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Multiphase field model of cells on a substrate: From three dimensional to two dimensional
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Multiphase field models have emerged as an important computational tool for understanding biological tissue
while resolving single-cell properties. While they have successfully reproduced many experimentally observed
behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-
dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived
from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise
from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue
monolayer and find that intercellular friction tends to solidify the tissue.
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I. INTRODUCTION

Phase field models have been used extensively to describe
the behavior of monolayers of living cells [1-11]. In these
models, each cell is described by a scalar field defined to
be unity where the cell is and zero outside. The dynamics
of the field is governed by thermodynamic forces controlled
by gradients in the local chemical potential and advection by
the cell’s own velocity, which in turn arises from cell motility
and interactions with other cells. The phase field model is
highly versatile because it allows the inclusion of repulsive
and adhesive cell-cell interactions, cell contractility and motil-
ity, dissipative forces due to intercellular friction and friction
with a substrate, and cell division and apoptosis. In contrast to
vertex (see, e.g., Refs. [12—-16]) and Voronoi (see, e.g., Refs.
[17,18]) models, which are generally restricted to confluent
tissue, with no gaps between cells (although versions ap-
plicable to nonconfluent situations have been implemented
[19,20]), it naturally allows both variations in cell shape
and cell density. Phase field models have been shown to
capture several experimentally observed behaviors, including
solid-liquid transitions in dense biological tissue [8,21], the
emergence of nematic [8] and hexatic order in epithelial layers
[22], and the correlation between topological defects in the
tissue structure and biological functions, such as cell extrusion
and apoptosis [23]. Extensions to three dimensions are also
being implemented [23,24].

An important component of the phase field model is the
free-energy functional that governs the shape of the phase
field representing a cell. Processes such as self-propulsion and
collisions with other cells can drive deformations of a cell

“These authors contributed equally to this work.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2470-0045/2024/110(4)/044403(15)

044403-1

from its preferred shape, which incur a free-energy penalty,
resulting in a passive thermodynamic (or capillary) stress
[25]. Different realizations of the model have either included
[4,8,21,23,26-31] or neglected [22,32,33] the resulting forces
in the force balance equation, and it remains unclear whether
the inclusion of such passive stress in controlling the cell
advection velocity is crucial in determining the collective
dynamics of the tissue. Finally, most studies start with a set of
particle-like, two-dimensional (2D) equations for individual
phase fields focusing on the in-plane dynamics of the cells
on the substrate, and a theory that explicitly links the full
three-dimensional (3D) phase field dynamics of the tissue to
this effective 2D dynamics is still lacking.

In this paper, we derive a set of effective 2D equations of
motion for the cells by starting from a model of interacting
cells in 3D and then averaging out the dynamics in the di-
rection normal to the substrate, in the limit where the height
of each cell is small compared to its lateral extent [34,35].
This derivation shows that passive capillary stress naturally
arises in the force balance equation from the interactions of
cells with a frictional substrate. Using simulations, we further
demonstrate that these passive stresses play a significant role
in controlling the rheological state of the tissue. A new ele-
ment of our work is the inclusion of cell-cell friction which
leads to viscous-type forces at the tissue scale and proves to
also have an important effect on the solid-liquid transition.
The method considered here is analogous to the lubrication
approximation commonly used in fluid dynamics to derive
equations for a thin liquid film [36].

The rest of the paper is organized as follows: In Sec. II, we
develop the theoretical framework for averaging the out-of-
plane dynamics by considering a simpler system with a single
cell located on the substrate. We show how one can derive
a 2D particle-like description of the cell, with its kinematic
properties, such as its velocity and self-propulsion polarity,
arising from coarse-grained body forces (and captured by
coarse-grained body velocity vectors). In Sec. III, we extend
this framework to modeling multiple cells on the substrate. In
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substrate
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FIG. 1. Illustration of the assumed profile for ¢,, as in Eq. (11),
where ¢, approaches one on the substrate (z = 0) and transitions
from one to zero at a height & over a small width &. Inset shows
illustration of the model cell in 3D.

particular, we incorporate viscous stress within the 3D tissue
and demonstrate that it encapsulates pairwise friction between
cells in the projected 2D dynamics. Section IV provides sim-
ulation results from solving the projected 2D equations of
motion for the cells. Notably, we find that passive stresses
strongly influence collective motion, for instance, in altering
the transition boundary of the solid-liquid transition driven
by cell deformability and activity. Section V compares the
effect of energetic adhesive interactions between cells and
intercellular friction on tissue dynamics, and we observe that
the latter contributes more significantly to the correlations in
cell velocities. Finally, in Sec. VI we summarize the results
and discuss implications of this work.

II. MODEL FOR A SINGLE CELL

We begin by examining the case of a single cell situated on
a planar rigid substrate. This allows one to familiarize with the
phase field approach in modeling cells and develop the funda-
mental framework for deriving the effective 2D dynamics of
the cell, which can then be generalized to multiple cells. Our
goal is to apply the thin-layer approximation to reduce the cell
dynamics from 3D to 2D and to derive a particle-like equa-
tion of motion for the phase field, whereby the cell, treated as
a deformable particle, is advected by a coarse-grained body
velocity vector instead of a field. As shown later, this provides
a computationally tractable framework for incorporating in-
tercellular friction when there are multiple cells.

A. Three-dimensional free energy and force balance

We model the cell to be in the positive half-plane, described
in Cartesian coordinates X = (X, z), where z € [0, /] and the
substrate is at z = 0 (see Fig. 1). The cell has a height 4 and
an interfacial thickness &. Periodic boundary conditions are
assumed in the x-y plane for convenience, without loss of
generality. We describe the cell using a phase field ¢(X),

where ¢ ~ 1 for regions within the cell and ¢ =~ 0 for those
outside the cell. This phase field represents the local concen-
tration of cellular content (i.e., active matter and water).

For the phase field to capture the morphology of a cell, we
impose a free energy JF with two contributions. First, there is
a Cahn-Hilliard-type free energy given by

FOH _ / dX fCH () = & / dX [£(¢) +E2(VerL (1)
in which
(@) =¢*(p— 1) 2)

favors ¢ close to zero or one when minimizing FH. The
second term in Eq. (1) penalizes the formation of interfaces
and ensures the maintenance of a single coherent droplet,
with £ being a length scale that controls the thickness of the
interfacial region. The edge tension y of the cell (related to
the excess free energy to form the interface) can be written as
y =«k&/3.

Second, we assume that the total cell volume V is not
strictly conserved but fluctuates around a preferred value Vj
(e.g., water can leave or enter the cell). This is incorporated as
a soft constraint in the free energy as

v v’ 2
Fr=AWl1l—— ) =AVéV~, 3)
Vo

where we defined the cell volume to be
Vigl = f dX ¢°. )

The choice of defining the volume with ¢? instead of ¢ does
not qualitatively change the computed volume, as long as the
interface width is small relative to the cell radius. However, it
results in a volume constraint contribution to the chemical po-
tential which depends on ¢, and hence gives a more physical
evolution equation for the cell’s phase field.

We account for the effect of mechanical forces acting on
the cell using the Cauchy momentum equation. In the limit
where the system is overdamped and body forces are absent,
this equation becomes

VgZep =0, (5)

which is a statement of force balance and momentum conser-
vation, where X, 4 are components of the total 3D stress tensor
of the cell (we use Greek indices for Cartesian components in
3D and Latin indices for those in 2D and observe the Einstein
summation convention). In this work, since we are interested
in the 2D in-plane dynamics of the cell, we only focus on these
components of this set of equations (i.e., « = a € {x, y}). The
boundary conditions we assume here are that ¥,,(x, z = 0) #
0, as the basal layer of the cell interacts with the substrate (i.e.,
there is momentum exchange), and ¥,.(x, z = &) &~ 0, which
imposes a free boundary at the cell’s apical surface.

We consider two types of stress acting on each cell
element:

Tap = BPy + T ©)

Here, £P% is a passive thermodynamic (or capillary) stress
that arises from cell deformation and is governed by the rela-
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tion [25]

V5ER = —9Van, @
where u = 8§ F /8¢ is the exchange chemical potential, given
by

w=2lp(p — DQ2p — 1) —E>V>p] — 428V,  (8)
With some algebra, one can further verify that
She = —SupTl — 2662 (Vo) (V) ©)

where TT = ug — fH(¢) + 208V ¢? is an osmotic pressure
(see Appendix A).

The other stress EEOI accounts for active processes that
drive cell motility. The self-propulsion of a cell is largely
mediated by traction forces transmitted to the cell-substrate
interface involving actin-based protrusions [10]. For simplic-
ity, we choose to model this phenomenologically, with details
presented in the next section. We note that one can also
incorporate other processes, such as active cell contractility,
into the force-balance equation, which will not change the
3D-to-2D projection framework presented here.

B. From three- to two-dimensional dynamics

To derive a 2D particle-like model for the cell moving on
a substrate from the full 3D description, we make the follow-
ing approximations. First, we assume a separation of length
scales: the interface width & is much smaller than the height
h of the cell in the z direction, which in turn is smaller than
the cell’s typical lateral extension ¢, i.e., § < h < £. Second,
we neglect spatial variations of the frictional forces with the
substrate and of the active forces that drive cell motility over
the area of the cell and define single degrees of freedom
describing motility and propulsion for a cell. This will become
important in developing a computationally tractable model
of many interacting cells. We further assume that the phase
field can be separated into the product of in-plane (L) and
out-of-plane (z) fields as

¢(X) = ¢L(x) p-(2). (10)

This factorization facilitates the operation of averaging the
phase field over the z direction. Under this assumption, the
cell’s cross-sectional shape is independent of z, though it can
evolve over time. Inspired by the phase field profile for a
binary fluid, we assume the cell’s vertical profile takes the

form
h—z
, 11
=)

which is a smoothed step-wise function (see Fig. 1).

We now proceed to obtain an in-plane-only description
of the model by averaging various quantities g over the z
direction. More precisely, we define this z-average operation
as

¢.(z) = %[1 + tanh <

1 h
q(x) = E/ dz g(X). (12)
0

Taking the z average of the force balance equation [Eq. (5)]
and applying the boundary conditions lead to

Vioup = ta(X), (13)

where we defined the 2D stress tensor
Oab = hZap, (14)
and
ta(X) = EP%(x,z = 0) + Z(x,z = 0) (15)

represents the traction force per unit area that the cell exerts
on the substrate [37]. Given that cell motility is generated
through cell-substrate interaction, we assume that the mag-
nitude of this stress is most dominant at the boundary in the
shear components of the surface normal to the substrate and
consider the approximation Tz & Ty (i.e., Thy > o).

To make progress, we determine an expression for each
side of Eq. (13), neglecting terms of O(&/h). For the left-hand
side, we directly evaluate the z average of the thermody-
namic stress and then take the divergence. Using the fact that
¢_§ =14 O(&/h) for any positive integer n (Appendix B),
we find

hEg = —SwTlL =218 (Vap)(Vsg1),  (16)

where 1| = u, ¢ — fM(p1) + 211 8A¢? is a 2D osmotic
pressure, with 6A =1 —A/Ao denoting the difference be-
tween the actual 2D cross-sectional cell area A = [ dx¢?
and the preferred value Ag. Here, w, = 6F, /8¢, is a 2D
chemical potential obtained from a 2D free energy

o= [axsten+ F

=Ky / dx[f(@1) +EX(Vig1)*] + A1A08A%,  (17)

where k| = «kh, A, = Ah,and £ is a 2D Cahn-Hilliard free-
energy density (full calculations are shown in Appendix C).
The term F4 = A, A¢8A? in Eq. (17) is a soft constraint on
the cell area. Under the approximation that the height % of the
cell is fixed, volume fluctuations directly determine area fluc-
tuations, as observed in experiments on Madin-Darby canine
kidney (MDCK) cell monolayers [38]. The assumption of a
fixed cell thickness implies the vanishing of the z component
of the velocity at the cell interface. This in turn corresponds
to assuming that the internal active forces giving rise to cell
propulsion only contribute to the traction force that controls
the in-plane cell motility. It would, of course, be very inter-
esting to also derive equations for the dynamics of the cell
height, which can play an important role, for instance, in tissue
folding or buckling [39—41]. This is left for future work. By
the same argument of how Eq. (7) is related to Eq. (9), the
divergence of this z-averaged stress is therefore

ViOup = hVpZap = —¢1 Vot . (18)

For the traction force on the right-hand side of Eq. (13),
we have T5°(x,z = 0) ~ 0 (see Appendix C), and so t, ~
2 (x,z = 0). In line with previous theoretical studies on
modeling cell-substrate interaction [35,40,42], we write down
this force phenomenologically as

t(x) =Tv(x) — f(x), (19)

where I"| is a friction per unit area, which we assume to be
constant, f(x) is a propulsion force density, and v(x) is the
in-plane advection velocity field of the cell. We do not model
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the traction force at a subcellular level and thus do not assume
a specific form for f(x). However, previous approaches have
done so via additional fields that describe actin dynamics
within the cell [1,3,7].

Finally, combining Egs. (13), (18), and (19), we write the
in-plane force balance statement as

Fivx) =f(x) — ¢ Vi (20)

C. Particle-like equation of motion

The in-plane force balance equation derived in the previ-
ous section allows one to solve for the cell velocity field,
which can then be used for advecting the phase field of the
cell over time. Generalizing this approach to multiple cells,
whereby there are multiple velocity fields for individual cells,
is challenging because one needs to consider the boundary
conditions between different fields at their interfaces, espe-
cially when these interfaces evolve over time. To construct a
framework that is simple to extend to the multicellular regime,
we adopt a particle-like approach in describing the cell’s
kinematics, which is in line with the methods used in other
phase-field modeling studies [8,22,32]. Specifically, we define
coarse-grained body vectors for the cell advection velocity v¢
and polarity p° as follows:

v Jdx ¢ v(x)

, 21

o Jdx¢if(x)
= 22
Tivy [dx¢, (22)

where vy is the magnitude of cell motility. Hence, the in-plane
force balance equation becomes

dx ¢?V
[ ve =T vp° — fxf;j(—(;m (23)
1

To incorporate noisy processes in a minimal way, we assume
that the polarization vector p® = (cosé(¢), sinf(¢)) under-
goes simple rotational diffusion with

do(t) = /2D, dW (1), 24)

where W (¢) is a Wiener process and D, is the rotational diffu-
sion constant. This form for the self-propulsion is the same
as used previously in models of cells as deformable active
Brownian particles [22,32] with v¢ = vyp°.

Although we have chosen the above form for the self-
propulsion as a very simple model for activity, it is possible to
incorporate other forms as well. For instance, it is possible to
introduce velocity or shape alignment of the polarity by mod-
ifying Eq. (24), as considered in previous work (see, e.g., Ref.
[27]), or by including the relevant cellular behavior in an
evolution equation for the polarity vector itself [43].

Finally, with the cell velocity defined, one can determine
the time evolution of the phase field ¢. Since this field is
not conserved over time, its dynamics can be described by

an advective-relaxational (Model A-like) equation of motion
[44]:

1
L +Vv-Vip = —TeML (25)

where I'? is the inverse mobility that sets the characteristic
relaxation time of the cell.

III. MODEL FOR MULTIPLE CELLS

We now extend the theory developed in the previous sec-
tion to incorporate multiple cells, which are represented as
individual phase fields. We begin by discussing changes in
notation to accommodate multiple cells and modifications to
the free energy and the force balance equation to account
for intercellular interactions. We next perform the 3D-to-2D
projection as in the single-cell case and derive a particle-like
equation of motion for each cell.

A. Notation, 3D free energy, and force balance

The system that we consider now is that of a cell mono-
layer with N cells. The monolayer has a uniform height &
(i.e., no cell-to-cell variation) and a lateral dimension L in
the x-y plane. We denote with ¢; the phase field describing
cell i (withi=1,...,N) and assume, as in the single-cell
case, that it can be factorized into in-plane and out-of-plane
fields. Since there is no variation in height, we describe all
cells with the same height profile ¢,(z) [Eq. (11)] and write
¢:(X) = ¢i1 (X) ¢,(z), Vi. Furthermore, we define

N N
D= ¢i=0¢.) ¢ =¢.P, (26)
i=1 i=1

which describes the total tissue content (including water)
at a specific point within the system. Note that summation
involving cell indices i is always explicitly written, unlike
summation over indices for Cartesian components.

To take into account cell-cell interactions, we modify the
free-energy functional by incorporating a steric repulsion term
to minimize cell overlap:

N
Fo =533 [axail @7)

i=1 ji

with € controlling the strength of the repulsion. The full free-
energy functional now reads

N
F=2 [K / dX [£(g) + &2 (V)] + AVodV;
i=1

s f dxX ¢3¢§}, (28)
J#
where f(¢;) = ¢l-2(q>,- — 1) and 8V; = 1 — V;/V,, with V; =
J dX ¢? being the volume of cell i.
Having multiple cells also changes the force balance equa-
tion. We consider three contributions to the total tissue stress:

Sap = Thy + T0y + T5, (29)
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where TP’ now denotes the passive thermodynamic stress

on the cell monolayer, Zz%l the phenomenological stress as-
sociated with active processes that drive tissue propulsion,
and E;}; represents viscous dissipation arising from cell-cell
friction. More precisely, the thermodynamic stress is defined
by the relation

N
Vsl == D oiVali, (30)
i=1

and, with some algebra (Appendix A), we obtain

N
o= 2 {— e (n,. - §Z¢?¢?>

i=1 J#i
- zfcsz(wi)(vﬁ@)], 31)

where T1; = i — fH(P) + 208Vip? and w; = 8F /8¢ is
the exchange chemical potential of cell i, given by

wi = 2k[di(gi — )2 — 1) — E°V?¢;]

— 48Vigi + 2¢4; ) ¢} (32)
J#i

The last term EZ‘; in Eq. (29) accounts for intercellular fric-
tion by modeling it as a viscous-like stress in the tissue, given
by

Tus = 0(VaVs + VaVa) + (¢ = 21)8asV, Vy,  (33)

where 1 and ¢ are the shear and bulk viscosity, respectively
[45]. V, are components of a coarse-grained tissue velocity
or flow field, and we assume the in-plane components can
factorize as

Va(X) = VLX) V(2) = VLX) %(Zh —2). (34)

and V, = 0 (i.e., the tissue motion in the z direction is negli-
gible compared to its lateral motion). The parabolic velocity
profile V(z) takes into account that the cell is fixed to the
substrate at z = 0 [i.e., no-slip boundary conditions (BCs)
with V,(x, 0) = 0] and has a free boundary at z = £ [i.e., slip
BCs with V,(x, h) = V ,(x)]. The in-plane profile V takes
the form

1 N
Vi) = o= ) duv, (35)
i=1

where V¢ is the coarse-grained, body velocity vector of cell i as
introduced in the single-cell model [see Eq. (21)]. As shown
later, this mathematical form of the stress and the tissue flow
profile encapsulates the pairwise friction between cells of the
form v; — v{ at the particle level.

B. From three- to two-dimensional dynamics

To formulate 2D in-plane equations of motion for the
cells, we start from the in-plane components of the force
balance equations (Vg X,g = 0) and average them over z, us-
ing the same boundary conditions as in the single-cell case

[ie.,, 2o (x,z=0)z£0 and X, (x,z=h) ~ 0]. Similar to
before, we find
Viow = hV(Thy, +5) =T, (36)
with the tissue traction force density T,(x) given by
T,(x) = ZP'(x,z=0)+ Z8(x,z=0). (37

In writing these equations, we used the fact that 5" (x, z =
0) ~ 0 (see Appendix D) and made the assumption fgf >

EEZI, as done in the single-cell case.

To proceed further, we explicitly evaluate the z averages
of the stresses in Eq. (36) and the traction contributions in
Eq. (37). Similar to the single-cell case, the divergence of the
averaged in-plane thermodynamic stress is

N
FP™ = hV, Sy, = — ) it Vaitis, (38)
i=1
where w;, is the 2D exchange chemical potential for cell i (see
Appendix D for details). For the divergence of the averaged
in-plane viscous stress, we obtain

R = thivzibS =n1VeVeV 14 +v1VaVpV 1, (39)

where v, = ¢, +n1/3,n1. =2nh/3,and &, = 2¢h/3.

For the traction, we again treat the term originated from
active cell processes driving self-propulsion phenomenologi-
cally and write

BP(x, 2 = 0) = [PV (x) — FP(x), (40)

where FTb is a friction constant and FEOI are components of a
coarse-grained tissue force field constructed from the propul-
sion of individual cells (see definition below). An additional
contribution to the traction arises from the viscous stress,
which has the same form as friction (Appendix D):

vis 37]L
Y2oxz=0)= o

Combining the two contributions to the traction, we find

T(x) = —F" —F° =T [V, (x) —»P (x)], (42)

Vi x)=T¥V, (x). @)

where we have defined F*** = —I", V_ (x), with ', = I'{** +
I'Y®, and that P (x) is the tissue polarization field given by
Fpol

P, (x)= e
LY

N
1
= o, Zmp?, (43)
i—1

with p; being the coarse-grained polarity vector of cell i
[Eq. (22)]. Finally, putting together all the results in this
section, we obtain the following multicellular force balance
equation for the tissue

FPs 4 Fsub + Fpol 4 Fvis = 0. (44)

C. Solving for cell velocities and the equations of motion
for individual phase fields

The tissue force balance equation that we just derived
encodes the dynamics of all interactions between cells. We
now utilize this equation to extract the body velocities v{ of
individual cells, which are needed in the equations of motion
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for updating the phase fields ¢;, similar to the single-cell case
[see Eq. (25)]. Because the tissue velocity field V, by con-
struction, linearly interpolates v{ [Eq. (35)], one can employ
standard linear algebra techniques to solve for these velocities.

To this end, we first observe that Eq. (44) is written at a
continuum level for each position x, and that it is more con-
venient to work with this equation at the “particle” or cellular
level. This can be done by projecting this equation onto each
cell (say cell i), whereby we perform the operation

£ = / dx ¢, FY (45)

on each force term Y and write the force balance equation for
the cell as

£ £ o P 4 £ = 0. (46)
The first three force terms can be expressed as
N
£ =—3" / dx i1 1 Vi, (47)
j=1
N
£ = —T, ) 0;v5. (48)
j=1
N

j=1

where we defined the degree of overlap between cells i and j
to be

o GiLdjL
Ol_] = /dX —ch . (50)

For the viscous force term, we find

N
£ = Z/dxM,-j (VL —v9), (51)
j=1
where
1
M;; = cD_[nLTr(Dij)l +viD;l, (52)
1

with D;; = (Vqu,-L)(VchjL)T. Here, M;; is a tensor associ-
ated with the extent of interfacial overlap between cells i and
Jj- Full details of this calculation can be found in Appendix E.
Indeed, by making the approximation that three-body overlaps
are rare (i.e., products involving three different phase fields
and/or their gradients are negligible), one can further show
that

e f dxM;; - (V§ — V%), (53)

J#i

where M ;j contains terms similar to M;; (see Appendix E).
Hence, the viscous stress that we formulated at the tissue
level allows us to recover pairwise friction between cells at
the cellular level.

To make further progress, we note that only f:*° and £
have terms that are linear in v{, while other force terms do
not. This motivates us to write the cellular level force balance

equation [Eq. (46)] as a matrix equation with coupled advec-
tion velocities. Using the identity

N N ¢
D (Vibi) Vi=) SR v (54)

j=1 =tk

we rewrite the viscous force on cell i as

N
£ = =) [ Tr(Kip)1 + v, Kyl - 5, (55)
J=1
where K;; has components

Va(lbi ‘P (V D )
Kij,ab = /dX q)Ll |:Vb¢jL — lejl} (56)

By defining
Aij =[n.Tr(K;j) +T10;;11 + v, K;; (57)

and ff = 7 4 P °! which does not depend on v¢, we can now
cast the force balance equation in the following matrix form:

Ay Ap - A vi fy
A Az Aw LB (s
Ayt Anx2 -+ Ann Vy fy

As a result, the body velocity of each cell v{ can be found
by inverting this matrix equation. This velocity is then used
to update the phase field ¢;;, which obeys the following
equation of motion:

1
il +V;-Vigi = e il (59)

Solving Egs. (58) and (59) iteratively by numerical means
allows us to simulate the dynamics of the cell monolayer over
time using a particle-like approach.

To illustrate how the flow field constructed in Eq. (35) can
model intercellular friction, we show a snapshot of the full
system in Fig. 2 (left) alongside the velocity field (Fig. 2,
right). The velocity field is constant within cell contours, but
there are shear flows in between cells, which control the cell-
cell frictional forces. In Eq. (51), we determine the net effect
of the forces resulting from these flows on each cell’s velocity.

IV. EFFECT OF PASSIVE STRESS
ON THE SOLID-LIQUID TRANSITION

Previous work employing phase-field models to describe
cell monolayers has either included or neglected passive ther-
modynamic forces in the force balance equation for each cell.
To quantify the effect of these forces on the rheological state
of the monolayer, we simulate systems of 100 cells at various
cell-edge tensions y; = k& /3 and self-propulsion veloci-
ties vy (see Appendix F for simulation details and numerical
schemes used). We characterize the relative importance of
the cell-edge tension to steric repulsion via the deformability
parameter d = €, ER/(12y, R), a dimensionless number that
measures the extent to which cells in contact change their
shape or overlap. Previous work has shown that tuning cell
deformability yields qualitative changes in the melting and
rheology of the monolayer [32,33]. The cells’ motility is
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d=2.5, Pe=1.0, £,=0.4

FIG. 2. (Left) A representative snapshot of the total field &, for
asystem withd = 2.5, Pe = 1.0, and §, = 0.4. (Right) A zoomed-in
snapshot showing the cell contours (black lines), the tissue velocity
field V, (x), as defined in Eq. (35) (black arrows), and the color
indicating its vorticity magnitude. While the velocity field is constant
within a cell, there can be spatial gradients at the interfaces between
cells, as shown by the nonzero vorticity in those regions.

quantified by the Péclet number Pe = vy/(RD, ), which is the
ratio of the cell’s persistence length to its size. Finally, we
also examine the role of cell-cell friction controlled by the
viscosity 1, which sets the length scale &, = «/n. /" over
which the velocities between different cells are correlated.

Figure 3 shows the solid-liquid phase diagrams for the
system as determined by the effective diffusivity Deg =
lim,_, oo MSD(#)/(4Dyt ), where MSD is the mean square dis-
placement of the cells and Dy = vS /(2D,) is the diffusivity
of an isolated cell, and we choose a cutoff of D.y = 0.002
to differentiate the liquid and solid states (see movies in
the Supplemental Material [46]). It is evident that while the
three phase diagrams show the same qualitative behavior,
both passive thermodynamic forces and cell-cell friction tend
to solidify the monolayer, shifting the melting line to larger
deformability and motility.

V. COMPARISON BETWEEN ADHESION
AND INTERCELLULAR FRICTION

In the literature on phase field models, various adhesive
interactions between cells have been incorporated into the
free energy to model cadherin bonds between cells (see, e.g.,
Refs. [2,5,23,24,27,28]). One significant difference between
these adhesive interactions and the intercellular friction we
have derived here is that the latter depends on the relative cell
velocities, while energetic adhesive interactions only depend
on the instantaneous configuration. Experiments on epithelial
monolayers have shown that cell-cell adhesion affects the
correlation of cell velocities [47]. While a complete study on
the full effect of cell-cell adhesion and intercellular friction on
the velocity correlations in tissue is beyond the scope of this
work, we provide below a comparison of the effect of the two
interactions on the velocity correlations of the cells.

To model adhesion, we introduce an additional contribu-
tion to the free energy, given by

2 N
aih _ % Y / dX (Ve?) - (V4?).  (60)

i=1 ji

with @ > 0 controlling the adhesive coupling strength. Con-
sistent with our definition of the cell volume and our
formulation of steric repulsion, we use the square of the field
in the free energy rather than the field itself, which results in
a chemical potential for the ith cell that always depends on
its field ¢;, thus giving a more physical evolution equation for
the phase field. Using an averaging procedure similar to that
in Appendix D, we find the contribution in 2D to be the same
as what would have come from a 2D adhesion-energy term of
the same form with the in-plane fields ¢;; and a coefficient
w| = wh.

The adhesion energy gives an attractive interaction be-
tween different cells, but it only impacts the velocity indirectly
through the passive forces in the force balance equation.
In contrast, the intercellular friction arising from viscous
stresses at the tissue level directly couples the velocities of

2'00-8 No passive forces, &, =0 2'00-2 With passive forces, &,=0 2‘00-8 With passive forces, &,=0.4
o ) =
1.75F 1.75F 1.75F
° 0 Liquid © -
o i ) =
1.50f 0 © ® Solid 150 m © 1500 m 0
oo mo mo
oo mo Em
1.25'0 ° 1.25'. ° 1.25'. -
Pe oo mo [N ]
1.00f © © o 1.00fm m o 1.00fm m &} o o o
oo o mm O mEm ®m O O O
oo o mm O Em ®m ® O O
06 o o o o 0y m m o o o 0'gw m m ®m o o o
oo o o o o o Em ®E ®B O O O EE ®mE ® ®E ®E O o
050)mo o o o o o o 050)mm ®m ®m m o o o 050mm ®m ®m ® ®m = =
mo o o o o o o EE = ®E ®E ®E = o EE = ® ®E ®E ® =
mEm o O O o o o EE = ®E ®E ®E = = EE = ® ®E ®E ® =
0%’y m m o o o o o 0%’y g m = ®m ® = = 0%y g m m = ® = =
EE ®E ®E ®E ®E = o EE ®E ®E ®E ®E = [ EE ®E ® ®E ®E ® [
1 2 3 4 1 2 3 4 1 2 3 4
d d d

FIG. 3. Solid-liquid phase diagrams of a 2D cell monolayer in the plane of deformability d and Péclet number Pe. Yellow circles denote
the liquid phase, and purple squares denote the solid phase. The left frame corresponds to the case where both passive thermodynamic forces
and cell-cell friction are neglected in the force balance equation for cell velocity. The phase diagram shown in the middle frame is obtained by
including passive forces but not cell-cell friction. Both forces are included in the right frame.
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wy =065k, §=0
wy =0, &=04
wy =0, §=08

50 75 100 125
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00 25

FIG. 4. Intercellular friction generates stronger spatial velocity
correlations than an energetic adhesive interaction. (a)—(c) Repre-
sentative snapshots of a system with d = 2.5 and Pe = 1.0, where
the cells are colored by the angle of their center-of-mass velocity.
In panel (a), only adhesion w, /k; = 0.65 is present, while pan-
els (b) and (c) show that spatial velocities correlations increase with
increasing &,. (d) Corresponding spatial correlation functions of the
tissue velocity field V (x) defined in Eq. (35), averaged over time.
A system without friction and adhesion (blue dots) has velocity
correlations nearly identical to one with only adhesion (orange dots).

neighboring cells. We show in Fig. 4 the effect of these
two types of coupling on velocity correlations for a system
with d = 2.5 and Pe = 1.0. In the snapshots, the cells are
colored by the orientation of their center-of-mass velocity. It
is evident that intercellular friction [Figs. 4(b) and 4(c)] en-
hances the correlated movement of neighboring cells relative
to adhesion [Fig. 4(a)]. This difference can be quantified by
the spatial correlation function of the tissue velocity shown
in Fig. 4(d), which decays sharply when only adhesion is
present. Energetic adhesive interactions essentially yield the
same spatial velocity correlations as a system without friction
and adhesion. Yet, velocity correlations grow significantly
with increasing intercellular friction &,. We expect that both
energetic adhesive interactions and intercellular friction are
controlled by cadherins. Both may be necessary for a proper
description of cell-cell couplings that captures cell shapes and
velocity correlations, but we defer a detailed study of this to
future work.

VI. SUMMARY AND DISCUSSION

2D phase field models have often been used in place of 3D
ones due to the large computational cost of numerically solv-
ing the equations for each cell’s field. Here, we have shown
that, under certain assumptions, the connection between 3D

and 2D phase field models for cells on a substrate can be made
explicit by averaging over the out-of-plane direction. In doing
so, we arrive at a model of cells on a substrate as deformable
particles, where their shape is described by a 2D field, which is
advected by a body velocity vector determined from force bal-
ance. A similar approach could be used to derive equations for
phase field models which include additional interactions, such
as adhesion or active stresses from sources other than traction
(e.g., stresses transmitted via adherens junctions).

We have also considered the effect of intercellular friction
on the solid-liquid transition of the monolayer. Other work
[26] has phenomenologically incorporated viscous interac-
tions as a function of differences in cell polarity, but here we
show that the effect of friction between cells can be derived
from a viscous interaction of the cell velocities. We then
show that these viscous forces result in an increase in the
required motility for the monolayer to melt at low and high
cell deformabilities. We also show that the viscous forces
introduce spatial correlations in the velocities, which are not
captured by an energetic adhesive interaction between cells.
This model will enable future work to further elucidate the
role of intercellular friction in cell monolayers.
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APPENDIX A: DERIVING THE PASSIVE
THERMODYNAMIC STRESS

In this Appendix, we first review the derivation of the
constitutive relation for the passive thermodynamic stress X}
for the single-cell case (see also Ref. [25]), before extending
the theory to the case with multiple cells. Recall that the
single-cell free energy is

F=FH LV /deCHw, Vo) +AVesV2, (Al

where the Cahn-Hilliard free-energy density is
fM=lf(¢)+E (V)] (A2)

with
(@) =@ —1), (A3)

and that the passive force density arising from deformations
that cause the cell to deviate from the ideal profile, as set by
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the free energy, is

VeZoy = —¢Vat = —Vo(uo) + uVegp.  (A4)
Here, the exchange chemical potential p is given by
§F  ofH o fCH
Mg Ay (AS)
3¢ a¢p Vg
with ¥ = 8§ F" /8¢. Using the fact that
8fCH afCH
Vo fM = 2 V. Vg, A6
S = g Va4 g VaVab. (A0
we obtain
CH .t 4
Vo = Vg — \% \%
Vo f < V0 ¢> + 1 Voo
= Vpl—8ap(208V > — f)
— 268 (Va)(VpP)L, (A7)
and so
VEhy = Vel =8upTl — 266> (Vup)(Vh)], (A8)

where TT = pug — fH + 218V ¢>. As a result, we identify
that the passive thermodynamic stress is given by

Shg = —8apTl — 2cE7(Va)(Vp9h),
as stated in Eq. (9) in the main text.

Extending this theory to multiple phase fields requires
some careful analysis. Naively, one might think that the pas-
sive stress can be constructed by adding the corresponding
stress contributions from individual cells. This is valid as long
as there are no interactions between cells, which is not the
case here, as there is steric repulsion between them. As we
shall see, it is not possible, in general, to write down the
passive force density on each cell element as the divergence of
a cellular stress tensor due to the intercellular terms. We begin
by writing down the free energy for multiple cells, which can
be expressed in the following form:

F= i < / dX [ + Avo(svl?)
+ = ZZ/demt

i=1 j#i

(A9)

(A10)

where we have assumed all interactions are pairwise and
denoted

= Mg V), (Al1)
flnt _flnl(¢la ¢jav¢l’v¢]) (A12)

We also assume that these interactions are symmetric:
= (A13)

and this is indeed the case within our model since fii}" =
€} ¢ [with the additional contribution of w&*(Ve}) - (V¢7?)
when there is cell-cell adhesion (see Sec. V)]. From the free

energy, we find the exchange chemical potential for cell i to
be

SF _ aﬁCH v fCH

=5 = e Pave T
mt 8 @nt
-ZZ(a ~Vige. ) (Al4)
J=1 ktj ¢z /3¢l

Here, the summed terms arise from pairwise interactions be-
tween cells. Since they are only nonzero when j =iork =i
and that f ‘,‘2 is symmetric, we can write

1 N 9 12t 9 121
- K v J
2 ZZ ( g v,
mt int
=3 i —V i ).
3¢z Vi

We now proceed with the same approach as the single-cell
case to determine the constitutive relation for the thermody-
namic stress. Let

FY = —¢iVatti = = Vo (i) + i14iVa i

be the passive thermodynamic force density acting on cell
element i. Using the relation

CH CH
o Vot + o;
;i IV

(A15)

(Al6)

va f}CH —

Vo Vi, (A17)

we can write

1iVati = Vo i =

afCH
Vﬁ( V¢l>+M,V¢z

Vg
9 jjnt 9 mt
L — Vg Vo i, AlS8
2\ g~ av,g T AI®
J#i
and therefore
fCH
F = Vg (—aaﬂn,- Voh \Y/ ¢l>
BPi
af;ijpl 8]c;1]nt
—_— Vi, A19
+§( a6 Povee )t AP

where I1; = w;¢; — fiCH + 2k8‘/i¢i2. Clearly, the presence of
the interaction terms makes it impossible to write Fio as the
divergence of a stress tensor. Nevertheless, we now show that
the total thermodynamic force density, from summing F}
over i, can be expressed as the divergence of a stress, which is
expected since all internal forces must cancel. To this end, we
observe that

N
Va )Y M@ i, Vi, V)

i=1 jsi

int 9 int
—222(8@ a¢,~+w;f¢ivavﬂ¢i), (A20)

i=1 j#i
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where we have exploited the symmetry of ‘“‘ . Hence, sum-
ming over all pairwise interactions leads to

ll'lt a mt
ZZ( - av ¢>V i

i=1 j#i

1nt 9 jpt
—%ZZ(W .- V”@wi), (A21)

i=1 j#i

and so the total passive thermodynamic force density on the
tissue can be written as

N
ZF’”S = Vp2hy, (A22)
i=1
where
N jm
= Z[_aaﬂ<l‘li—2%)
i=1 i
M O
Voo A23
(avﬁqsl * Z Vi ¢ (A23)

is the thermodynamic stress on the tissue. It should be noted
that the divergence of the summand in this equation does not
give the same result as Fl = —¢; V,, t; due to the interaction

terms. Finally, substituting ,-ij'?t = ep?¢?, we arrive at

N
=2 [ ~bus (Hf -3 Z¢?¢f~)

i=1 J#i

- 2@%%@)(%@)}, (A24)

which is the result stated in Eq. (31).

APPENDIX B: z AVERAGE OF POWERS
OF THE PHASE FIELD

The goal of this section is to explicitly calculate the z aver-
age of the assumed height profile of the phase field, which is

given by
Z)} (B1)

Specifically, we show that, in the limit where the interface
thickness & of the cell is much less than its height & (i.e.,
e = &/h < 1), one can write the average of this profile to any
arbitrary power n as

6.(2) = [1 + tanh (h

@7 =1+k(n)ye+ O, (B2)

where k is a constant to be determined that depends solely
on n. This result is used when evaluating z averages of var-
ious quantities (e.g., the chemical potential ), both in the
single-cell and multicellular cases. To verify this result, we
first compute an exact expression for the z average of ¢'. This

integral can be evaluated as

n— 1 ! h_z !

e [8© ¢n 1
= E/ ¢z
1 1 —¢,

= %[B(g(a);n, 0) —B(%;n, o)], (B3)

3[1 + tanh(1)] and

where g(¢) =

B(z;a, b) = /Zdtt“‘l(l — )t (B4)
0

is the incomplete Beta function. This function can be repre-
sented as a series:

= b m
B(z:a, b) _Z“Z i +)m) " (BS)
m=0

where (-),, denotes the Pochhammer symbol [i.e., rising fac-
torial with (1),, = m!]. Next, to determine the behavior of ¢!
when ¢ < 1, we observe that

&) o g(e)
B(g(e);n, 0) = =
n—1
(- oen — S EE)
=—In(l—ge)—>) o (B6)

m=1

By defining § = 1 — g(¢) and using the binomial theorem, we
have

B(g(e);n,0) =

n—1 1
—m@) =Y —
2
Z( bf ( >5’<. (B7)

n—1
m=1 k=1

Noticing that Y " _, % = H, is the nth harmonic number and
that the last sum on the right-hand side of this equation is
simply a polynomial in § of degree n — 1, we can write

n—1

=—In() — Hy_y — ) Cud" (B8)

m=1

B(g(e);n, 0)

for some finite coefficients C,,. Now, when ¢ < 1, we find

1 1 1 )
—— _ _ — ~ p 2/
8= 2|:1 tanh(8>j| = T3 e e, (B9)

and so

B(g(e);n, 0) = (B10)

Z_H,_ 1_ZC —2m/€

Substituting this back to Eq. (B3), we arrive at the result stated
at the beginning of this section:

— g2 1
¢! = 5[; — Hy —B<5;n,0> +(9(e_2/8)]

=14 k(n)e+ O ), (B11)
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with

k(n) = —3[Hu-1 + B(3:n,0)]. (B12)
APPENDIX C: COMPUTING THE z AVERAGE
OF THE PASSIVE STRESS FOR A SINGLE CELL

In the following, we compute explicitly the z average of
the in-plane components of the passive thermodynamic stress
TP for a single cell, which is given by

i = — bul 16 — TTG) + 2.6V |

— 25> (V) Vi), (C1)
where the chemical potential u can be expressed as
w=2kQp> —3¢* + ¢ — EXV2p) — 418V . (C2)

We evaluate the averages in Eq. (C1) term by term. For the
first term, we find

up =2k [2¢7 —3¢7 + ¢ —E°Vig,

— £2¢,(V2¢.)p1 | — 428V $p2¢7T + O(e),

where we have used the result ¢>_g =14 O(e) withe = &/h.
To evaluate the remaining averages in this expression, we note
that, for the given profile of ¢,,

(C3)

§EV.0, = 2¢.(¢; — 1), (C4
§2V2¢, = 4¢.(d: — D2¢; — 1), (C5)
which are polynomials of ¢, and so
£29.V2p, = 4(2¢F — 3¢3 + ¢2) = O(e).  (C6)
Now since the cell volume can be expressed as
h —_—
V= [ dz¢§/dx¢i = hp2 A, (C7)
0
by defining V) = Aph, we can write
5v:1—K:1—ﬁ¢_2:3A+£(1—E) (C8)
Vo Ay~ Ao o
with A = 1 — A/Ay, and thus
V@2 =8A+ O(e). (C9)
Putting these results together, we obtain
— 1
ne = }—l[/um + O(e)l, (C10)
with
po=2lpr(@r = DL — 1) = §2VigL] — 4h18A¢,
(C11)

being the exchange chemical potential derived from a 2D free
energy

FL = / ax S () + F

=K / dx[ (1) +EX (Vi) ] + A1A08A%, (C12)

where k| = «kh, A, = Ah, and fH is a 2D Cahn-Hilliard free-
energy density.

The second term in the expression for fzzs can be com-
puted as

) = [ T + €2V 161)°0 + 20 (V6.
=60 + (Y 160% + 0]

1
=100 + 0@, (C13)

where we have used the fact that f(¢) = f(¢.) + O(e) and
the result [see Eq. (C4)]

EX(V.$.)" = 4(¢F — 247 + $2) = O(e). (C14)
For the third and fourth averages, we have
3V¢? = 8Ve2pT = 5A¢T + O(e), (C15)
and
(V) (Vo) = 2 (Vap 1) (Vb 1)
= (Va§p)(Vop1) + Ofe). (C16)

Combining Egs. (C10), (C13), (C15), and (C16), we find

—Ppas

hEh, = — 8Ty — 26163 (Va1 (V1) + O(e), (C17)

with TT; = 11 — fM(p1) + 211 8A¢3, as in Eq. (16) in
the main text.

Finally, we show that this passive thermodynamic stress
has a vanishing contribution to the shear stress acting on the
cell along the interface with the substrate. Using the relation

ézvz¢z|z=0 = éI:tanhz (l) — 1:|
2 g

= %[(1 —4e7f 4 )= 1]
= O(e™*), (C18)
we find
EPE(x, z = 0) = —2k£2p(Vap 1 )(Vo9:)|:=0
= O(e ). (C19)

As a result, the traction is solely determined by the stresses
resulting from active processes that drive self-propulsion, i.e.,

ta(x) = ZP(x, z = 0) + O(e /). (C20)

APPENDIX D: COMPUTING THE z AVERAGES
OF STRESSES FOR MULTIPLE
CELLS IN A CELL MONOLAYER

In this section, we compute the z averages of those stresses
that we include in the force balance equation for multiple
cells. First, we consider the average of the in-plane pas-
sive thermodynamic stress, which can be expressed as (see
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Appendix A)

N
2| ool D)

i=1 J#i

— 2@%%@)(%@-)} (D1)

where TT; = wi¢; — fCH(¢;) + 2A8Vi¢?. All z averages within
the summand can be computed using a similar procedure
to that outlined in Appendix C for the single-cell case [see
Egs. (C10), (C13), (C15), and (C16)]. The only exception is
the average of the interaction term, which can be evaluated as

P20 = plo7 ¢7) = d7 97, + O(e), (D2)
where we have used the result ¢_f’ =1+ O(¢). Hence,

N

— €]
hzzzs — Z |:—3ub<nu_ — 72¢I2J_¢]2J_>

i=1 J#i
— 2n52(va¢u)<vb¢u>} + O(e), (D3)

with ;1 = pii i — S0 (i) + 241 84,97, . Here, ;) is a
2D chemical potential for cell i given by

pir =26 (i (pin — D¢ — 1) —E°Vigii]
— 4AL8AipiL + 211 Y 7 (D4)
J#i
where €, = €h. Since this 2D stress has the same form as

the 3D one, we can therefore take advantage of the theory
developed in Appendix A and write

N
hVy g, =— Y i Vattis, (D5)
i=1

which is Eq. (38) in the main text.
We also claim that X2°(x, z = 0) ~ 0. Using the result
E2V.¢.|.—o = O(e~%?) from Eq. (C18), we obtain

N
TP, 2= 0) = —2E> Y $i(Vathi L )(Vedo)lemo

i=1
= O(e™?%), (D6)

which is consistent with our claim when ¢ is small.
To average the in-plane viscous stress X;°, we observe that

_ - z . 2
Vo=V, V(@)= VJ_,aﬁ(Zh —z)= ng,a, (D7)
and thus

—Vis

_ _ 2 _
Eab = U(VaVb + vaa) + (; - gn)SahVVVy

1
=5 |:77L(Vavi,b +VpVia)

2
+ (gL - gnL)SabVCVJ_,C:|» (DS)

where we have used the fact that V, = 0 and defined n;, =
2nh/3 and ¢, = 2¢h/3. Taking the divergence, we then find

VT = niVeVVia +viVaViVi,, (DY)

with v, = ¢, + 1, /3, thereby recovering Eq. (39) in the main
text.

Finally, we note that this viscous stress contributes to the
traction upon averaging over z. This is because

3n.

ZiE (%2 =0) = nV:Valemo = =

Via (D10)

which is the result stated in Eq. (41).

APPENDIX E: PROJECTION OF THE AVERAGED
IN-PLANE VISCOUS STRESS

This Appendix explains how the viscous stress f:;s at the
tissue level can give rise to pairwise friction at the cellular
level. First, recall that we define the viscous body force acting
on a cell (say cell i) by projecting the viscous force density at

the tissue level E¥ = hV, %, onto ¢ as follows:
£ = / dx ¢ FU®
= / dx ¢t (nLVpVpVia +v1VaViVip).  (ED

We evaluate this integral term by term. Integrating by parts
and observing that

N N
1 1
VpViae= F Z(Vh‘f’ji)v;,a - 43_2 Z ¢jL(VbCDL)V§’a
1

j=1 Lj=1
1 N
=5 2 (i)(Via = Via). (E2)
17
j=l1
we find
al 1
/dX i VpVpVi e = Zfdx (D_lDij,bb(Visa = Via):
j=1
(E3)
and
al 1
/ dx i1 VoVpVip = Z / dx FDij,ab(VLb = Vi)
N 1
j=1
(E4)

where D;j o = (Voi1 )(Vpp;1 ). Combining the results from
these two integrals gives

N
fe=>%" / dxX Mijap(Vis — V). (E5)
=
with
1
Mijap = q)—(mDij,cc5ab +v1Djjap), (E6)
L

which correspond to Egs. (51) and (52) in the main text (in
component form). We now consider the limit when three-body
overlaps are rare and neglect terms in Eq. (ES) that are prod-
ucts of three different phase fields and/or their gradients. In
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TABLE 1. Parameter value(s) used in the simulations to determine the phase diagrams (Fig. 3) and to compare the effect on velocity
correlations of the cells between cell-cell adhesion and intercellular friction (Fig. 4).

Parameter Interpretation Dimensions Value(s)
d Deformability - 0.25-4.16
R Ideal cell radius [L] 1

& Cell interface thickness [L] 1/8

€ Cell-cell repulsion [E][L]2 1

on Cell-cell adhesion [E][L]2 0 or 0.065
AL Cell area constraint [E][L]? 1

n Cell-cell friction [E][T][L]~2 0, 0.0016, or 0.0064
re Inverse mobility [E][T][L] 2 0.01
r, Cell-substrate friction [E][T][L]™* 0.01

Vo Cell motility [L][T]! 0.1-2.0
D, Rotational diffusion rate [T]! 1

8t Timestep [T] 1073

Sx Lattice size [L] 1/8
Loy Cell subdomain size [L] 4.75

L Simulation box size [L] 18.125
17 Packing fraction - 0.96

that equation, we confront with terms of the form

ZD”“b VJ_b_VJb ZZDzjab¢kl ka_vjb)

j=1 L =1 k=1
(E7)

Keeping only terms that involve less than three different phase
fields, we find

ZZDUGh(bklvkb ~ ZDljﬂ/’(ijth

j=1 k=1
+ Z Dijap $j1V5 ),
J#i
+ Y Dijap i V5 (E8)
J#i
and
N

N N
C ~ C
E E Dijap b1V, = E Dijab ®j1Vip

j=1 k=1 j=1
+ Z Diiab ®jLVi )
JF#
+ Z Dijab $i1 V5 (E9)
J#i
Subtracting Eq. (E8) by Eq. (E9), we can then write

N N
Z ZD’J ab DL (Vi V;,b) ~ Z Dijav(Vip — V;,b)’
P J#i

(E10)

where we defined

Dijab = Dijab $ir — Dijap Pj1- (E11)

Applying this relation to the terms in Eq. (E5), we arrive at

D / dx Mijap (V5 — V5,)- (E12)
J#
which is the result stated in the main text, with
~ 1
Mijab = —5 1 Dij.ccOap + V1 Dijab)- (E13)

o7

APPENDIX F: SIMULATION DETAILS

We report the simulation parameter values in Table I, with
the preferred cell radius R as the unit of length and the inverse
of the rotational diffusion coefficient D! as the unit of time.
We also use the strength of steric repulsion €, to characterize
the energy scales. We employ finite differences to evolve the
field equations, where we use fourth-order central finite dif-
ferences for the gradient terms and a nine-point stencil for the
Laplacian to ensure stability. We also use a third-order upwind
scheme for stabilizing the advection velocities, which, for the
values of 6t and vy we have considered, remain small enough
to avoid any instabilities. When including intercellular fric-
tion, we use LAPACK for solving the matrix equation [Eq. (58)]
and, for simplicity, we set n; = v, . As in previous work, we
parallelize the model by using an auxiliary field so that we can
solve the individual phase fields on subdomains of dimensions
Lgb X Lgun, with fixed boundary conditions ¢; = 0 on the
edge of the subdomain. We shift the position of the cell within
its subdomain when it moves more than two lattice points
in any direction (along with the position of the subdomain
relative to the full simulation lattice), which allows the cell to
remain localized to the center of its subdomain. We initialize
the cells as circles, randomly positioned but at least R/2 apart
in the full domain, with ¢; = 1 inside the cell and ¢; =0
outside. We perform a passive run of 10° timesteps to allow
the system to equilibrate and reach confluence. We then turn
on motility (vy % 0) for 10° timesteps before taking data for
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an additional 107 timesteps (for the data in Fig. 4, we only re-
quire an additional 10° timesteps to determine the steady-state

velocity correlation functions). We parallelize each simulation
on 12 processors via OpenMP.

[1] D. Shao, W.-J. Rappel, and H. Levine, Computational model for
cell morphodynamics, Phys. Rev. Lett. 105, 108104 (2010).

[2] M. Nonomura, Study on multicellular systems using a phase
field model, PLoS One 7, €33501 (2012).

[3] F. Ziebert, S. Swaminathan, and I. S. Aranson, Model for self-
polarization and motility of keratocyte fragments, J. R. Soc.
Interface 9, 1084 (2012).

[4] B. Palmieri, Y. Bresler, D. Wirtz, and M. Grant, Multiple scale
model for cell migration in monolayers: Elastic mismatch be-
tween cells enhances motility, Sci. Rep. 5, 11745 (2015).

[5] S. Najem and M. Grant, Phase-field model for collective cell
migration, Phys. Rev. E 93, 052405 (2016).

[6] W. Marth and A. Voigt, Collective migration under hydrody-
namic interactions: A computational approach, Interface Focus
6, 20160037 (2016).

[7]1 A. Moure and H. Gomez, Computational model for amoeboid
motion: coupling membrane and cytosol dynamics, Phys. Rev.
E 94, 042423 (2016).

[8] R. Mueller, J. M. Yeomans, and A. Doostmohammadi, Emer-
gence of active nematic behavior in monolayers of isotropic
cells, Phys. Rev. Lett. 122, 048004 (2019).

[9]1 Y. Yang, M. K. Jolly, and H. Levine, Computational model-
ing of collective cell migration: Mechanical and biochemical
aspects, Adv. Exp. Med. Biol. 1146, 1 (2019).

[10] R. Alert and X. Trepat, Physical models of collective cell mi-
gration, Annu. Rev. Condens. Matter Phys. 11, 77 (2020).

[11] D. Wenzel and A. Voigt, Multiphase field models for collective
cell migration, Phys. Rev. E 104, 054410 (2021).

[12] H. Honda, Geometrical models for cells in tissues, Int. Rev.
Cytol. 81, 191 (1983).

[13] T. Nagai and H. Honda, A dynamic cell model for the formation
of epithelial tissues, Philos. Mag. B 81, 699 (2001).

[14] D. B. Staple, R. Farhadifar, J.-C. Roper, B. Aigouy, S. Eaton,
and F. Jiilicher, Mechanics and remodelling of cell packings in
epithelia, Eur. Phys. J. E 33, 117 (2010).

[15] A. G. Fletcher, M. Osterfield, R. E. Baker, and S. Y.
Shvartsman, Vertex models of epithelial morphogenesis,
Biophys. J. 106, 2291 (2014).

[16] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning,
A density-independent rigidity transition in biological tissues,
Nat. Phys. 11, 1074 (2015).

[17] B. Li and S. X. Sun, Coherent motions in confluent cell mono-
layer sheets, Biophys. J. 107, 1532 (2014).

[18] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, Motility-
driven glass and jamming transitions in biological tissues, Phys.
Rev. X 6, 021011 (2016).

[19] S. Kim, M. Pochitaloff, G. A. Stooke-Vaughan, and O.
Campas, Embryonic tissues as active foams, Nat. Phys. 17, 859
(2021).

[20] J. Huang, H. Levine, and D. Bi, Bridging the gap between col-
lective motility and epithelial-mesenchymal transitions through
the active finite voronoi model, Soft Matter 19, 9389 (2023).

[21] L. Balasubramaniam, A. Doostmohammadi, T. B. Saw,
G. H. N. S. Narayana, R. Mueller, T. Dang, M. Thomas,

S. Gupta, S. Sonam, A. S. Yap, Y. Toyama, R.-M. Mege, J. M.
Yeomans, and B. Ladoux, Investigating the nature of active
forces in tissues reveals how contractile cells can form extensile
monolayers, Nat. Mater. 20, 1156 (2021).

[22] J.-M. Armengol-Collado, L. N. Carenza, J. Eckert, D.
Krommydas, and L. Giomi, Epithelia are multiscale active lig-
uid crystals, Nat. Phys. 19, 1773 (2023).

[23] S. Monfared, G. Ravichandran, J. Andrade, and A.
Doostmohammadi, Mechanical basis and topological routes to
cell elimination, Elife 12, e82435 (2023).

[24] X. Kuang, G. Guan, C. Tang, and L. Zhang, MorphoSim: An
efficient and scalable phase-field framework for accurately sim-
ulating multicellular morphologies, npj Syst. Biol. Appl. 9, 6
(2023).

[25] M. E. Cates and E. Tjhung, Theories of binary fluid mixtures:
From phase-separation kinetics to active emulsions, J. Fluid
Mech. 836, P1 (2018).

[26] G. Peyret, R. Mueller, J. d’Alessandro, S. Begnaud, P. Marcq,
R.-M. Mege, J. M. Yeomans, A. Doostmohammadi, and
B. Ladoux, Sustained oscillations of epithelial cell sheets,
Biophys. J. 117, 464 (2019).

[27] G. Zhang, R. Mueller, A. Doostmohammadi, and J. M.
Yeomans, Active inter-cellular forces in collective cell motility,
J. R. Soc. Interface 17, 20200312 (2020).

[28] P. Zadeh and B. A. Camley, Picking winners in cell-cell colli-
sions: Wetting, speed, and contact, Phys. Rev. E 106, 054413
(2022).

[29] G. Zhang and J. M. Yeomans, Active forces in confluent cell
monolayers, Phys. Rev. Lett. 130, 038202 (2023).

[30] A. Hopkins, B. Loewe, M. Chiang, D. Marenduzzo, and M. C.
Marchetti, Motility induced phase separation of deformable
cells, Soft Matter 19, 8172 (2023).

[31] M. Chiang, A. Hopkins, B. Loewe, M. C. Marchetti, and D.
Marenduzzo, Intercellular friction and motility drive orienta-
tional order in cell monolayers, Proc. Natl. Acad. Sci. USA 121,
€2319310121 (2024).

[32] B. Loewe, M. Chiang, D. Marenduzzo, and M. C. Marchetti,
Solid-liquid transition of deformable and overlapping active
particles, Phys. Rev. Lett. 125, 038003 (2020).

[33] A. Hopkins, M. Chiang, B. Loewe, D. Marenduzzo, and M. C.
Marchetti, Local yield and compliance in active cell monolay-
ers, Phys. Rev. Lett. 129, 148101 (2022).

[34] S. Banerjee and M. C. Marchetti, Substrate rigidity deforms and
polarizes active gels, Europhys. Lett. 96, 28003 (2011).

[35] S. Banerjee and M. C. Marchetti, Contractile stresses in cohe-
sive cell layers on finite-thickness substrates, Phys. Rev. Lett.
109, 108101 (2012).

[36] A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution
of thin liquid films, Rev. Mod. Phys. 69, 931 (1997).

[37] In averaging the force balance equation we have used the
boundary condition XP*(z = h)~ 0. This indeed holds for
the thermodynamic stress, which is given by XP*(z = h) =
k15D (Va1 )/ (2h) ~ O(£/h), and thus is negligible in the
limit & < h.

044403-14


https://doi.org/10.1103/PhysRevLett.105.108104
https://doi.org/10.1371/journal.pone.0033501
https://doi.org/10.1098/rsif.2011.0433
https://doi.org/10.1038/srep11745
https://doi.org/10.1103/PhysRevE.93.052405
https://doi.org/10.1098/rsfs.2016.0037
https://doi.org/10.1103/PhysRevE.94.042423
https://doi.org/10.1103/PhysRevLett.122.048004
https://doi.org/10.1007/978-3-030-17593-1_1
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1103/PhysRevE.104.054410
https://doi.org/10.1016/S0074-7696(08)62339-6
https://doi.org/10.1080/13642810108205772
https://doi.org/10.1140/epje/i2010-10677-0
https://doi.org/10.1016/j.bpj.2013.11.4498
https://doi.org/10.1038/nphys3471
https://doi.org/10.1016/j.bpj.2014.08.006
https://doi.org/10.1103/PhysRevX.6.021011
https://doi.org/10.1038/s41567-021-01215-1
https://doi.org/10.1039/D3SM00327B
https://doi.org/10.1038/s41563-021-00919-2
https://doi.org/10.1038/s41567-023-02179-0
https://doi.org/10.7554/eLife.82435
https://doi.org/10.1038/s41540-023-00265-w
https://doi.org/10.1017/jfm.2017.832
https://doi.org/10.1016/j.bpj.2019.06.013
https://doi.org/10.1098/rsif.2020.0312
https://doi.org/10.1103/PhysRevE.106.054413
https://doi.org/10.1103/PhysRevLett.130.038202
https://doi.org/10.1039/D3SM01059G
https://doi.org/10.1073/pnas.2319310121
https://doi.org/10.1103/PhysRevLett.125.038003
https://doi.org/10.1103/PhysRevLett.129.148101
https://doi.org/10.1209/0295-5075/96/28003
https://doi.org/10.1103/PhysRevLett.109.108101
https://doi.org/10.1103/RevModPhys.69.931

MULTIPHASE FIELD MODEL OF CELLS ON A ...

PHYSICAL REVIEW E 110, 044403 (2024)

[38] S. M. Zehnder, M. Suaris, M. M. Bellaire, and T. E. Angelini,
Cell volume fluctuations in MDCK monolayers, Biophys. J.
108, 247 (2015).

[39] G. Salbreux and F. Jiilicher, Mechanics of active surfaces, Phys.
Rev. E 96, 032404 (2017).

[40] B. Loewe, F. Serafin, S. Shankar, M. J. Bowick, and M. C.
Marchetti, Shape and size changes of adherent elastic epithelia,
Soft Matter 16, 5282 (2020).

[41] E. Karzbrun, A. H. Khankhel, H. C. Megale, S. M. K.
Glasauer, Y. Wyle, G. Britton, A. Warmflash, K. S. Kosik,
E.D. Siggia, B. I. Shraiman, Human neural tube morphogenesis
in vitro by geometric constraints, Nature (London) 599, 268
(2021).

[42] S. Banerjee, K. J. C. Utuje, and M. C. Marchetti, Propagating
stress waves during epithelial expansion, Phys. Rev. Lett. 114,
228101 (2015).

[43] B. A. Camley and W.-J. Rappel, Physical models of collective
cell motility: From cell to tissue, J. Phys. D: Appl. Phys. 50,
113002 (2017).

[44] P. C. Hohenberg and B. 1. Halperin, Theory of
dynamic critical phenomena, Rev. Mod. Phys. 49, 435
1977).

[45] We do not explicitly write down a pressure term since the tissue
flow is compressible — i.e., mathematically, we do not impose a
Lagrange multiplier to enforce incompressibility. Note also that
the thermodynamic stress already contains an isotropic part that
acts like a pressure.

[46] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.110.044403 for Movies 1 and 2.

[47] A. Czirék, K. Varga, E. Méhes, and A. Szabd, Collective cell
streams in epithelial monolayers depend on cell adhesion, New
J. Phys. 15, 075006 (2013).

044403-15


https://doi.org/10.1016/j.bpj.2014.11.1856
https://doi.org/10.1103/PhysRevE.96.032404
https://doi.org/10.1039/D0SM00239A
https://doi.org/10.1038/s41586-021-04026-9
https://doi.org/10.1103/PhysRevLett.114.228101
https://doi.org/10.1088/1361-6463/aa56fe
https://doi.org/10.1103/RevModPhys.49.435
http://link.aps.org/supplemental/10.1103/PhysRevE.110.044403
https://doi.org/10.1088/1367-2630/15/7/075006

