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Traveling waves at the surface of active
liquid crystals

Paarth Gulati, *a Fernando Caballero, ab Itamar Kolvin,c Zhihong Youd and
M. Cristina Marchetti a

Active liquid crystals exert nonequilibrium stresses on their surroundings through constant consumption

of energy, giving rise to dynamical steady states not present in equilibrium. The paradigmatic example of

an active liquid crystal is a suspension of microtubule bundles powered by kinesin motor proteins, which

exhibits self-sustained spatiotemporal chaotic flows. This system has been modelled using continuum

theories that couple the microtubule orientation to active flows. Recently the focus has shifted to the

interfacial properties of mixtures of active liquid crystals and passive fluids. Active/passive interfaces have been

shown to support propagating capillary waves in the absence of inertia and offer a promising route for

relating experimental parameters to those of the continuum theory. In this paper we report the derivation of

a minimal model that captures the linear dynamics of the interface between an active liquid crystal and a

passive fluid. We show that the dynamics of the interface, although powered by active flows throughout the

bulk, is qualitatively captured by equations that couple non-reciprocally interface height and nematic director

at the interface. This minimal model reproduces the dynamical structure factor evaluated from numerical

simulations and the qualitative form of the wave dispersion relation seen in experiments.

I. Introduction

Active liquid crystals have become a paradigmatic example of
active matter, with nematic order observed on many scales in
both living and engineered systems. Examples include epithe-
lial tissue and suspensions of reconstituted proteins extracted
from living cells, such as microtubule-kinesin1–4 and actomyo-
sin fluids.5–7 The active units in these systems are elongated
apolar complexes powered by the hydrolysis of adenosyn-
triphospate (ATP) to exert forces on their environment and
drive self-sustained, spatiotemporally chaotic flows.

Recently, the realization of immiscible mixtures of active
liquid crystals and passive fluids has allowed the study of the
effect of activity on liquid–liquid phase separation (LLPS).8,9

Both experiments and numerical work have revealed a wealth of
new interfacial phenomena, including giant activity-driven
interfacial fluctuations, traveling capillary waves in the absence
of inertia, and striking wetting behavior where the active fluid
can climb the walls against gravity.8–14

Continuum theories have proven to be an effective frame-
work for describing the long wavelength behavior of active
liquid crystals.15–17 In these theories activity enters through
active forces driven by deformation of the orientation of the
elongated active units, which in turn drives active flows. The
feedback between deformations and flow generically destabi-
lizes the homogeneous ordered state,16 generating self-
sustained flows. Recent extensions to mixtures of active and
passive fluids have shown that the coupling of flow and liquid
crystalline degrees of freedom additionally modifies the phase
separation and its kinetics, and can also capture many of the
observed interfacial phenomena.8,10–14,17,18

Here we present an analytical derivation of the linear dynamics
of interfacial fluctuations in a phase separated mixture of an active
liquid crystal and a passive fluid. We show that the observed
capillary waves can be described by a minimal model that couples
fluctuations in the interface height to director fluctuations at the
interface. We examine both the situations where, in the absence of
activity, the liquid crystal is in the nematic state and in the
isotropic state. Although bulk nematic fluids are generically
unstable, the interface can stabilize the phase separated mixture
through traveling surface waves in a range of intermediate wave-
numbers. Our minimal model captures qualitatively the experi-
mental observations. We also evaluate numerically the dynamical
structure factor of interfacial fluctuations, which clearly displays
traveling waves, and show that it agrees qualitatively with the
analytical model. Active capillary waves arise generically via a
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non-reciprocal coupling of the interface height and the liquid
crystal director field, mediated by hydrodynamic flows through the
bulk. With a nematic base state, the dispersion relation has the
generic form recently predicted in a new class of non-reciprocal
phase transitions observed in coupled conserved fields19–23 or in a
conserved field coupled to a Goldstone mode.24 It arises when the
eigenvalues of the matrix describing the dynamical evolution of
the system coalesce at an exceptional point at the edge of a band of
linearly unstable modes.8

Previous analytical work8 has focused on the calculation of
the spectrum of equal-time interfacial fluctuations which can
be well approximated by effectively neglecting the dynamics of
the director angles. In contrast, we show here that it is essential
to incorporate the director dynamics in order to understand the
origin of capillary waves. Soni et al.25 have also explicitly
obtained the dispersion relation of capillary waves for the case
of isotropic liquid crystals, but their method tends to obscure
the physical mechanism that drives the travelling waves.

The effect of activity on phase separation has been studied
extensively with scalar models of a phase separating concen-
tration field advected by flow.26–28 In this case activity is
introduced via an active capillary stress of strength free to
differ from the equilibrium interfacial stiffness appearing in
the free energy, allowing for the possibility of an effective
negative interfacial tension, which can qualitatively modify
the coarsening dynamics and the phase separation. On the
other hand, the active capillary stress is proportional to gradi-
ents of the concentration field and only acts on the interfaces of
the phase separated regions. Here, in contrast, we find that that
the emergence of active capillary waves requires the feedback
from active stress throughout the bulk fluid, as induced by the
coupling of flow to liquid crystalline degrees of freedom.

The remainder of the paper is organized as follows. In
Section II we introduce the continuummodel of the active/passive
fluid mixture. In Section III, we derive linear equations for height
and director fluctuations around an initially flat interface with
projections methods used before in the literature.10,29,30 We carry
out the calculation of the linear interfacial dynamics in two
regimes, corresponding to situations where the liquid crystal is
in the isotropic or nematic regime when passive. We show that the
linear model captures the qualitative feature of the dispersion
relation of active capillary waves in both regimes. We also discuss
the role of gravity in suppressing long wavelength instabilities
while preserving propagating modes in Section IIIC. Finally, in
Section IV, we solve numerically the full continuum equations to
compute the dynamical structure factor of the interface, which
clearly displays propagating modes at intermediate wavenumbers,
in qualitative agreement with the linear theory. We conclude with
a few remarks and open questions.

II. Continuum model

We consider a phase separating mixture of an isotropic passive
Newtonian fluid and an active liquid crystal in two dimensions,
thus with one-dimensional interfaces.

We use a continuum model with a phase field f describing
the local relative concentration of active and passive fluid and a
velocity field v capturing fluid flow. Liquid crystalline order is
described by the nematic alignment tensor, Qij = S(ninj � dij/2)
where S is the order parameter and n is the local director field –
a unit vector pointing along the direction of broken symmetry.
The dynamics is governed by the following equations,

Dtf = Mr2m, (1)

DtQ ¼ lA� ½X;Q� þ 1

g
H; (2)

0 = Zr2v + =�(re + rf + ra) � =P, (3)

where Dt = qt + v�r is the material derivative.
The phase field f obeys relaxational dynamics with mobility

M, assumed constant, and chemical potential m = dFf/df
determined by a Ginzburg–Landau free energy

Ff ¼
ð
dr f0ðfÞ þ 2kðrfÞ2
� �

: (4)

The free energy density for the uniform state is taken to be of
the form, f0(f) = �4af2(1 � f)2, with a o 0, which corresponds
to a bistable system with ground states representing the iso-
tropic passive fluid (f = 0) and the active liquid crystal (f = 1).

The nematic tensor Q relaxes according to a molecular field
Hij = �dFQ/dQij, derived from the Landau-de Gennes free energy

FQ ¼
ð
dr

rf
2
Tr Q2

� �
þ u

4
TrQ2
� �2þK

2
@kQij

� �2� �
; (5)

with g the rotational viscosity. It additionally couples to the flow
through the rate of strain tensor Aij = (qivj + qjvi � dij=�v)/2 and
vorticity tensor Oij = (qivj � qjvi)/2.

The flow velocity v is determined by eqn (3) that balances
viscous dissipation with viscosity Z, gradients of pressure P and
elastic, capillary and active stresses. We further assume incom-
pressible flow (=�v = 0) in the Stokes limit. The capillary
force, =�rf = �f=m, arises from the free energy cost of creating
interfaces. One can show that the capillary stress can be written
as27

sfij ¼ �k @ifð Þ @jf
� �

� 1

2
dijðrfÞ2

� 	
: (6)

The liquid-crystalline degrees of freedom are additionally
responsible for elastic stress re and active stress ra, given by

seij ¼ � lHij þ ½Q;H�Aij ;

saij ¼ afQij ;
(7)

where [Q,H]Aij = QikHkj � HikQkj denotes the antisymmetrized
product of any two tensors. The parameter a, with dimensions
of stress, controls the activity and depends on the biomolecular
processes that drive the flows. Its sign is determined by whether
active forces are extensile (a o 0), as considered here, or
contractile (a 4 0).
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III. Linear interfacial dynamics

In the following we examine the stability and dynamics of the
interface separating the bulk phases of the two fluids in an
infinite plane. We assume the active liquid crystal (f = 1)
occupies the region y4 0 and the passive fluid (f = 0) occupies
the region y o 0. The profile of the flat interface separating the
two regions at y = 0 is easily found from the solution of dFf/df =
0, as sketched in Fig. 1. The solution describes a smooth
function varying between the bulk values of f across a length

scale ‘f ¼
ffiffiffiffiffiffiffiffiffiffiffi
k=jaj

p
. We will consider a sharp interface approxi-

mation, assuming cf is much smaller than any other length
scale. We stress that we have made the nonstandard choice of
the y axes pointing down in Fig. 1. This choice is made purely to
obtain algebraically cleaner expressions for the continuum
equations for the interface, and at the same time to display
the active flow below the passive one (as is the case in
experimental realizations of this form of phase separation,
where the active phase is heavier).

Below we adapt the method first described in ref. 29 to
derive linear equations for the dynamics of activity-driven
fluctuations in the interface height h(x,t) and director angle
y(r,t) defined by n = (cos y,sin y) (see additional details in
Appendix A).

We write

f(x,y,t) = g(y � h(x,t)), (8)

where for an infinitely sharp interface g(y) is well approximated
by a step function, i.e., g(y) = Y(y). We consider the regime
where the dynamics of the phase field is dominated by advec-
tion by flow and ignore the right hand side of eqn (1) Inserting
the ansatz given in eqn (8), we can then write

qtf = �g0(y � h(x,t))qth(x,t) = �viqig(y � h(x,t)), (9)

where the prime denotes a derivative g0(y) = dg/dy. This can
be simplified by integrating across the interface and using

the sharp interface approximation (g0(y) E d(y)), to give to
linear order

qth(x,t) = vy(x,y = 0,t). (10)

Next, we eliminate the flow and project the dynamics onto
the interface to obtain equations for height fluctuations and
fluctuations of the liquid crystalline degrees of freedom at the
interface.10,29,30 This can be done by formally solving Stokes
equation, i.e. writing the flow as

viðrÞ ¼
ð
dr0Tijðr� r0Þfjðr0Þ; (11)

where Tij(r) are the components of the Oseen tensor, which in
Fourier space and for a bulk system are given by

~TijðkÞ ¼
1

Zjkj2 dij �
kikj

k2

� �
; (12)

and where the driving force for the flow fi(r) contains both
equilibrium and active stresses,

fi(r) = qj (s
f
ij + saij), (13)

where, for simplicity, we have ignored the elastic stress re

which is higher order in gradients of the nematic field.
It is convenient to write eqn (11) as v = vf + va The explicit

form of these two contributions is then

v
f
i ðr; tÞ ¼

ð
dr0Tijðr� r0Þmðr0Þ@0

jfðr0Þ; (14)

vai ðr; tÞ ¼
ð
dr0Tijðr� r0Þ a@0

k fðr0ÞQjkðr0; tÞ
� �� �

: (15)

Here, we have written the capillary force coming from the stress
in eqn (6) as ffi = mqif, which can be done by an integration
by parts due to incompressibility. In the remainder of this
section we evaluate the flows induced by height and director
fluctuations to obtain a closed description of the interfacial
dynamics.

A. Flows driven by passive capillary stresses

Following previous work,29 the flow vfi can be calculated in
terms of the perturbation h(x,t) by using eqn (8) and expanding
for small h as qif I �g0(y)qxh. The expression for the flow
velocity can then be evaluated taking advantage of the sharp-
ness of the function g0, with the result

v
f
i ðr; tÞ ¼ s

ð
dx0Tiyðx� x0; yÞ@x02hðx0; tÞ; (16)

where we have integrated along the coordinate y perpendicular
to the interface (see algebraic details in Appendix A). Here s is
the interface tension, defined as the energy cost per unit length
of creating density gradients. It can easily be calculated analy-
tically using the equilibrium solution for the interface profile
and is given by

s ¼ 2k
ð1
�1

dy0 r0fðy0Þ½ �2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kjaj=9

p
: (17)

Fig. 1 Sketch of the phase separated active/passive fluid. The blue line is
the interface between the active and passive phases. The height fluctua-
tions have been exaggerated for illustrative purposes. Inset: Profile of the f
field across the interface showing the interfacial thickness cf.
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It is convenient to Fourier transform in x and define the
partial transform of the Oseen tensor as

Gijðk; yÞ ¼
ð1
�1

dkye
ikyyTij k; ky

� �
: (18)

The passive flow is then given by

vfi (k,y) = �sk2Giy(k,y)h(k,t). (19)

or explicitly,

vfx ðk; yÞ ¼
sjkj
4Z

e�jkyjikyhðk; tÞ; (20)

vfy ðk; yÞ ¼ �sjkj
4Z

ð1þ jkyjÞe�jkyjhðk; tÞ: (21)

Finally, substituting in eqn (10), we obtain

@thðk; tÞ ¼ �sjkj
4Z

hðk; tÞ þ vayðk; y ¼ 0Þ: (22)

In the absence of active flows (va = 0), this describes the
hydrodynamic relaxation of interface fluctuations due to capil-
lary stresses.

B. Flows driven by active stresses

To evaluate the contribution to velocity fluctuations from active
stresses and close eqn (22), we need to examine the linear
dynamics of fluctuations of the nematic tensor at the interface.
To do this we will consider separately the case where the liquid
crystal is in a nematic or isotropic state in the absence of
activity.

The case of an isotropic passive liquid crystal is directly
relevant to recent experimental realizations of active/passive
phase separating mixtures, where the concentration of micro-
tubules in the active phase is too low for the onset of nematic
order to occur in absence of activity. On the other hand, both
simulations and experiments have shown that in this regime
local nematic order is created by active stresses through flow
alignment.8,18,31–33

1. Ordered nematic. In this section we consider the case in
which the liquid crystal is in the nematic state in the absence of
activity. We note that bulk extensile active nematics are gener-
ically unstable to bend fluctuations at any nonzero activity.16

It is nonetheless instructive to examine the interfacial dyna-
mics and ask whether the interface has any stabilizing effect.

We assume that in the bulk phase separated state the
director is aligned along the direction of the flat interface
separating active and passive fluid at y = 0 (n0 = x̂)This
assumption is justified by the fact that extensile active stresses
are known to create an effective alignment interaction that
aligns the director with the interface.14,34,35 In a contractile
active system, the shear flows tend to align the director
perpendicular to the interface. The dispersion relations for
such a system can be analogously derived by assuming normal
anchoring for the base state. In addition, for length scales large
compared to both the interfacial thickness and the nematic
correlation length, we simply slave the magnitude of the order

parameter to the field f, i.e., S0(y)I f(y). The base state is then
described by Q0

xx = �Q0
yy = S0(y), Q

0
xy = 0 and zero flow velocity.

To examine the dynamics of small fluctuations, we then retain
only terms linear in the interfacial height h(x,t) and the director
angle y(x,y,t) and neglect fluctuations in the magnitude of the
order parameter, as appropriate deep in the nematic state.
This gives dQxx = �dQyy I �g0(y)h(x,t) and dQxy I g(y)y(x,y,t).
Inserting these expressions in eqn (A14) and taking a Fourier
transform in x we obtain

vai ðk;yÞ ¼ �ahðk;tÞ ikGixðk;yÞ�@yGiyðk;yÞ
� �

S0ð0Þ

þa
ð1
0

dy0 ikGiyðk;y�y0Þ�@y0Gixðk;y�y0Þ
� �

yðk;y0; tÞ:

(23)

The linear dynamics of director angle fluctuations is
obtained by linearizing eqn (2) around the base state and is
given by (for y Z 0)

@tyðk; y; tÞ ¼
lþ 1

2
ikvy þ

l� 1

2
@yvx �D k2 � @y

2
� �

y; (24)

where D = K/g.
Our goal is to obtain a minimal model that describes

interfacial dynamics in terms of closed equations for height
fluctuations h(x,t) and director fluctuations at the interface,
y0(x,t) = y(x,y = 0,t). To achieve this we need to make some
assumption on the dependence of angle fluctuations on the
distance y from the interface. It is clear from eqn (23) that
fluctuations throughout the bulk fluid up to distances of order
1/k contribute to the right hand side of eqn (23), hence become
most important at small wavenumbers. On the other hand, our
goal is to develop a minimal model that captures the capillary
waves observed in experiments in a regime of intermediate
wave numbers.8 We then first simply ignore the y dependence
and assume y(k,y,t) = y0(k,t) in eqn (23). This assumption yields
the following coupled equations for the interfacial dynamics:

@th ¼ � s
4Z

jkjhþ a
2Zk2

iky; (25)

@ty ¼ �sjkj
4Z

ikh� al
2Z

þDk2
� �

y: (26)

The dispersion relation of the modes describing the
dynamics of height and director fluctuations at the interface
can be obtained from the eigenvalues of the matrix M defined

by eqn (25) and (26) such that @t
h
y

� �
¼ M

h
y

� �
. The real and

imaginary parts of the dispersion relations are shown in Fig. 2.
In absence of activity the equations are decoupled and the
modes are always real, describing decay of height fluctuations
due to interfacial tension and of director fluctuations due
to nematic stiffness (Fig. 2A). A finite value of activity drives
the instability of director fluctuations at small wavenumber,
produced by the well-known generic bend instability of exten-
sile active nematics.16
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For finite extensile activity, the modes are coupled and
display an unstable band of wavenumbers associated with the
generic instability of the bulk system. At k B k* = s/4ZD the
modes coalesce and become complex, signaling the onset of
propagating capillary waves which persist in a band of wave-
numbers, (kmin,kmax). To lowest order in activity, one can write

(kmin,kmax) = (k*� dk,k* + dk), with dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jaj=ZD

p
. The range of

wavenumbers over which one observes traveling waves is con-
trolled by length scale over which a deformation of the director
can diffuse in an active time Z/|a| and grows with activity,
consistent with simulations and experiments.8

At finite activity the dispersion relation obtained from
eqn (25) and (26) has the generic form obtained for two
nonreciprocally coupled conserved fields or a conserved
field coupled to a Goldstone mode.19,20,23,24 Travelling waves
emerge near the edge on the band of unstable modes where the
eigenvalues and eigenvectors coalesce and the matrix M
becomes nondiagonalizable. Here the nonreciprocal coupling
between bend deformations of the director field and passive
restoring forces from interfacial tension is responsible for the
onset of traveling waves. Director fluctuations drive interfacial
fluctuations, which in turn tend to suppress orientational
deformations. The coupling is mediated by active flows through
a sort of ‘‘delayed anchoring’’ of the director field at the
interface: height fluctuations drive director deformations that
push height fluctuations before they have had the chance to
relax or grow.

By slaving the dynamics of the angle y to interfacial fluctua-
tions, i.e., assuming y B qxh, one recovers the simple form of
the generic bend instability of an active liquid crystal. In this
case, the equation for height fluctuations takes the simple form

@th ¼ � s
4Z

jkjh� a
2Z

h; (27)

and of course does not display any traveling waves since we
have eliminated the dynamics of one of the degrees of freedom.
In this limit, height fluctuations are generically unstable at all
values of extensile activity (ao 0) as a result of the generic bend
instability of extensile active nematics. In other words, the
interface breaks up, as observed in mixtures of active liquid
crystals and passive fluids.9,10

Finally, the qualitative features of the dispersion relation are
quite robust and independent of the form assumed for the
y dependence of director angle fluctuations when evaluating
the corresponding contribution to active flows. We show in
Appendix B that the qualitative structure of the dispersion
relation is unchanged if we assume an exponential decay
y(k,y,t) = y0(k,t)e

�|y|/c, with c the correlation length of active
flows. This form is motivated by the fact that the active liquid
crystal develops chaotic turbulent flows at any finite activity.
A more detailed calculation that couples height fluctuations to
moments of angle fluctuations weighted by the full Be�|k||y|

Green’s function also reproduces the same qualitative structure
of the dispersion relations.

2. Isotropic liquid crystal. Active liquid crystals reconstitued
from cell extracts, such as microtubule-kinesin suspensions,
are often in the isotropic phase when passive, corresponding to
r 4 0, with nematic order only built-up locally by the coherent
flows generated by active stresses. In this case the base state
for an active/passive mixture separated by a flat interface is
quiescent and isotropic, with v = 0 and Qij = 0. To lowest order
in spatial gradients, the linear dynamics of fluctuations in the
alignment tensor is then simply governed by

@tQijðrÞ ¼ �1

t
QijðrÞ þD=2Qij þ lAijðrÞ; (28)

where t = g/r is the nematic relaxation time. Our goal is again to
project the dynamics of the alignment tensor onto the active/
passive interface. This is, however, more challenging than in
the case where the active liquid crystal is nematic (r o 0)
discussed in the previous section because, given the vanishing
of the order parameter in the base state, the linear dynamics of
its fluctuations does not couple to vorticity, but only to the
strain rate. The latter vanishes at the interface. Thus we cannot
neglect all y dependence and equate the strain rate with its
value at the interface. We therefore need a different ansatz for
the dependence of the nematic fluctuations on the distance
from the interface in the active phase. In the absence of activity,
the flow generated by a fluctuation h(k,t) of the interface is due
entirely to capillary forces and is immediately obtained from
eqn (16), with a resulting strain rate Afij in the active component
(y 4 0), given by

Af
xxðk; yÞ ¼ �sk2

4Z
jkjye�jkjyhðk; tÞ; (29)

Af
xyðk; yÞ ¼ �sk2

4Z
ikye�jkjyhðk; tÞ: (30)

In other words flows induced by capillary forces associated
with interface fluctuations of wavenumber k extend through an

Fig. 2 Dispersion relation for the modes obtained from eqn (25) and (26),
with l = 1.0. The blue solid lines show the real part of the eigenvalues and
the red dashed lines are the imaginary parts. With our convention,
fluctuations decay when Re{io} o 0 and grow when Re{io} 4 0. The
frequency, wavenumber and activity are written in terms of o0 = s2/(Z2D),
k0 = s/(ZD) and a0 = s2/(ZD), which arise as the natural units from eqn (25)
and (26). (A) For a = 0, the two modes are decoupled (and intersect at k =
k0/4). (B) For extensile activity, a o 0, the modes coalesce and develop a
band of propagating modes. At small k we see the instability of the active
nematic reflected in the positive real part of io.
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interfacial layer of thickness |k|�1. It is then clear from eqn (28)
that, neglecting elasticity, the y dependence of nematic tensor
fluctuations generated by capillary forces will have the same
form as that of the strain rate Afij. This suggests the ansatz

Qxx(k,y,t) = |k|ye�|k|yqxx(k,t), (31)

Qxy(k,y,t) = ikye�|k|yqxy(k,t), (32)

with qij(k,t) to be determined as a self-consistent solution of
eqn (28). We insert eqn (31) and (32) into eqn (28) and into the
active contribution to the flow velocity, eqn (15). With this
ansatz, the process to obtain the dispersion relation is as in the
previous section, with two caveats. In this case, we cannot
sinply decouple amplitude and angle fluctuations, since the
amplitude is also small, and thus we have three degrees
of freedom, h, qxx and qxy. Additionally, we observe there is a
mode that decouples from the dynamics of h, which is a linear
combination of qxx and qxy. Thus we arrive to the linear
equations for h and c� = (qxx � qxy)/2 (see derivation details
in Appendix C)

@thðk; tÞ ¼ � sk2

4Zjkjhðk; tÞ �
a

4Zk
cþðk; tÞ; (33)

@tcþðk; tÞ ¼ � 1

t
þ al
4Z

þ 2Dk2
� �

cþðk; tÞ

� slk2

4Z
hðk; tÞ þ al

4Z
c�ðk; tÞ;

(34)

@tc�ðk; tÞ ¼ � al
4Z

þ 1

t
þ 2Dk2

� �
c�ðk; tÞ: (35)

The dispersion relations corresponding to the previous
equations are shown in Fig. 3. As before, in absence of activity,
all fluctuations decay. Again as before, extensile activity renders
the isotropic state with flat interface unstable when the rate B
|a|/Z at which active energy is injected exceeds the rate 1/t at

which it is dissipated by rotational viscosity. The instability
occurs at a critical activity ac = 4Z/lt in a band of wavevectors

k A [0,kc], with kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l jaj � acð Þ=4ZD

p
. For values of activity

below ac, the interface can support stable propagating modes
(see Fig. 3A). Wave propagation sets in for k Z kl, with

kl ¼
4Z
st

1�
ffiffiffiffiffiffiffiffiffi
a=ac

p� �2

: (36)

As a approaches ac, kl - 0 and we get a large scale
instability. As activity keeps increasing, kl again becomes finite,
and fluctuations larger than 1/kl do not propagate along the
interface. Close to the critical point kl B (1 � |a|/ac)

2.
Qualitatively, therefore, whether the liquid crystal is in its

isotropic or nematic regime does not change the linear phe-
nomenology of the interface, which displays interface instabili-
ties, connected to the bending instability of the liquid crystal,
and wave propagation. The difference in the isotropic regime is
that the liquid crystalline degrees of freedom are not hydro-
dynamic, i.e., o(k - 0) a 0. There is instead a relaxational rate
1/t in eqn (34), which causes the instabilities to now appear
above a finite activity ac.

As in the nematic regime described in the previous section,
the emergence of propagating waves in this system comes from
the interplay between an active flow and interface tension.
Activity generates spontaneous flows that create local nematic
order, which destabilises the interface. The flow created by
relaxation due to interface tension in turn drives the liquid
crystal. Again, this nonreciprocity points to propagating struc-
tures and traveling waves in the system.23

C. Effect of gravity

As we have noted in the previous sections, the bend instability
of the bulk liquid crystal destabilizes and eventually breaks
up the interface, as observed in both experiments9 and
simulations.10 Experiments have studied interface fluctuations
in the presence of gravity which provides a restoring force that
prevents interface break up, allowing direct measurements of
interfacial fluctuations.

The stabilising effect of gravity can be added to our model as
a body force proportional to the density of the fluid in the
Stokes equation, eqn (11), given by

fg = (rp(1 � f) + raf)gŷ, (37)

where rp and ra are the densities of the bulk (passive and
active) phases. In current experimental realizations,8 the active
phase is denser, and settles to the bottom.

The addition of gravity simply shifts the contribution from
interfacial tension according to

sk2 - sk2 + gDr � s(k2 + cc
�2), (38)

where Dr = ra � rp. The capillary length ‘c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ðgDrÞ

p
cuts off

the instability of the interface at long wavelengths, as shown
in Fig. 4.

Fig. 3 Dispersion relation for the modes controlling the dynamics of
fluctuations of an active/passive interface with r 4 0. Activity here is
scaled by the critical threshold ac for the instability of the homogeneous
state. (A) For |a| o ac the modes are stable at all wavenumbers and
propagating in a range of k. (B) For |a| 4 ac the modes are unstable at
long wavelengths. Parameter values: l = 1.0, t = 4.0/o0, which corre-
sponds to ac = a0.
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IV. Numerical results

To test our linear theory, we have evaluated numerically
the dynamical structure factor of the interface using the full
hydrodynamic theory, i.e. eqn (1)–(3). The structure factor is
given by

Sðk;oÞ ¼
ð1
0

dt eiot h k; tþ t0ð Þh �k; t0ð Þh i; (39)

where the brackets denote an average over different time
windows, as described below.

To compute eqn (39) we have used a pseudospectral code to
numerically integrate eqn (1)–(3) on a discrete lattice of size
N � N for N = 1024. The pseudospectral method provides
a stable technique for dealing with high order gradients,
as present in the Cahn–Hilliard equation. The integration has
been carried out with available pseudospectral solvers,36 using
periodic boundary conditions in the x direction. We enforce
Dirichlet boundary conditions at the top and bottom bound-
aries by setting a fixed buffer zone in a band of width 128 lattice
sites at the top of the system in which f = 0 and v = 0, and a
similar buffer zone at the bottom of the system where f = 1 and
v = 0. We report all the simulation parameters in physical units:
lengths in units of the interface width cf, time in units of the
nematic reorientation time g/r and stresses in units of the
nematic condensation energy r.

The initial state is chosen as fully phase separated with a
horizontal interface at y = 0, corresponding to fðr; t ¼ 0Þ ¼
1þ tanh y


 ffiffiffi
2

p
‘f

� �� �

2, so that the active liquid crystal is in the

region y 4 0, and the passive fluid in the region y o 0 The
components of the order parameter Qij are initialized as small
noisy fluctuations around their mean value of zero, which
allows activity to induce alignment.

The chosen values of the parameters are such that the active
bulk develops a turbulent regime, but low enough for the
interface to remain a single-valued function. We additionally
include a gravitational force to ensure a stable interface. Active
flows in the bulk then drive the dynamics of the interface,

which will fluctuate as a result of the interplay between inter-
facial tension and the destabilising effects of activity. The
chosen value of activity is larger than the critical activity above
which the isotropic state becomes unstable, but kept low
enough so that interfacial tension and gravity keep a well-
defined interface (Fig. 5A).

In each integration of the model, we extract the interface by
fitting each constant-x slice of the field f(x,y,t) to a function

of the form f ðyÞ ¼ a 1þ tanh b y� y0ð Þ

 ffiffiffi

2
p

‘f
� �� �

and use the
resulting fitting parameter h(x,t) = y0 as the location of the
interface at point x and time t (Fig. 5B). The dynamical proper-
ties of the interface are then extracted from h(x,t) by calculating
its structure factor S(x,t) = hh(x,t)h(0,0)i, which we analyse in
Fourier space S(k,o) = |h(k,o)|2. We run the simulation for 2 �
107 time steps, with Dt = 10�4g/r, i.e., total time T = 2 � 103g/r.
This total time is much longer than the observed time scale of
wave propagation. To extract a structure factor, we split this
dataset into nonoverlaping time series, each containing the
interface profile hi(x,t) with t A [ti,ti + DT), with DT = 10g/r. This
produces 200 time series. We then average the structure factor
calculated from each of these intervals.

The structure factor is shown in Fig. 6 for three values of the
nematic stiffness K. Even though flows in the active fluid are
chaotic and strongly nonlinear, the dispersion relation provides
a qualitative good fit for the observed frequencies and wave-
lengths of the capillary waves.

Fig. 4 Dispersion relation for the dynamics of fluctuations of an active
isotropic liquid crystal (r 4 0) and a passive fluid, (A) without and (B) with
gravity (cck0 = 1.0). All other parameters are as in Fig. 3B, which is repeated
here for ease of comparison. Gravity stabilizes the interfacial instability,
while still allowing for propagating waves.

Fig. 5 (A) Snapshot of the phase separated system obtained by numerical
integration of eqn (1)–(3), with an isotropic liquid crystal (r 4 0). The
director is plotted every ten lattice sites for clarity (the length corresponds
to the magnitude of the nematic order). Unbound topological defects are
evident in the bulk, as expected in the regime of active turbulence. The
background color represents the (normalized) vorticity Oxy. The inset
shows a zoomed in region, highlighting the representative director struc-
ture (now shown every two lattice sites) close to the interface (black line).
Simulation parameters: K = 10.0, a = �50, M = 0.67, u = 10.0, a = �10.0, l
= 1.0, Z = 1.0 and gDr = 1.2. (B) Zoomed in region showing the interfacial
fluctuations quantified by the height field h(x,t).
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V. Discussion

Activity has profound effects on phase separation, driving giant
interfacial fluctuations, arresting coarsening, and perhaps
providing a new handle for controlling the properties of
interfaces.8,9 Many realizations of active fluids are composed
of elongated entities with liquid crystalline degrees of freedom
that play a key role in driving active flows. It is therefore
important to understand the interplay of activity and orienta-
tional order on soft fluid–fluid interfaces. In these systems
interfacial fluctuations are driven by the chaotic dynamics of
the bulk, offering an opportunity to probe the properties of
active liquid crystal by probing the behavior of the interface.

In this paper, starting with a familiar continuum model of
active liquid crystal hydrodynamics, we have derived analyti-
cally linear equations for the behavior of fluctuations of the
active/passive interface. This study builds on classical frame-
works of interfacial waves in equilibrium,37,38 which we extend
to analyze the effects of active driving. The derivation becomes
challenging because interfacial fluctuations are driven by active
forces throughout the bulk fluid and propagated nonlocally
through the hydrodynamic flows. This is to be contrasted to
scalar models of active phase separation, where active stresses
only act at the interface.26 To make progress, we have proposed
simple approximations that qualitatively capture much of
the phenomenology seen in experiments and in numerical
simulations of the full nonlinear hydrodynamic model.

We believe our work will help understand the effect of
activity on interfacial dynamics and offer tools for quantitative
comparison with experiments. Traveling waves at the surface of
a phase separated active microtubule-kinesin suspension were
observed in ref. 8 using a quasi-2D system with very low surface
tension. It was also shown there that, although those experi-
ments are strictly outside the range of application of a linear
theory even at the lowest kinesin concentrations, a simplified
version of the present theory does reproduce the qualitative
features of the dispersion relations. On the other hand, a theory

of the type presented here cannot provide a quantitative pre-
diction of the amplitude of fluctuations, which has to be
treated as a fitting parameter. Very recent experiments on active
phase separation in bulk fluids with a 2D interface have also
revealed traveling surface waves35 and may offer the opportu-
nity for a more quantitative comparison of the structure of the
dispersion relations. This, together with an extension to
the nonlinear regime, provides an important direction for
future work.

A clear direction is expanding this theory is to incorporate
nonlinear terms. This has been done in the past in the context
of nonequilibrium dynamics,39 and more recently as applied to
scalar active systems,30,40 where active forces only act directly at
the interface. Extending this work to situations where active
hydrodynamic flows throughout the bulk are the main drive of
interfacial dynamics remains an open challenge. More work is
needed to establish whether active hydrodynamic interfaces
belong to the same universality class as other interface models
used in the past.

Another future direction is expanding this model to
more complete theories that consider two flows coupled by
friction, as has been done before in related studies of binary
mixtures.13,41,42 It is unknown, however, if this more complete
description would provide a deeper insight into the compli-
cated phenomenological aspect of the experimental systems
that have inspired this work.8

While these open questions are challenging, it is clear that a
quantitative understanding of the dynamics of complex active
interfaces will be required for the development of new func-
tional soft materials where the interfacial properties are tuned
and controlled by active processes.

Data availability

Data for this article, including the source code for the simula-
tions, the analysis scripts and data necessary to reproduce the

Fig. 6 The dynamic structure factor S(k,o) of the interface computed numerically shows clear evidence of propagating waves at intermediate
wavenumbers. The three frames correspond to three values of the nematic elastic stiffness, K = 1, 10, 100. Increasing K suppresses wave propagation at
large wavenumbers. The other parameters here are fixed to be: a = �50, M = 0.67, u = 10.0, a = �10.0, l = 1.0, Z = 1.0 and gDr = 1.2.
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figures are available at https://github.com/paarthgulati/active
InterfaceWaves.
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Appendices
Appendix A: Interface projection

This appendix shows the calculation of the interface dynamics
following the method of ref. 29. We start with the (incompres-
sible) Stokes flow generated by the force F, which is given by

viðrÞ ¼
ð
dr0Tijðr� r0ÞFjðr0Þ; (A1)

where Tij is the Oseen tensor given by eqn (12) and

F = mrf + ar�(fQ), (A2)

where the chemical potential can be written in terms of the free
energy density of the phase field, m ¼ f 00ðfÞ � kr2f. Here, we
write the capillary force for the bulk system to be equal to mrf,
integrating by-parts r�sf = �frm and ignoring the boundary
terms with vanishing contribution to the flow.

We consider the initial phase separated state and height
fluctuations h(x,t) of the flat interface. We can write f(x,y,t) =
g(u), where u = y � h(x,t) is the distance from the interface and
g(u) varies sharply at the interface. We then obtain

=f = g0(u)(êy � êx(qxh)) (A3)

r2f = (1 + (qxh)
2)g00(u) � g0(u)qx

2h, (A4)

where the prime denotes a derivative. The capillary force is then
given by

m=f¼g0ðuÞ êy� êx @xhð Þ
� �

� f 00ðgÞ�k 1þ @xhð Þ2
� �

g00ðuÞ�g0ðuÞ@x2h
� �� �

¼ êy� êx @xhð Þ
� � df0

du
�k
2

1þ @xhð Þ2
� �d½g0ðuÞ�2

du
þk½g0ðuÞ�2@x2h

� �
:

(A5)

The passive flow vpi (x,y) can be calculated from eqn (A1) and
(A5), with the result (to linear order in fluctuations)

v
f
i ðx; yÞ ¼ s

ð1
�1

dx0Tiyðx� x0; yÞ@x02hðx0; tÞ; (A6)

where s ¼ k
Ð
du½g0ðuÞ�2 is the surface tension. The terms pro-

portional to f 00ðuÞ and d(g0)2/du vanish upon integrating by parts
because they are total derivatives.

To evaluate the flows explicitly it is useful to introduce the
partial Fourier transform of the Oseen tensor as

Gijðk; yÞ ¼
1

2p

ð1
�1

dkye
ikyyTij k; ky

� �
: (A7)

These partial Fourier transforms can be easily evaluated:

Gxxðk; yÞ ¼ e�jkyj

4Zjkj 1� jkyjð Þ;

Gxyðk; yÞ ¼ � iky
e�jkyj

4Zjkj;

Gyyðk; yÞ ¼
e�jkyj

4Zjkj 1þ jkyjð Þ:

(A8)

Flows of wavenumber k decay on length scales k�1 and are
only cutoff by the system size.

The passive flows due to the surface tension are then
given by

vfi (k,y) = �sk2Giy(k,y)h(k,t). (A9)

or explicitly,

vfx ðk; yÞ ¼
sjkj
4Z

e�jkyjðikyÞhðk; tÞ; (A10)

vfy ðk; yÞ ¼ �sjkj
4Z

ð1þ jkyjÞe�jkyjhðk; tÞ: (A11)

The active flows can be written as

vai ðx;yÞ¼ a
ð1
�1

dx0
ð1
�1

dy0Tijðx�x0;y�y0Þ@0
k fðx0;y0ÞQjkðx0;y0Þ
� �

;

(A12)

Here, f(x,y,t0) = g(y � h(x,t)), where g varies sharply from 0 to 1
at the interface. To linear order in fluctuations, Qij = Q0

ij + dQij,
where the explicit form of the base state Q0

ij depends on whether
the active liquid crystal is in the isotropic or nematic state when
passive.

It is easy to show that the active flow always vanishes in the
base state, i.e., to zeroth order in fluctuations. This is obvious
in the isotropic state where Q0

ij = 0. In the nematic case the base
state has components Q0

xx = �Q0
yy = S0(y), where S0(y) describes

the decay of nematic order across the interface, and Q0
xy = 0,

which corresponds to a pressure jump across the interface, and
therefore produce no flow.

Transforming eqn (A12) to Fourier space in x, and expand-
ing to linear order in fluctuations, the active flow can then be
written as

vai ðk;yÞ ¼ �aikhðkÞ
ð1
�1

dy0Gijðk;y�y0Þg0ðy0ÞQ0
jxðy0Þ

þa
ð1
�1

dy0Gijðk;y�y0Þg0ðy0ÞdQjyðk;y0Þ

þa
ð1
�1

dy0Gijðk;y�y0Þgðy0Þ ikdQjxðk;y0Þþ@0
ydQjyðk;y0Þ

h i

�a
ð1
�1

dy0Giyðk;y�y0Þg00ðy0ÞhðkÞQ0
yyðy0Þ:

(A13)

In the limit when the interface width is small, we can
approximate the step function g(y) = Y(y) and g0(y) = d(y).
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Then we can simplify the active flow to be:

vai ðk;yÞ ¼ �ahðkÞ ikGixðk;yÞ�@yGiyðk;yÞ
� �

S0ð0Þ

þa
ð1
0

dy0 ikGiyðk;y�y0Þþ@yGixðk;y�y0Þ
� �

dQxyðk;y0Þ

þa
ð1
0

dy0 ikGixðk;y�y0Þ�@yGiyðk;y�y0Þ
� �

dQxxðk;y0Þ:

(A14)

Appendix B: Ordered nematic

This section shows details on the derivation of eqn (25) and
(26), and the corresponding dispersion relation.

As described in the previous section, the base state here has
Q0
xx = �Q0

yy = S0(y) and Q0
xy = Q0

yx = 0, where S(y) describes the
decay of nematic order across the interface, and thus corre-
ponds to a pressure jump. We further consider this in the limit
with small nematic correlation length and treat the base state
as a step function with a finite magnitude of the order para-
meter at the interface.

On top of this base state we consider fluctuations in the
angle of the nematic director, i.e.:

dQxyðk; yÞ ¼ S0ðyÞyðk; y; tÞ;

¼ yðk; y; tÞ for y4 0
(B1)

and then we can write the resulting active flows to linear order
in fluctuations using eqn (A14). Using the aligned nematic as
the base state and consider the angle fluctuations, we have:

vai ðk; yÞ ¼ � ahðk; tÞ ikGixðk; yÞ � @yGiyðk; yÞ
� �

S0ð0Þ

þ a
ð1
0

dy0 ikGiyðk; y� y0Þ þ @yGixðk; y� y0Þ
� �

yðk; y0; tÞ:

(B2)

As we discuss in the main text, to get explicit dispersion
relation coupling the interface and nematic fluctuations, we
assume that the angular fluctuations are correlated over a
length c into the active phase i.e. y(k,y0,t) = y(k,t)e�y0/c. Using
these we can explicitly calculate the active flows, with the result

vaxðk; yÞ ¼ � aS0

2Zjkje
�jkyjð1� jkyjÞikhþ a‘

Z
e�y=‘ k2‘2 þ 1

k2‘2 � 1ð Þ2

"

� e�jkyjð1þ jkj‘Þ2ð1� jkjyþ k2‘yÞ
2 k2‘2 � 1ð Þ2

#
y;

(B3)

vayðk; yÞ ¼ � aS0

2Z
e�jkjyðjkjyÞhþ a‘2

Z
e�y=‘ k2‘2 þ 1

k2‘2 � 1ð Þ2

"

� e�jkyjð1þ jkj‘Þ2ð1� y=‘þ jkjyÞ
2 k2‘2 � 1ð Þ2

#
iky:

(B4)

From these active flows, we can then calculate the strain rate
and the vorticity.

By combining contributions from active and passive flows,
we can then obtain equations for the coupled dynamics of
height and order parameter. To obtain an equation for the
director angle fluctuations, we linearize the dynamics of Qxy B
sin(2y) and then multiply with a sharply peaked function g0(y),
integrating out the y-dependence. In the limit of a sharp inter-
face, when g0(y) B d(y), we obtain

qth(k,t) = vy|y-0, (B5)

@tyðk; tÞ ¼ lAxy

��
y!0

þOxy

��
y!0

�D k2 þ 1

‘2

� �
yðk; tÞ; (B6)

where the limit should be considered as the mean from both
sides of the interface i.e. x|y-0 = (x|y-0+ + x|y-0�)/2.

Inserting the expressions for active and passive flows com-
puted earlier, we finally obtain the following coupled equations

@th ¼ � s
4Z

jkjhþ a
2Z

‘2

ð1þ jkj‘Þ2iky; (B7)

@ty ¼ �sjkj
4Z

ikh� a
2Z

y
lþ1

2

k2‘2

ð1þjkj‘Þ2þ
l�1

2
1þ 1

ð1þjkj‘Þ2

� �� 	

�D k2þ 1

‘2

� �
y:

(B8)

For a thin nematic layer, kc { 1 (Fig. 7A) these reduce to,

@th ¼ � s
4Z

jkjhþ a‘2

2Z
iky; (B9)

@ty ¼ �sjkj
4Z

ikh� aðl� 1Þ
4Z

þ D

‘2

� �
y; (B10)

Conversely, in the limit c - N we recover eqn (25) and (26)
of the main text (Fig. 7C).

Appendix C: Isotropic liquid crystal

For the isotropic liquid crystal (r 4 0), the base state is Q0
ij = 0,

and then, using eqn (A14), the flows are simply given by:

vai ðk;yÞ ¼ a
ð1
0

dy0 ikGiyðk;y�y0Þþ@yGixðk;y�y0Þ
� �

dQxyðk;y0Þ

þa
ð1
0

dy0 ikGixðk;y�y0Þ�@yGiyðk;y�y0Þ
� �

dQxxðk;y0Þ:

(C1)

Here, dQij(y0) are the fluctuations in the isotropic state.
As before, from eqn (A9) we have the passive flows,

vfi = �sk2Giy(k,y)h(k,t) (C2)

This leads to the following strain rate (in the active phase,
y 4 0),

Af
xxðk; tÞ ¼ �sk2

4Z
jkjye�jkjyhðk; tÞ; (C3)
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Af
xyðk; tÞ ¼ �sk2

4Z
ikye�jkjyhðk; tÞ: (C4)

This informs our ansatz for the fluctuations in the
nematic order

dQxx(k,y,t) = |k|ye�|k|yqxx(k,t), (C5)

dQxy(k,y,t) = ikye�|k|yqxy(k,t). (C6)

The resulting active flows, using eqn (C1) are given by (in the
active phase, y 4 0)

vaxðyÞ ¼
a

24Zk
iky e�jkjy

� 3þ 6jkjy� 2k2y2
� �

qxx þ 3� 6jkjyþ 2k2y2
� �

qxy
� �

;

(C7)

vayðyÞ ¼ a
24Zjkje

�jkjy �3� 3jkjyþ 2k2jkjy3
� �

qxx
�

� 3þ 3jkjyþ 2k2jkjy3
� �

qxy
�
:

(C8)

From the flow, we can calculate the strain rate which can
then be integrated over y in the active phase,

Ð
dyAa

ijðk; yÞ, to
write the dynamics of the nematic order fluctuations

qth(k,t) = (vpy (k)|y-0 + vay(k)|y-0), (C9)

@tqxxðk; tÞ ¼ � 1

t
þ 2Dk2

� �
qxxðk; tÞ

þ ljkj
ð1
0

dy Af
xxðk; yÞ þ Aa

xxðk; yÞ
� �

; (C10)

@tqxyðk; tÞ ¼ � 1

t
þ 2Dk2

� �
qxyðk; tÞ

� ilk
ð1
0

dy Af
xyðk; yÞ þ Aa

xyðk; yÞ
� �

: (C11)

Using the active and passive flows calculated above, we get:

@th ¼ � sk2

4Zjkjh�
a

8Zjkjqxy �
a

8Zjkjqxx; (C12)

@tqxx ¼ � 1

t
þ al
8Z

þ 2Dk2
� �

qxx �
al
8Z

qxy �
slk2

4Z
h; (C13)

@tqxy ¼ � 1

t
þ 3al

8Z
þ 2Dk2

� �
qxy þ

al
8Z

qxx �
slk2

4Z
h: (C14)

Finally, a simple change of variables decouples one of
the above equations. We define c� = (qxx � qxy)/2 and obtain
eqn (33)–(35) of the main text

@t

h

cþ

c�

0
BBB@

1
CCCA ¼

�sk
4Z

� a
4Zk

0

�slk2

4Z
�al
4Z

� 1

t
� 2Dk2

al
4Z

0 0 �al
4Z

� 1

t
� 2Dk2

0
BBBBBBBBB@

1
CCCCCCCCCA

�

h

cþ

c�

0
BBB@

1
CCCA

(C15)
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