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Spatiotemporal patterns in multicellular systems are important to understanding tissue
dynamics, for instance, during embryonic development and disease. Here, we use a
multiphase field model to study numerically the behavior of a near-confluent monolayer
of deformable cells with intercellular friction. Varying friction and cell motility drives a
solid–liquid transition, and near the transition boundary, we find the emergence of local
nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular
friction contributes to the monolayer’s viscosity, which significantly increases the spatial
correlation in the flow and, concomitantly, the extent of nematic order. We also show
that local hexatic and nematic order are tightly coupled and propose a mechanical-
geometric model for the colocalization of +1/2 nematic defects and 5–7 disclination
pairs, which are the structural defects in the hexatic phase. Such topological defects
coincide with regions of high cell–cell overlap, suggesting that they may mediate
cellular extrusion from the monolayer, as found experimentally. Our results delineate a
mechanical basis for the recent observation of nematic and hexatic order in multicellular
collectives in experiments and simulations and pinpoint a generic pathway to couple
topological and physical effects in these systems.

intercellular friction | solid–liquid transition | nematic and hexatic order | topological defects |
cellular extrusion

The collective migration of cells within a biological tissue plays a fundamental role in
physiological and pathological processes such as embryogenesis (1), wound healing (2),
and cancer progression (3, 4). A long-standing challenge is to dissect the molecular
mechanisms driving such coordinated motion—from a biophysical standpoint, one aims
to understand how the mechanical properties of individual cells and the forces acting
upon them give rise to the emergent phenomena seen at the tissue scale (5).

Many biological processes, such as tissue development and cancer metastasis, involve
a change in cell collective dynamics between a solid-like and a liquid-like state, and have
been compared to rigidity and jamming transitions in other soft matter systems (6, 7).
Modeling has provided fruitful insight into the mechanisms driving these transitions
(8, 9). For instance, vertex (10), self-propelled Voronoi (11, 12), cellular Potts (13, 14),
and multiphase field models (15, 16) have successfully captured several defining features
of tissue jamming–unjamming, showing how cell shape, deformability, and cell–cell
adhesion are some of the key determinants of this transition.

Apart from the change in fluidity, another collective phenomenon of tissue monolayers
is the spontaneous emergence of orientational nematic order. This has been recently
observed in both experiments and simulations (17–25), where nematic order has been
measured in terms of the cell shape orientation. Yet, the physical mechanism underlying
the origin of cell alignment is still elusive. For example, it is unclear whether contractile
or extensile activity is required to create nematic order, nor has it been discussed how
robust the order is across the parameter space. The latter aspect is important as, for
instance, cells in epithelial tissue in the solid or glass phase are quite isotropic, so any
order is by necessity linked with relatively small shape fluctuations. Additionally, as these
systems also exhibit bond-orientational (hexatic) order (12, 14, 15, 25), it is important to
understand how nematic and hexatic order interact with each other, and how pervasive
the proposed combined “hexanematic” order (26, 27) is in practice.

In this work, we study the dynamics and phase behavior of a confluent monolayer of
deformable and motile cells with intercellular and cell–substrate friction. We observe a
solid–liquid transition that is accompanied by the emergence of both local hexatic and
nematic order. This orientational order is maximal close to the transition and is driven
by the onset of a cellular flow, which deforms and aligns cells within a range set by the
correlation length of the flow. Moreover, we find that the geometry of our deformable
cells creates a coupling between the hexatic and nematic order, such that defects in the
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hexatic order, corresponding to 5–7 disclination pairs, appear
preferentially close to +1/2 defects in the nematic order. These
defects correlate with regions of enhanced overlap between cells,
which provides a mechanism for the topological creation of
hotspots for cellular extrusion, as found experimentally (17)
and in simulations (15, 24). Our results therefore provide a
mechanical explanation for the emergence of nematic order in
cell monolayers and predict that the latter should be strongly
enhanced by intercellular friction. Our finding of an intimate
geometric coupling between the hexatic and nematic order
provides a mechanical underpinning for the proposal that cellular
monolayers can behave, under suitable conditions, as a hexane-
matic fluid (26, 27). They also raise the tantalizing possibility that
topology can play an important role in multicellular dynamics
and developmental biology.

Results

AMultiphase Field Model for Deformable Cell Monolayers with
Cell–Cell and Cell–Substrate Friction. We simulate N cells as
deformable droplets randomly initialized on a substrate (Fig. 1A).
Each cell is modeled by a phase field �i(r) (i = 1, . . . , N ), where
�i = 1 marks the cell’s interior and 0 its exterior. In line with
previous work (15, 16, 20, 23, 28, 29), the droplet’s shape is
controlled by a Landau–Ginzburg-like free energy (Materials and
Methods), which includes Cahn–Hilliard terms governing the
cell’s edge tension � and thickness �, a soft constraint on its
area (with radius R), and a repulsive term (strength � with units
[E ][L]−2) that minimizes cell overlaps. Each cell experiences a
passive force f pas

i due to the imposed free energy (30) and an
active self-propulsion force f pol

i (proportional to speed v0) as it
undergoes rotational diffusion with rate Dr . Importantly, these
forces are balanced by cell–cell friction f vis

i (strength � with
units [E ][T ][L]−2) due to the relative motion between cells and
cell–substrate friction f sub

i (strength Γ with units [E ][T ][L]−4;
see Fig. 1A and Materials and Methods for the expressions of
these forces). The droplets are evolved over time using advective-
relaxational dynamics, and the net effect of the forces on the
droplet enters the equations of motion through its advection
velocity vi.

The overall behavior of the model is tuned by three parameters.
First, there is the deformability of individual droplets, d ≡
��R/(12�R), where at lower d cells remain circular and prefer
to overlap rather than deform (15, 28, 29). Here, we set
d = 4.16 such that cells are highly compliant and do not
overlap significantly. Second, the cell’s motility is tuned by the
Péclet number Pe = �p/R, where �p = v0/Dr is the persistence
length of cell motion. Third, the relative strength of cell–cell to
cell–substrate friction gives a flow screening length �� =

√
�/Γ

(31–33) that quantifies the distance over which the motion of
a cell can influence that of another. Throughout this work,
we focus on varying �p and �� to observe their effect on the
monolayer dynamics; in particular, we fix cell–substrate friction
Γ and vary the strength of cell–cell friction �. We use a system of
N = 100 and, in selected cases, 400 cells—results for the latter
are shown in SI Appendix unless otherwise stated. We estimate the
physical values of the simulation parameters by mapping to data
on mammary epithelial MCF-10A cells (34, 35) (SI Appendix),
and we find comparable values for the persistence length of
motility and velocity correlations between simulations and
experiments.

A

B C

D

Fig. 1. Intercellular friction and motility drive a solid-liquid transition in a
multiphase field model. (A) A snapshot of the simulated monolayer (Left) with
an enlarged view of one of the cells showing the forces acting upon it (Right).
There are four types of forces: a passive force fpas

i due to the imposed free
energy, an active self-propulsion force fpol

i , cell–substrate friction fsub
i , and

cell–cell friction fvis
i . (B) Phase diagram showing the effective diffusivity Deff

of the system when varying cell motility �p and the flow screening length �� (in
units of the cell radius R). The transition line demarcating the solid and fluid
phases is interpolated based on the threshold Deff = 10−3. (C) Points where
��/R ≥ 0.6 collapse onto a master curve as a function of the ratio between
the persistence and flow screening lengths, � = �p/�� . (D) Representative cell
trajectories at three points of the phase diagram [corresponding to those
circled in (B and C)], indicating the transition from solid-like (caging) to fluid-
like (neighbor exchange) behavior.

Interplay of Friction and Cell Motility Drives a Solid–Liquid
Transition in the Monolayer. We first examine the role of cell
motility (�p) and of the two friction forces (��) on tissue
fluidity. To this end, we measure the mean square displacement
(MSD) of individual cells and compute an effective diffusivity
Deff = limt→∞MSD/(4D0t), whereD0 = v2

0/(2Dr) is the self-
diffusivity of an isolated active Brownian particle (15). Fig. 1B
displays a phase diagram of Deff and shows that, above a critical
�p, the monolayer undergoes a solid–liquid transition, where cells
move from being caged to exchanging neighbors (see Fig. 1D and
also SI Appendix, Fig. S2 for N = 400).

We construct the transition line using the threshold Deff =
10−3, which aligns well with changes in the structural order
between the two phases as presented below. The line shows that
as �� increases, or when cell–cell friction dominates over cell–
substrate friction, a higher �p is required for the monolayer to
melt. Notably, it becomes almost linear when �� ≥ 0.6, but is
strongly nonlinear below this point (Fig. 1B), suggesting there
are different mechanisms regulating the melting process. At high
�� , the linearity implies that the transition can be described by
a single dimensionless parameter � = �p/�� , which quantifies
the competition of two length scales—the persistence length of a
cell’s active propulsion and the correlation length of the motion
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A

D
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E

Fig. 2. The monolayer exhibits a regime with local hexatic order between a liquid and a glassy, amorphous solid phase. (A) Left: Measurements of the global
bond-orientational order Ψ6 superposed on the solid–liquid phase diagram shown in Fig. 1B. Right: Collapsing Ψ6 based on � onto a master curve for points
where �� ≥ 0.6. (B) Self-intermediate scattering function Fs(q, t) (with

∣∣q∣∣ = �/R) when varying � (i.e., vary �p at fixed �� = 1.0) for a system of N = 400 cells.
(C) Cell displacement map of a 400-cell monolayer at ��/R = 1.0 and �p/R = 0.6 over a period of time Dr t = 100, corresponding to the timescale when Fs(q, t)
decays to ∼1/2. Arrows indicate the directions of the cell displacements, with their length twice the magnitude of the actual displacements to aid visualization.
(D) Similar to (A), but showing the average fraction of cells with disclinations �d in the monolayer. (E) Representative snapshots of the system at parameter
points circled in the phase diagrams in (A and D), with cells colored by their number of nearest neighbors Nnn, determined by Voronoi tessellation. Here, fivefold
and sevenfold disclinations are marked in blue and orange, respectively.

between cells. Using this definition, points on the phase diagram,
at least when �� ≥ 0.6, all collapse onto a master curve, and the
melting takes place when � ∼ 1 (Fig. 1C and SI Appendix,
Fig. S2). Note that � fails to capture the transition accurately
when �� < 0.6. Here, the transition line flattens as �� → 0,
suggesting that there is a regime where melting is independent of
�� , and other mechanisms, such as cell deformability (15), may
have a larger effect in melting the system.

A Local Hexatic Regime Separates the Liquid and Glassy Solid
Phases. To characterize the structural order of the system, we
compute for each cell its bond-orientational order  6,j =

1
Nj,nn

∑
k∈nn e

i6�jk , where the sum is over the nearest neighbors
and �jk is the angle between the x-axis and the bond vector

linking cells j and k. The quantity Ψ6 =
〈∣∣∣ 1

N
∑N

j=1  6,j

∣∣∣〉 then
gives the global orientational order of the monolayer. As the
system solidifies, Ψ6 first increases to near unity, indicating high
order, before it surprisingly decreases to a low value deep in the
solid, indicating that the transition is distinct from conventional
two-dimensional (2D) melting where the hexatic phase is a
liquid (Fig. 2A and SI Appendix, Fig. S7B). The weakening of
Ψ6 deep in the solid regime can be attributed to the random
positioning of cells when initializing the monolayer and indicates
that the solid regime is a glass, as supported by the behavior of
the self-intermediate scattering function and the non-Gaussian
parameter, as well as maps of cell displacements (Fig. 2 B and C
and SI Appendix, Figs. S4 and S5). These maps show correlated
regions that extend over multiple cell widths and are bound
by regions of high strain, as commonly seen in experiments on
epithelia. The long relaxational timescale associated with glassy
dynamics means that the monolayer remains kinetically frozen in
its initial state and is unable to reach a crystalline configuration
with lower free energy. Indeed, by starting the simulations
with cells arranged on a triangular lattice, Ψ6 approaches unity
asymptotically as the system freezes (SI Appendix, Fig. S6B). In

line with this, the global translational order ΨT of the system
(SI Appendix) only changes significantly across the solid–liquid
transition when cells are initialized on a lattice (SI Appendix,
Figs. S3, S6C, and S7C ).

Since the spatial organization of structural defects, i.e., fivefold
and sevenfold disclinations, plays a prominent role in 2D
melting (14, 15, 36–40), we monitor their presence within our
model tissue by counting the number of nearest neighbors Nnn
of each cell (Fig. 2E and SI Appendix, Figs. S6A and S7A).
Consistent with Ψ6, the fraction of cells with disclinations �d
first decreases as the monolayer freezes but increases again further
within the solid regime (Fig. 2D and SI Appendix, Fig. S7D). We
find fivefold and sevenfold disclinations are bound in pairs in the
intermediate regime of local hexatic order and become unbound
in the liquid phase. Some isolated disclinations are seen in the
solid phase due to slow, glassy dynamics in relaxing from the
initial conditions. While the patterning of defects may appear
similar in the glassy solid and liquid phases, the dynamics is differ-
ent: In the solid regime, �d is static as disclinations are pinned to
the same cells, whereas in the liquid,�d fluctuates due to binding-
unbinding events (SI Appendix, Fig. S8 and Movies S1–S3).

Cellular Flow Promotes Cell Deformation and Local Nematic
Order. Another topological feature that has attracted lots of
interest in tissue sheets is the emergence of nematic order in cell
deformation, and the accompanying defects have been implicated
in various physiological and pathological processes (17, 21, 22,
41). While previous work (16, 17, 20, 23, 42) has mostly focused
on how active stresses, such as individual cell contractility, drive
nematic order, here we demonstrate an alternate mechanism
by showing that the interplay between intercellular friction and
motility can spontaneously give rise to local nematic alignment.
In line with recent studies (16, 20, 23, 28), we use the shape
tensor Si = −

∫
d2r (∇�i)(∇�i)T to determine the cell

deformation axis (i.e., the eigenvector corresponding to the largest
eigenvalue of Si) and define a local nematic order parameter
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A

B

C

Fig. 3. Cell–cell friction drives local nematic alignment of cells. (A) Left:
Measurements of the local nematic order parameter ΨL2 superposed on the
phase diagram shown in Fig. 1B. Right: Collapsing ΨL2 based on � onto a
master curve for points where �� ≥ 0.6. (B) Similar to (A), but for the local
characteristic length �d of domains in which cells exhibit coherent nematic
alignment. (C) Representative snapshots of the system at points circled in the
phase diagrams in (A and B), with cells colored by the angle � between their
deformation axis (the line within each cell) and the x-axis.

ΨL
2 =

〈∣∣∣ 1
N
∑N

j=1  2,j

∣∣∣〉, where  2,j = 1
Nj,nn

∑
k∈nn e

i2�djk and �djk
is the angle between the deformation axes of cells j and k. In this
way, a higher ΨL

2 signifies stronger nematic alignment between
neighboring cells’ deformation axes.

Remarkably, we find the monolayer exhibits an increase in
nematic order in the vicinity of the solid–liquid transition,
coinciding with the region of the phase space where there is large
hexatic order (Fig. 3A). This is visually apparent by coloring cells
according to their deformation direction, which shows locally
aligned domains (Fig. 3C and Movies S4–S6). To quantify
domain size, we measure the nematic order within a circle of
radius r, averaged across a set of grid points, and then extract a
characteristic length �d from the decay in the order as a function
of r (SI Appendix, Fig. S9). This shows that local alignment can
be up to four cell lengths (Fig. 3B). These results are largely
unaffected by the initial conditions and the system sizes (SI
Appendix, Figs. S10 and S11).

The emergence of local nematic alignment near the solid–
liquid transition can be rationalized by the following argument.
First, cellular flow can lead to both cell deformation and cell
alignment (43). In a coarse-grained model, the rate of change
of the deformation tensor should be proportional to the local
shear rate, which we can estimate as ∼ v0/�� , with v0 a typical
velocity scale. Dimensional analysis then suggests that the flow-
induced cell deformation and local nematic order should increase
as∼ v0/(��Dr) = � (SI Appendix, Fig. S12A). Importantly, this
local order can only persist up to the correlation length of the flow,

which is proportional to �� (SI Appendix, Fig. S12B); as a result,
the order decreases when the cell persistence length �p becomes
larger than �� (i.e., � > 1), as cells move away before aligning.
These two opposing effects on the local nematic order when
increasing � therefore argue that the order should be maximal
when � ∼ 1, in line with our simulation results.

Structural Disclinations Determine the Location of Nematic
Defects and Hotspots for Cellular Extrusion. We next explore
the organization of topological defects in the nematic texture,
within the region where ΨL

2 is large. To this end, we construct
a tensor field Q(r) =

∑N
i=1 Wi(r)Si(2ninTi − I ), where Si is

the degree of deformation of cell i, ni is its deformation axis,
and Wi(r) is an ellipsoidal smoothing function (SI Appendix).
Nematic defects are then identified by finding local minima in the
scalar component of Q and computing the topological charge.
As shown in Fig. 4, ±1/2 defects arise near the boundaries of
local nematic domains.

Recent studies (26, 27) have suggested that a tissue monolayer
can simultaneously exhibit both hexatic and nematic orienta-
tional order, consistent with our results presented above. Here, we
aim to establish the physical connection between the topological
defects associated with these two types of order—namely nematic
±1/2 defects and 5–7 disclination pairs, which correspond to
dislocations and are the structural defects in the hexatic phase.
We first investigate positional correlations between 5–7 pairs and
±1/2 nematic defect. Surprisingly, we find that +1/2 defects are
on average significantly closer to 5–7 pairs than −1/2 to these
pairs (Fig. 5 A and B). The latter are also further away from 5–7
pairs than from a randomly chosen cell within the monolayer.

To gain insight into the mechanisms that drive +1/2 defects
to form close to 5–7 pairs, we analyze the angular distribution
of the relative position of hexatic and nematic defects (Fig. 5 A
and C ). While −1/2 defects are isotropically depleted around
5–7 pairs, the angular distribution of +1/2 around 5–7 pairs
is anisotropic, with a marked fourfold symmetry (Fig. 5C ). A
separate analysis of fivefold and sevenfold disclinations shows that
they contribute complementary parts of the angular distribution
pattern (Fig. 5D). In particular, the deformation axis of a cell with
sevenfold disclination is typically perpendicular to the symmetric
axis of a +1/2 defect, whereas the deformation axis of a sevenfold
disclination is often parallel with it.

A B

Fig. 4. +1/2 and −1/2 defects emerge near boundaries of local nematic
domains. (A) A simulation snapshot showing the deformation axes of
individual cells, the coarse-grained director field derived from the Q tensor
(SI Appendix), and the nematic defects (red tadpoles for +1/2 and blue three-
edge stars for −1/2). (B) An enlarged view of the director field around a +1/2
and a −1/2 defect.
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A

B D F

C E

Fig. 5. Hexatic 5–7 disclination pairs are strongly correlated with nematic defects. (A) A simulation snapshot illustrating the radial and angular observables
(r, ) measured when relating a nematic defect (red tadpole) to its closest hexatic disclination (orange cell). Here, r is the distance between the two defects
and  is the angle that the cell deformation axis of the hexatic disclination makes with the vector connecting it to the nematic defect core. (B) Probability
density functions (PDFs) of the distance r between ±1/2 nematic defects and their closest hexatic disclination (fivefold or sevenfold), and between ±1/2 defects
and a randomly selected cell. (C) Polar heatmaps showing the joint PDFs of r and  for the relation between hexatic disclinations and (Left) +1/2 defects or
(Right) −1/2 defects. The PDFs are normalized by subtracting the PDF for the relation between a randomly selected cell and the corresponding defect type.
(D) Similar to (C), but focusing only on the relation between +1/2 defects and (Left) sevenfold or (Right) fivefold disclinations. (E) Schematics explaining how
the geometric layout of the comet-like +1/2 nematic defect favors colocalization with 5–7 pairs, whereas the −1/2 defect does not. (F ) PDFs of the degree of
pairwise cell overlap Oij =

∫
d2r �2

i �
2
j for a random pair of nearest-neighbor cells (gray curve) and a 5–7 pair (red curve). Results shown here are for the point

(��/R, �p/R) = (1.0,0.6).

Close inspection of simulation snapshots and movies suggests
that the difference in the hexatic structure close to +1/2 and
−1/2 defects can be explained geometrically (Fig. 5E and Movie
S7). The head–tail comet asymmetry of the +1/2 defect, and its
corresponding polar nature, is compatible with cell arrangements
that readily accommodate a 5–7 pair. In stark contrast, the
threefold symmetry of a −1/2 defect is better placed in a region
with regular hexagonal packing of cells without structural defects.

This geometric reasoning leads to the expectation that +1/2
defects should be associated with larger cell deformations. Pre-
vious experimental work (17) found that +1/2 defects tend to
colocalize with regions of high elastic stress and are candidate sites
for cellular extrusion from the monolayer. As cell deformation
likely correlates with elastic stress, our results suggest a mechanical
model for the selection of extrusion hotspots that is driven by the
presence of structural 5–7 dislocations, which are attracted by
+1/2 nematic defects. Accordingly, a quantitative analysis of
our multiphase patterns shows that 5–7 dislocations (and hence
+1/2 defects) are associated with increased cell–cell overlaps
(Fig. 5F ), which likely correlate with potential extrusion sites.
These results extend previous work showing that extrusion
correlates with the location of fivefold disclinations (15, 24),
providing a link between topological defects in hexatic and
nematic texture.

Discussions

In summary, we have used multiphase simulations to study the
dynamics and topological structure of a monolayer of motile
cells with intercellular friction. When the latter is sufficiently

large, a key dimensionless parameter for determining the physical
properties of the monolayer is the ratio � between the persistence
length—which measures the distance traveled by a cell in isolation
before rotational diffusion kicks in—and the flow screening
length—which measures the correlation length of cellular flow.
Increasing � triggers a solid–liquid transition (10, 13, 15), which
can be clearly identified by measuring the effective diffusion
coefficients of the cells.

An important outcome of our investigation is that an ori-
entationally ordered phase emerges close to the solid–liquid
transition. This phase has both local hexatic and nematic order—
the emergence of the latter is striking given the fact that cells are
nearly isotropic in isolation. The appearance of nematic order is
due to the onset of correlated cellular flow in the monolayer, as
shear forces deform the cells and align them locally (43), within
a length scale given by the screening length. We note that the
tissue viscosity associated with the cell–cell friction employed in
our model can partly come from cell–cell adhesion, and recent
experiments have indicated that adhesion plays an important
role in determining local hexatic and nematic order (27). The
necessity of both cellular flow and a finite flow correlation length
explains why nematic order also emerges naturally in monolayers
without intercellular friction but with active dipolar forces—
e.g., from the contractile actomyosin cortex. In this case, dipolar
activity and motility create flow, while activity and elasticity yield
a finite correlation length (44) that determines the size of nematic
domains.

Our finding of local orientational order near the solid–liquid
transition provides mechanical insight into the observation of
a local hexanematic phase in cell monolayers in experiments
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and simulations (26, 27). In particular, we find that geometry
leads to an intimate coupling between hexatic and nematic order
in the context of topological defects. The shape of cells near
comet-like +1/2 favors the presence of 5–7 pairs (i.e., structural
dislocations), which are the signature of hexatic order; as a result,
5–7 pairs appear near +1/2 defects. Previous work (45–47)
on passive liquid crystals has examined the possible phases
in systems with two types of orientational order coupled to
each other through suitable terms in a Landau free energy. It
would be interesting to ask whether the correlation between
nematic defects and 5–7 disclinations reported here can also be
understood as the result of an energetic coupling between hexatic
and nematic order, and would therefore similarly arise in passive
systems.

Finally, the regions with +1/2 defects and 5–7 pairs are
associated with both increased cell deformation and cell–cell
overlap. We therefore suggest that topological patterns provide
a mechanism to select these regions as potential sites for
cell extrusion from the monolayer, in agreement both with
experimental observations that +1/2 defects in monolayers are
extrusion hotspots (17) and with the prediction by simulations
that extrusion should occur near fivefold disclinations in the
hexatic order (15, 24). We hope our prediction of a geometric
coupling between nematic and hexatic defects will stimulate
further analysis of the interplay between topology and extrusion
in monolayers and model tissues.

Materials and Methods

Model Setup. We consider a 2D monolayer ofNdeformable cells, each modeled
by a phase field �i (i = 1, . . . , N) with periodic boundary conditions. These
cells form a monolayer that is nearly confluent, with a packing fraction of∼0.95.
Similarly to previous work (15, 28, 29), the system’s total free energy is given by

F =

N∑
i=1

[ ∫
d2r �

[
�2
i (�i − 1)2 + �2 (∇�i)

2
]

+ �A0

(
1−

∫
d2r

�2
i

A0

)2

+ �
N∑

i<j=1

∫
d2r �2

i �
2
j

]
. [1]

Here, the first two terms fix�i to be close to 1 within the cell and 0 otherwise, with
� controlling the cell’s interfacial thickness and � its edge tension � = ��/3.
The third term constrains the cell area to be near A0 = �R2, where R is
the ideal cell radius, and the last term enforces steric repulsion between cells
by penalizing overlap. Unless otherwise stated, cells are initially positioned
randomly as circular droplets with radius R, and the phase fields are evolved
over time using advective-relaxational dynamics

∂t�i + vi · ∇�i = −�i , [2]

where �i = �F/��i is a chemical potential and vi the advection velocity of a
cell.

We assume the dynamics to be overdamped and determine vi through a
force balance equation that includes four types of forces:

fpas
i + fpol

i + f sub
i + fvis

i = 0. [3]

Specifically, there is a passive force

fpas
i = −

N∑
j=1

∫
d2r �i�j∇�j [4]

as a result of the imposed free energy F . There is a self-propulsion force that
accounts for the cell’s motility,

fpol
i = Γv0

∫
d2r �iP(r) , [5]

where Γ is a damping constant due to the substrate and P(r) =

Φ−1 ∑N
j=1 �jpj is the tissue polarization (48). Here, Φ =

∑N
k=1 �k and

pj = (cos �j, sin �j) is the cell’s propulsion direction, which is assumed to
undergo rotational diffusion with rate Dr [i.e., d�j =

√
2Dr dWj(t), where Wj

is a Wiener process]. Finally, there are two types of friction force: one between
the monolayer and the substrate, characterized by

f sub
i = −Γ

∫
d2r �iV(r) , [6]

with V(r) = Φ−1 ∑N
j=1 �jvj the tissue velocity field (48), and another one

between the cells, expressed as

fvis
i = �

N∑
j=1

∫
d2r I(�i,�j) ·

[
V(r)− vj

]
, [7]

where

I��(�i,�j) =
1
Φ

[
(∂
�i)(∂
�j)��� + (∂��i)(∂��j)

]
[8]

is a tensor related to the degree of interfacial overlap between cells i and j (i.e.,
cells only experience friction when they are close to each other). This expression
for the cell–cell friction can be derived by considering the tissue as a viscous,
compressible medium that can swell with fluid intake (hence the appearance
of both bulk and shear terms in I) (48). One can show that, in the limit where
three-field overlaps are rare, this form of friction can be approximated as a
sum of pairwise friction proportional to vi − vj. To gain some intuition of this
friction force, in SI Appendix, Fig. S1 we show how varying it affects vi during
the head-on collision between two cells. A full list of the parameter values used
in this work and the numerical procedure for solving for vi and�i are provided
in SI Appendix.

Data, Materials, and Software Availability. Simulation code and data for
the figures have been deposited in Edinburgh DataShare (https://doi.org/10.
7488/ds/7799) (49).
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