

1 **Laminar specificity and coverage of viral-mediated gene expression restricted to**
2 **GABAergic interneurons and their parvalbumin subclass in marmoset primary visual**
3 **cortex**

4

5 Frederick Federer¹, Justin Balsor¹, Alexander Ingold^{1,2}, David P. Babcock^{1,3}, Jordane
6 Dimidschstein⁴, and Alessandra Angelucci^{1,*}

7

8

9 ¹ Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah,
10 Salt Lake City, UT

11 ² Present address: Department of Electrical Engineering and Computer Science, University of
12 Utah, Salt Lake City, UT.

13 ³ Present address: Stritch School of Medicine, Loyola University, Chicago, IL.

14 ⁴ Regel Therapeutics, Boston, MA

15

16 *Corresponding author's address:

17 65 Mario Capecchi Drive
18 Salt Lake City, UT 84132, USA

19 Tel: (801) 585 7489

20 Email: alessandra.angelucci@hsc.utah.edu

21

22 **ABSTRACT**

23 In the mammalian neocortex, inhibition is important for dynamically balancing excitation and
24 shaping the response properties of cells and circuits. The various computational functions of
25 inhibition are thought to be mediated by different inhibitory neuron types of which a large
26 diversity exists in several species. Current understanding of the function and connectivity of
27 distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it
28 is unknown whether knowledge gained from mouse studies applies to the non-human primate,
29 the model system closest to humans. The lack of viral tools to selectively access inhibitory
30 neuron types has been a major impediment to studying their function in the primate. Here, we
31 have thoroughly validated and characterized several recently-developed viral vectors designed to
32 restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and
33 identified two types that show high specificity and efficiency in marmoset V1. We show that in
34 marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94%
35 specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-
36 PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98%
37 specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising
38 tools for studying GABA and PV cell function and connectivity in the primate cortex.

39

40

41

42 **INTRODUCTION**

43 The computations performed by the neocortex result from the activity of neural circuits
44 composed of glutamatergic excitatory and GABAergic inhibitory neurons. Although representing
45 only 15-30% of all cortical neurons, inhibitory neurons profoundly influence cortical
46 computations and cortical dynamics. For example, they influence how excitatory neurons
47 integrate information, shape neuronal tuning properties, modulate neuronal responses based on
48 sensory context and behavioral state, and maintain an appropriate dynamic range of cortical
49 excitation (Ferster and Miller, 2000; Shapley et al., 2003; Tremblay et al., 2016). These various
50 functions of inhibition are thought to be mediated by different inhibitory neuron types, of which
51 a large diversity has been identified in several species, each having distinct chemical,
52 electrophysiological and morphological properties (Ascoli et al., 2008; Burkhalter, 2008; Kubota
53 et al., 2016).

54 In mouse cortex, the expression of specific molecular markers identifies three major,
55 largely non-overlapping classes of inhibitory neurons: parvalbumin- (PV), somatostatin- (SOM),
56 and serotonin receptor (5HT3aR, a larger class which includes vasoactive intestinal peptide or
57 VIP cells)- expressing neurons (Xu et al., 2010; Rudy et al., 2011). The creation of mouse lines
58 selectively expressing Cre-recombinase in specific inhibitory neuron classes has led to a
59 multitude of studies on the connectivity and function of each class (Tremblay et al., 2016; Wood
60 et al., 2017; Shin and Adesnik, 2023). Distinct patterns of connectivity and function specific to
61 each inhibitory neuron class are emerging from these mouse studies, but it remains unknown
62 whether insights gained from mouse apply to inhibitory neurons in higher species such as
63 primates. Understanding cortical inhibitory neuron function in the primate is critical for
64 understanding cortical function and dysfunction in the model system closest to humans, where
65 cortical inhibitory neuron dysfunction has been implicated in many neurological and psychiatric
66 disorders, such as epilepsy, schizophrenia and Alzheimer's disease (Cheah et al., 2012; Verret et
67 al., 2012; Mukherjee et al., 2019).

68 A major impediment to studying inhibitory neuron function in primates has been the lack
69 of tools for cell-type specific expression of transgenes in this species. However, recent advances
70 in the application to primates of cell-type specific viral technology are beginning to enable
71 studies of inhibitory neuron types in primate cortex. In particular, two recent studies have
72 developed specific promoters or enhancers that restrict transgene expression from recombinant
73 adeno-associated viral vectors (AAV) to GABAergic neurons, specifically the *mDlx* enhancer
74 (Dimidschstein et al., 2016) and the *h56D* promoter (Mehta et al., 2019), in both rodents and
75 primates. Viral strategies to restrict gene expression to PV neurons have also been recently
76 developed (Mehta et al., 2019; Vormstein-Schneider et al., 2020; Mich et al., 2021).

77 To facilitate the application of these inhibitory-neuron specific viral vectors to studies of
78 the primate cortex, we have performed a thorough validation and characterization of the laminar
79 expression of reporter proteins mediated by several enhancer/promoter-specific AAVs. Here we

80 report results from the two vector types that have shown the greatest specificity of transgene
81 expression in marmoset primary visual cortex (V1); specifically, we have tested three serotypes
82 of the *h56D* promoter-AAV that restricts gene expression to GABAergic neurons (Mehta et al.,
83 2019), and one serotype of the S5E2 enhancer-AAV that restricts gene expression to PV cells
84 (Vormstein-Schneider et al., 2020). Using injections of these viral vectors in marmoset V1,
85 combined with immunohistochemical identification of GABA and PV neurons, we find that the
86 laminar distribution of reporter protein expression mediated by the GABA- and PV-enhancer
87 AAVs validated in this study resembles the laminar distribution of GABA-immunoreactive
88 (GABA+) and PV-immunoreactive (PV+) cells, respectively, in marmoset V1. Reporter protein
89 expression mediated by the *h56D*-AAV is specific and robust, but the degree of specificity and
90 coverage depended on serotype and cortical layer. We found that about 92% of PV cells in
91 marmoset V1 are GABA+, and reporter protein expression mediated by the S5E2-AAV shows
92 up to 98% specificity and 86-90% coverage, depending on layer. We conclude that these viral
93 vectors offer the possibility of studying GABAergic and PV neuron connectivity and function in
94 primate cortex.

95

96

97 RESULTS

98 We validated 3 serotypes (1,7,9) of a pAAV-*h56D*-tdTomato (Mehta et al., 2019), and the AAV-
99 PHP.eB-S5E2.tdTomato (Vormstein-Schneider et al., 2020). We report results from 10 viral
100 injections, of which 3 injections of AAV-*h56D*-tdTomato, and 7 injections of AAV-PHP.eB-
101 S5E2.tdTomato, made in 4 marmoset monkeys (see Methods and **Supplementary File 1**). Tissue
102 sections through V1 were double immunoreacted for GABA and PV and imaged on a fluorescent
103 microscope. We quantified the laminar distribution of viral-induced tdTomato (tdT) expression
104 as well as of GABA+ and PV+ cells revealed by immunohistochemistry (IHC), and counted
105 double and triple-labeled cells to determine the specificity and coverage of viral-induced tdT
106 expression across marmoset V1 layers (see Methods).

107

108 V1 laminar distribution of GABA+ and PV+ neurons

109 We first determined the V1 laminar distribution of GABA+ and PV+ neurons identified by IHC
110 (**Fig. 1**). To this goal, in each section used for analysis, we counted GABA+ and PV+ cells
111 within 2x100 μ m-wide regions of interest (ROIs) spanning all layers in dorsal V1 anterior to the
112 posterior pole, for a total of 6 ROIs in 3 tissue sections selected randomly. Cortical layer
113 boundaries were determined using DAPI and/or PV staining (**Fig. 1B-C**), as we found that PV-
114 IHC reveals laminar boundaries consistent with those defined by DAPI.

115 The laminar distribution of GABA+ and PV+ cells was quantified as percent of total
116 GABA+ or PV+ cells (**Fig. 2A**), as well as cell density (number of cells per unit area; **Fig. 2B**),
117 in each cortical layer. Both GABA+ and PV+ cell percent and density peaked in layers (L) 2/3
118 and 4C. There was no significant difference in the percent or density of GABA+ cells in L2/3

119 (33% \pm 2, and 1,294 cells/mm 2 \pm 74.4, respectively) vs. L4C (33.4% \pm 3.1, and 1,052
120 cells/mm 2 \pm 42.2, respectively), as determined by a Bonferroni-corrected Kruskall-Wallis test
121 (p=1.00, n=6 ROIs across 3 sections, L2/3 vs L4C in **Fig. 2A**) or by a Bonferroni-corrected
122 ANOVA test (p=1.00, n=6 ROIs across 3 sections, L2/3 vs L4C in **Fig. 2B**). Similarly, the
123 percent and density of PV+ cells in L4C (42.3% \pm 3.6, and 888 cells/mm 2 \pm 38.8, respectively)
124 were not significantly different from those in L2/3 (31.3% \pm 2.5 and 812 cells/mm 2 \pm 65,
125 respectively; p=1.00 for both comparisons, n=6 ROIs). However, density of PV+ cells in L4C
126 was significantly higher than in all remaining layers (p=0.0280.05 for 4C vs. 4A/B, and <0.001
127 for 4C vs. all other layers; ANOVA test with Bonferroni correction; n= 6 ROIs), and L2/3 PV+
128 density was significantly higher than L1, 5 and 6 (p=5.93E $^{-11}$ for L2/3 vs. L1 and p= 0.00037
129 L2/3 vs. L6, p=0.002 for L2/3 vs. L5, n=6 ROIs), but not L4A/B (although percent of PV+ cells
130 in L2/3 was significantly higher than in L4A/B; p=0.029 Bonferroni corrected Kruskall-Wallis-
131 test, n=6 ROIs). GABA+ cell density in L2/3 was significantly higher than in all other layers
132 except L4C (p=0.028 vs. L4A/B and p=0.013 vs L6, p=0.007 vs. L1 and p=0.005 vs. L5). GABA
133 density in L4C did not differ from any other layers, but the percent of GABA+ cells in L4C was
134 significantly higher than in L1 (p=0.009) and 4A/B (p=0.000022). As expected, within each
135 layer, GABA+ cell density was significantly higher than PV+ cell density (p<0.05, one-sided t-
136 test for equality of means, n=6 ROIs).

137 We compared the laminar distributions of GABA+ and PV+ cell density in marmoset V1
138 with previously published distributions of these two cell markers in mouse V1 (Xu et al., 2010).
139 In marmoset V1, there is an overall higher density of PV+ cells than in mouse V1, with density
140 peaking in L2/3 and 4C. In contrast, PV+ cell density in mouse V1 peaks in L4 and 5, and
141 density in L2/3 is lower than in all other layers (**Fig. 2C**). GABA+ cell density in marmoset V1
142 peaks in L2/3 followed by 4C, whereas it peaks in L4 and 5 with a smaller third peak in L2/3 in
143 mouse V1 (**Fig. 2D**).

144 Counts of cells double labeled for GABA+ and PV+ revealed that 92.3% \pm 1.9 of PV+
145 cells across all layers were GABA+, and that PV+ cells represent on average 61.4% \pm 2.7 of all
146 GABA+ cells, ranging from 54.5% \pm 3.7 in L6 to 78.5% \pm 5.6 in L4C (**Fig. 2E**). This differs from
147 mouse V1 in which PV+ cells represent about 40% of all GABA cells (Xu et al., 2010).

148

149 **Laminar specificity and coverage of GABA-specific AAV-h56D**

150 **Figure 3** shows tdT expression at three injection sites, each of a different serotype (9,7,1) of the
151 GABA-specific AAV-h56D-tdT. Identical injection volumes of each serotype, delivered at 3
152 different cortical depths (see Methods), resulted in viral expression regions that differed in both
153 size as well as laminar distribution, suggesting the different serotypes may have different
154 capacity of infecting cortical neurons and layers. The AAV7 injection resulted in the smallest
155 expression region, which additionally was biased to the superficial and deep layers, with only
156 few cells expressing tdT in the middle layers (**Fig. 3B**). AAV9 (**Fig. 3A**) and AAV1 (**Fig. 3C**)
157 resulted in larger expression regions which involved all cortical layers. Given identical volumes

158 and titers used for the AAV9 and AAV7 injections (injected volume of the AAV1 was the same
159 but titer was higher-see **Supplementary File 1**), as well as identical post-injection survival times
160 for all 3 serotypes, the differences in the size of the expression region are likely due to different
161 tropism and/or viral spread of the different serotypes. However, given that we only made a single
162 injection per serotype, we cannot exclude that other factors may have contributed to the reduced
163 spread of the AAV7.

164 In **Figure 4** we report quantitative counts for each serotype. Below we describe these
165 results, but acknowledge that differences we observed between serotypes need to be interpreted
166 with caution, given they are based on a single injection per serotype. **Figure 4A** compares
167 quantitatively tdT expression obtained with each viral serotype, quantified as the percent of total
168 tdT+ cells in each layer for each serotype, with the percent laminar distribution of GABA+ cells
169 identified by IHC. Serotypes 9 and 1 overall showed similar laminar distribution as GABA+
170 IHC, the percent of tdT+ cells peaking in L2/3 and 4C, suggesting good specificity of viral
171 infection (the laminar distributions of AAV9- and AAV1-induced tdT+ cells were not
172 significantly different from the GABA+ cell distribution; $p>0.05$ for all comparisons, Bonferroni
173 corrected independent-samples Median test, $n=4-6$ ROIs). In contrast, due to the lower capacity
174 of AAV7 to infect the mid-layers, AAV7-induced tdT expression was relatively higher in L2/3
175 compared to GABA+ expression, approaching statistical significance ($p=0.059$; Bonferroni
176 corrected independent-samples Median test, $n=4$ AAV7 ROIs and 6 GABA-IHC ROIs). The
177 percent of AAV7-infected cells was also significantly higher than the percent of AAV9- and/or
178 AAV1-infected cells in L2/3 ($p=0.028$ for both comparisons) and in L6 ($p=0.028$ for AAV7 vs.
179 AAV1), and significantly lower than the percent of AAV9- and AAV1-infected cells in L4C
180 ($p=0.028$ for both comparisons; Bonferroni corrected independent-samples Median test, $n=4$
181 ROIs).

182 To quantify the specificity of tdT expression induced by each serotype, i.e. the accuracy
183 in inducing tdT expression selectively in GABA cells, for each serotype separately we measured
184 the percent of tdT-expressing cells that colocalized with GABA expression revealed by IHC
185 (**Fig. 4B**). Overall, across all layers, AAV9 showed the highest specificity ($82.3\%\pm1.1$) followed
186 by AAV7 ($79.2\%\pm5.4$), and AAV1 ($75.3\%\pm2.6$), and there was a statistically significant
187 difference in overall specificity between AAV9 and AAV1 ($p=0.014$; Bonferroni corrected
188 independent-samples Median test, $n=4$ ROIs for each serotype). The specificity of AAV9 did not
189 differ significantly across layers, ranging from $80.4\%\pm21$ in L4C to $93.8\%\pm6.3$ in L4A-B. In
190 contrast, specificity for the other two serotypes varied by layer. AAV7 showed highest
191 specificity in L1 (100% but there were only 2 tdT+ cells in this layer), L4C ($90.1\%\pm5.9$) and L6
192 ($87.1\%\pm8.1$), and lowest in L4A-B ($50\%\pm35.4$). AAV1 specificity was highest in L6
193 ($85.4\%\pm8.8$) and L4C ($81.6\%\pm1.4$) and lowest in L4A-B ($38.3\%\pm21.7$). There was a tendency
194 for AAV9 to be more specific than AAV1 in L4A-B ($93.8\%\pm6.3$ vs $38.3\%\pm21.7$), and L5
195 ($88.8\%\pm6.6$ vs $59.4\%\pm8.3$) but these differences did not reach statistical significance.

196 To quantify the efficiency of the virus in inducing tdT expression in GABA cells, for
197 each serotype separately we measured the viral coverage as the the percent of GABA+ cells

198 within the viral injection site that colocalized with tdT expression (**Fig. 4C**). Overall, across all
199 layers, AAV9 and AAV1 showed significantly higher coverage (66.1 ± 3.9 and 64.9 ± 3.7) than
200 AAV7, which showed much lower coverage values (34 ± 5.6 ; $p=0.014$ for both comparisons;
201 Bonferroni corrected independent-samples Median test, $n=4$ ROIs across 2 sections for each
202 serotype). AAV9 and AAV1 coverage was similar across layers, and both showed slightly higher
203 coverage in superficial (AAV9: 67.4 ± 2.5 ; AAV1: 69 ± 6.5) and middle layers (AAV9:
204 78.5 ± 9.1 ; AAV1: 76.9 ± 7.4), compared to deep layers (AAV9:50-55%, AAV1: 44-60%).
205 Instead, AAV7 showed very low coverage values in L4A-B (8.3 ± 8.3) and L4C (14.4 ± 6.7)
206 and highest values in L6 (47.9 ± 4.3) followed by L2/3 (44.6 ± 9). AAV7 coverage was
207 significantly lower than AAV9 coverage in L2/3 ($p=0.014$), L4A/B ($p=0.014$) and L4C
208 ($p=0.014$), and was significantly lower than AAV1 in L4C ($p= 0.014$; Bonferroni corrected
209 independent-samples Median test, $n=4$ ROIs for each serotype). Thus, our results suggest that
210 AAV9 is the serotype of choice for marmoset studies of GABAergic neurons requiring highest
211 specificity and coverage across all layers, but AAV7 may be a better choice for studies intending
212 to restrict transgene expression to L6 or L2/3 GABA cells with good specificity.

213

214 **Laminar specificity and coverage of PV-specific AAV-PHP.eB-S5E2**

215 We assessed the laminar specificity and coverage of the AAV-PHP.eB-S5E2-tdT following
216 injections of different viral volumes ranging from 90 nl to 585 nl (see **Supplementary File 1**).
217 **Figure 5** shows fluorescent images of tdT expression at the site of viral injection for an example
218 105 nl injection (**Fig. 5A**) and an example 315 nl injection (**Fig. 5B**).

219 **Figure 6A** compares tdT expression resulting from injections of different volumes,
220 quantified as the percent of total tdT+ cells in each layer for each volume, with the percent
221 laminar distribution of PV+ cells identified by IHC. Cell counts from injections of 315-585nl
222 volumes were pooled as injections ≥ 315 nl produced similar results (see **Supplementary File 2**).
223 We found that the distribution of tdT expression resulting from all injection volumes did not
224 differ significantly from the distribution of PV+ IHC, all distributions similarly peaking in L2/3
225 and 4C ($p>0.1$ for all comparisons; Bonferroni corrected Kruskall-Wallis test; $n=8-12$ PV-AAV
226 ROIs, and 6 PV-IHC ROIs), suggesting good viral specificity.

227 The specificity of tdT expression induced by different injection volumes is quantified in
228 **Figure 6B**, separately for 3 groups of injection volumes: group 1= 90-105nl, group 2= 180 nl,
229 group 3= 315-585nl. Results from individual injection cases are reported in **Supplementary File**
230 **2**. The degree of viral specificity was high at all volumes, but depended slightly on injection
231 volume. Overall, across all layers, group 2 (180nl) showed the highest specificity (94.7 ± 1.6),
232 which differed significantly from the specificity of group 3 volumes (≥ 315 nl; 82 ± 3.2 ; $p=0.01$,
233 Bonferroni corrected Kruskall-Wallis test, $n=8-12$ ROIs). Specificity was similar across layers
234 for all volumes, but volumes ≥ 315 nl resulted in slightly lower specificity than smaller volumes
235 in L4C (76.6 ± 5.6 for >315 nl volumes vs 95.2 ± 1.7 and 94.9 ± 3 for 90-105nl and 180nl
236 volumes, respectively) and L5 (80.1 ± 5.8 for ≥ 315 nl vs 97.9 ± 2.1 and 97 ± 1.9 for 90-105 and

237 180nl, respectively), and these differences in L5 were statistically significant (p=0.013 and
238 0.005; Bonferroni corrected Kruskall-Wallis test; n=8-12 ROIs).

239 The viral coverage resulting from each injection volume is quantified in **Figure 6C**
240 separately for the three different volume groups, and shown for each individual injection case in
241 **Supplementary File 2**. Coverage of the AAV-PHP.eB-S5E2-tdT was high, did not depend on
242 injection volume, and it was similar across layers for all volumes. Overall, across all layers
243 coverage ranged from 78%±1.9 to 81.6%±1.8.

244

245 **Reduced GABA and PV immunoreactivity at the viral injection site**

246 Qualitative observations of tissue sections seemed to indicate slightly reduced expression of both
247 GABA and PV immunoreactivity at the viral injection sites, extending beyond the borders of the
248 injection core (**Figure 7- figure supplement 1**). To quantify this observation, we counted
249 GABA+ and PV+ cells at the site of the viral injections (n=12 ROIs across 6 sections for AAV-
250 h56D injection sites (pooled across serotypes), and 28 ROIs across 14 sections for AAV-S5E2
251 injection sites) and at sites located several millimeters beyond the viral injection borders (n=6
252 ROIs across 3 sections). We found that both the number and density of GABA+ and PV+ cells
253 were reduced across all layers at the site of the AAV-h56D (**Fig. 7A-D**) and AAV-S5E2 (**Fig.**
254 **7E-H**) injections compared to control tissue away from the injection sites. The magnitude of the
255 reduction in immunoreactivity depended on the viral type, with the AAV-h56D virus inducing an
256 overall greater and more significant reduction in GABA immunoreactivity (28.1% and 21.5%
257 reduction in mean GABA+ cell number and density across all layers, respectively, p=0.024 in
258 **Fig. 7A**, and p=0.013 in **Fig. 7B**, Mann Whitney U test) than in PV immunoreactivity (20.5%
259 and 10.2% reduction in mean PV cell number and density across all layers, respectively; p=0.041
260 in **Fig. 7C**, and p=0.125 in **Fig. 7D**, Mann Whitney U test) and vice versa for the AAV-S5E2
261 virus, which reduced PV immunoreactivity (33.3% and 25.4% reduction in mean PV+ cell
262 number and density across all layers, respectively, p<0.001 in **Fig. 7G**, and p=0.013 in **Fig. 7H**)
263 more than GABA immunoreactivity (27.4% and 20.2% reduction in mean GABA+ cell number
264 and density across all layers, respectively, p=0.005 in **Fig. 7E** and p=0.042 in **Fig. 7F**). The
265 reduced GABA and PV immunoreactivity caused by the viruses imply that the specificity of the
266 viruses we have validated in this study is likely higher than estimated in **Figs. 4,6**. Moreover,
267 reduced GABA and PV immunoreactivity could at least partly underlie the apparent reduction in
268 specificity observed for larger PV-AAV injection volumes (see Discussion).

269

270 **DISCUSSION**

271 Understanding the connectivity and function of inhibitory neurons and their subtypes in primate
272 cortex requires the development of viral tools that allow for specific and robust transgene
273 expression in these cell types. Recently, several enhancer and promoter elements have been
274 identified that allow to selectively and efficiently restrict gene expression from AAVs to

275 GABAergic neurons and their subtypes across several species, but a thorough validation and
276 characterization of these enhancer-AAVs in primate cortex has lacked. In particular, previous
277 studies have not characterized the specificity and coverage of these vectors across cortical layers.
278 In this study, we have characterized two main enhancer-AAV vectors designed to restrict
279 expression to GABAergic cells or their PV subtypes, which show high specificity and coverage
280 in marmoset V1. Specifically, we have shown that the GABA-specific AAV9-h56D (Mehta et
281 al., 2019) induces transgene expression in GABAergic cells with up to 91-94% specificity and
282 80% coverage, depending on layer, and the PV-specific AAV-PHP.eB-S5E2 (Vormstein-
283 Schneider et al., 2020) induces transgene expression in PV cells with up to 98% specificity and
284 86-90% coverage, also depending on layer. We conclude that these two viral vector types
285 provide useful tools to study inhibitory neuron connectivity and function in primate cortex.

286 Many recent studies have investigated the connectivity and function of distinct classes of
287 inhibitory neurons in mouse V1 and other cortical areas (Tremblay et al., 2016; Wood et al.,
288 2017; Shin and Adesnik, 2023). In contrast, similar studies in the primate have been missing due
289 to the lack of tools to selectively express transgenes in specific cell types and the difficulty of
290 performing genetic manipulation in this species. It is important to study inhibitory neuron
291 function in the primate, because it is unclear whether findings in mice apply to higher species,
292 and inhibitory neuron dysfunction in humans has been implicated in several neurological and
293 psychiatric disorders (Marin, 2012; Goldberg and Coulter, 2013; Lewis, 2014). While the basic
294 inhibitory neuron subtypes seem to exist across most mammalian species studied (DeFelipe,
295 2002) species differences may exist, particularly given the evolutionary distance between mouse
296 and primate. Indeed, species differences have been reported in marker expression patterns (Hof
297 et al., 1999), in the proportion of cortical GABAergic neurons (24-30% in primates vs. 15% in
298 rodents) (Hendry et al., 1987; Beaulieu, 1993), in the proportion of PV neurons (74% in macaque
299 V1 vs. 30-40% in mouse) (van Brederode et al., 1990; DeFelipe et al., 1999; Xu et al., 2010), and
300 in the abundance of the various subtypes (Krienen et al., 2020). Here, we found that PV cells in
301 marmoset V1 across all layers represent on average 61% of all GABAergic cells, and up to 79%
302 in V1 L4C. These percentages are lower than previously reported for macaque V1 by Van
303 Brederode et al. (1990) (74% across all layers and nearly 100% in L4C), but higher than recently
304 reported by Kelly et al. (2019) (52% across all V1 layers, up to 80% in L4C). We also found
305 differences in the V1 laminar expression of both GABA+ and PV+ cells between mouse and
306 marmoset. Specifically, GABA+ and PV+ expression peaks in L2/3 and 4C in marmoset V1, but
307 in L4 and 5 in mouse V1. Similar differences between mouse and primate V1 in the laminar
308 distribution of PV cells were reported previously (Kooijmans et al., 2020; Medalla et al., 2023).
309 Our results on the laminar distribution of PV and GABA immunoreactivity is consistent with
310 previous qualitative and quantitative studies in macaque V1 (Hendry et al., 1989; Blumcke et al.,
311 1990; DeFelipe et al., 1999; Disney and Aoki, 2008; Kelly et al., 2019; Kooijmans et al., 2020;
312 Medalla et al., 2023), and with a quantitative study in marmoset V1 (Goodchild and Martin,
313 1998).

314 We compared laminar distribution, specificity and coverage of three different serotypes
315 of the AAV-h56D vector. Serotypes 9 and 7 showed slightly greater specificity than serotype 1,
316 and the specificity of AAV9 was more consistent across layers than the specificity of serotypes 7
317 and 1, which instead varied somewhat across layers. Serotypes 9 and 1 showed greater coverage
318 than serotype 7. Thus, serotype 9 may be a better choice when high specificity and coverage
319 across all layers are required. Serotype 7, instead, showed high specificity (80%) but low
320 coverage (34%), except in layer 6 (48%) and L2/3 (45%), therefore, this serotype may be
321 desirable to restrict transgene expression to L6 or 2/3 GABAergic cells. We note that these
322 differences among serotypes should be interpreted with caution as they are based on a single
323 injection per serotype. Despite this, our results demonstrate sufficiently high efficiency and
324 specificity of transgene expression in GABA cells using the h56D promoter, at least with two of
325 the 3 AAV serotypes we tested, warranting their use in the non-human primate.

326 We compared laminar distribution, specificity and coverage resulting from different
327 volume injections of the AAV-PHP.eB-S5E2 vector. Injections of 180nl volume resulted in
328 higher specificity (95% across layers) and coverage (81% across all layers) than obtained with
329 injection volumes equal to or larger than 315nl (specificity 82% and coverage 78% across all
330 layers), although coverage did not differ significantly across volumes. This mild dose-dependent
331 alteration of specificity could depend on some off-target expression reaching above detection
332 levels at higher doses. Thus, injection volumes of 150-300nl are recommended for studying PV
333 neuron function and connectivity using this viral vector. Alternatively, or in addition, an apparent
334 dose-dependent reduction in specificity may result from viral-induced suppression of PV
335 immunoreactivity, which could be more pronounced for larger volume injections. Indeed, we
336 found that both GABA- and PV-specific AAVs slightly, but significantly, reduced both GABA
337 and PV immunoreactivity at the site of the viral injection, but GABA expression was more
338 reduced at the AAV-h56D injection site, while reduction in PV expression was more marked at
339 the AAV-S5E2 injection site. This reduction in GABA and PV immunoreactivity at the viral
340 injected sites most likely affected our measurements of specificity, suggesting that specificity for
341 the viruses tested in this study is even higher than revealed by our counts. However, this reduced
342 immunoreactivity raises concerns about the virus or the high level of reporter protein possibly
343 harming the cell physiology. Our data does not allow us to assess the origin of the reduced
344 GABA and PV immunoreactivity. Qualitative observations did not reveal structural damage at
345 the site of the viral injections to suggest cell death. Moreover, we have been able to record the
346 electrophysiological responses of V1 neurons in which opsin protein expression was induced via
347 injections of these viruses (Vafa et al., 2024). Notably, viral-induced downregulation of gene
348 expression in host cells, including of inhibitory neuron marker genes such as *PV*, has been
349 documented for other viruses, such as rabies virus (Prosniak et al., 2001; Zhao et al., 2011;
350 Patino et al., 2022). As such, it is possible that subtle alteration of the cortical circuit upon
351 parenchymal injection of viruses (including AAVs) leads to alteration of activity-dependent
352 expression of *PV* and *GABA*.

353

354 **METHODS**

355

356 **Experimental Design**

357 Enhancer-AAV vectors carrying the gene for the reporter protein tdTomato (tdT) were injected
358 in area V1 of marmoset monkeys. After an appropriate survival time, the animals were
359 euthanized. The brains were processed for histology and immunohistochemistry (IHC) to
360 identify GABA+ and PV+ cells and cortical layers. The laminar distribution of GABA+ and PV+
361 cells, and of viral-mediated tdT expression was analyzed quantitatively.

362

363 **Animals**

364 Four female common marmosets (*Callithrix jacchus*) between the ages of 2 and 8 years old
365 (weight about 500gr), obtained from the University of Utah in-house colony, were used in this
366 study. All procedures were approved by the University of Utah Institutional Animal Care and
367 Use Committee (IAUC protocol No. 21-12015) and conformed to the ethical guidelines set forth
368 by the USDA and NIH.

369 **Surgical Procedures**

370 Animals were pre-anesthetized with alfaxalone (10mg/kg, i.m.) and midazolam (0.1mg/kg, i.m.)
371 and an IV catheter was placed in either the saphenous or tail vein. To maintain proper hydration
372 Lactated Ringers solution was continuously infused at 2-4 cc/kg/hr. The animal was then
373 intubated with an endotracheal tube, placed in a stereotaxic apparatus, and artificially ventilated.
374 Anesthesia was maintained with isoflurane (0.5-2.5%) in 100% oxygen. Throughout the
375 experiment, end-tidal CO₂, ECG, blood oxygenation, and rectal temperature were monitored
376 continuously.

377 Under aseptic conditions the scalp was incised and several small (~2mm) craniotomies
378 and durotomies were made over dorsal V1. A single injection of a viral vector was made into
379 each craniotomy. On completion of the injections, each craniotomy was filled with Gelfoam and
380 sealed with dental cement, the skin was sutured, and the animal was recovered from anesthesia.
381 Animals survived 3-4 weeks (one animal survived 2 weeks) post-injections (**Supplementary**
382 **File 1**), to allow for viral expression, and were sacrificed with Beuthanasia (0.22 ml/kg, i.p.) and
383 perfused transcardially with saline for 2-3 minutes, followed by 4% paraformaldehyde in 0.1 M
384 phosphate buffer for 15-20 minutes.

385

386 **Injection of Viral Vectors**

387 A total of 10 viral injections were made in 4 marmosets (**Supplementary File 1**). Each of two
388 animals received 1 injection, and one animal 5 injections (3 in one hemisphere and 2 in the other
389 hemisphere) of AAV-PHP.eB-S5E2.tdTomato, obtained from the Dimidschstein laboratory
390 (Vormstein-Schneider et al., 2020). The fourth animal received 3 injections, each of a different

AAV serotype (1, 7, and 9) of the AAV-h56D-tdTomato (Mehta et al., 2019), obtained from the Zemelman laboratory (UT Austin). Viral vectors were loaded in glass micropipettes (tip diameter 30-45 μ m) and pressure injected using a PicoPump (World Precision Instruments). To ensure viral infection of all cortical layers, each injection was made at 3 depths within the cortical column: 1.2-1.5 mm from the cortical surface (deep), 0.8-1.0 mm (middle), and 0.4-0.6 mm (superficial). After injecting at each depth, the pipette was left in place for 2-4 minutes before being retracted to the next depth, and for 5 minutes before being fully retracted from the brain. The PV-specific AAV was injected at 4 different total volumes: 585 nl (1 injection), 315 nl (2 injections), 180 nl (2 injections) and 90-105 nl (2 injections). The AAV-h56D vectors were each injected at a total volume of 600 nl. One third of each total volume per injection was slowly (6-15 nl/min) injected at each of the 3 depths. For animals that received multiple injections in the same hemisphere, injections were spaced at least 3 mm apart to ensure no overlap. Viral titers and volumes of each injection as well as post-injection survival times for each case are reported in **Supplementary File 1**.

405

406 **Viral Preparation**

407 *AAV-PHP.eB-S5E2.tdT*. Details about AAV- PHP.eB-S5E2.tdT cloning and production
408 are provided in the original publication (Vormstein-Schneider et al., 2020). Briefly, the E2
409 enhancer sequence was amplified from mouse genomic DNA using the primer
410 aatctaacatggctgtata and caattgtctcagagttttt (618 bp). Enhancer, reporter and effector cloning
411 was performed using the Gibson Cloning Assembly Kit (New England BioLabs, catalog no.
412 NEB-E5510S) following standard procedures. Specifically, for AAV-E2-SYP-dTomato, we
413 amplified the SYP-tdTomato coding sequence from the plasmid Addgene no. 34881. The
414 rAAVs were produced using standard production methods. Polyethylenimine was used for
415 transfection and OptiPrep gradient (Sigma) was used for viral particle purification. Titer was
416 estimated by quantitative PCR with primers for the WPRE sequence. The batch used in this
417 study had a titer of 8.3×10^{12} viral genomes/ml.

418 *AAV-h56D.tdT*. Details about AAV-h56D.tdT cloning and production are provided in the
419 original publication (Mehta et al., 2019). Briefly, Viruses were assembled using a modified
420 helper-free system (Stratagene) as the indicated serotypes (rep/cap). Viruses were purified on
421 sequential cesium gradients according to published methods (Grieger et al., 2006). Titers were
422 measured using a payload-independent qPCR technique (Aurnhammer et al., 2012). Typical
423 titers were 1×10^{13} 1×10^{14} viral genomes/ml.

424

425 **Histology and Immunohistochemistry**

426 Area V1 was dissected away from the rest of the visual cortex. The block was postfixed for 3-12
427 hours in 4% paraformaldehyde, sunk in 30% sucrose for cryoprotection, and frozen sectioned in
428 the parasagittal plane at 40 μ m thickness. In one case (MM423, which received a 315nl injection
429 of AAV-PHP.eB-S5E2.tdT), the brain was sunk in a 20% glycerol solution and frozen at -
430 80°C for 6 months prior to being sectioned. To locate the viral injection sites, a 1:5 series of

431 tissue sections were wet-mounted and observed under microscopic fluorescent illumination.
432 Sections containing each injection site had their coverslips removed, and fluorescent
433 immunohistochemistry (IHC) was performed on free-floating sections to reveal both GABA+
434 and PV+ neurons. No IHC was performed to enhance reporter proteins signals as these were
435 sufficiently bright. GABA and PV IHC was performed by incubating sections for 3 days at 4°C
436 in primary antibody, followed by 12-hour incubation at room temperature in secondary antibody.
437 The primary and secondary antibodies used for GABA-IHC were a rabbit anti-GABA antibody
438 (1:200; Sigma Aldrich, Burlington, MA; RRID:AB_477652) and an Alexa Fluor® 647
439 AffiniPure™ Donkey Anti-Rabbit IgG (H+L) (1:200; Jackson ImmunoResearch Laboratororis
440 Inc., West Grove, PA; RRID:AB_2492288), respectively. The primary and secondary antibodies
441 used for PV-IHC were a guinea pig anti-parvalbumin antibody (1:1000; Swant, Burgdorf,
442 Switzerland; RRID:AB_2665495) and an Alexa Fluor® 488 AffiniPure™ Donkey Anti-Guinea
443 Pig IgG (H+L) (1:200; Jackson ImmunoResearch Laboratories Inc.; RRID:AB_2340472),
444 respectively. The sections were then mounted and coverslipped with Vectashield Antifade
445 Mounting Medium with DAPI (Vector Laboratories, Newark, CA).

446 **Data Analysis.** Multi-channel wide-field fluorescent images of V1 tissue sections containing an
447 injection site spanning all layers were acquired at 5-7 depths in the z plane using a Zeiss
448 AxioImager Z2 fluorescent microscope equipped with a 10x objective. Images were stitched,
449 rotated, and cropped as necessary using Zen Blue software (Carl Zeiss AG) and loaded into
450 Neurolucida software (MBF Bioscience) for data quantification. To quantify inhibitory neurons
451 that expressed the viral-mediated reporter protein tdTomato, GABA+ and PV+ neurons revealed
452 by IHC at the viral injection sites (i.e. the data shown in **Figs. 4,6**, and the “IN” data in **Fig. 7**),
453 we counted single, double- and triple-labeled cells across two 100µm-wide ROIs extending
454 through all layers at the injection site on each channel, yielding a total of 4 ROIs across 2 tissue
455 sections being counted and analyzed for each viral injection site. All ROIs used for counts were
456 positioned at the center of the viral expression region in sections where the latter encompassed
457 all cortical layers. To quantify the distribution of GABA+ and PV+ immunoreactivity in control
458 tissue (i.e., the data shown in **Figs. 2**, and the “OUT” data in **Fig. 7**) we counted single and
459 double-labeled cells across two 100µm-wide ROI’s extending through all layers in each tissue
460 section for a total of 6 ROIs across 3 sections. The ROIs for this analysis were selected to be
461 millimeters away from the V1 region containing the viral injection sites. Cell counting was
462 performed by two undergraduate researchers (AI, PB) and reviewed for accuracy by senior lab
463 members (FF, AA). Cortical layer boundaries were determined using DAPI staining or PV-IHC
464 (after confirming the layer boundaries based on PV-IHC matched those seen in DAPI). Data
465 collected in Neurolucida were exported to Excel (Microsoft) and SPSS (IBM) software for
466 quantitative and statistical analyses.

467

468 **Statistical Analysis**

469 To compare cell counts and neuronal densities across different viral serotypes (for the GABA-
470 AAVs), different viral volumes (for the PV-AAV), or different cortical layers, we used an
471 ANOVA test, when the data were normally distributed, and either the non-parametric
472 Independent Samples Kruskall-Wallis test, an Independent Samples Median test or the Mann-
473 Whitney U test for data that were not normally distributed, unless otherwise indicated in the
474 Results section. All multiple comparisons were Bonferroni corrected.

475

476 **DATA AVAILABILITY STATEMENT**

477 Source data for the figures can be found online at DRYAD.org
478 (<https://doi.org/10.5061/dryad.ht76hdrr3>).

479

480 **MATERIALS AVAILABILITY STATEMENT**

481 All materials used in this study are available commercially except for the AAV-h56D-tdTomato
482 virus, which can be obtained directly from the Zemelman laboratory (UT Austin).

483

484 **ACKNOWLEDGMENTS**

485 We thank Kesi Sainsbury for histological assistance. This work was supported primarily by a
486 grant from the National Institute of Health (NIH) to A.A. (R01 EY031959). Other grants were
487 provided by the NIH (R01 EY026812), the National Science Foundation (IOS 1755431) and the
488 Mary Boesche endowed Professorship, to A.A; an unrestricted grant from Research to Prevent
489 Blindness, Inc. and a core grant from the NIH (P30 EY014800) to the Department of
490 Ophthalmology, University of Utah.

491

492 **COMPETING INTERESTS STATEMENT**

493 The authors declare no competing interests.

494

495

496

497

498

499 **REFERENCES**

500

501 Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, al. e (2008) Petilla terminology:
502 nomenclature of features of GABAergic interneurons of the cerebral cortex. *Nat Rev Neurosci*
503 9:557-568.504 Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U, Sing A,
505 Ehrhardt A, Baiker A (2012) Universal real-time PCR for the detection and quantification of
506 adeno-associated virus serotype 2-derived inverted terminal repeat sequences. *Hum Gene Ther*
507 Methods 23:18-28.508 Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the
509 GABA population. *Brain Res* 609:284-292.510 Blumcke I, Hof PR, Morrison JH, Celio MR (1990) Distribution of parvalbumin immunoreactivity in the
511 visual cortex of Old World monkeys and humans. *J Comp Neurol* 301:417-432.512 Burkhalter A (2008) Many specialists for suppressing cortical excitation. *Front Neurosci* 2:155-167.513 Cheah CS, Yu FH, Westenbroek RE, Kalume FK, Oakley JC, Potter GB, Rubenstein JL, Catterall WA
514 (2012) Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures
515 and premature death in a mouse model of Dravet syndrome. *Proc Natl Acad Sci U S A*
516 109:14646-14651.517 DeFelipe J (2002) Cortical interneurons: from Cajal to 2001. *Prog Brain Res* 136:215-238.518 DeFelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of connectivity
519 of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital
520 and temporal lobes of the macaque monkey. *J Comp Neurol* 412:515-526.521 Dimidschstein J et al. (2016) A viral strategy for targeting and manipulating interneurons across
522 vertebrate species. *Nat Neurosci* 19:1743-1749.523 Disney AA, Aoki C (2008) Muscarinic acetylcholine receptors in macaque V1 are most frequently
524 expressed by parvalbumin-immunoreactive neurons. *J Comp Neurol* 507:1748-1762.525 Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. *Ann Rev*
526 *Neurosci* 23:441-471.527 Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit
528 dysfunction. *Nat Rev Neurosci* 14:337-349.529 Goodchild AK, Martin PR (1998) The distribution of calcium-binding proteins in the lateral geniculate
530 nucleus and visual cortex of a New World monkey, the marmoset, *Callithrix jacchus*. *Vis*
531 *Neurosci* 15:625-642.532 Grieger JC, Snowdy S, Samulski RJ (2006) Separate basic region motifs within the adeno-associated
533 virus capsid proteins are essential for infectivity and assembly. *J Virol* 80:5199-5210.

534 Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive
535 neurons in different areas of monkey cerebral cortex. *J Neurosci* 7:1503-1519.

536 Hendry SH, Jones EG, Emson PC, Lawson DE, Heizmann CW, Streit P (1989) Two classes of cortical
537 GABA neurons defined by differential calcium binding protein immunoreactivities. *Exp Brain*
538 *Res* 76:467-472.

539 Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999)
540 Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the
541 neocortex of mammals: phylogenetic and developmental patterns. *J Chem Neuroanat* 16:77-116.

542 Kelly JG, Garcia-Marin V, Rudy B, Hawken MJ (2019) Densities and Laminar Distributions of Kv3.1b-,
543 PV-, GABA-, and SMI-32-Immunoreactive Neurons in Macaque Area V1. *Cereb Cortex*
544 29:1921-1937.

545 Kooijmans RN, Sierhuis W, Self MW, Roelfsema PR (2020) A Quantitative Comparison of Inhibitory
546 Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding
547 Proteins. *Cereb Cortex Commun* 1:tgaa068.

548 Krienen FM et al. (2020) Innovations present in the primate interneuron repertoire. *Nature* 586:262-269.

549 Kubota Y, Karube F, Nomura M, Kawaguchi Y (2016) The diversity of cortical inhibitory synapses.
550 *Front Neural Circuits* 10:27.

551 Lewis DA (2014) Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in
552 schizophrenia. *Curr Opin Neurobiol* 26:22-26.

553 Marin O (2012) Interneuron dysfunction in psychiatric disorders. *Nat Rev Neurosci* 13:107-120.

554 Medalla M, Mo B, Nasar R, Zhou Y, Park J, Luebke JI (2023) Comparative features of calretinin,
555 calbindin, and parvalbumin expressing interneurons in mouse and monkey primary visual and
556 frontal cortices. *J Comp Neurol* 531:1934-1962.

557 Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP,
558 Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV (2019) Functional
559 Access to Neuron Subclasses in Rodent and Primate Forebrain. *Cell Rep* 26:2818-2832 e2818.

560 Mich JK et al. (2021) Functional enhancer elements drive subclass-selective expression from mouse to
561 primate neocortex. *Cell Rep* 34:108754.

562 Mukherjee A, Carvalho F, Eliez S, Caroni P (2019) Long-Lasting Rescue of Network and Cognitive
563 Dysfunction in a Genetic Schizophrenia Model. *Cell* 178:1387-1402 e1314.

564 Patino M, Lagos WN, Patne NS, Tasic B, Zeng H, Callaway EM (2022) Single-cell transcriptomic
565 classification of rabies-infected cortical neurons. *Proc Natl Acad Sci U S A* 119:e2203677119.

566 Prosnik M, Hooper DC, Dietzschold B, Koprowski H (2001) Effect of rabies virus infection on gene
567 expression in mouse brain. *Proc Natl Acad Sci U S A* 98:2758-2763.

568 Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly
569 100% of neocortical GABAergic neurons. *Dev Neurobiol* 71:45-61.

570 Shapley R, Hawken M, Ringach DL (2003) Dynamics of orientation selectivity in the primary visual
571 cortex and the importance of cortical inhibition. *Neuron* 38:689-699.

572 Shin H, Adesnik H (2023) Functional roles of cortical inhibitory interneurons. In: *The Cerebral Cortex*
573 and Thalamus (Usrey WM, M. SS, eds), pp 72-80: Oxford University Press.

574 Tremblay R, Lee S, Rudy B (2016) GABAergic Interneurons in the Neocortex: From Cellular Properties
575 to Circuits. *Neuron* 91:260-292.

576 Vafa A, Clark AM, Federer F, Angelucci A (2024) Computational function of parvalbumin-expressing
577 inhibitory neurons in the primate primary visual cortex (V1). *Soc Neurosci Abstr Online*.

578 van Brederode JFM, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for
579 subpopulation of GABAergic neurons in monkey striate cortex. *J Comp Neurol* 298:1-22.

580 Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I,
581 Mucke L, Palop JJ (2012) Inhibitory interneuron deficit links altered network activity and
582 cognitive dysfunction in Alzheimer model. *Cell* 149:708-721.

583 Vormstein-Schneider DC et al. (2020) Viral manipulation of functionally distinct interneurons in mice,
584 non-human primates and humans. *Nat Neurosci* 23:1629-1636.

585 Wood KC, Blackwell JM, Geffen MN (2017) Cortical inhibitory interneurons control sensory processing.
586 *Curr Opin Neurobiol* 46:200-207.

587 Xu X, Roby KD, Callaway EM (2010) Immunocytochemical characterization of inhibitory mouse cortical
588 neurons: three chemically distinct classes of inhibitory cells. *J Comp Neurol* 518:389-404.

589 Zhao P, Zhao L, Zhang T, Qi Y, Wang T, Liu K, Wang H, Feng H, Jin H, Qin C, Yang S, Xia X (2011)
590 Innate immune response gene expression profiles in central nervous system of mice infected with
591 rabies virus. *Comp Immunol Microbiol Infect Dis* 34:503-512.

592

593

594

595 **FIGURES LEGENDS**

596

597 **Figure 1. Laminar expression of GABA and PV immunoreactivity in marmoset V1.**

598 Epifluorescence images of the same V1 section triple-stained for GABA- (red channel) and PV-
599 (green channel) IHC and DAPI (blue channel), showing individual and merged channels. **(A)**
600 GABA+ expression through all cortical layers (**Top**). *Dashed contours* mark layer boundaries;
601 *solid contour* marks the bottom of the cortex. Cortical layers are indicated. Scale bar: 500 μ m
602 (valid for the top panels in A-C). **Middle**: V1 region inside the *yellow box* in (A) shown at higher
603 magnification. The cells inside the *yellow box* are shown at higher magnification in the bottom
604 panel. Scale bar: 100 μ m (valid for the middle panels in A-B and the top panel in D). **Bottom**:
605 scale bar: 25 μ m (valid for the bottom panels in A-C). **(B)** Same as in (A) but for PV+
606 expression. **(C)** DAPI stain used to reveal cortical layers. **(D)** Merge of red (GABA) and green
607 (PV) channels shown in the respective panels to the left. *Arrows* point to double-labeled cells.

608

609 **Figure 2. Laminar distribution of GABA+ and PV+ cells in marmoset V1**

610 **(A)** Average percent of total number of GABA+ (*red*) or PV+ (*blue*) cells in each layer. Here
611 and in (B,E) error bars represent standard error of the mean (s.e.m.) across ROIs (n=6 ROIs in
612 A,B,E). In all panels *asterisks* indicate statistical significance (*<0.05, **<0.01, ***<0.001). **(B)**
613 Mean density of GABA+ and PV+ cells in each layer. **(C)** Mean density of PV+ cells in
614 marmoset (*dark blue*) and mouse (*light blue*) V1. Here and in (D), mouse data are from Xu et al.
615 (2010), error bars represent the standard deviation, and n=4-6 ROIs for mouse and 6 ROIs for
616 marmoset. **(D)** Mean density of GABA+ cells in marmoset (*red*) and mouse (*pink*) V1. **(E)**
617 Average percent of all counted PV+ cells that were double-labeled for GABA (*gray*), and
618 average percent of all counted GABA+ cells that were double-labeled for PV+ (*black*) are shown
619 at the top of the histogram. The percentages for each layer are shown underneath.

620

621 **Figure 3. Laminar profile of pAAV-h56D-mediated tdT expression in marmoset V1**

622 **(A-C) Left:** tdT expression (*red*) across V1 layers (indicated) following injection of an identical
623 volume of AAV-h56D-tdT serotype 9 (A), serotype 7 (B) and serotype 1 (C). The viral titers for
624 the AAV9 and AAV7 injections were also the same, while titer was higher for AAV1 (see
625 **Supplementary File 1**). The tdT expression region in panel A is a merge of two adjacent
626 sections, because the tdT expression region did not encompass all layers in individual sections.
627 TdT expression in other panels, instead, is from a single section. *Dashed contours* mark layer
628 boundaries; *solid contours* mark the top and bottom of the cortex. Layers were identified based
629 on DAPI counterstain (*blue*). Note that the cortical thickness varies across cases because these
630 sections are from different regions of V1. *Yellow box* in each panel is the region shown at higher
631 magnification on the right. Scale bar: 500 μ m (valid for A-C). **Right:** Higher magnification of the
632 V1 region inside the yellow box in each respective left panel, showing individual channels (*red*):

633 viral-mediated tdT expression; *green*: GABA+ IHC) and the merge of these two channels
634 (yellow). Scale bar: 50 μ m (valid for A-C).

635
636 **Figure 4. Laminar distribution, specificity, and coverage of tdT expression induced by 3**
637 **different serotypes of pAAV-h56D.**

638 (A) Average percent of total number of GABA immunoreactive cells, and average percent of
639 total number of tdT-expressing cells after injections of 3 different serotypes of the GABA-AAV
640 vector, in each V1 layer. (B) Specificity of tdT expression induced by each serotype across all
641 layers and in each layer. Specificity is defined as the percent of viral-mediated tdT expressing
642 cells that colocalize with GABA immunoreactivity. (C) Coverage of each viral serotype across
643 all layers and in each layer, defined as percent of GABA immunoreactive cells that co-express
644 tdT. In all panels, error bars represent s.e.m. across ROIs (n= 4 for AAV9, 4 for AAV7, 4 for
645 AAV1, 6 for GABA-IHC), and *asterisks* indicate statistically significant differences at the
646 p<0.05 level.

647
648 **Figure 5. Laminar profile of AAV-PHP.eB-S5E2-mediated tdT expression in marmoset V1.**
649 (A) **Left:** tdT expression (*red*) across V1 layers following an injection of 105 nl volume of
650 AAV-PHP.eB-S5E2-tdT. *Dashed contours* mark layer boundaries; *solid contours* mark the top
651 and bottom of the cortex. Layers were identified based on DAPI counterstain (*blue*). *Yellow box*
652 is the region shown at higher magnification in the right panels. Scale bar here and in the left
653 panel in (B): 500 μ m. **Right:** Higher magnification of the V1 region inside the yellow box in the
654 left panel, showing individual channels (*red*: viral-mediated tdT expression; *green*: PV+ IHC)
655 and the merge of these two channels (*yellow*). Scale bar here and in the right panels in (B):
656 50 μ m. (B) Same as in (A) but for an injection volume of 315nl.

657
658 **Figure 6. Laminar distribution, specificity, and coverage of tdT expression induced by 3**
659 **different injection volumes of AAV-PHP.eB-S5E2.**

660 (A) Average percent of total number of PV immunoreactive cells, and average percent of total
661 number of tdT-expressing cells after injections of 3 different volumes of the PV-AAV vector, in
662 each V1 layer. (B) Specificity of tdT expression induced by each injection volume across all
663 layers and in each layer. (C) Coverage of each viral injection volume across all layers and in
664 each layer. In all panels, error bars represent s.e.m. across ROIs (n= 8 for 90-105nl, 8 for 180 nl,
665 12 for 315-585nl PV-AAV injection volumes and 6 for PV-IHC), and *asterisks* indicate
666 statistically significant differences.

667
668 **Figure 7. Reduced GABA and PV immunoreactivity at the viral injection site**
669 (A,B) Number (A) and density (B) of GABA+ cells inside (*pink*; n=12 ROIs across 6 sections)
670 and outside (*red*; n=6 ROIs across 3 sections) the GABA-AAV injection sites. (C,D) Number
671 (C) and density (D) of PV+ cells inside (*light blue*; n=12 ROIs across 6 sections) and outside
672 (*dark blue*; n=6 ROIs across 3 sections) the GABA-AAV injection sites. (E,F) Number (E) and

673 density (F) of GABA+ cells inside (*pink*; n=28 ROIs across 14 sections) and outside (*red*; n=6
674 ROIs across 3 sections) the PV-AAV injection sites. **(G,H)** Number (G) and density (H) of PV+
675 cells inside (*light blue*; n=28 ROIs across 14 sections) and outside (*dark blue*; n=6 ROIs across 3
676 sections) the PV-AAV injection sites. Error bars: s.e.m. Asterisks: statistically significant
677 comparisons. IN each panel, statistical comparisons across layers were performed using the
678 Bonferroni-corrected Kruskall-Wallis or independent-samples Median tests; comparisons
679 between total IN and OUT populations in each panel were performed using the Mann-Whitney U
680 test.

681

682 **Supplementary File 1**

683

684 Supplementary File 1 reports the injection parameters used for each AAV-h56D and AAV-
685 PHP.eB-S5E2 injection case.

686

687 **Supplementary File 2**

688

689 Supplementary File 2 reports the specificity and coverage for each individual AAV-PHP.eB-S5E2-tdT
690 injection case.

691

692 **Figure 7 – figure supplement 1. Reduced GABA and PV immunoreactivity at the viral injection
693 site.**

694 **(A) Left:** Epifluorescent image of an example GABA-AAV injection site in V1. **Middle:** Same section
695 imaged under the green channel to reveal PV-IHC. **Right:** Same section imaged under the red channel to
696 reveal GABA-IHC. In all panels, *solid white contours* mark the top and bottom of the cortex, *dashed
697 contours* outline the region of reduced immunoreactivity. Cortical layers are indicated in the middle
698 panel. **(B)** Same as in (A) but for an example PV-AAV injected site. Scale bars in (A,B): 1 mm.

699

700

701

702

703

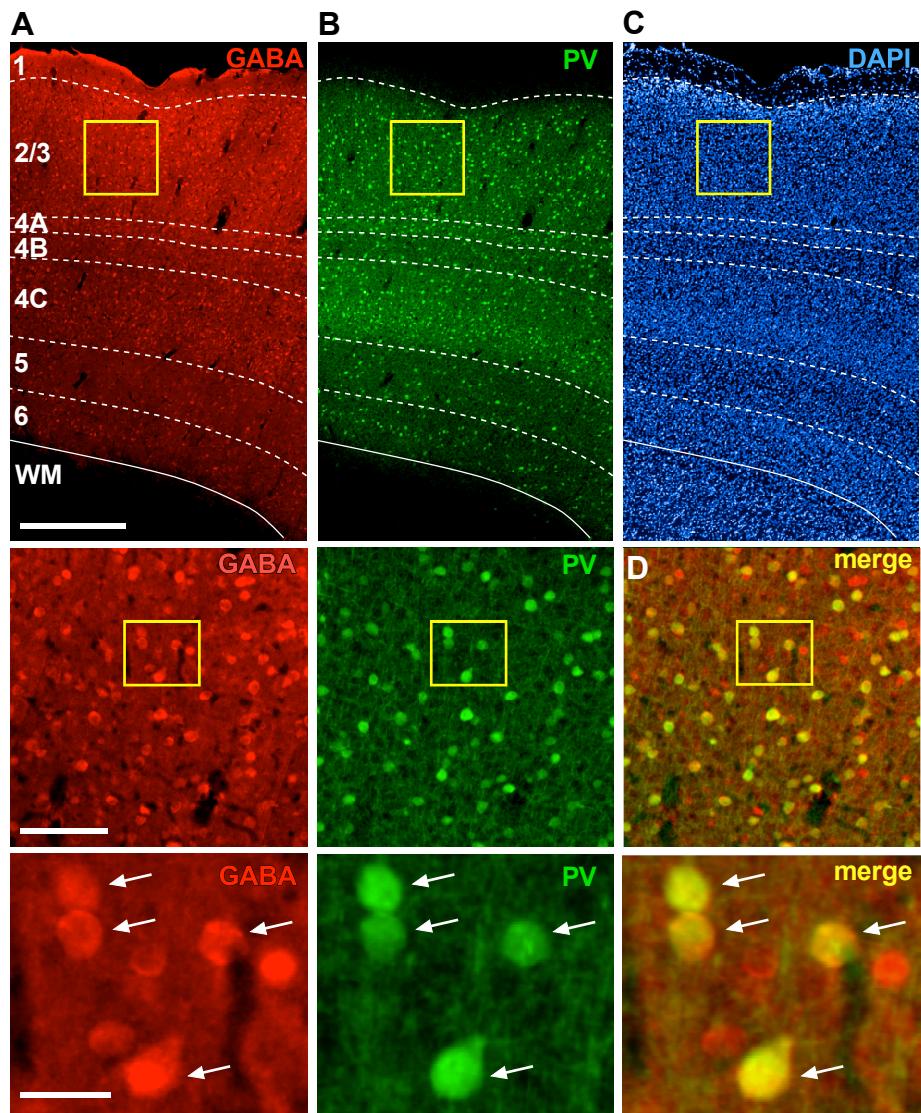
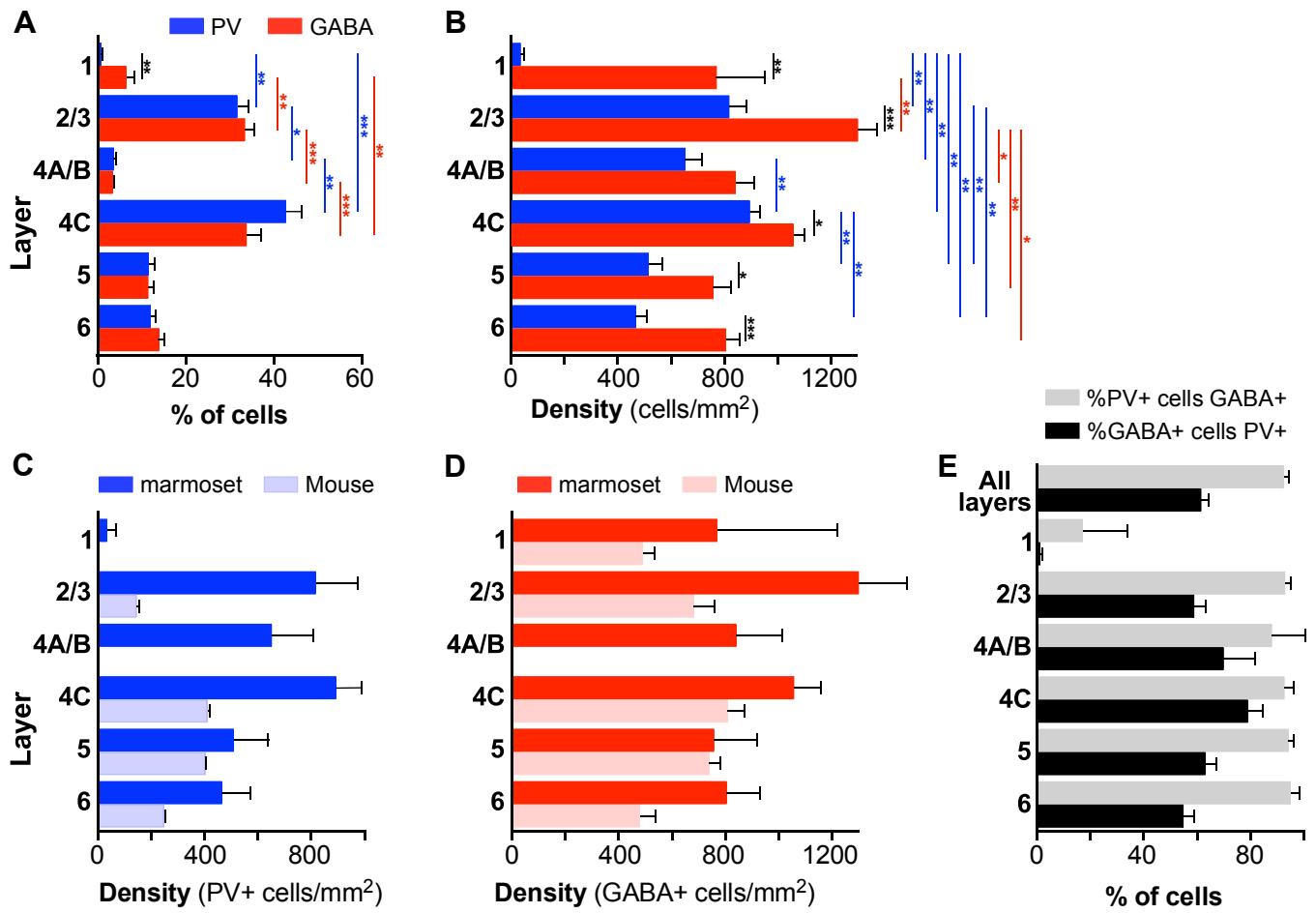
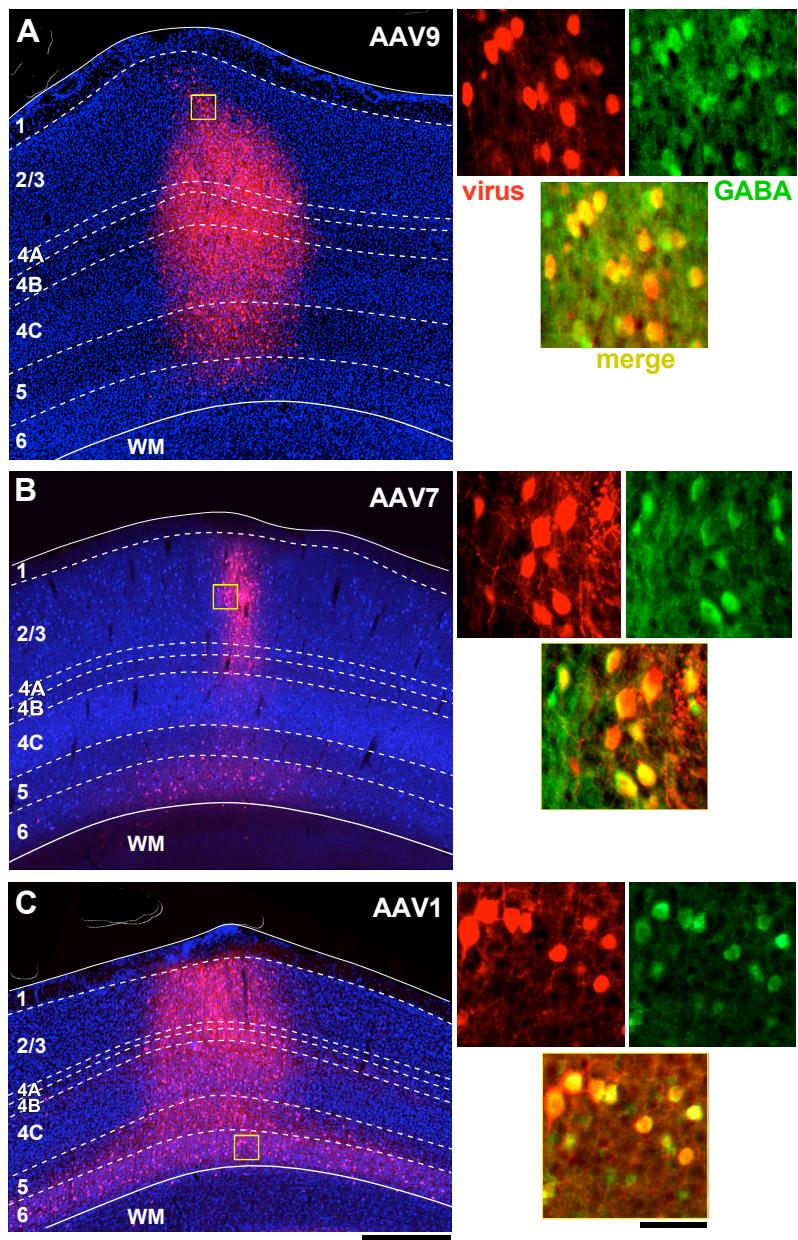
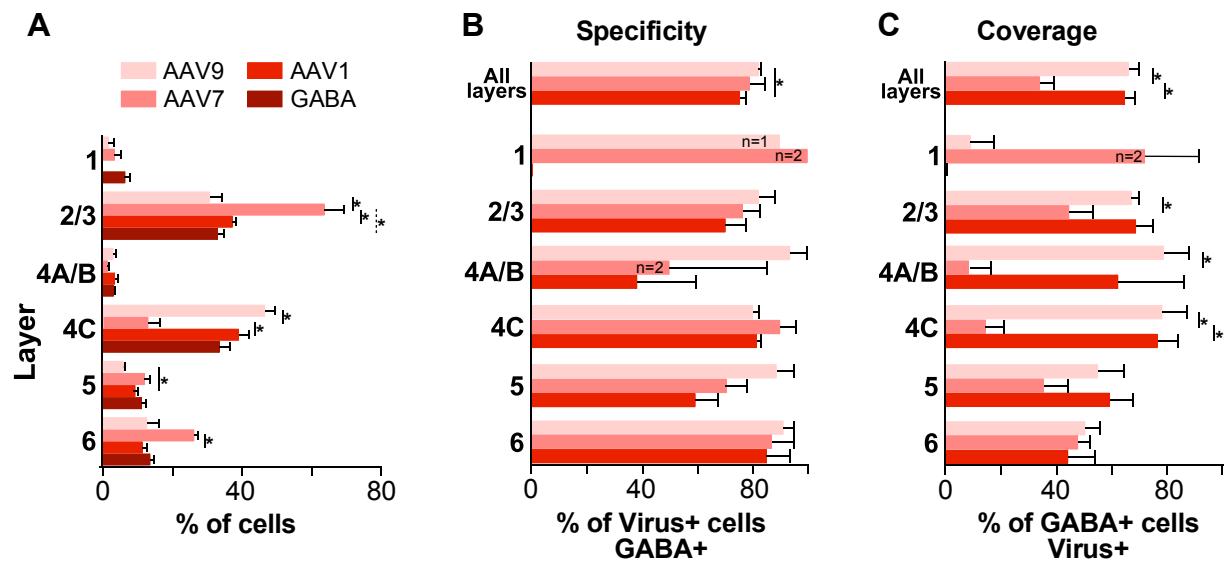





Figure 1

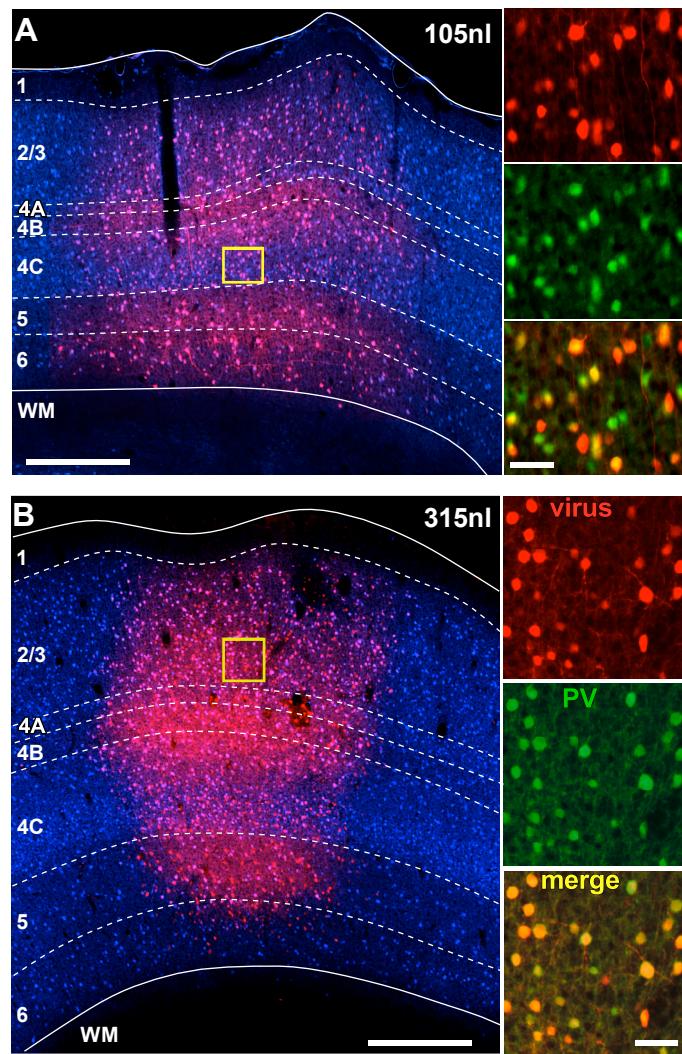


Figure 2

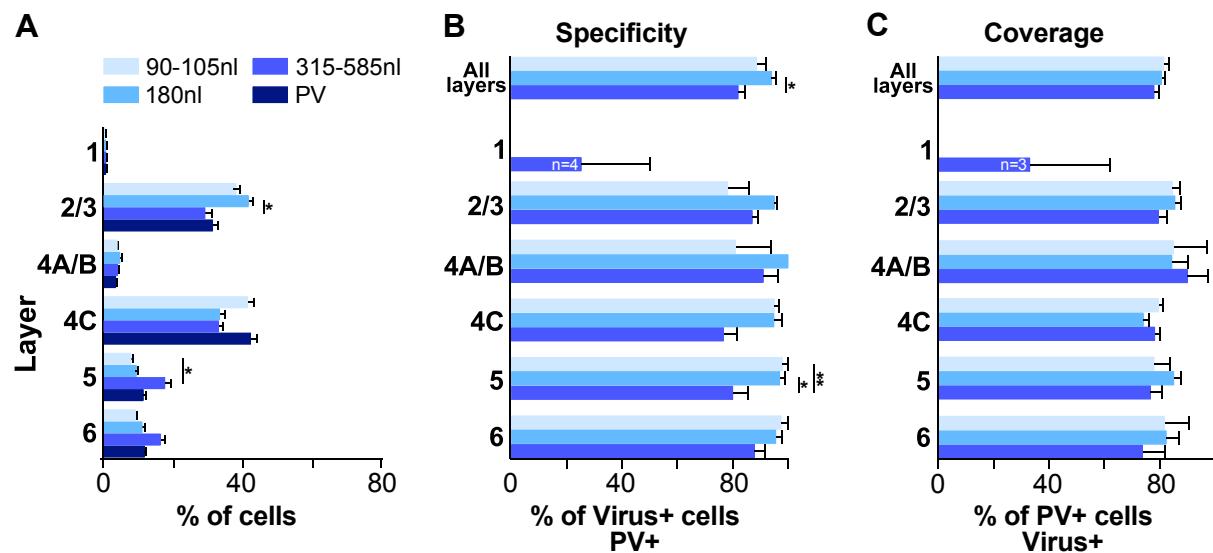


Figure 4

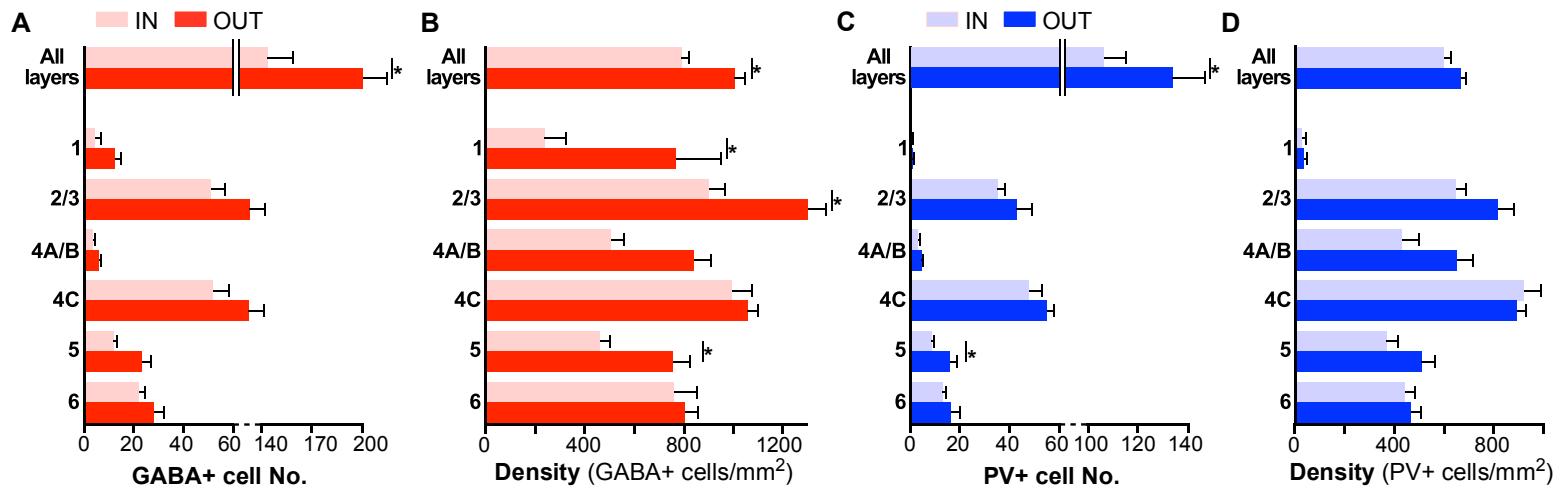


Figure 5

Figure 6

GABA-AAV Injection

PV-AAV Injection

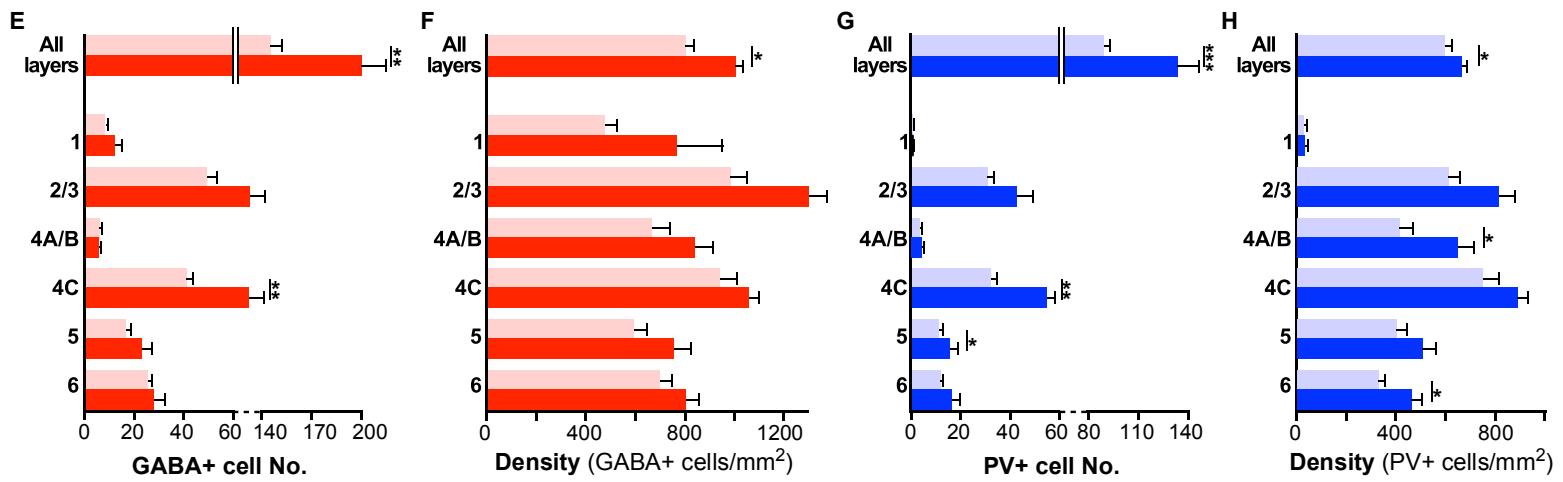
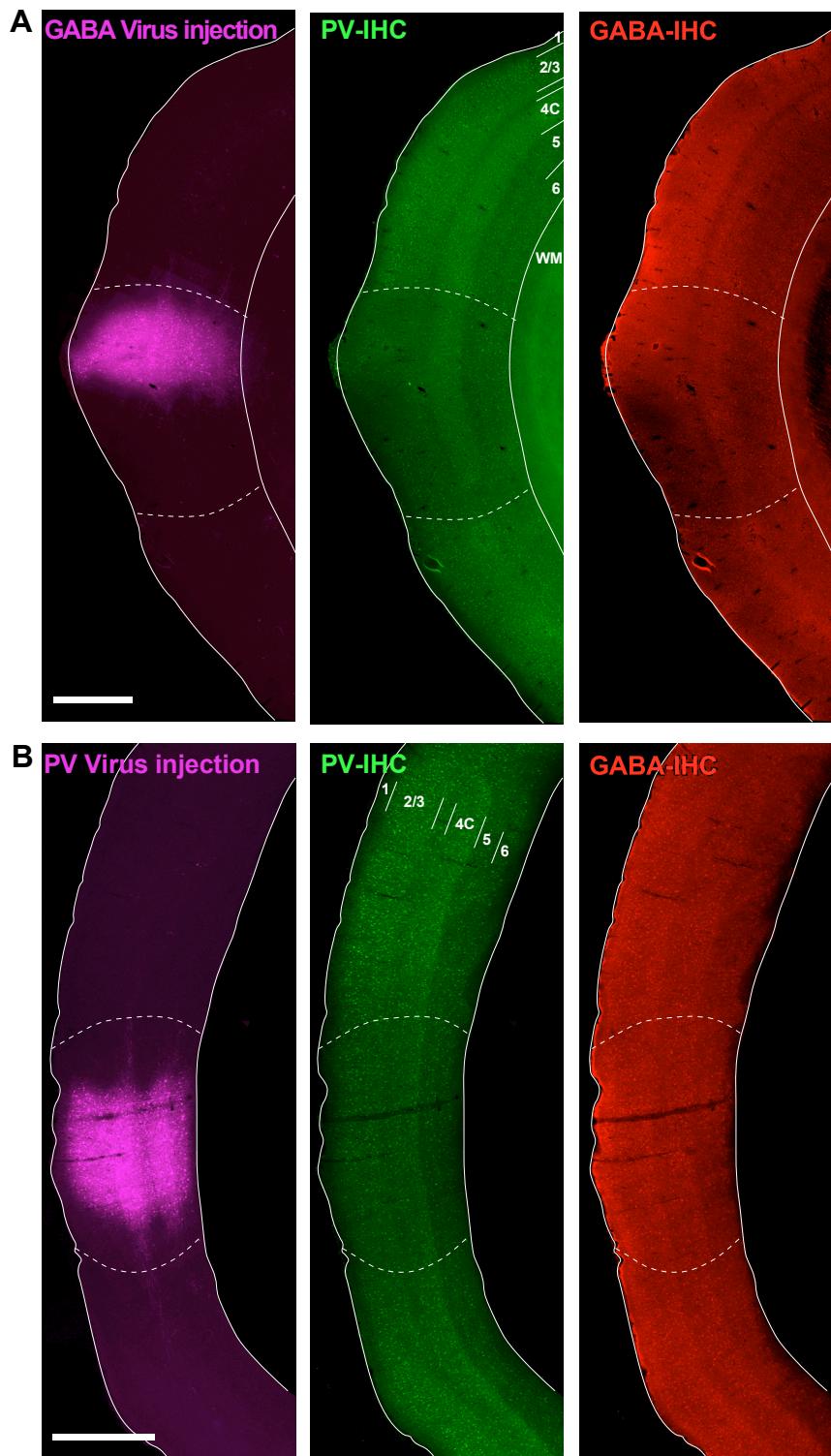



Figure 7

Figure 7- figure supplement 1

Reduced GABA and PV immunoreactivity at the viral injection site.

(A) Left: Epifluorescent image of an example GABA-AAV injection site in V1. Middle: Same section imaged under the green channel to reveal PV-IHC. Right: Same section imaged under the red channel to reveal GABA-IHC. In all panels, *solid white contours* mark the top and bottom of the cortex, *dashed contours* outline the region of reduced immunoreactivity. Cortical layers are indicated in the middle panel. **(B)** Same as in (A) but for an example PV-AAV injected site. Scale bars in (A,B): 1 mm.