Title: Microbial growth in soil

Authors: Megan M. Foley!?, Bram W.G. Stone?, Tristan A. Caro*, Noah W. Sokol’, Steven J.
Blazewicz’, Paul Dijkstra'?, Michaela Hayer'~, Kirsten Hofmockel®, Brianna K. Finley’,
Benjamin J. Koch!?, Michelle Mack!-?, Jane Marks'-?, Rebecca L. Mau!-%, Victoria Monsaint-
Queeney'?, Ember Morrissey®, Jeffrey Propster', Alicia Purcell?, Egbert Schwartz!-%, Jennifer

Pett-Ridge>!?, Noah Fierer'"'?, Bruce A. Hungate'~

Affiliations:

ICenter for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
’Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ

3Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland,
WA

‘Department of Geological Sciences, University of Colorado Boulder, Boulder, CO

5Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore,
CA4

"Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
8Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV

’Department of Biological Sciences, Texas Tech University, Lubbock, TX

L ife & Environmental Sciences Department, University of California Merced, Merced, CA

U Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO
RCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,

Boulder, CO

Figures: 2
Tables: 1
Supplementary Material: Tables S1-S4, Figures S1

Correspondence: Megan Foley (mmf289@nau.edu)

Conflict of Interest: The authors declare no conflict of interest.



10

11

12

13

14

15

16

17

18

19

20

21

22

Abstract

The growth rate of a microorganism is a simple yet profound way to quantify its impact
on the world. Microbial fitness in the environment depends on the ability to reproduce quickly
when conditions are favorable and adopt a survival physiology when conditions worsen, which
cells coordinate by adjusting their growth rate. At the population level, per capita growth rate is a
sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of
populations. The absolute growth rate of a microbial population reflects rates of resource
assimilation, biomass production, and element transformation, some of the many ways that
organisms affect Earth’s ecosystems and climate. For soil microorganisms, most of our
understanding of growth is based on observations made in culture. This is a crucial limitation
given that many soil microbes are not readily cultured and in vitro conditions are unlikely to
reflect conditions in the wild. New approaches in ‘omics and stable isotope probing make it
possible to sensitively measure growth rates of microbial assemblages and individual taxa in
nature, and to couple these measurements to biogeochemical fluxes. Microbial ecologists can
now explore how the growth rates of taxa with known traits and evolutionary histories respond to
changes in resource availability, environmental conditions, and interactions with other
organisms. We anticipate that quantitative and scalable data on the growth rates of soil
microorganisms will allow scientists to test and refine ecological theory and advance process-
based models of carbon flux, nutrient uptake, and ecosystem productivity. Measurements of in
situ microbial growth rates provide insights into the ecology of populations and can be used to

quantitatively link microbial diversity to soil biogeochemistry.
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Introduction

Achieving growth in the face of a changing environment is the most fundamental challenge
for microorganisms living in soil. Microbial growth requires the coordination of a cell’s system-
level physiology, including the extraction of energy and substrates from the environment,
synthesis of hundreds of molecules at appropriate concentrations, and the events of cell division.
All of this coordination has to be done in such a way as to allow the cell to modify its activities
depending on changes in its surrounding environment — often on a very short time scale. With
millions of years of evolution, soil microorganisms have developed a range of strategies for
growing in diverse environments; they grow in extreme cold and heat, in highly acidic and
alkaline habitats, on the inside and outside of plant roots, and in the bedrock of soil.
Microorganisms have wide-ranging metabolic capabilities and can capitalize on diverse redox
pairs and reactions that occur not only within but also among cells representing multiple domains
of life'.

As soil microorganisms grow, they assimilate, transform, and redistribute key elements in
their environment?, with far-reaching consequences for Earth’s ecosystems and climate.
Microbial acquisition of phosphorus and sulfur for growth mobilizes these elements from their
geological reservoirs, where they typically reside for thousands to millions of years, and transfers
them into dynamic biotic pools with much shorter residence times, often on the scale of weeks to
months®*. Assimilation and retention of nutrients like nitrogen (N) and phosphorus in microbial
biomass can constrain plant growth and limit the capacity of ecosystems to capture carbon (C)
from the atmosphere’. When microorganisms transform substrates through redox reactions, they
can amplify the radiative forcing of greenhouse gas molecules, intensifying the impacts that

these molecules have on Earth’s climate®.
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Growth rate quantifies these interactions with the world. At the cellular level,
microorganisms grow by synthesizing the macromolecules that make up cells and growth rate is
a powerful index of how microorganisms adjust their physiology in response to a changing
environment. Since stress-resistant physiological configurations hinder the ability of cells to
grow quickly’, many microbial species have developed distinct phenotypes for stressful versus
growth-conducive environments. These phenotypes vary profoundly, not only in their rates of
growth, but also in their central C metabolic networks®, cell sizes, and macromolecular
compositions’. The evolution of distinct growth phenotypes is linked to genetic mutations that
affect global gene regulation!’, suggesting that growth rate may be evolutionarily related to a
range of traits that impact how microbes survive in soils, including the synthesis of extracellular
polymeric substances (EPS)*!, motility'?, nutrient uptake pathways'?, and even mortality rate!*.

At the population level, growth occurs when reproduction outpaces mortality. Per capita
growth rate (the change in abundance relative to the starting size of the population) measures
how well microorganisms compete for resources and respond to challenges associated with
stress, competition, and predation. Evolutionary fitness depends on the persistence of an
organism’s genes in the population gene pool'”, meaning that quantitative metrics of fitness
should ideally reflect both reproduction and survival‘®. If high reproductive rates are offset by
high rates of mortality, the long-term persistence of lineages carrying those genes (i.e. relative
fitness) 1s lower than that of lineages with the same reproductive rate in a population with little
mortality, differences that are captured by a microorganism’s per capita growth rate!’. Per capita
growth rates can also quantify the intensity of intraspecific interactions, such as density

18,19

dependence resulting from competition >, and interspecific interactions, such as competition,

predation, and mutualism?°,
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Absolute growth rate, or the actual change in mass or abundance per unit time, reflects rates
of microbial element assimilation and use. Along with absolute mortality rate, absolute growth
rate determines the standing stock of microbial biomass and the interactions with other
microorganisms and the environment, ultimately driving changes in the taxonomic makeup of
entire communities. Given that soil microorganisms can exist in a range of physiological states
and exhibit rapid turnover, often with minimal changes in the standing stock of biomass,
assessing microbial abundance alone is a poor predictor of element flux?'=>>. Rates of absolute
growth and mortality are needed to quantify the turnover of elements through microorganisms
per unit time. Such metrics provide a powerful means for mapping element flux through entire
assemblages and testing the impacts of microbial biodiversity on C and nutrient cycling at the
ecosystem scale??,

While plant and animal growth in nature is routinely measured, microbial growth is typically
studied in the laboratory under highly artificial conditions. Most often, the maximum growth
rates of culturable organisms are assessed during exponential phase in resource-rich media.

26-38

Although many recent developments in soil ecology invoke microbial growth rates=~°, growth

rates of soil microorganisms in situ are difficult to measure and interpret. New approaches®*3—
leveraging ‘omics technologies and stable isotope probing (SIP) make it possible to measure
microbial growth rates in sifu, capturing the phylogenetic and metabolic diversity of actively

growing populations in soil and making it possible to better understand the microbial

contributions to soil biogeochemical processes.

Measurements of microbial growth rates in soil
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Current estimates of soil microbial generation times vary enormously, spanning at least four
orders of magnitude from ~43 minutes to ~ 2 years (Figure 1). Such variation may be a product
of SIP-based methods that target different biomolecules, such as DNA, proteins, or lipids with
varying turnover rates, contingent on the cell’s physiological state. During exponential growth,
cells synthesize macromolecules at near-constant differential rates and divide at a particular
mass. Under these conditions of balanced growth, growth rate sets key cellular phenotypes like
cell size and the mass fractions of nucleic acids, proteins, and lipids. In nature, where
microorganisms exist in a range of states from exponential growth to dormancy, relationships
between replicative growth and rates of macromolecular synthesis may not always be so tightly
coupled. Applying multiple methods that measure synthesis rates of various macromolecules
would be an excellent way to explore the physiological adjustments that allow microorganisms
to strike a balance between survival and proliferation in soil. For example, in response to
extreme C limitation, microorganisms may undergo reductive division*?, simultaneously
catabolizing lipids for energy*’ and replicating other cellular constituents in order to divide into
smaller and more stress resistant cells, which could be explored using SIP approaches targeting
lipid** and DNA*** synthesis. Entirely different networks of regulatory molecules are
responsible for coordinating cell growth and division during different phases of growth,
demonstrating that the strategies microorganisms employ to grow and survive in nature may
differ profoundly from those used during exponential growth in culture.

Most measurements quantify relative growth rate, useful for understanding how
microorganisms respond to challenges in the environment. However, measurements of absolute
growth rate — which quantify the actual change in mass or abundance of microorganisms over

time — are needed to understand how microorganisms transform and redistribute elements
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through ecosystems. New approaches that convert rates of tracer uptake to growth in terms of C
units are major advances*>*, but it is still a major challenge to accurately estimate absolute
changes in mass and abundance using these approaches. Adopting and developing protocols that
quantify the efficiency of DNA*, protein, and lipid*’ extractions would advance these efforts.
Most measurements of soil microbial growth quantify the growth rates of whole
microbial assemblages, which result in a single estimate for a soil sample, an aggregate of
thousands of microbial populations. A single population of plants can suppress N availability*®,
and a single population of animals can modify soil disturbance®. The tremendous biodiversity of
soil microorganisms means that individual microbial populations should also have profound
influence on ecosystems °*°!. New methods that quantify the growth rates of individual

243941 are promising avenues for developing quantitative links between specific

microbial taxa
microbial taxa and soil processes. Estimates of growth from over 46,000 measurements of rates
of DNA synthesis show tremendous variation in growth rates among bacterial groups in soil and
indicate that most microorganisms exhibit low to intermediate growth rates (Figure 2). The
growth rate of an individual taxon is not clearly related to its abundance, a finding that aligns
with previous observations from LH-SIP** demonstrating that faster growing taxa are not
necessarily more abundant in soil since population growth can be matched or outpaced by
mortality'®.

Measurements of growth rate in soil indicate that bacterial groups also vary in their rates

of resource use and responses to changes in nutrient availability>>~%, temperature®>—>%,

disturbance'®%:6

, mineralogy®', and climate gradients®>®*. Microbial contributions to C
assimilation and respiration®? and N assimilation® appear to be highly taxon-specific, and this

variation appears to be meaningful when scaled to the ecosystem level®?. Such measurements
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offer a new set of data for testing and developing representations of C and N cycling that include
representations of microbial diversity. Measurements of growth rate have also shown how

3

interactions among soil microorganisms — including competition®®, mutualism?, and

predation®®-’

— can influence element flux through the soil microbiome too, just as interactions
between plants and animals influence ecosystem processes.

Measurements of growth rate have a clear place in testing the role of ecological theory in
soil microbial ecology, too. Like macroscopic organisms, microbial phenotypes in soil are
constrained by their evolutionary histories®®!. Phenomena such as negative density dependence
and r/K selection theory are key for understanding population growth of larger organisms, but
these concepts have failed to explain patterns in the growth of microbes in situ *%. As such
there is a great need for evidence-based ecological frameworks that are built on direct
observations of soil microbiomes’*. Moving forward, quantitative data on soil microbial growth

rates should be integrated into tests of microbial ecological theory and used to refine process-

based models of element flux and ecosystem productivity.

Relevance to soil ecology

The diversity, physiology, and ecology of microorganisms influence biogeochemical
cycling, soil organic matter (SOM) formation and loss, and plant productivity, with implications
for pollution, food supply, and climate. Soil biogeochemical process rates are rarely measured
simultaneously with microbial growth, but doing so could offer powerful insight into how
microbes contribute to these processes and could help discover new tools for managing the soil

microbiome.
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Microbial physiology and soil organic C cycling

The physiological properties of microorganisms play a key role in governing the
formation and loss of SOM stocks’*7* that are vital for mitigating C emissions and enhancing the
sustainability of agricultural systems’®. Measurements of in situ soil microbial growth could be
used to inform and test emerging hypotheses on soil organic C (SOC) cycling. For example, low
molecular weight C substrates are hypothesized to increase the accrual of mineral-associated
organic matter derived from microbial necromass, a large and slowly-cycling C reservoir, by
promoting fast and efficient microbial growth and turnover at the assemblage level’ %,
However, the relationships between substrate quality, microbial growth rate, and physiological
traits are complex. The growth rates of soil microbes have been both positively®'** and
negatively’”®3 linked to growth efficiency, and taxa are known to vary in their rates of growth on
low versus high molecular weight C substrates’®®*. Establishing quantitative relationships
between the taxonomic composition, growth rate, and growth efficiency of microbial
assemblages is needed to advance our conceptual understanding of SOC cycling.

Microbial processes affecting soil C accrual and persistence, including growth rate, are
represented in some numerical models of SOC cyeling®®=%*, These microbially explicit
biogeochemical models can be used to integrate measurements of microbial growth with
mechanistic understanding of SOC responses to environmental changes. For example,
formulations of microbial dormancy? and density dependent growth®® can improve predictions
of SOC dynamics at the ecosystem scale. At the global scale, modeling growth efficiency in soil
is key to predicting soil C stocks®®, suggesting growth rate may be an important factor to
consider in these large-scale geochemical models. Additional measurements of soil microbial

growth rates in nature will provide the data needed to test conceptual and quantitative models of
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how microbes influence the soil C cycle. There is a clear need for direct measurements of in situ
growth rates to better understand the roles of the microbial community — and of individual
microbial genes, metabolic pathways, and taxa — as conduits of energy and element cycling

through soils.

Microbial diversity and ecological strategies concepts

Amidst a wealth of archived genomic, transcriptomic, and proteomic data, frameworks
categorizing the ecological strategies of soil microorganisms have emerged to integrate these
data with biogeochemical concepts and mechanistic models®’*°. Such frameworks are valuable
given that they can effectively reduce complex microbial assemblages into a manageable number
of functional groups and provide a basis for generating effective, hypothesis-driven insights into
soil microbial ecology”. Collectively, these frameworks represent diverse hypotheses about
interactions between microbial community structure and soil processes.

Many microbial frameworks have been derived from classic ecological theory (i.e.,
theory primarily developed from conceptual models of plant life history strategies) and these
microbial frameworks often lack experimental validation. For example, ecological strategies are
commonly assigned based on taxonomy®® but tests of whether microorganisms use their assigned
strategies in nature are rare’>. Alternatively, broad ecological strategies can be identified based
on genomic features®’ and gene expression’’, but our ability to translate microbial genes to
function is nascent.

Evidence-based tests of ecological frameworks are now possible. As an essential property
of an organism’s life history and metric of competitive ability, in situ growth rate has a direct

role in validating frameworks that build on classical ecological theory. As a metric of fitness,
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growth rate could be assayed in multiple environments to determine whether evolutionary
adaptation to a selective environment has been accompanied by a loss of reproductive potential
in nonselective environments — in other words, whether a tradeoff has occurred. Quantifying the
growth of organisms where they actually live and grow also provides access to a broader suite of
trait dimensions than can be extrapolated from pure culture studies. Direct, in sifu growth rate
measurements could thus provide powerful, empirical means to develop alternative ways of
organizing soil microbial diversity into ecologically meaningful units. Coupling these with
measures of nutrient and energy fluxes will help test links between community composition and

ecosystem dynamics.

Ecological interactions and soil food webs

Microorganisms influence energy flow and alter rates of nutrient cycling through their
interactions with other microorganisms®”. For example, predation in the rhizosphere changes the
taxonomic structure of prokaryotic communities and alters rates of N mineralization, influencing
productivity”’. Mutualistic interactions between microbial taxa can drive depolymerization of
complex C compounds® and antagonistic interactions can influence growth and mortality rates
through negative density dependence'8, altering rates of C turnover from microbial biomass®°.
Taxon specific growth rates are a valuable tool for assessing microbial interactions in which one
soil microorganism influences another by altering its growth, reproduction, or any trait impacting
fitness.

Growth rates of microbial taxa could help construct accurate food webs, as opposed to

static measurements of microbial biomass®® which are a poor surrogate for growth (Figure 3b).

Food webs are an excellent tool for modelling the connectivity of microorganisms and

10
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quantifying how energy and elements are transferred between microbial taxa’®. Consistent with
observations that top-down control of food webs increases with productivity, obligate microbial
predators respond to shifts in prey resource availability by disproportionately increasing their

rates of growth (compared to non-predator taxa) when C substrates, a common source of energy

for their heterotrophic prey, are added to soil®®

. Food web structure is widely recognized to be a
major determinant of productivity and element flux in marine and freshwater ecosystems, and
may play an equally important role in soil ecosystems too. In particular, the CUE of microbial
assemblages is important for modelling SOC cycling at the global scale® and microbial turnover
may be significant sources of variation in this parameter’’. Measurements of growth, along with

mortality, can be used to quantify turnover and taxon-specific measurements of growth can

identify factors, like predation and density-dependent effects, that contribute to its variation.

Conclusion

There is an urgent need to improve our quantitative understanding of how microorganisms
contribute to soil processes, given their central role in ecosystem C storage, nutrient cycling, and
productivity. Growth rate integrates the many ways that microbes affect soil processes, and is a
sensitive metric for studying cell and population-level responses to challenges that
microorganisms encounter in nature, including challenges from changes in environmental
conditions and biotic interactions. New approaches for measuring in sifu microbial growth are
important for accurately estimating the full range of growth rates in soils and offer a promising
avenue to advance soil ecology. Understanding how microbial growth rates vary in the
environment will enable greater cohesion between emerging ecological concepts and

microbiological data. As soil ecological concepts and models are developed, it is critical that
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quantitative and sensitive measurements of in sifu microbial growth be used alongside
measurements of biogeochemical fluxes to understand how individual microbial taxa and

aggregate microbial communities influence soil processes.

Methods
Relative growth rates of soil microbial assemblages

We compiled published estimates of relative growth rates of soil microbial assemblages,
measured using seven common techniques: H>'*0 SIP with IRMS, H>'®0 qSIP, thymidine
incorporation, leucine incorporation, acetate incorporation, lipidomic hydrogen SIP, and soil C
mass balance modelling. We obtained estimates of relative growth rate from secondary
sources>**? for the thymidine incorporation, leucine incorporation, acetate incorporation,
lipidomic hydrogen SIP, and mass balance modelling methods. For H2'%0 SIP with IRMS
method, we searched papers citing Spohn et al. 2016 (the study that developed the method) and
included measurements from papers that clearly reported growth rate or turnover time, sample
preparation techniques, and mean and errors values. For the H2!80 qSIP method, we computed
estimates of relative growth rate as the average of population relative growth rates across taxa.
For all methods, we did not include soils that were contaminated with metals or soils that
received additions of fertilizer, glucose, biochar, or microbial growth inhibitors in our dataset. In
total we collected data from 30 studies and 287 measurements of relative growth rate of

microbial assemblages (Supplementary Table 1).

Relative growth rates of soil microbial amplicon sequence variants

12
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We extracted values of excess atom fraction (EAF) 'O from qSIP measurements
compiled across 15 different sites (Supplementary Table 2) and estimated bacterial growth rates
based on the rate '®0 assimilation from '®O-labeled water. All gSIP measurements involved
parallel incubations, with samples receiving either isotopically labeled (e.g., 97 atom % *O-
H>0) or unlabeled substrates (e.g., water with natural abundance *0). The incubations lasted for
7.4+ 1.8 days (average + SD). After each incubation, DNA was extracted and subjected to
density separation via isopycnic centrifugation. Density fractions were collected, the 16S rRNA
gene was sequenced, and the total abundance of 16S rRNA gene copies in each fraction was
quantified using qPCR. Quantitative stable isotope probing calculations were then applied to
estimate EAF 180340,

Values of EAF ‘80 that were negative or above the theoretical maximum enrichment of
microbial DNA (EAFmax) are physically impossible and were considered outliers if variation
among technical replicates was high (defined here as SD > 0.15) or the estimate was more than
1.5 standard deviations away from that taxon’s average EAF '®0 across all replicates in all
experiments. EAFmax 1s computed as the product of the isotopic composition of soil water in each
incubation (determined as a function of the amount of 97 atom % '*O water added and total soil
water content) and the fraction of oxygen atoms in newly synthesized DNA that are derived from
environmental water, which was set to 0.6*°. Out of 47,580 observations of EAF *0, 492
observations were identified as outliers and removed. A density correction was performed to
account for slight differences in the preparation of the CsCl density gradient solution of each
replicate®” and any remaining negative estimates of EAF 'O (a total of 4,358) were corrected to

zero. A total of 3,719 estimates of EAF 30 remained above EAFmax, likely reflecting rapid
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microbial growth and assimilation of *O from additional sources like organic matter or prey
biomass. These values were corrected to EAFmax-0.002%.

The relative growth rate (RGR) for each taxon was estimated according to using the EAF
180 of individual bacterial taxa (EAF) and the duration of the incubation (7) in days as:

EAF 20 1
— 5 —
EAF_, 30 t

RGR (day‘l):
We applied a lower threshold of 0.002 EAF '®0 when computing relative growth rates”® meaning
that if an ASV was enriched less than 0.002 EAF 'O it was considered to have an EAF 'O

value of 0. Multiple gSIP measurements were conducted across the 15 sites, including

experiments within some sites (Supplementary Table 2).

Statistical analyses

We analyzed our database of growth rates of microbial assemblages to assess the
influence of different ecosystems and methodological characteristics. To understand the extent
that growth rate may not be independent from each other within studies, we compared a linear
model against a mixed effects model, where study (i.e., paper) was coded as a random effect,
using log-likelihood ratio testing and Akaike Information Criterion corrected for finite sample
size (AICc) and Bayesian Information Criterion (BIC). Study was coded as a random effect
(allowing for independent intercepts) in the mixed model (Ime4 R package®). In both models, all
methodological details (ecosystem, method, depth, incubation length in days, and whether soils
were prepared as slurries) were included as fixed effects. Comparing the difference in model fit
between the linear model and mixed model, we found a slight increase in model performance due

to adding the random term (X* = 4.88, p = 0.027; AAICc=-10.66) but BIC suggested that the

increase in model complexity may not be justified (ABIC = 14.32). For this analysis we chose to

14
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prioritize model simplicity and therefore report on linear model outputs. To determine the most
important methodological variables driving relative growth rates, we use AICc and BIC to select
the best, most parsimonious, statistical model from a set of candidate models (Supplementary
Table 3). We considered all combinations of main effects as well as the interaction between
ecosystem and method. The best model included ecosystem, method, and depth as significant
predictors of microbial assemblage relative growth rates (R* = 0.24, ecosystem: F3 273 = 2.94
p=0.03, method: F4,273 =22.13, p <0.001, depth: F2 273 = 12.39 p < 0.001).

Lastly, we used linear regression to test the relationship between an ASV’s growth rate measured
with H2!'%0 gSIP and its abundance in soil. The output of the linear model was y=1.5¢7+3.6e™ (p

= <0.001, r’= 0.06). All statistical analyses were performed in R version 4.2.2.
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Figure 1: Published estimates of growth rates of soil microbial assemblages in agricultural,
forest, grassland, and tundra ecosystems. Estimates span four orders of magnitude (0.0009-
1.98 day™) in studies using H»'30 SIP with IRMS, H>'®0 qSIP, thymidine incorporation, leucine
incorporation, acetate incorporation, lipidomic hydrogen SIP (LH-SIP), and soil C mass balance
modelling. The y-axis is logio transformed. Additional study information is shown in
Supplementary Table 1.
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Figure 2: Relative growth rates of soil bacterial and archaeal taxa measured by H,'*O ¢SIP
across 13 sites and five ecosystems: tropical forest, temperate grassland, temperate conifer
forest, boreal forest, and moist acidic tundra. a) Distribution of in situ relative growth rates of
amplicon sequence variants (ASVs). Most ASVs exhibit low to intermediate rates of growth. b)
Average relative growth rates of bacterial and archaeal ASVs against their abundances (linear
model; p<0.001,r*=0.0001). ASV sequencing abundances were converted to absolute abundance
based on the number of 16S rRNA gene copies per gram of dry soil. C) Distribution of relative
growth rates of bacterial and archaeal phyla. The middle line corresponds to the median, lower and
upper edges correspond to the first and third quartiles, and whiskers extend to the highest and
lowest point within 150% of the interquartile range. All estimates from growth were measured at
approximately room temperature. Additional study information shown in Supplementary Table 2.
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