Title: Microbial growth in soil

Authors: Megan M. Foley^{1,2}, Bram W.G. Stone³, Tristan A. Caro⁴, Noah W. Sokol⁵, Steven J. Blazewicz⁵, Paul Dijkstra^{1,2}, Michaela Hayer^{1,2}, Kirsten Hofmockel³, Brianna K. Finley⁷, Benjamin J. Koch^{1,2}, Michaela Mack^{1,2}, Jane Marks^{1,2}, Rebecca L. Mau^{1,2}, Victoria Monsaint-Queeney^{1,2}, Ember Morrissey⁸, Jeffrey Propster^{1,2}, Alicia Purcell^{1,9}, Egbert Schwartz^{1,2}, Jennifer Pett-Ridge^{5,10}, Noah Fierer^{11,12}, Bruce A. Hungate^{1,2}

Affiliations:

¹Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ

²Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ

³Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA

⁴Department of Geological Sciences, University of Colorado Boulder, Boulder, CO

⁵Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA

⁷Department of Ecology and Evolutionary Biology, University of California, Irvine, CA

⁸Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV

⁹Department of Biological Sciences, Texas Tech University, Lubbock, TX

¹⁰Life & Environmental Sciences Department, University of California Merced, Merced, CA

¹¹Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO

¹²Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,

Boulder, CO

Figures: 2

Tables: 1

Supplementary Material: Tables S1-S4, Figures S1

Correspondence: Megan Foley (mmf289@nau.edu)

Conflict of Interest: The authors declare no conflict of interest.

1 Abstract

The growth rate of a microorganism is a simple yet profound way to quantify its impact
on the world. Microbial fitness in the environment depends on the ability to reproduce quickly
when conditions are favorable and adopt a survival physiology when conditions worsen, which
cells coordinate by adjusting their growth rate. At the population level, per capita growth rate is a
sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of
populations. The absolute growth rate of a microbial population reflects rates of resource
assimilation, biomass production, and element transformation, some of the many ways that
organisms affect Earth's ecosystems and climate. For soil microorganisms, most of our
understanding of growth is based on observations made in culture. This is a crucial limitation
given that many soil microbes are not readily cultured and in vitro conditions are unlikely to
reflect conditions in the wild. New approaches in 'omics and stable isotope probing make it
possible to sensitively measure growth rates of microbial assemblages and individual taxa in
nature, and to couple these measurements to biogeochemical fluxes. Microbial ecologists can
now explore how the growth rates of taxa with known traits and evolutionary histories respond to
changes in resource availability, environmental conditions, and interactions with other
organisms. We anticipate that quantitative and scalable data on the growth rates of soil
microorganisms will allow scientists to test and refine ecological theory and advance process-
based models of carbon flux, nutrient uptake, and ecosystem productivity. Measurements of in
situ microbial growth rates provide insights into the ecology of populations and can be used to
quantitatively link microbial diversity to soil biogeochemistry.

Introduction

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Achieving growth in the face of a changing environment is the most fundamental challenge for microorganisms living in soil. Microbial growth requires the coordination of a cell's systemlevel physiology, including the extraction of energy and substrates from the environment, synthesis of hundreds of molecules at appropriate concentrations, and the events of cell division. All of this coordination has to be done in such a way as to allow the cell to modify its activities depending on changes in its surrounding environment – often on a very short time scale. With millions of years of evolution, soil microorganisms have developed a range of strategies for growing in diverse environments; they grow in extreme cold and heat, in highly acidic and alkaline habitats, on the inside and outside of plant roots, and in the bedrock of soil. Microorganisms have wide-ranging metabolic capabilities and can capitalize on diverse redox pairs and reactions that occur not only within but also among cells representing multiple domains of life¹. As soil microorganisms grow, they assimilate, transform, and redistribute key elements in their environment², with far-reaching consequences for Earth's ecosystems and climate. Microbial acquisition of phosphorus and sulfur for growth mobilizes these elements from their geological reservoirs, where they typically reside for thousands to millions of years, and transfers them into dynamic biotic pools with much shorter residence times, often on the scale of weeks to months^{3,4}. Assimilation and retention of nutrients like nitrogen (N) and phosphorus in microbial biomass can constrain plant growth and limit the capacity of ecosystems to capture carbon (C) from the atmosphere⁵. When microorganisms transform substrates through redox reactions, they can amplify the radiative forcing of greenhouse gas molecules, intensifying the impacts that these molecules have on Earth's climate⁶.

Growth rate quantifies these interactions with the world. At the cellular level, microorganisms grow by synthesizing the macromolecules that make up cells and growth rate is a powerful index of how microorganisms adjust their physiology in response to a changing environment. Since stress-resistant physiological configurations hinder the ability of cells to grow quickly⁷, many microbial species have developed distinct phenotypes for stressful versus growth-conducive environments. These phenotypes vary profoundly, not only in their rates of growth, but also in their central C metabolic networks⁸, cell sizes, and macromolecular compositions⁹. The evolution of distinct growth phenotypes is linked to genetic mutations that affect global gene regulation¹⁰, suggesting that growth rate may be evolutionarily related to a range of traits that impact how microbes survive in soils, including the synthesis of extracellular polymeric substances (EPS)¹¹, motility¹², nutrient uptake pathways¹³, and even mortality rate¹⁴. At the population level, growth occurs when reproduction outpaces mortality. Per capita growth rate (the change in abundance relative to the starting size of the population) measures how well microorganisms compete for resources and respond to challenges associated with stress, competition, and predation. Evolutionary fitness depends on the persistence of an organism's genes in the population gene pool¹⁵, meaning that quantitative metrics of fitness should ideally reflect both reproduction and survival¹⁶. If high reproductive rates are offset by high rates of mortality, the long-term persistence of lineages carrying those genes (i.e. relative fitness) is lower than that of lineages with the same reproductive rate in a population with little mortality, differences that are captured by a microorganism's per capita growth rate¹⁷. Per capita growth rates can also quantify the intensity of intraspecific interactions, such as density dependence resulting from competition^{18,19}, and interspecific interactions, such as competition, predation, and mutualism²⁰.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Absolute growth rate, or the actual change in mass or abundance per unit time, reflects rates of microbial element assimilation and use. Along with absolute mortality rate, absolute growth rate determines the standing stock of microbial biomass and the interactions with other microorganisms and the environment, ultimately driving changes in the taxonomic makeup of entire communities. Given that soil microorganisms can exist in a range of physiological states and exhibit rapid turnover, often with minimal changes in the standing stock of biomass, assessing microbial abundance alone is a poor predictor of element flux^{21–25}. Rates of absolute growth and mortality are needed to quantify the turnover of elements through microorganisms per unit time. Such metrics provide a powerful means for mapping element flux through entire assemblages and testing the impacts of microbial biodiversity on C and nutrient cycling at the ecosystem scale²².

While plant and animal growth in nature is routinely measured, microbial growth is typically studied in the laboratory under highly artificial conditions. Most often, the maximum growth rates of culturable organisms are assessed during exponential phase in resource-rich media. Although many recent developments in soil ecology invoke microbial growth rates^{26–38}, growth rates of soil microorganisms *in situ* are difficult to measure and interpret. New approaches^{24,39–41} leveraging 'omics technologies and stable isotope probing (SIP) make it possible to measure microbial growth rates *in situ*, capturing the phylogenetic and metabolic diversity of actively growing populations in soil and making it possible to better understand the microbial contributions to soil biogeochemical processes.

Measurements of microbial growth rates in soil

Current estimates of soil microbial generation times vary enormously, spanning at least four orders of magnitude from ~43 minutes to ~2 years (Figure 1). Such variation may be a product of SIP-based methods that target different biomolecules, such as DNA, proteins, or lipids with varying turnover rates, contingent on the cell's physiological state. During exponential growth, cells synthesize macromolecules at near-constant differential rates and divide at a particular mass. Under these conditions of balanced growth, growth rate sets key cellular phenotypes like cell size and the mass fractions of nucleic acids, proteins, and lipids. In nature, where microorganisms exist in a range of states from exponential growth to dormancy, relationships between replicative growth and rates of macromolecular synthesis may not always be so tightly coupled. Applying multiple methods that measure synthesis rates of various macromolecules would be an excellent way to explore the physiological adjustments that allow microorganisms to strike a balance between survival and proliferation in soil. For example, in response to extreme C limitation, microorganisms may undergo reductive division⁴², simultaneously catabolizing lipids for energy⁴³ and replicating other cellular constituents in order to divide into smaller and more stress resistant cells, which could be explored using SIP approaches targeting lipid²⁴ and DNA^{39,44} synthesis. Entirely different networks of regulatory molecules are responsible for coordinating cell growth and division during different phases of growth, demonstrating that the strategies microorganisms employ to grow and survive in nature may differ profoundly from those used during exponential growth in culture.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Most measurements quantify relative growth rate, useful for understanding how microorganisms respond to challenges in the environment. However, measurements of absolute growth rate – which quantify the actual change in mass or abundance of microorganisms over time – are needed to understand how microorganisms transform and redistribute elements

through ecosystems. New approaches that convert rates of tracer uptake to growth in terms of C units are major advances^{22,45}, but it is still a major challenge to accurately estimate absolute changes in mass and abundance using these approaches. Adopting and developing protocols that quantify the efficiency of DNA⁴⁶, protein, and lipid⁴⁷ extractions would advance these efforts.

Most measurements of soil microbial growth quantify the growth rates of whole microbial assemblages, which result in a single estimate for a soil sample, an aggregate of thousands of microbial populations. A single population of plants can suppress N availability⁴⁸, and a single population of animals can modify soil disturbance⁴⁹. The tremendous biodiversity of soil microorganisms means that individual microbial populations should also have profound influence on ecosystems ^{50,51}. New methods that quantify the growth rates of individual microbial taxa^{24,39–41} are promising avenues for developing quantitative links between specific microbial taxa and soil processes. Estimates of growth from over 46,000 measurements of rates of DNA synthesis show tremendous variation in growth rates among bacterial groups in soil and indicate that most microorganisms exhibit low to intermediate growth rates (Figure 2). The growth rate of an individual taxon is not clearly related to its abundance, a finding that aligns with previous observations from LH-SIP²⁴ demonstrating that faster growing taxa are not necessarily more abundant in soil since population growth can be matched or outpaced by mortality¹⁹.

Measurements of growth rate in soil indicate that bacterial groups also vary in their rates of resource use and responses to changes in nutrient availability^{52–54}, temperature^{55–58}, disturbance^{18,59,60}, mineralogy⁶¹, and climate gradients^{62,63}. Microbial contributions to C assimilation and respiration²² and N assimilation⁶⁴ appear to be highly taxon-specific, and this variation appears to be meaningful when scaled to the ecosystem level²². Such measurements

offer a new set of data for testing and developing representations of C and N cycling that include representations of microbial diversity. Measurements of growth rate have also shown how interactions among soil microorganisms – including competition⁶⁵, mutualism²³, and predation^{66,67} – can influence element flux through the soil microbiome too, just as interactions between plants and animals influence ecosystem processes.

Measurements of growth rate have a clear place in testing the role of ecological theory in soil microbial ecology, too. Like macroscopic organisms, microbial phenotypes in soil are constrained by their evolutionary histories^{68–71}. Phenomena such as negative density dependence and r/K selection theory are key for understanding population growth of larger organisms, but these concepts have failed to explain patterns in the growth of microbes *in situ* ^{19,72}. As such there is a great need for evidence-based ecological frameworks that are built on direct observations of soil microbiomes⁷³. Moving forward, quantitative data on soil microbial growth rates should be integrated into tests of microbial ecological theory and used to refine process-based models of element flux and ecosystem productivity.

Relevance to soil ecology

The diversity, physiology, and ecology of microorganisms influence biogeochemical cycling, soil organic matter (SOM) formation and loss, and plant productivity, with implications for pollution, food supply, and climate. Soil biogeochemical process rates are rarely measured simultaneously with microbial growth, but doing so could offer powerful insight into how microbes contribute to these processes and could help discover new tools for managing the soil microbiome.

Microbial physiology and soil organic C cycling

The physiological properties of microorganisms play a key role in governing the formation and loss of SOM stocks^{74,75} that are vital for mitigating C emissions and enhancing the sustainability of agricultural systems⁷⁶. Measurements of *in situ* soil microbial growth could be used to inform and test emerging hypotheses on soil organic C (SOC) cycling. For example, low molecular weight C substrates are hypothesized to increase the accrual of mineral-associated organic matter derived from microbial necromass, a large and slowly-cycling C reservoir, by promoting fast and efficient microbial growth and turnover at the assemblage level^{77–80}. However, the relationships between substrate quality, microbial growth rate, and physiological traits are complex. The growth rates of soil microbes have been both positively^{81,82} and negatively^{77,83} linked to growth efficiency, and taxa are known to vary in their rates of growth on low versus high molecular weight C substrates^{70,84}. Establishing quantitative relationships between the taxonomic composition, growth rate, and growth efficiency of microbial assemblages is needed to advance our conceptual understanding of SOC cycling.

Microbial processes affecting soil C accrual and persistence, including growth rate, are represented in some numerical models of SOC cycling^{26–30,33}. These microbially explicit biogeochemical models can be used to integrate measurements of microbial growth with mechanistic understanding of SOC responses to environmental changes. For example, formulations of microbial dormancy²⁹ and density dependent growth⁸⁵ can improve predictions of SOC dynamics at the ecosystem scale. At the global scale, modeling growth efficiency in soil is key to predicting soil C stocks⁸⁶, suggesting growth rate may be an important factor to consider in these large-scale geochemical models. Additional measurements of soil microbial growth rates in nature will provide the data needed to test conceptual and quantitative models of

how microbes influence the soil C cycle. There is a clear need for direct measurements of *in situ* growth rates to better understand the roles of the microbial community – and of individual microbial genes, metabolic pathways, and taxa – as conduits of energy and element cycling through soils.

Microbial diversity and ecological strategies concepts

Amidst a wealth of archived genomic, transcriptomic, and proteomic data, frameworks categorizing the ecological strategies of soil microorganisms have emerged to integrate these data with biogeochemical concepts and mechanistic models^{87–89}. Such frameworks are valuable given that they can effectively reduce complex microbial assemblages into a manageable number of functional groups and provide a basis for generating effective, hypothesis-driven insights into soil microbial ecology⁹⁰. Collectively, these frameworks represent diverse hypotheses about interactions between microbial community structure and soil processes.

Many microbial frameworks have been derived from classic ecological theory (i.e., theory primarily developed from conceptual models of plant life history strategies) and these microbial frameworks often lack experimental validation. For example, ecological strategies are commonly assigned based on taxonomy⁸⁸ but tests of whether microorganisms use their assigned strategies in nature are rare⁷². Alternatively, broad ecological strategies can be identified based on genomic features⁸⁷ and gene expression⁹¹, but our ability to translate microbial genes to function is nascent.

Evidence-based tests of ecological frameworks are now possible. As an essential property of an organism's life history and metric of competitive ability, *in situ* growth rate has a direct role in validating frameworks that build on classical ecological theory. As a metric of fitness,

growth rate could be assayed in multiple environments to determine whether evolutionary adaptation to a selective environment has been accompanied by a loss of reproductive potential in nonselective environments – in other words, whether a tradeoff has occurred. Quantifying the growth of organisms where they actually live and grow also provides access to a broader suite of trait dimensions than can be extrapolated from pure culture studies. Direct, *in situ* growth rate measurements could thus provide powerful, empirical means to develop alternative ways of organizing soil microbial diversity into ecologically meaningful units. Coupling these with measures of nutrient and energy fluxes will help test links between community composition and ecosystem dynamics.

Ecological interactions and soil food webs

Microorganisms influence energy flow and alter rates of nutrient cycling through their interactions with other microorganisms⁹². For example, predation in the rhizosphere changes the taxonomic structure of prokaryotic communities and alters rates of N mineralization, influencing productivity⁹³. Mutualistic interactions between microbial taxa can drive depolymerization of complex C compounds⁹⁴ and antagonistic interactions can influence growth and mortality rates through negative density dependence¹⁸, altering rates of C turnover from microbial biomass⁸⁵. Taxon specific growth rates are a valuable tool for assessing microbial interactions in which one soil microorganism influences another by altering its growth, reproduction, or any trait impacting fitness.

Growth rates of microbial taxa could help construct accurate food webs, as opposed to static measurements of microbial biomass⁹⁵ which are a poor surrogate for growth (Figure 3b). Food webs are an excellent tool for modelling the connectivity of microorganisms and

quantifying how energy and elements are transferred between microbial taxa⁹⁶. Consistent with observations that top-down control of food webs increases with productivity, obligate microbial predators respond to shifts in prey resource availability by disproportionately increasing their rates of growth (compared to non-predator taxa) when C substrates, a common source of energy for their heterotrophic prey, are added to soil⁶⁶. Food web structure is widely recognized to be a major determinant of productivity and element flux in marine and freshwater ecosystems, and may play an equally important role in soil ecosystems too. In particular, the CUE of microbial assemblages is important for modelling SOC cycling at the global scale⁸⁶ and microbial turnover may be significant sources of variation in this parameter⁹⁷. Measurements of growth, along with mortality, can be used to quantify turnover and taxon-specific measurements of growth can identify factors, like predation and density-dependent effects, that contribute to its variation.

Conclusion

There is an urgent need to improve our quantitative understanding of how microorganisms contribute to soil processes, given their central role in ecosystem C storage, nutrient cycling, and productivity. Growth rate integrates the many ways that microbes affect soil processes, and is a sensitive metric for studying cell and population-level responses to challenges that microorganisms encounter in nature, including challenges from changes in environmental conditions and biotic interactions. New approaches for measuring *in situ* microbial growth are important for accurately estimating the full range of growth rates in soils and offer a promising avenue to advance soil ecology. Understanding how microbial growth rates vary in the environment will enable greater cohesion between emerging ecological concepts and microbiological data. As soil ecological concepts and models are developed, it is critical that

quantitative and sensitive measurements of *in situ* microbial growth be used alongside measurements of biogeochemical fluxes to understand how individual microbial taxa and aggregate microbial communities influence soil processes.

Methods

Relative growth rates of soil microbial assemblages

We compiled published estimates of relative growth rates of soil microbial assemblages, measured using seven common techniques: H₂¹⁸O SIP with IRMS, H₂¹⁸O qSIP, thymidine incorporation, leucine incorporation, acetate incorporation, lipidomic hydrogen SIP, and soil C mass balance modelling. We obtained estimates of relative growth rate from secondary sources^{24,40} for the thymidine incorporation, leucine incorporation, acetate incorporation, lipidomic hydrogen SIP, and mass balance modelling methods. For H₂¹⁸O SIP with IRMS method, we searched papers citing Spohn et al. 2016 (the study that developed the method) and included measurements from papers that clearly reported growth rate or turnover time, sample preparation techniques, and mean and errors values. For the H₂¹⁸O qSIP method, we computed estimates of relative growth rate as the average of population relative growth rates across taxa. For all methods, we did not include soils that were contaminated with metals or soils that received additions of fertilizer, glucose, biochar, or microbial growth inhibitors in our dataset. In total we collected data from 30 studies and 287 measurements of relative growth rate of microbial assemblages (Supplementary Table 1).

Relative growth rates of soil microbial amplicon sequence variants

We extracted values of excess atom fraction (EAF) 18 O from qSIP measurements compiled across 15 different sites (Supplementary Table 2) and estimated bacterial growth rates based on the rate 18 O assimilation from 18 O-labeled water. All qSIP measurements involved parallel incubations, with samples receiving either isotopically labeled (e.g., 97 atom 9 18 O-H₂O) or unlabeled substrates (e.g., water with natural abundance 18 O). The incubations lasted for 7 .4 ± 1.8 days (average ± SD). After each incubation, DNA was extracted and subjected to density separation via isopycnic centrifugation. Density fractions were collected, the 16S rRNA gene was sequenced, and the total abundance of 16S rRNA gene copies in each fraction was quantified using qPCR. Quantitative stable isotope probing calculations were then applied to estimate EAF 18 O^{39,40}.

Values of EAF ¹⁸O that were negative or above the theoretical maximum enrichment of microbial DNA (EAF_{max}) are physically impossible and were considered outliers if variation among technical replicates was high (defined here as SD > 0.15) or the estimate was more than 1.5 standard deviations away from that taxon's average EAF ¹⁸O across all replicates in all experiments. EAF_{max} is computed as the product of the isotopic composition of soil water in each incubation (determined as a function of the amount of 97 atom % ¹⁸O water added and total soil water content) and the fraction of oxygen atoms in newly synthesized DNA that are derived from environmental water, which was set to 0.6⁴⁰. Out of 47,580 observations of EAF ¹⁸O, 492 observations were identified as outliers and removed. A density correction was performed to account for slight differences in the preparation of the CsCl density gradient solution of each replicate⁶⁹ and any remaining negative estimates of EAF ¹⁸O (a total of 4,358) were corrected to zero. A total of 3,719 estimates of EAF ¹⁸O remained above EAF_{max}, likely reflecting rapid

microbial growth and assimilation of 18 O from additional sources like organic matter or prey biomass. These values were corrected to EAFmax-0.002 98 .

The relative growth rate (RGR) for each taxon was estimated according to using the EAF 18 O of individual bacterial taxa (EAF) and the duration of the incubation (t) in days as:

$$RGR \left(day^{-1} \right) = \frac{EAF^{18}O}{EAF_{max}^{18}O} \times \frac{1}{t}$$

We applied a lower threshold of 0.002 EAF ¹⁸O when computing relative growth rates⁹⁸ meaning that if an ASV was enriched less than 0.002 EAF ¹⁸O it was considered to have an EAF ¹⁸O value of 0. Multiple qSIP measurements were conducted across the 15 sites, including experiments within some sites (Supplementary Table 2).

Statistical analyses

We analyzed our database of growth rates of microbial assemblages to assess the influence of different ecosystems and methodological characteristics. To understand the extent that growth rate may not be independent from each other within studies, we compared a linear model against a mixed effects model, where study (i.e., paper) was coded as a random effect, using log-likelihood ratio testing and Akaike Information Criterion corrected for finite sample size (AICc) and Bayesian Information Criterion (BIC). Study was coded as a random effect (allowing for independent intercepts) in the mixed model (lme4 R package⁹⁹). In both models, all methodological details (ecosystem, method, depth, incubation length in days, and whether soils were prepared as slurries) were included as fixed effects. Comparing the difference in model fit between the linear model and mixed model, we found a slight increase in model performance due to adding the random term ($X^2 = 4.88$, p = 0.027; Δ AICc = -10.66) but BIC suggested that the increase in model complexity may not be justified (Δ BIC = 14.32). For this analysis we chose to

prioritize model simplicity and therefore report on linear model outputs. To determine the most important methodological variables driving relative growth rates, we use AICc and BIC to select the best, most parsimonious, statistical model from a set of candidate models (Supplementary Table 3). We considered all combinations of main effects as well as the interaction between ecosystem and method. The best model included ecosystem, method, and depth as significant predictors of microbial assemblage relative growth rates ($R^2 = 0.24$, ecosystem: $F_{3, 273} = 2.94$ p=0.03, method: $F_{4, 273} = 22.13$, p < 0.001, depth: $F_{2, 273} = 12.39$ p < 0.001). Lastly, we used linear regression to test the relationship between an ASV's growth rate measured with $H_2^{18}O$ qSIP and its abundance in soil. The output of the linear model was $y=1.5e^{-7}+3.6e^{-2}$ (p = <0.001, $r^2=0.06$). All statistical analyses were performed in R version 4.2.2.

Acknowledgments

The authors thank the Center for Ecosystem Science and Society (ECOSS) and the Lawrence Livermore National Laboratory (LLNL) Soil Microbiome Scientific Focus Area team for helpful discussions. This work was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research, Genomic Science Program (GSP) LLNL 'Microbes Persist' Soil Microbiome Scientific Focus Area SCW1632. Work conducted at LLNL was conducted under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. BWGS is grateful for support from the Linus Pauling Postdoctoral Distinguished Fellowship program through Pacific Northwest National Laboratory.

- 338 References
- 1. Holmes, D. E. et al. Metatranscriptomic evidence for direct interspecies electron transfer
- between Geobacter and Methanothrix species in methanogenic rice paddy soils. *Appl.*
- 341 Environ. Microbiol. 83, e00223-17 (2017).
- 2. Elser, J. j. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550
- 343 (2000).
- 344 3. Wang, Y., Law, R. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for
- the terrestrial biosphere. *Biogeosciences* 7, 2261–2282 (2010).
- 4. Tang, K., Baskaran, V. & Nemati, M. Bacteria of the sulphur cycle: An overview of
- microbiology, biokinetics and their role in petroleum and mining industries. *Biochem. Eng.*
- 348 *J.* **44**, 73–94 (2009).
- 5. Hobbie, S. E. & Vitousek, P. M. Nutrient Limitation of Decomposition in Hawaiian Forests.
- 350 *Ecology* **81**, 1867–1877 (2000).
- 351 6. Serrano-Silva, N., Sarria-Guzmán, Y., Dendooven, L. & Luna-Guido, M. Methanogenesis
- and methanotrophy in soil: a review. *Pedosphere* **24**, 291–307 (2014).
- 353 7. Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the
- 354 cell at different exponential growth rates. *EcoSal Plus* **3**, 10–1128 (2008).
- 8. King, T., Ishihama, A., Kori, A. & Ferenci, T. A Regulatory Trade-Off as a Source of Strain
- Variation in the Species Escherichia coli. *J. Bacteriol.* **186**, 5614–5620 (2004).
- 9. Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting
- molecular and environmental microbiology. *Nat. Rev. Microbiol.* **14**, 549–562 (2016).
- 359 10. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel changes in gene expression after 20,000
- generations of evolution in Escherichia coli. *Proc. Natl. Acad. Sci.* **100**, 1072–1077 (2003).

- 361 11. Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J. & Genin, S. A Resource Allocation Trade-
- Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen
- Ralstonia solanacearum. *PLOS Pathog.* **12**, e1005939 (2016).
- 12. Martínez-García, E., Nikel, P. I., Chavarría, M. & de Lorenzo, V. The metabolic cost of
- flagellar motion in Pseudomonas putida KT2440. Environ. Microbiol. 16, 291–303 (2014).
- 366 13. Notley-McRobb, L., King, T. & Ferenci, T. rpoS Mutations and Loss of General Stress
- Resistance in Escherichia coli Populations as a Consequence of Conflict between Competing
- 368 Stress Responses. J. Bacteriol. **184**, 806–811 (2002).
- 369 14. Biselli, E., Schink, S. J. & Gerland, U. Slower growth of Escherichia coli leads to longer
- survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst. Biol. 16,
- 371 e9478 (2020).
- 372 15. Sæther, B.-E. & Engen, S. The concept of fitness in fluctuating environments. *Trends Ecol.*
- 373 Evol. **30**, 273–281 (2015).
- 16. McGraw, J. B. & Caswell, H. Estimation of Individual Fitness from Life-History Data. Am.
- 375 *Nat.* **147**, 47–64 (1996).
- 17. Van de Walle, J., Larue, B., Pigeon, G. & Pelletier, F. Different proxies, different stories?
- 377 Imperfect correlations and different determinants of fitness in bighorn sheep. *Ecol. Evol.* 12,
- 378 e9582 (2022).
- 379 18. Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct
- temporal population responses to rewetting in a California grassland soil. *ISME J.* 1–13
- 381 (2020) doi:10.1038/s41396-020-0617-3.

- 382 19. Stone, B. W. et al. Nutrients strengthen density dependence of per-capita growth and
- mortality rates in the soil bacterial community. *Oecologia* (2023) doi:10.1007/s00442-023-
- 384 05322-z.
- 385 20. Shapiro, J. W. & Turner, P. E. Evolution of mutualism from parasitism in experimental virus
- 386 populations. Evolution 72, 707–712 (2018).
- 387 21. Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: Critical review of
- estimation criteria and approaches. *Soil Biol. Biochem.* **67**, 192–211 (2013).
- 389 22. Stone, B. W. et al. Nutrients cause consolidation of soil carbon flux to small proportion of
- 390 bacterial community. *Nat. Commun.* **12**, 1–9 (2021).
- 391 23. Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water
- 392 limitation. *ISME J.* **16**, 2752–2762 (2022).
- 393 24. Caro, T. A., McFarlin, J., Jech, S., Fierer, N. & Kopf, S. Hydrogen stable isotope probing of
- lipids demonstrates slow rates of microbial growth in soil. *Proc. Natl. Acad. Sci.* **120**,
- 395 e2211625120 (2023).
- 396 25. Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi
- underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. *Ecology* **95**,
- 398 1162–1172.
- 399 26. Moorhead, D. L. & Sinsabaugh, R. L. A THEORETICAL MODEL OF LITTER DECAY
- 400 AND MICROBIAL INTERACTION. *Ecol. Monogr.* **76**, 151–174 (2006).
- 401 27. Wieder, W., Grandy, S., Kallenbach, C. & B Bonan, G. Integrating microbial physiology and
- 402 physiochemical principles in soils with the MIcrobial-MIneral Carbon Stabilization
- 403 (MIMICS) model. *Biogeosciences* **11**, 3899–3917 (2014).

- 404 28. Allison, S. D. A trait-based approach for modelling microbial litter decomposition. *Ecol.*
- 405 Lett. 15, 1058–1070 (2012).
- 406 29. Wang, G. et al. Microbial dormancy improves development and experimental validation of
- 407 ecosystem model. *ISME J.* **9**, 226–237 (2015).
- 408 30. Tang, J. & Riley, W. J. Weaker soil carbon-climate feedbacks resulting from microbial and
- abiotic interactions. *Nat. Clim. Change* **5**, 56–60 (2015).
- 410 31. Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics
- alleviate stoichiometric constraints during litter decay. *Ecol. Lett.* **17**, 680–690 (2014).
- 412 32. Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community
- organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827
- 414 (2015).
- 33. Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven
- 416 turnover offsets mineral-mediated storage of soil carbon under elevated CO 2. Nat. Clim.
- 417 *Change* **4**, 1099–1102 (2014).
- 418 34. Chen, R. et al. Soil C and N availability determine the priming effect: microbial N mining
- and stoichiometric decomposition theories. *Glob. Change Biol.* **20**, 2356–2367 (2014).
- 420 35. Averill, C. & Waring, B. Nitrogen limitation of decomposition and decay: how can it occur?
- 421 Glob. Change Biol. **24**, 1417–1427 (2018).
- 422 36. Crowther, T. W. et al. Untangling the fungal niche: the trait-based approach. Front.
- 423 *Microbiol.* **5**, 579 (2014).
- 424 37. Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-
- 425 associated fungi. *Biol. Rev.* **95**, 409–433 (2020).

- 38. Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant—
- 427 microbial-soil organic matter transformations. *Ecol. Monogr.* **85**, 133–155 (2015).
- 428 39. Hungate, B. A. et al. Quantitative Microbial Ecology through Stable Isotope Probing. Appl
- 429 Env. Microbiol **81**, 7570–7581 (2015).
- 430 40. Koch, B. J. et al. Estimating taxon-specific population dynamics in diverse microbial
- 431 communities. *Ecosphere* **9**, e02090 (2018).
- 432 41. Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial
- 433 replication rates in microbial communities. *Nat. Biotechnol.* **34**, 1256–1263 (2016).
- 434 42. Kalanetra, K. M., Joye, S. B., Sunseri, N. R. & Nelson, D. C. Novel vacuolate sulfur bacteria
- from the Gulf of Mexico reproduce by reductive division in three dimensions. *Environ*.
- 436 *Microbiol.* 7, 1451–1460 (2005).
- 43. Hood, M. A., Guckert, J. B., White, D. C. & Deck, F. Effect of nutrient deprivation on lipid,
- 438 carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. *Appl. Environ. Microbiol.*
- **52**, 788–793 (1986).
- 440 44. Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and
- biomass turnover times depending on soil depth Implications for carbon cycling. Soil Biol.
- 442 *Biochem.* **96**, 74–81 (2016).
- 443 45. Soares, M. & Rousk, J. Microbial growth and carbon use efficiency in soil: Links to fungal-
- bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 131, 195–205
- 445 (2019).
- 446 46. Mumy, K. L. & Findlay, R. H. Convenient determination of DNA extraction efficiency using
- an external DNA recovery standard and quantitative-competitive PCR. J. Microbiol.
- 448 *Methods* **57**, 259–268 (2004).

- 449 47. Nicora, C. D. et al. The MPLEx Protocol for Multi-omic Analyses of Soil Samples. JoVE J.
- 450 *Vis. Exp.* e57343 (2018) doi:10.3791/57343.
- 48. Hobbie, S. E. Effects of plant species on nutrient cycling. *Trends Ecol. Evol.* 7, 336–339
- 452 (1992).
- 49. Hobbs, N. T., Schimel, D. S., Owensby, C. E. & Ojima, D. S. Fire and grazing in the
- 454 tallgrass prairie: contingent effects on nitrogen budgets. *Ecology* **72**, 1374–1382 (1991).
- 455 50. Allison, S. D. *et al.* Microbial abundance and composition influence litter decomposition
- response to environmental change. *Ecology* **94**, 714–725 (2013).
- 457 51. Wang, B. & Allison, S. D. Climate-driven legacies in simulated microbial communities alter
- litter decomposition rates. Front. Ecol. Evol. 10, (2022).
- 459 52. Liu, W. et al. Active phoD-harboring bacteria are enriched by long-term organic fertilization.
- 460 Soil Biol. Biochem. **152**, 108071 (2021).
- 461 53. Dong, W. et al. Linking microbial taxa and the effect of mineral nitrogen forms on residue
- decomposition at the early stage in arable soil by DNA-qSIP. *Geoderma* **400**, 115127 (2021).
- 54. Li, J. et al. Predictive genomic traits for bacterial growth in culture versus actual growth in
- 464 soil. ISME J. 1 (2019) doi:10.1038/s41396-019-0422-z.
- 465 55. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and
- 466 carbon mineralization. *ISME J.* 1–10 (2021) doi:10.1038/s41396-021-00959-1.
- 467 56. Purcell, A. M. et al. Decreased growth of wild soil microbes after 15 years of transplant-
- induced warming in a montane meadow. Glob. Change Biol. 28, 128–139 (2022).
- 469 57. Bell, S. L. et al. Effects of warming on bacterial growth rates in a peat soil under ambient
- 470 and elevated CO2. Soil Biol. Biochem. 178, 108933 (2023).

- 58. Propster, J. R. et al. Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and
- 472 Long-Term Warming. Appl. Environ. Microbiol. 0, e01543-22 (2023).
- 59. Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to
- high-severity wildfire: linking community assembly to functional potential. *ISME J.* **16**,
- 475 1853–1863 (2022).
- 476 60. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function.
- 477 *Nat. Microbiol.* 7, 1419–1430 (2022).
- 478 61. Finley, B. K. et al. Soil minerals affect taxon-specific bacterial growth. ISME J. 16, 1318–
- 479 1326 (2022).
- 480 62. Chase, A. B., Weihe, C. & Martiny, J. B. H. Adaptive differentiation and rapid evolution of a
- soil bacterium along a climate gradient. *Proc. Natl. Acad. Sci.* **118**, e2101254118 (2021).
- 482 63. Foley, M. M. et al. Active populations and growth of soil microorganisms are framed by
- mean annual precipitation in three California annual grasslands. Soil Biol. Biochem. 108886
- 484 (2022).
- 485 64. Morrissey, E. M. *et al.* Taxonomic patterns in the nitrogen assimilation of soil prokaryotes.
- 486 Environ. Microbiol. **20**, 1112–1119 (2018).
- 487 65. Starr, E. P. *et al.* Stable-isotope-informed, genome-resolved metagenomics uncovers
- potential cross-kingdom interactions in rhizosphere soil. *Msphere* **6**, e00085-21 (2021).
- 489 66. Hungate, B. A. et al. The functional significance of bacterial predators. Mbio 12, e00466-21
- 490 (2021).
- 491 67. Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil
- bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere.
- 493 *Pedobiologia* **90**, 150787 (2022).

- 494 68. Walkup, J. et al. The predictive power of phylogeny on growth rates in soil bacterial
- 495 communities. *ISME Commun.* **3**, 73 (2023).
- 496 69. Morrissey, E. M. et al. Evolutionary history constrains microbial traits across environmental
- 497 variation. *Nat. Ecol. Evol.* **3**, 1064–1069 (2019).
- 498 70. Dang, C. et al. Phylogenetic organization in the assimilation of chemically distinct substrates
- 499 by soil bacteria. *Environ. Microbiol.* **24**, 357–369 (2022).
- 500 71. Ruan, Y. et al. Elevated temperature and CO2 strongly affect the growth strategies of soil
- 501 bacteria. *Nat. Commun.* **14**, 391 (2023).
- 502 72. Stone, B. W. G. et al. Life history strategies among soil bacteria—dichotomy for few,
- 503 continuum for many. *ISME J.* 1–9 (2023) doi:10.1038/s41396-022-01354-0.
- 73. Morrissey, E. M. et al. Carbon acquisition ecological strategies to connect soil microbial
- biodiversity and carbon cycling. Soil Biol. Biochem. 177, 108893 (2023).
- 506 74. Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass
- recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 1,
- 508 36 (2020).
- 509 75. Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil
- organic matter formation and its ecophysiological controls. *Nat. Commun.* 7, 13630 (2016).
- 511 76. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature
- **478**, 49 (2011).
- 513 77. Roller, B. R. & Schmidt, T. M. The physiology and ecological implications of efficient
- 514 growth. *ISME J.* **9**, 1481–1487 (2015).
- 78. Craig, M. E. et al. Fast-decaying plant litter enhances soil carbon in temperate forests but not
- through microbial physiological traits. *Nat. Commun.* **13**, 1229 (2022).

- 79. Crowther, T. W. et al. Environmental stress response limits microbial necromass
- contributions to soil organic carbon. Soil Biol. Biochem. 85, 153–161 (2015).
- 80. Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient
- from belowground than aboveground input. *Nat. Geosci.* **12**, 46–53 (2019).
- 521 81. Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in
- 522 land use and geology. *Soil Biol. Biochem.* **128**, 45–55 (2019).
- 82. Manzoni, S. et al. Optimal metabolic regulation along resource stoichiometry gradients.
- 524 Ecol. Lett. 20, 1182–1191 (2017).
- 83. Lipson, D. A. The complex relationship between microbial growth rate and yield and its
- 526 implications for ecosystem processes. *Front. Microbiol.* **6**, (2015).
- 527 84. Goldfarb, K. et al. Differential Growth Responses of Soil Bacterial Taxa to Carbon
- Substrates of Varying Chemical Recalcitrance. Front. Microbiol. 2, (2011).
- 529 85. Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-
- level regulation explains soil carbon responses to long-term litter manipulations. *Nat.*
- 531 *Commun.* **8**, 1223 (2017).
- 86. Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 1–
- 533 5 (2023).
- 87. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil
- carbon cycling under climate change. ISME J. 14, 1–9 (2020).
- 88. Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an Ecological Classification of Soil
- 537 Bacteria. *Ecology* **88**, 1354–1364 (2007).
- 538 89. Westoby, M. et al. Trait dimensions in bacteria and archaea compared to vascular plants.
- 539 *Ecol. Lett.* **24**, 1487–1504 (2021).

- 540 90. Prosser, J. I. & Martiny, J. B. H. Conceptual challenges in microbial community ecology.
- 541 Philos. Trans. R. Soc. B Biol. Sci. 375, 20190241 (2020).
- 542 91. Malik, A. A. et al. Drought and plant litter chemistry alter microbial gene expression and
- 543 metabolite production. *ISME J.* 1–12 (2020) doi:10.1038/s41396-020-0683-6.
- 544 92. Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes
- influence biogeochemistry. *Nat. Rev. Microbiol.* 1–16 (2022).
- 546 93. Bonkowski, M. Protozoa and plant growth: the microbial loop in soil revisited. *New Phytol*.
- **162**, 617–631 (2004).
- 548 94. Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to
- delignification and lignocellulose degradation in forest soils with metagenomic and
- quantitative stable isotope probing. ISME J. 13, 413–429 (2019).
- 551 95. Rousk, J. Biomass or growth? How to measure soil food webs to understand structure and
- function. Soil Biol. Biochem. **102**, 45–47 (2016).
- 96. de Vries, F. T. et al. Soil food web properties explain ecosystem services across European
- land use systems. *Proc. Natl. Acad. Sci.* **110**, 14296–14301 (2013).
- 555 97. Dijkstra, P. et al. On maintenance and metabolisms in soil microbial communities. Plant Soil
- **476**, 385–396 (2022).
- 557 98. Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing
- 558 metagenomics. *bioRxiv* 2022–12 (2022).
- 99. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using
- 560 lme4. J. Stat. Softw. 67, 1–48 (2015).

100. Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates
 from cultures, metagenomes, and single cells via codon usage patterns. *Proc. Natl. Acad. Sci.* 118, (2021).

Table 1. Descri methods for me calculable.	Table 1 . Descriptions, characteristics, published estimates of average generation times of soil microbial assemblages, and challenges associated with methods for measuring growth rate in soil. References are provided in Supplementary Table 3. "NA" indicates average generation time is not calculable.	average generation tin vided in Supplementa	of average generation times of soil microbial assemblages, and challenges associat provided in Supplementary Table 3. "NA" indicates average generation time is not	nd challenges associated with generation time is not
Microbial by	Microbial biomass carbon production rate			
Approach	Description	Generation times	Characteristics	Challenges
H ₂ ¹⁸ O SIP with IRMS	Growth rates of soil microbial assemblages are estimated by incubating soil with ¹⁸ O-labelled water or water vapor for several days. The rate of ¹⁸ O incorporation into microbial DNA is quantified using a thermochemical elemental analyzer (TC/EA) coupled to an Isotope Ratio Mass Spectrometer (IRMS) which approximates microbial DNA biomass synthesis ^{1,2} .	2.67-761 days ^{3,4}	Captures the gross growth of microbial assemblages through biosynthesis over relatively short (days) periods of time before significant biomass turnover. Valuable for measuring gross growth of microbial assemblages.	Soil environment may interfere with microbial biomass and DNA extractions ^{5,6} . Assumption that water is the only source of oxygen for growth may underestimate growth rate ⁶ . Approaches that use additions of ¹⁸ O-water may overestimate growth due to rewetting effects ² .
DNA synthesis rate	sis rate			
Approach H ₂ ¹⁸ O quantitative SIP (qSIP)	Growth rates of soil microbial taxa are estimated by incubating soil with ¹⁸ O-labelled water or water vapor for several days. The rate of ¹⁸ O incorporation into taxon-specific DNA is quantified using a combination DNA density fractionation via isopycnic centrifugation, DNA sequencing, and modeling of isotope substitution in DNA. ¹⁸ O incorporation rate approximates microbial DNA biomass synthesis and is used to model population growth and mortality rates ^{7,8,9} .	Generation times 2.99-34.7 days ^{10,11}	Characteristics Measures the gross growth of microbial populations through biosynthesis over relatively short (days) periods of time before significant biomass turnover. Valuable for measuring gross growth and mortality rates of individual microbial amplicon sequence variants (ASVs) or metagenome-assembled genomes (MAGs).	Challenges Soil environment may interfere with DNA extractions. Approaches that use additions of ¹⁸ O-water may overestimate growth due to rewetting effects ² .

Not all bacteria are able to incorporate extracellular thymidine into DNA ¹⁵ . Growth rates in bacterial suspension may not reflect growth rates of the assemblage in the original soil environment ¹³ . Amending soil with carbon sources and nutrients may stimulate microbial growth.	There has been limited validation of this approach in naturally occurring soil microbial assemblages. Current PTR methods may not reliably predict in situ growth rates in naturally occurring bacterial assemblages ²⁰ .	Many microbial taxa do not incorporate exogenous thymidine analogs into their DNA ²³ and there can be up to 10-fold variation among taxa in BrdU incorporation rates leading to skewed or incomplete representations of active populations ²⁴ . Approaches that use additions of water may overestimate growth due to rewetting effects ² .	Challenges
Captures the gross growth of bacterial assemblages through biosynthesis over short (hours) periods of time before significant biomass turnover. Valuable for measuring gross growth of bacterial assemblages.	Infers the relative growth rates of bacterial taxa through genome replication. Estimates represent an inference of instantaneous growth rate at the time of sample collection before DNA extraction. Valuable for interpreting the growth status of bacteria in a wide range of metagenomic datasets.	Measures the relative growth rates of soil microbial taxa through biosynthesis over relatively short (days) periods of time before significant biomass turnover. Valuable for identifying growing microbial taxa and their responses to environmental perturbations.	Characteristics
$0.75 - 168 \text{ days}^{13.14}$	Y Y	NA A	Generation times
Growth rates of soil bacterial assemblages are estimated by incubating bacterial cell extracts with radiolabeled thymidine, a precursor for DNA synthesis, for several hours. Incorporation rate of thymidine into cells is quantified using liquid scintillation which approximates bacterial DNA biomass synthesis ¹² .	Relative growth rates of bacterial taxa are estimated based on patterns of read coverage in metagenomic sequence data. Read coverage reflects the growth rate of bacterial since more genome copies accumulate at the origin of replication compared to the terminus in circular bacterial genomes during growth ¹⁶⁻¹⁹ .	Relative growth rates of soil bacterial taxa are estimated by incubating bacterial cell extracts with 5-bromo-2'-deoxyuridine (BrdU), an analog of the DNA precursor thymidine, for a few days. Cell that are synthesizing new DNA and incorporate BrdU are isolated by immunocapture and can be characterized using amplicon or metagenomic sequencing ^{21,22} .	Description
Thymidine incorporation	Peak to trough ratio (iREP, GRiD, DEMIC)	BrdU uptake Relative estimated 5-bromo-DNA pre are synth are isolat character sequencii	Approach

Approaches that use additions of water may overestimate growth due to rewetting effects ^{2,26} . Lipid biomarkers are only taxonomically resolved at the phylum level or among various functional groups ²⁷ .	Growth rates in soil slurries may not reflect growth rates of the assemblage in the original soil environment ²⁶ . Amending soil with carbon sources and nutrients may stimulate microbial growth.		Challenges	Growth rates in bacterial
Captures the growth of microorganisms over relatively short (days) periods of time before significant biomass turnover. Valuable for sensitively measuring gross growth of microbial assemblages, especially those exhibiting slow growth, as IRMS captures minute levels of ² H incorporation. Growth rates can be distinguished at the phylum level as well as by functional groups (e.g., methanotrophs, methanogens, fungi, AMF, anaerobes, cyanobacteria, etc.).	Captures the gross growth of fungal assemblages through biosynthesis over short (hours) periods of time before significant biomass turnover. Valuable for measuring gross growth of fungal assemblages.		Characteristics	Captures the gross growth of bacterial
20-64 days ²⁵	0.94-468 days ^{29,30}		Generation times	$0.70-142 \text{ days}^{13,33}$
Growth rates of soil microbial taxa are estimated by incubating soil with ² H-labelled water for several days. The rate of ² H incorporation into compoundspecific membrane lipids is quantified using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/P/IRMS). ² H incorporation rate approximates lipid membrane biomass synthesis and growth rate of broad taxonomic groups ²⁵ .	Growth rates of soil fungal assemblages are estimated by incubating soil slurries with radiolabeled acetate for several hours and measuring the incorporation of acetate into the fungal-specific lipid ergosterol. Incorporation rate of acetate into ergosterol is quantified using liquid scintillation which approximates fungal lipid biomass synthesis ²⁸ .	hesis rate	Description	Growth rates of soil bacterial assemblages are
Lipidomic hydrogen stable isotope probing (LH-SIP)	Acetate incorporation	Protein synthesis rate	Approach	Leucine

Maximum potential growth rate

growth rates of the assemblage in

suspension may not reflect

assemblages through biosynthesis over

short (hours) periods of time before

the original soil environment13. Amending soil with carbon

stimulate microbial growth.

sources and nutrients may

for measuring gross growth of bacterial

assemblages.

leucine into cells is quantified using liquid scintillation approximates bacterial protein biomass synthesis^{31,32}.

synthesis, for several hours. Incorporation rate of

radiolabeled leucine, a precursor for protein

estimated by incubating bacterial cell extracts with

incorporation

significant biomass turnover. Valuable

Approach	Description Maximum notantial growth rates of soil mismobial	Generation times	Characteristics	Challenges
Codon usage bias	Maximum potential grown rates of son microbial taxa are estimated from genomes based on the degree to which a genome or MAG favors one set of codons to encode an amino acid. Codon usage bias and growth are correlated due to selection pressure for highly expressed genes to use the optimal codons for translation, resulting in some codons being used more than others ³⁴ .	0.03-0.19 days	rate of microbial taxa. In contrast to in situ growth rate, maximum potential growth rate is an inferred physiological strategy rather than a field observation. The value in this approach is as a starting point for modeling population dynamics and evaluating the growth potential of organisms represented by MAGs in sequencing datasets.	of this approach in naturally occurring microbial assemblages. CUB appears to works reasonably well for fast growing prokaryotes that can be binned into a high-quality MAG ³⁴ .
Carbon flux	Carbon flux through microbial biomass rate			
Approach	Description	Generation times	Characteristics	Challenges
Soil C mass balance modeling	Growth rates of soil microbial assemblages are modelled from soil microbial biomass and annual litter input rates as: $u = [Y/x * dL/Dt - a]/(1-y)$ where u is growth rate, dL/dt is the rate of litter inputs, x is microbial biomass, Y is the yield coefficient, and a is the specific maintenance rate ^{36,37} .	3.3-632 days ^{37,38}	Integrates drivers from population and assemblage scales as well as time-dependent factors such as biomass turnover and the recycling of necromass in estimates of growth rate. Provides a measure of assemblage-level growth via biosynthesis plus mortality and necromass recycling across generations of cells. Valuable as an ecosystem-level measure of microbial biomass turnover over longer time scales.	Parameters for maintenance and growth yields are challenging to quantify for soil microbial assemblages.

Figure 1: Published estimates of growth rates of soil microbial assemblages in agricultural, forest, grassland, and tundra ecosystems. Estimates span four orders of magnitude (0.0009-1.98 day⁻¹) in studies using H₂¹⁸O SIP with IRMS, H₂¹⁸O qSIP, thymidine incorporation, leucine incorporation, acetate incorporation, lipidomic hydrogen SIP (LH-SIP), and soil C mass balance modelling. The y-axis is log₁₀ transformed. Additional study information is shown in Supplementary Table 1.

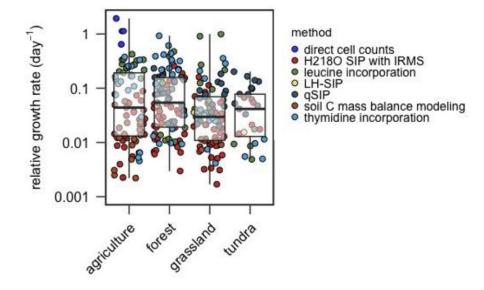
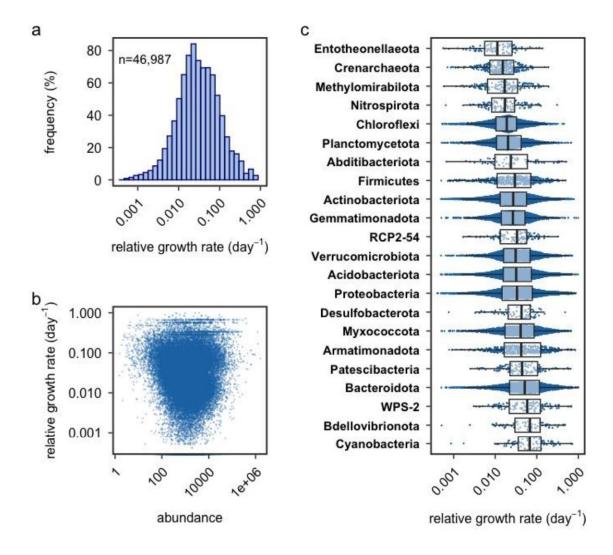



Figure 2: Relative growth rates of soil bacterial and archaeal taxa measured by $H_2^{18}O$ qSIP across 13 sites and five ecosystems: tropical forest, temperate grassland, temperate conifer forest, boreal forest, and moist acidic tundra. a) Distribution of in situ relative growth rates of amplicon sequence variants (ASVs). Most ASVs exhibit low to intermediate rates of growth. b) Average relative growth rates of bacterial and archaeal ASVs against their abundances (linear model; p < 0.001, $r^2 = 0.0001$). ASV sequencing abundances were converted to absolute abundance based on the number of 16S rRNA gene copies per gram of dry soil. C) Distribution of relative growth rates of bacterial and archaeal phyla. The middle line corresponds to the median, lower and upper edges correspond to the first and third quartiles, and whiskers extend to the highest and lowest point within 150% of the interquartile range. All estimates from growth were measured at approximately room temperature. Additional study information shown in Supplementary Table 2.

