image can be re-
garded as a point in an 𝑁 -dimensional feature space. For instance,
Figure 3 illustrates this concept for 𝑁 = 3, but it can be extended to
higher dimensions. In this feature space, all facial feature vectors of
an individual are situated on a smooth manifold, where the neutral
expression serves as the central reference point. Moving away from
the reference center, sequences of facial images with continuous
changes expand outward along a path. When the identities of facial
images differ, their feature vectors are positioned on distinct, yet
comparable, manifolds with similar shapes.

Figure 4 shows the manifold on which 𝑭𝑒𝑥𝑝 is located. Particu-
larly, we define this manifold’s reference center as 𝑭𝑖𝑛𝑖𝑡 , represent-
ing the expression-related features of neutral expression, which
is the initial state of other expressions. The features of neutral ex-
pression 𝑭𝑛𝑒𝑢 are the linear combination of 𝑭𝑖𝑛𝑖𝑡 and the similar
disturbance features 𝑭𝑑𝑖𝑠 shared with other facial features on the
same manifold:

𝑭𝑛𝑒𝑢 = 𝑭𝑖𝑛𝑖𝑡 + 𝑭𝑑𝑖𝑠 . (2)
Building on the aforementioned studies, we subtract the facial

feature vector of the neutral image from those of the examined
image with the same identity for expression recognition purpose:

𝑭𝑒𝑥𝑝−𝑑 = 𝑭𝑒𝑥𝑎𝑚 − 𝑭𝑛𝑒𝑢 = 𝑭𝑒𝑥𝑝 − 𝑭𝑖𝑛𝑖𝑡 . (3)

𝑭𝑒𝑥𝑝−𝑑 is the expression deviation feature vector, which not
only excludes disturbance features and is highly correlated with
expressive information, but also contains the variation information
of the expression from the initial state to the apex state.

Due to the varying illumination, neutral features and examined
facial features may be distributed on different manifolds, even with
the same identity. Thus, we apply a normalization operation be-
tween the output features of examined image and neutral image at
each convolutional layer in the facial-features-extracted network.
Let 𝑭 𝑖, 𝑗𝑒𝑥𝑎𝑚 be the output features of the 𝑖𝑡ℎ examined image in
the 𝑗𝑡ℎ convolutional layer. Let 𝑭 𝑖, 𝑗𝑛𝑒𝑢 be the output features of the
𝑖𝑡ℎ neutral image in the 𝑗𝑡ℎ convolutional layer. We first calculate
average value 𝜇 and variance 𝜎2:

𝜇 𝑗 =
1
𝑀

𝑀∑︁
𝑖=1

(𝑭 𝑖, 𝑗𝑒𝑥𝑎𝑚 + 𝑭 𝑖, 𝑗𝑛𝑒𝑢 ), (4)

𝜎2𝑗 =
1
𝑀

𝑀∑︁
𝑖=1

(
(𝑭 𝑖, 𝑗𝑒𝑥𝑎𝑚 − 𝜇)2 + (𝑭 𝑖, 𝑗𝑛𝑒𝑢 − 𝜇)2

)
, (5)

where𝑀 represents the number of paired samples in a batch. Then,
we obtain the input features of the next layer by

𝑭.
𝑖, 𝑗

= 𝑔

(
𝛾
𝑭 𝑖, 𝑗. − 𝜇
√
𝜎2 + 𝜖

+ 𝛽
)
, (6)

where 𝑭 𝑖, 𝑗. represents 𝑭 𝑖, 𝑗𝑒𝑥𝑎𝑚 or 𝑭 𝑖, 𝑗𝑛𝑒𝑢 , 𝑭.
𝑖, 𝑗 represents normalized

features, 𝛾 and 𝛽 are reconstruction parameters learned by the
networks, 𝜖 is a constant that prevents the denominator from being
zero, and 𝑔(·) denotes activation function. Eq. (4) to Eq. (6) are all
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Figure 2: Overview of our proposed Generative Neutral Features-Disentangled Learning (GNDL) method. The training model
and the validation model are presented separately. 𝑭𝑒𝑥𝑎𝑚 represents the feature vector of the examined expression image to
be recognized, 𝑭𝑛𝑒𝑢 represents the feature vector of the neutral expression image with the same identity, 𝑭

′
𝑛𝑒𝑢 represents the

generative neutral feature vector, and L𝑛𝑒𝑢 is our proposed neutral feature reconstruction loss.

A

B

Figure 3: Two examples of manifolds with different identities
in the facial feature space. Manifold A and manifold B have
similar shapes. The center points ofmanifoldA andmanifold
B are both neutral expression features (represented by 𝑭𝑛𝑒𝑢 ).
The features of other expressions (𝑭𝑒𝑥𝑎𝑚1, 𝑭𝑒𝑥𝑎𝑚2, and 𝑭𝑒𝑥𝑎𝑚3)
are distributed around.

calculated separately for each channel of the features. At the end
of the network, we obtain the examined feature vector and the

E
A

(a)

E
A

(b)

Figure 4: The manifold of expression-related features. The
gray facial expressions represent expression-related features.
By linearly combining with the similar disturbance features
(𝑭𝑑𝑖𝑠 ), expression-related features (𝑭𝑒𝑥𝑝 or 𝑭𝑖𝑛𝑖𝑡 ) on manifold
E can be transformed into the facial image features on mani-
fold A (𝑭𝑒𝑥𝑎𝑚 or 𝑭𝑛𝑒𝑢 ).

neutral feature vector through an average pooling layer, then the
disentangling operation is performed.

3.3 Neutral Feature Generator
During validation, it is possible that there is no corresponding
neutral image available tomatch a given facial expression image.We

4303



Generative Neutral Features-Disentangled Learning for Facial Expression Recognition MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

L
eakyR

eL
U

InputC
hannel/2

InputC
hannel

L
eakyR

eL
U

InputC
hannel

N
N

 interpolation

Fully C
onnected 

Fully C
onnected

Fully C
onnected

InputC
hannel

Figure 5: Structure of the proposed NFG. The “InputChannel”
represents the number of channels of the input feature vector,
the blue rectangle represents feature vector with its channel
number, and the “NN interpolation” means nearest neighbor
interpolation.

here propose a neutral feature generator (NFG) which can learn the
mapping from facial features of any expression to neutral features.

As shown in Figure 5, NFG consists of an encoder and a decoder.
In the encoding stage, the input examined feature vector is trans-
formed into an intermediate vector through a fully connected layer
and a LeakyReLU activation function, with the channel number
being halved. The decoder emulates the typical upsampling process
used in image generation task [10, 27] and image segmentation task
[30], which involves bilinear interpolation of feature maps followed
by convolution. Instead, NFG uses a nearest neighbor interpolation
on the low-dimensional vector to double the channel number, fol-
lowed by fully connected layers and LeakyReLu activation function
to achieve a non-linear transformation. At last, a neutral feature
vector with the same channel number as the input is generated.
Let G be the generator, then the proposed disentangling method in
Section 3.2 can be replaced by:

𝑭𝑒𝑥𝑝−𝑑 = 𝑭𝑒𝑥𝑎𝑚 − G(𝑭𝑒𝑥𝑎𝑚) = 𝑭𝑒𝑥𝑎𝑚 − 𝑭
′
𝑛𝑒𝑢 . (7)

During the training of NFG, a neutral feature reconstruction loss
is designed to quantify the distance between facial feature vector
and neutral feature vector. LetX = {(x1𝑒𝑥𝑎𝑚, x1𝑛𝑒𝑢 ), · · · , (x𝑁𝑒𝑥𝑎𝑚, x𝑁𝑛𝑒𝑢 )}
be the data set where x𝑖𝑒𝑥𝑎𝑚 ∈ R𝑊 ×𝐻 is the 𝑖𝑡ℎ examined image,
x𝑖𝑛𝑒𝑢 ∈ R𝑊 ×𝐻 is the 𝑖𝑡ℎ corresponding neutral expression image, 𝑁
is the total number of samples. The neutral feature reconstruction
loss can be formulated as:

L𝑛𝑒𝑢 =

𝑁∑︁
𝑖=1

| |𝑭 𝑖𝑒𝑥𝑎𝑚 − 𝑭
′𝑖
𝑛𝑒𝑢 | |1 . (8)

3.4 Loss Function
We use the crossentropy loss as the facial expression classification
loss:

L𝑐𝑙𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑦𝑘𝑖 log(𝑝
𝑘
𝑖 ). (9)

Here, 𝑦𝑘
𝑖
is the value of the 𝑘𝑡ℎ position in the one-hot label of

the 𝑖𝑡ℎ sample, 𝐾 is the number of classes (𝐾 ≥ 2), 𝑁 is the total
number of samples, and 𝑝𝑘

𝑖
is the probability that the 𝑖𝑡ℎ sample

belongs to the 𝑘𝑡ℎ class, defined as:

𝑝𝑘𝑖 =
𝑒
𝜽𝑇
𝑘
𝑽 𝑖
𝑒𝑥𝑝−𝑑∑𝐾

𝑙=1 𝑒
𝜽𝑇
𝑙
𝑽 𝑖
𝑒𝑥𝑝−𝑑

, (10)

where 𝜽𝑘 denotes the parameter vector of the 𝑘𝑡ℎ class in the lin-
ear fully-connected layer, and 𝑽 𝑖

𝑒𝑥𝑝−𝑑 defined in Section 3.2 is the
expression deviation feature vector.

All parts of our method are jointly trained in an end-to-end
manner, and the total loss function is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑙𝑠 + 𝜆L𝑛𝑒𝑢 , (11)

where L𝑛𝑒𝑢 is the neutral feature reconstruction loss defined in
Section 3.3, and 𝜆 is the regularization parameter to balance the
importance of L𝑐𝑙𝑠 and L𝑛𝑒𝑢 .

4 EXPERIMENTS
In this section, we evaluate the effectiveness of our proposedmethod
by conducting experiments on three distinct databases and compar-
ing with the existing methods.

4.1 Experimental Setup
Databases. Our experiments are carried out on three facial expres-
sion databases: Extended Cohn-Kanade Database (CK+) [24]
contains 593 image sequences capturing the facial expressions of
123 subjects, but only 327 sequences with 118 subjects are labeled
with one of the seven expressions: anger, contempt, disgust, fear,
happiness, sadness, and surprise. We select the first neutral frame
and three peak expression frames from each image sequence, result-
ing in a total of 981 paired samples. Oulu-CASIA Database [43] is
comprised of 480 image sequences captured from 80 subjects under
three different illumination conditions. We use only the sequences
captured under strong illumination condition with the VIS camera,
which are labeled as one of the six expressions: anger, disgust, fear,
happiness, sadness, and surprise. We select the first neutral frame
and three peak expression frames from each sequence, resulting in
a total of 1440 paired samples. MMI Facial Expression Database
(MMI) [29] is a more challenging database containing 213 facial
expression videos from 32 subjects. It has a relatively small sample
size and the subjects have various poses, as well as occlusion of
their faces by glasses or hair. Each video is labeled with one of the
six expressions: happiness, surprise, sadness, anger, disgust, and
fear. For our experiments, we select 205 frontal view sequences
and choose three peak frames and one neutral frame from each
sequence, resulting in a total of 615 image pairs.

Evaluation metrics. The evaluation of all compared methods
is based on recognition accuracy (ACC). As CK+, Oulu-CASIA,
and MMI databases do not have pre-defined training and test sets,
we follow the same protocol as the compared methods, and use
a 10-fold subject-independent cross-validation. The reported final
results are the average ACC across all 10 folds.

4.2 Implementation Details
The facial images in all three databases are preprocessed by first
detecting and cropping the face region, which is then resized to a
standardized size of 224 × 224 pixels. To prevent overfitting during
training, data augmentation techniques such as random horizontal
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Table 1: Recognition accuracy (%) on the CK+, Oulu-CASIA, and MMI databases for expressions classification. Methods marked
with an asterisk (*) in the setting column indicate that, similar to our method, they use neutral facial expressions during
training but not during validation.

Method Setting CK+ Oulu-CASIA MMI

STM-E[22](2014) sequence-based 94.19 74.59 75.12
3DCNN-DAP[21](2014) sequence-based 92.40 — 63.40

DTAGN[13](2015) sequence-based 97.25 81.46 —
IACNN[26](2017) image-based 95.37 — 71.55

DLP-CNN[19](2017) image-based 95.78 — 78.46
FN2EN[8](2017) image-based 98.60 87.71 —

DESTN[41](2017) sequence-based 98.50 86.25 81.18
GCNet𝑆1𝑅1[14](2017) image-based∗ 97.93 86.11 81.53

DeRL[39](2018) image-based∗ 97.30 88.0 73.23
DDL[32](2020) image-based 99.16 88.26 83.67
FDRL[33](2021) image-based 99.54 88.26 85.23

Baseline(ResNet-18) image-based 97.55 87.57 82.56
GNDL image-based∗ 99.69 90.07 86.46

(a) CK+ (b) Oulu-CASIA (c) MMI

Figure 6: Confusion matrices on the CK+, Oulu-CASIA, and MMI databases. The vertical axis represents the ground truth
labels, while the horizontal axis represents the predicted labels (Ha=Happiness, Sa=Sadness, Su=Surprise, Fe=Fear, Di=Disgust,
An=Anger, Co=Contempt).

flipping or adding Gaussian noise are applied to increase the amount
of training data. Importantly, the same augmentation operation is
applied to both the examined and neutral images in each paired
sample to maintain consistency.

We use the ResNet-18 [11] model as the facial-features-extracted
network in independent experiments. We set the channel number of
the examined feature vector as 512. The normalization between the
examined and neutral features is achieved with the batch normal-
ization layer. The value of 𝜆 in Eq. (11) is set to 5.0. The proposed
GNDLmodel is trained in an end-to-endmanner for 150 epochs. The
batch size is set to 128. We adopt Adam as the optimization method,
with learning rate 𝑙𝑟 = 0.001, first-order momentum 𝛽1 = 0.9, and
second-order momentum 𝛽2 = 0.999. All experiments are imple-
mented with the Python 3.8 and Pytorch 1.7.1 on a Linux server
equipped with 2.5GHz CPU and 16GB RAM, a single RTX3070 GPU
is used to accelerate the training stage.

4.3 Comparison with State-of-the-Art
Table 1 shows the comparison results between the proposed GNDL
and the state-of-the-art methods mentioned in Section 4.1 on the
CK+, Oulu-CASIA, and MMI databases.

The CK+ database is widely used in the field of facial expression
recognition due to its relatively simple and high-quality samples.
However, achieving high accuracy on this database is still a chal-
lenging task. Despite the high performance of most of the compared
methods on this database, our proposedGNDLmethod still manages
to improve the recognition accuracy to 99.69%. This demonstrates
the effectiveness of our proposed method in learning discriminative
features from facial expression images. The confusion matrix of
the CK+ database is shown in Figure 6a, which indicates that only
three “surprise” samples are misclassified as “contempt”.

Our proposed GNDL method outperforms the baseline on the
Oulu-CASIA database, which is known for its challenging condi-
tions such as partial occlusions and variations in illumination. The
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(a) CK+ (b) Oulu-CASIA (c) MMI

Figure 7: Experimental results of sensitivity analysis for the hyperparameter 𝜆 in Eq. (11). The horizontal axis represents
different values of 𝜆, and the vertical axis represents the recognition accuracy. On each database, 𝜆 is varied from 0.1 until a
significant decrease in accuracy is observed.

recognition accuracy is improved to 90.07%. Figure 6b displays
the confusion matrix of the Oulu-CASIA database. The “sadness”
expression is relatively difficult to recognize and is frequently mis-
classified as “anger” and “disgust”.

The MMI database is a more challenging database due to the high
intra-class inconsistency, which also contains a wide range of fa-
cial expressions under varying conditions. However, Our proposed
GNDL still outperforms the baseline by a significant margin and
achieves a higher accuracy of 86.46%, demonstrating its robustness
in handling challenging conditions. The improvement in accuracy
on this database can be attributed to the ability of our method to
remove disturbance information and capture expression deviation
features, which is crucial in handling the variations in the input
images. Figure 6c shows the confusion matrix. It indicates that our
method performs very well in recognizing “happiness” and “dis-
gust”, while “fear” is relatively hard for recognition, and is mostly
confused with “surprise”.

In these compared methods, FDRL has the closest performance
to ours. It decomposes facial images into different facial-action
feature vectors to represent various facial actions, and then fuses
them based on their intra-feature and inter-feature relations to
identify subtle differences between facial expressions. However, our
proposed method disentangles the generative fine-grained semantic
features of the neutral expression, which can obtain the deviation
information of expression according to the manifold study. This
is similar to the effect of obtaining dynamic by using sequence-
based methods. Moreover, our method can also remove disturbance
information such as identity, occlusion, and illumination, which is
also the purpose of IACNN and DDL.

In comparing our method with GCNet𝑆1𝑅1 and DeRL, it is im-
portant to note that we share the same input setting. Our methods
have all achieved good results on the Oulu-CASIA database, as we
have all captured the variation information from the neutral expres-
sion to the examined expression. Only our method and GCNet𝑆1𝑅1
have achieved better results on the MMI database, as we both di-
rectly extract the differences between the examined expression and
neutral expression, while removing shared disturbance informa-
tion. However, DeRL uses the intermediate features of the network
when mapping the examined expression to the neutral expression,

which cannot guarantee the filtering out of disturbance informa-
tion. Additionally, GCNet𝑆1𝑅1 and DeRL require generating neutral
expression images within the network, while we propose a feature-
level generator that directly generates neutral features, making the
process more direct and efficient.

4.4 Parameter Sensitivity Analysis
To verify the robustness of our proposed method, we evaluate the
performance of the GNDL with different values of the hyperparam-
eter 𝜆 in Eq. (11) on the CK+, Oulu-CASIA, and MMI databases.
Starting with an initial value of 𝜆 set to 0.1, we gradually increased
it to examine its impact on the recognition accuracy.

In more details, on the CK+ database, the recognition accuracy
achieved by our method remains consistently high with 𝜆 set to
values between 0.1 and 10.0, indicating that the proposed GNDL
is robust to the variation of this hyperparameter. However, when
𝜆 is set to 10.0, the accuracy starts to decrease, suggesting that
the regularization effect introduced by 𝜆 becomes too strong and
may lead to overfitting of the model. On the Oulu-CASIA database,
the recognition accuracy gradually increases as 𝜆 grows from 0.1
to 5.0, and then decreases when 𝜆 further increases. On the MMI
database, the recognition accuracy fluctuates around 0.84 when 𝜆 is
small. As 𝜆 grows, the recognition accuracy gradually increases and
reaches its peak around 𝜆 = 5.0. As with the Oulu-CASIA database,
when 𝜆 becomes too large, the regularization effect becomes too
strong and can lead to a decrease in recognition accuracy. This
phenomenon can be explained as follows: with a small value of
𝜆, the weight of the neutral feature loss is not enough to guide
the NFG to generate effective neutral features, resulting in a slow
learning speed. However, when 𝜆 is set to around 5.0, the NFG can
quickly converge and generate effective neutral features, which
can significantly improve the recognition accuracy. As 𝜆 continues
to increase, the weight of the neutral feature reconstruction loss
becomes too strong, leading to a lack of balance between the losses.

4.5 Visualization
To visually demonstrate the effectiveness of our proposed NFG,
we disentangle the real neutral feature vector and the generative
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(a) CK+ (b) Oulu-CASIA (c) MMI

Figure 8: Distributions of the disentangled feature vectors. We respectively present the distributions of disentangled feature
vectors obtained using real neutral features (represented by squares) and generative neutral features (represented by asterisks).
The data of each database is from a randomly selected validation fold of the 10-fold cross-validation.

Pedicted
(GNDL)

Pedicted
(baseline)

TruthExaminedNeutral

DisgustAngryDisgust

AngryDisgustAngry

AngrySadAngry

FearSadFear

DisgustAngryDisgust

SadHappySad

FearSurpriseFear

Figure 9: Some hard samples misclassified by the baseline
method but correctly classified by the proposed GNDL on the
MMI database.

neutral feature vector from the examined feature vector for com-
parison, and then visualize the distributions of their disentangled
feature vectors via 𝑡-SNE [37] in Figure 8. The real disentangled
feature vectors are represented by squares, while the generative
disentangled feature vectors are represented by asterisks. Different
colors represent different types of facial expressions. It can be ob-
served that in all databases, the two types of disentangled feature
vectors are similar (the coordinates of the asterisks and squares
are similar), indicating that the generative neutral feature vectors
are consistent with the real ones. Additionally, the disentangled
feature vectors can effectively differentiate between different facial
expressions in all databases.

Figure 9 illustrates some challenging samples that are misclassi-
fied by the baseline ResNet-18 method but correctly classified by
our proposed GNDL on the MMI database. The ResNet-18 method
fails to detect facial wrinkles caused by facial movements, as shown
in the first and fifth rows of samples. Furthermore, wrinkles that
are part of the facial anatomy can be mistaken as facial movements,
as demonstrated in the sixth row, leading to incorrect classification.
Additionally, the presence of glasses, bangs, or beards can obstruct
some facial regions and impede the extraction of facial features, as
shown in the samples from the second to the fifth row. However, our
proposed GNDL takes advantage of the differences between neu-
tral features and examined features, which effectively circumvents
these influences and successfully recognizes these hard samples.

5 CONCLUSION AND FUTURE WORK
In this paper, we have proposed a generative neutral features-
disentangled learning (GNDL) model for facial expression recog-
nition, which achieves state-of-the-art performance on the CK+,
Oulu-CASIA, and MMI databases. Our approach disentangles neu-
tral features based on the expression manifold and incorporates a
neutral feature generator (NFG) to output generative neutral feature
vectors. By disentangling the neutral feature vector from the exam-
ined expression feature vector, our model can remove disturbance
features and extract expression deviation features for more accu-
rate classification. In addition, our model does not require the input
of a neutral expression during the validation phase, enabling the
handling of situations where obtaining the same subject’s neutral
expression is not possible. We conduct neutral feature disentangling
at the vector-level in this paper. In future work, we will explore the
effects of disentangling neutral features of different granularities.
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