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A B S T R A C T   

In this article, we formulate a nonequilibrium thermodynamic theory for case II diffusion in a 
glassy polymer. In the model, we integrate the three-dimensional elasto-visco-plasticity of a 
glassy polymer, the Flory-Rehner theory for polymer network swelling, and the kinetics law for 
solvent migration with the concentration-dependent diffusivity. Our theory is given in a general 
3D tensorial form, which, therefore, can be used to model case II diffusion in glassy polymers with 
arbitrary geometries and under different mechano-chemical loading conditions. An intrinsic 
length determined by the combination of the polymer viscosity and solvent diffusivity arises from 
the theory, which dictates the size-dependent case II diffusion in glassy polymers. The theory 
developed in the article may provide important guidance for designing semi-permeable mem
branes, waterproof coating, and drug-delivery systems, where case II diffusion can commonly 
occur.   

1. Introduction 

Solvent diffusion in glassy polymers can be commonly seen in many practical applications, such as semipermeable membranes 
(Baker and Lokhandwala, 2008; Baker and Low, 2014), waterproof coating (Zhao et al., 2019; Zou et al., 2021) and drug delivery 
systems (Colombo et al., 2000), as shown in Fig. 1. Depending on the interaction between the solvent molecules and the polymer 
chains, the diffusion can be categorized as Fickian diffusion and non-Fickian diffusion (Ercken et al., 1996; Hajova et al., 2013). In 
contrast to Fickian diffusion, non-Fickian diffusion in glassy polymers often exhibits a sharp diffusion front, and the amount of solvent 
adsorbed by the glassy polymer increases linearly with time (Thomas and Windle, 1982). This type of diffusion is also often classified as 
case II diffusion, which usually occurs when the solvent behaves like a plasticizer for the glassy polymer (Nealey et al., 1995; Zhou 
et al., 2001). 

In the past, a series of experiments have been conducted on case II diffusion in glassy polymers. The examples of case II diffusion 
systems include Polymethyl methacrylate (PMMA) with methanol (Ercken et al., 1996; Hui et al., 1987a, b; More et al., 1992; Nixdorf 
et al., 2019; Thomas and Windle, 1978), Polystyrene (PS) with alkane (Nealey et al., 1995; P. Gall et al., 1990; Zhou et al., 2001) and 
Polyvinyl chloride (PVC) with acetone (Perry et al., 1994). Experimental studies have revealed that the sharp diffusion front observed 
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Nomenclature 

C Concentration of solvent 
D Diffusion coefficient 
D0 Prefactor of D 
DA,p

jm Rate of the plastic shape change of element “A” 
De Deborah number 
F, FiK Deformation gradient 
FA

iK Deformation gradients of element “A” 
FA, p

iK Plastic component of FA
iK 

FA,e
iK Elastic component of FA

iK 
FB

iK Deformation gradient of element “B” 
HiK = 1

det(F)

∂det(F)

∂Fik 

J = det(F), volume change 
JA,p = det(FA,p)

JA = det(FA)

j̇p Plastic volume expansion rate 
Lc Critical length at which the characteristic diffusion time is comparable to the characteristic relaxation time of plastic 

flow 
Lmax

c Maximum critical length of Lc 

m Material property 
M = mn, material property 
Ms Number of solvent molecules 
n Exponential factor 
NA,p

ij Direction tensor of element “A” 
pA Hydrostatic pressure of element “A” 
s Athermal shear strength of the gel 
s0 Athermal shear strength of the dry glassy polymer 
sA
ij Deviatoric stress tensor of element “A” 

siK First Piola-Kirchhoff stress 
W Free energy density of the gel 
Wmix Free energy density due to the mixing of the polymer chains and the solvent 
Wstretch Free energy density due to the stretching of the network 
γ̇ Equivalent plastic shear strain rate for the primary relaxation process 
γ̇0 Prefactor of γ̇ 
ζα, ζβ Internal variables 
η0 Bulk viscosity of the dry glassy polymer 
Θ Characteristic diffusion time 
Λ Characteristic relaxation time 
λeq Stretch of fully swollen polymer in the equilibrium state 
λp

i0 Initial plastic stretch along xi 

μ Chemical potential of solvent in the polymer 
μ0 Chemical potential of unmixed pure solvent 
μA Shear modulus of element “A” 
μB Shear modulus of element “B” 
μdry Chemical potential of the dry polymer 
σA

ij Stress component of element “A” 
σB

ij Stress component of element “B” 
σij Cauchy (true) stress 
Π Stress component due to the mixing of the polymer chains and the solvent 
τA Equivalent shear stress of element “A” 
ϕ Volumetric fraction of solvent 
χ Flory interaction parameter 
Ω Volume per solvent molecule 
(⋅) Time derivative  
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in case II diffusion in a glassy polymer can be ascribed to the decrease of the glass-transition temperature of the polymer after swelling 
(Ercken et al., 1996). When a glassy polymer sphere is submerged into solvent, a core-shell structure can form, with a swollen rubbery 
outer shell and a dry glassy inner core (Foreman and Vollmer, 2015; Li and Lee, 2006). It has also been acknowledged that the interplay 
between the viscoelasticity of the polymer network and solvent migration dynamics within the polymer network determines the main 
features of case II diffusion (Argon et al., 1999; Thomas and Windle, 1982). 

To understand the formation of the sharp diffusion front and other characteristics in case II diffusion, tremendous modeling efforts 
have been made. Thomas and Windle (1982) were among the first to model the formation of the sharp diffusion front during case II 
diffusion by assuming the viscosity of a glassy polymer decreases with the increase of the solvent concentration. Building upon their 
work, Hui et al. (1987a, b) obtained an asymptotic solution describing transient state and steady state of case II diffusion, with 
considering the effect of the osmosis. Hui et al. (1987b) also pointed out that the assumption of a linear rheological behavior of glassy 
polymers adopted in their model may be oversimplified. Thereafter, Argon et al. (1999) considered a more realistic rheological model 
for visco-plastic flow of glassy polymers and developed a mechanistic model that accounts for the coupled diffusion and 
elasto-visco-plastic deformation rates associated with the self-similar propagation front. However, most of the previous models were 
developed specifically for certain geometries (e.g., thin film, half space), and typically assumed that the polymers were either stress 
free or subjected to simple mechanical constraints. Though these models have successfully explained some features of case II diffusion 
in glassy polymers, additional efforts are required to formulate a more general model for case II diffusion in glassy polymers with 
arbitrary geometries and subjected to complex loading conditions. Moreover, recent experiments have shown that case II diffusion in a 
glassy polymer is size-dependent. For instance, at room temperature, the moving velocity of the diffusion front for the system of 
n-hexane in PS increases from 0.036 μm/hr to 1.33 μm/hr as the thickness of the polymer film decreases from 20 μm to 158 nm (Ogieglo 
et al., 2013; P. Gall et al., 1990). Similarly, faster moving velocity of the diffusion front of methanol have been observed in smaller 
PMMA beads (Li and Lee, 2006). However, the size-dependent effects observed in case II diffusion remains unexplained (Li and Lee, 
2006). 

In this article, we aim to formulate a general 3D model for case II diffusion in glassy polymers. We incorporate the nonequilibrium 
thermodynamics of solvent diffusion, the Flory-Rehner theory for polymer network swelling and the three-dimensional elasto-visco- 
plastic model of the glassy polymer. The theory is generally applicable for modeling case II diffusion of solvent in glassy polymers with 
arbitrary shapes and subjected to any loading conditions. Herein, we also compare our theoretical predictions with different exper
iments to demonstrate the validity of the model. The outline of this article is as follows. The governing differential equations for case II 
diffusion are presented in Section 2. Section 3 applies the model to study case II diffusion in a laterally constrained thin film. Section 4 
applies the model to study case II diffusion in a polymer sphere. Section 5 discusses size effects in case II diffusion based on the simple 
scaling analysis. Finally, Section 6 provides a conclusion. 

Fig. 1. (a) Schematic of case II diffusion in the glassy polymer. After swelling, the polymer becomes rubbery, and as a result, its modulus 
dramatically decreases. (b) The application of case II diffusion in drug delivery systems. 
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2. Theory 

In this section, we develop a nonequilibrium thermodynamics model for non-Fickian diffusion of solvent in a glassy polymer which 
is also subjected to mechanical loadings. As shown in Fig. 2, a polymer (in the glassy state when it is dry), the external forces, and the 
solvent-containing environment together form a composite thermodynamic system. The system exchanges energy with the rest of the 
world by heat, but not by work; and it does not exchange matter with the rest of the world. 

2.1. Constitutive model of a glassy polymer containing solvent 

Fig. 2a illustrates a block of a dry glassy polymer with volume denoted by V. When the dry polymer is subjected to mechanical 
forces and in contact with a solvent, the polymer can deform and imbibe solvent (Fig. 2b). In an isothermal condition, the second law of 
thermodynamics requires that: 

δW ≤ siKδFiK + (μ − μ0)δC, (1)  

where W is the free energy density of the gel (the polymer mixed with solvent molecules), which depends on the deformation gradient 
FiK, the concentration of solvent C, and other internal variables as 

W = W
(
FiK ,C, ζα, ζβ, ...

)
(2)  

and C = Ms
V with Ms being the number of solvent molecules, μ0 is the chemical potential of unmixed pure solvent, μ is the chemical 

potential of solvent in the polymer, FiK is the deformation gradient, siK is the first Piola-Kirchhoff stress, and ζα and ζβ are the internal 
variables describing the kinetic and dissipation processes inside the polymer. We will specify these internal variables later. Combining 
Eq. (1) and Eq. (2), we obtain the following inequality: 

∂W
∂FiK

δFiK +
∂W
∂C

δC +
∑

α

∂W
∂ζα

δζα − siKδFiK − (μ − μ0)δC ≤ 0. (3) 

We adopt molecular incompressibility assumption, so the change of volume between the current state and the reference state is the 
volume of the absorbed solvent, i.e. 

ΩC = det(F) − 1, (4)  

where Ω is the volume per solvent molecule. 
Following the Coleman–Noll procedure in continuum mechanics, we require Eq. (3) to be satisfied independently for all 

conceivable physical processes (Gurtin et al., 2012), which results in the local mechanical equilibrium and chemical equilibrium 
(Hong et al., 2009): 

siK =
∂W
∂FiK

−
μ − μ0

Ω
∂det(F)

∂FiK
, (5) 

Fig. 2. (a) In the reference state, a dry polymer in the glassy state contains no solvent and is subject to no applied forces. (b) In the current state, the 
network is in equilibrium with applied forces, and with a solvent-containing environment of a fixed chemical potential of pure solvent and a fixed 
temperature. 
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and the nonequilibrium processes described by the internal variables: 

∑

α

∂W
∂ζα

ζ̇α ≤ 0, (6)  

where ζ̇α denotes the rate of internal variable ζα. In Eq. (5), we have ∂det(F)

∂Fik
= HiKdet(F) = 1

2eijkeKLMFjLFkM. 
The Cauchy (true) stress σij is given as 

σij =
siKFjK

det(F)
. (7) 

Combined with Eq. (5), Eq. (7) is written as 

σij +
μ − μ0

Ω
δij =

∂W
(
FiK ,C, ζα, ζβ, ...

)

∂FiK

FjK

det(F)
. (8) 

Following the Flory-Rehner theory (Flory and Rehner, 1943), we write the free energy of the polymer containing solvent as 

W = Wstretch + Wmix (9)  

where Wmix is the free energy density due to the mixing of the polymer chains and the solvent and Wstretch is the free energy density due 
to the stretching of the network. 

The Helmholtz free energy of mixing is taken to be the form given by Flory (Flory, 1942) 

Wmix(C) = −
kT
Ω

[

ΩCln
(

1 +
1

ΩC

)

+
χ

1 + ΩC

]

, (10)  

where χ is the Flory interaction parameter. 
The resistance to the deformation inside the polymer has two mechanisms: intermolecular resistance to chain-segment movement 

(elastic spring and viscoplastic dashpot, element “A” in Fig. 3), and entropic resistance to chain stretching (Langevin spring, element 
“B” in Fig. 3). To the first-order approximation, the proposed model only considers the relaxation process of element “A”. As shown in 
Fig. 3, the parallel deformation gradients are the same: 

FB
iK = FA

iK = FiK . (11) 

We can further decompose the deformation gradient FA
iK of element “A” into an elastic component FA,e

iK and a plastic component FA,p
iK 

(Lee, 1969), 

FA
iK = FA,e

iJ FA, p
jK . (12) 

The plastic volume change in element “A” is JA,p = det(FA,p). It is noted that for a glassy polymer only subjected to mechanical 
stresses, the volume change associated with its plastic deformation is usually assumed to be negligible (Mulliken and Boyce, 2006). 
Nevertheless, for case II diffusion, solvent diffusion can cause the significant volume change of the polymer. 

The stretching of the network causes a reduction in the entropy of the network. The Helmholtz free energy due to the stretching of 
the network is taken to be (Flory, 1953) 

Wstretch =
1
2
μB[FiKFiK − 3 − 2ln(J)] +

1
2
μA

[
(
FA,e

iK FA,e
iK

)
− 3 − 2ln

(
JA

JA,p

)]

, (13)  

where μB is the shear modulus of element “B”, μA is the shear modulus of element “A”, and the elastic deformation of element “A” can 
be obtained from Eq. (12) as: 

FA,e
iK = FA

iJFA,p− 1
jK . (14) 

A combination of Eqs. (8–13) gives 

Fig. 3. Schematic of viscoelastic model (glassy polymer): element “A” represents glassy behavior, and element “B” represents rubbery behavior.  
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σij +
μ − μ0

Ω
δij = σB

ij + σA
ij + Πδij, (15)  

where the stress components are: 

σB
ij =

μB

J
(
FiKFjK − δij

)
, (16)  

σA
ij =

μA

J
(
FA

iMFA,p− 1
mL FA,p− 1

lK FjK − δij
)
, (17)  

and 

Π =
kT
Ω

[

ln
(

1 −
1
J

)

+
1
J

+
χ
J2

]

, (18)  

in which J = det(F) is the volume change, and HiKFjK = δij. 

2.2. Rate-dependent elasto-plasticity of a solvent-containing glassy polymer 

The finite strain elasto-visco-plastic model of a solvent-containing glassy polymer adopted in the current study closely follows what 
presented by Bergstrom and Boyce (Bergstrom, 1998; Bergström and Boyce, 2000), and Boyce et al. (Boyce et al., 2001, 2000). It is 
noted that our elasto-visco-plastic model for glassy polymers only considers the primary relaxation process in the following derivation. 
The rate of plastic deformation of element “A” is given as 

ḞA,p
iK = FA,e− 1

iJ DA,p
jm FA,e

mL FA,p
lK (19)  

with the rate of the plastic shape change containing both the deviatoric and volumetric components: 

DA,p
ij = γ̇NA,p

ij + j̇pδij, (20)  

where 

γ̇ = f
(
τA, pA)

(21)  

is an equivalent plastic shear strain rate for the relaxation process, 

j̇p = g
(
pA)

(22)  

is the plastic volume expansion rate, and 

NA,p
ij = sA

ij

/
τA (23)  

is the direction tensor which is taken to be coaxial with the deviatoric stresses acting on intermolecular network (element “A”). In Eqs. 
(21–23), 

pA =
1
3

σA
kk (24)  

is the hydrostatic pressure, and 

τA =

̅̅̅̅̅̅̅̅̅̅̅
1
2

sA
ij sA

ij

√

(25)  

is the equivalent shear stress, where 

sA
ij = σA

ij − pA (26)  

is the deviatoric stress tensor. 
We consider the deviatoric plastic strain rate of the glassy polymer to be given by a power-law (Argon et al., 1999; Loeffel and 

Anand, 2011) 

γ̇ = γ̇0

(
τA

s

)n

, (27)  

where γ̇0=γ̇0
0exp

(
− ΔG

kT
)

with γ̇0
0 being the pre-exponential factor, ΔG being the activation energy and T being the temperature, n is the 

exponential factor, and s is the athermal shear strength. 
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For case II diffusion, the solvent often behaves like a plasticizer (Nealey et al., 1995; Zhou et al., 2001) for the glassy polymer. 
Therefore, the athermal plastic resistance (s) can be significantly lowered by the absorbed diluent as it reduces the intermolecular 
interactions. Often this reduction is taken to be of exponential form as (Argon et al., 1999; Thomas and Windle, 1982) 

s = s0exp(− mϕ), (28)  

where ϕ = ΩC
1+ΩC is the volumetric fraction of the solvent and s0 is the athermal shear strength of the dry glassy polymer. Thus, the 

deviatoric plastic strain rate in the swollen polymer is written as 

γ̇ = γ̇0

(
τA

s0

)n

exp(Mϕ), (29)  

where M = mn. Similarly, the equivalent plastic volumetric strain rate can be given as 

j̇p =
pA

η0
exp(Mϕ), (30)  

where η0 is the bulk viscosity of the dry glassy polymer, which describes the viscous resistance to the rate of volume change. 

2.3. Solvent diffusion in the polymer 

When the solvent diffuses in a glassy polymer, we adopt a linear kinetics law between the volumetric flux of solvent ( j
→

Ω) and the 
chemical potential gradient as 

j→ = −
CD
kT

∇
→μ, (31)  

where D is the diffusion coefficient. It is reasonable to assume the diffusion coefficient to be dependent on volume fraction of solvent in 
the polymer: the higher volume fraction of solvent, the larger of the diffusion coefficient is. We simply adopt the Kozeny-Carman 
equation (Chapuis and Aubertin, 2003) for describing the diffusivity of porous media to assume that 

D = D0ϕ2, (32)  

where D0 is the prefactor. 

2.4. Material parameters 

In the past, polystyrene (PS) with n-hexane and polymethyl methacrylate (PMMA) with methanol were the two systems which have 
been most intensively studied in the context of case II diffusion. The parameters of PS-hexane system and PMMA-methanol system used 
for the modeling are summarized in Table 1. It is noted that each material parameter listed in Table 1 is usually obtained from a single 
study, and the measurements of those parameters are based on specific models and assumptions adopted in those studies. To improve 

Table 1 
Parameters in the calculation of case II diffusion in the PS-hexane system (thin film) and the PMMA-methanol system (core-shell structure).  

Parameter notation Values Notes 

Glassy modulus μA 1 GPa This number is taken from the reference (Argon et al., 1999). In the reference, it is the glassy 
modulus for PS. We use the same number for PMMA in this paper. 

Rubbery modulus μB 1 MPa This number is estimated based on experimental data of PMMA from the reference (Mulliken and 
Boyce, 2006). This number is also used for PS in the current study. 

Athermal shear 
strength 

s0 238 MPa This number is taken from the reference (Argon et al., 1999). In the reference, it is the athermal 
shear strength for PS. We use the same number for PMMA in this paper. 

Flory’s interaction 
parameter 

χ 1.3 This number comes from the PS-pentane system in the reference (Hajova et al., 2013). We use the 
same number for PS-hexane and PMMA-methanol systems. 

Exponential factor n 9 In the reference (Argon et al., 1999), the value of n is in a range between 7.3 and 8.8 for PS. In our 
current study, we use the same number for PS and PMMA as n = 9. 

Material property M 100 (PS) 
90 (PMMA) 

M = mn. For PS, the material constant m is in a range between 10 and 20 (Thomas and 
Windle,1981). Therefore, M in a range between 90 and 180 for PS. We use M = 100 for PS-hexane 
system and M = 90 for PMMA-methanol system in this paper. 

Bulk viscosity η0 1014Pa ⋅ s This number is taken from the reference (Chang et al., 2021). In the reference, it is the bulk 
viscosity for PS. We use the same number for PMMA system in this paper. 

Prefactor γ̇0 1012 s− 1 This prefactor is estimated based on the strain rate pre-factor of PS in the reference (Argon et al., 
1999). This number is also used for PMMA system in current study. 

Prefactor of diffusion 
coefficient 

D0 3 × 10− 15 m2/s (PS) 
3 × 10− 11 m2/s 
(PMMA) 

The pre-factor of diffusion coefficient is estimated based on the reference (Argon et al., 1999;  
Ercken et al., 1996). More details are given in Section 2.4.  
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the agreement between theoretical predictions from the current study and experimental measurements, we have made slight ad
justments for some parameters. The polymer in the dry state has extremely low solvent concentration, and we assume that the chemical 
potential of solvent in the initially dry polymer is μdry − μ0 = − 5.23 × 10− 20J. 

The prefactors of the diffusion coefficients of PS-hexane and PMMA-methanol systems at room temperature are obtained based on 
the following estimation. The diffusion coefficient of C6H13I in PS at ϕ = 0.14 is known to be 1 × 10− 17m2/s (Argon et al., 1999), 
which implies a prefactor value of D0 = 5.2 × 10− 16m2/s according to Eq. (32). To account for the lower molecular weight of hexane 
(C6H14) compared to C6H13I, we use a prefactor value of D0 = 3 × 10− 15m2/s for C6H14 in PS, which gives the best agreement with 
experimental data as shown later. Similarly, the diffusion coefficients of methanol in PMMA were found to be 3.7 × 10− 11m2/s at 38.
5∘C and 4.5 × 10− 11m2/s at 40.5∘C (Ercken et al., 1996). Based on the Arrhenius relation, we estimate the prefactor D0 to be 1.1 ×

10− 10m2/s at 23∘C with ϕ = 0.25. To match the experimental results, we make an adjustment that D0 = 3 × 10− 11m2/s for the 
PMMA-methanol system in the modeling. 

3. Case II diffusion in a biaxially constrained thin film 

3.1. The governing equations 

In Section 2, we have formulated a nonequilibrium thermodynamic model to study non-Fickian diffusion of solvent in the glassy 
polymer. In this section and next one, we study case II diffusion process in a polymer thin film and a polymer sphere. When a glassy 
polymer thin film is submerged into a solvent-containing environment (Fig. 4a), the solvent molecules mainly diffuse along the 
thickness direction (x3 in the Fig. 4a) in the film. For a laterally constrained thin film, we have 

λ1 = λ2 = 1, (33)  

and 

σ3 = 0. (34) 

Using the Eqs. (33–34) and Eq. (15), we can obtain 

μB

λ3

(
λ2

3 − 1
)

+
μA

λ3

(
λ2

3(λp
3)

− 2
− 1

)
+

kT
Ω

[

ln
(

1 −
1
λ3

)

+
1
λ3

+
χ
λ2

3

]

−
μ − μ0

Ω
= 0. (35) 

The stresses of element “A” in Eq. (17) are written as 

σA
3 =

μA

λ3

(
λ2

3(λp
3)

− 2
− 1

)
(36)  

σA
1 = σA

2 =
μA

λ3

(
(λp

1)
− 2

− 1
)
. (37) 

The hydraulic pressure pA, the equivalent shear stress τA, and the deviatoric stress sA
i are given by Eqs. (24–26) respectively. We 

obtain the rates of plastic stretch λ̇p
i from Eqs. (19–27) as 

Fig. 4. (a) Schematic of case II diffusion in a glassy polymer film subject to biaxial constraint. (b) n-hexane penetrates into a PS film with a thickness 
of 158 nm. The inserted figure illustrates the overlaying of the profiles of solvent centration in the transition zone at different times. The volume 
change profile is captured every minute along thickness from 1 min to 10 min. The width of the transition zone is 41 nm which is comparable to the 
experiment result (Ogieglo et al., 2013). 
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λ̇
p
i = λp

i

[

γ̇0

(
τA

s0

)nsA
i

τA +
pA

3η0

]

exp(Mϕ), (38)  

with i = 1,2,3. The linear kinetics law described by Eq. (31) is rewritten as 

j3 = −

(
CD
kT

)
∂μ
∂X3

(39)  

with the volume change 

ΩC = λ3 − 1. (40) 

Meanwhile, the mass conservation is given by: 

∂C(X3, t)
∂t

+
∂j3

∂X3
= 0. (41)  

3.2. Results and discussions 

We use the finite difference method to solve the series of partial differential equations derived above for the seven functions: μ(X3,

t), C(X3,t), λ3(X3,t), λp
1(X3,t), λp

3(X3,t), λ̇
p
1(X3,t), and λ̇p

3(X3,t). The boundary conditions entail that the stretch λ3(0,t) = λeq, the chemical 
potential μ(0, t) = μ0 and the solvent concentration C(0, t) = C0, where ΩC0 = λeq − 1 with λeq being satisfied with 

μB

λeq

(
λ2

eq − 1
)

+
kT
Ω

[

ln
(

1 −
1

λeq

)

+
1

λeq
+

χ
λ2

eq

]

= 0, (42)  

based on Eq. (35). 
The initial conditions specify the plastic stretches λp

10 = λp
20 = λp

30 = 1, the chemical potential μ(X3, 0) = μdry, and solvent con
centration C(X3,0) = 0 (because the initial chemical potential of the solvent is very small). 

The detailed computation steps are given as follows. First, for a given chemical potential profile μ(X3, t), we compute the solvent 

Fig. 5. (a) Thickness of the swollen and dry layers of a 158 nm PS film during the hexane sorption. (b) The total thickness of a 158 nm PS film 
during hexane sorption. The red dash line is the average value of experimental data, the red shadow is the range of experimental data, and the black 
solid line is the theoretical prediction. (c) The distance of diffusion front as a function of time. In (a) and (b), the solid lines are theoretical pre
dictions; the dot-dash lines are experimental results from the reference (Ogieglo et al., 2013). 
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concentration C(X3, t) using Eq. (39) and Eq. (41), and then determine the stretch λ3(X3, t) from the solvent concentration C(X3, t) using 
Eq. (40). With the value of λ3(X3,t), we can calculate the plastic stretch rate λ̇p

i (X3, t) using Eq. (38) and Eqs. (24–26), and subsequently 
obtain the plastic stretch λp

i (X3, t) using 

λp
i = λp

i0 +

∫t

0

λ̇
p
i dt, (43)  

in which λp
i0 is the initial plastic stretch along xi. Finally, we update the chemical potential μ(X3, t) for next time increment by 

employing Eq. (35). We repeat the above computation steps to obtain the full numerical solutions. In the numerical simulation of the 
solvent diffusion into PS, we use the parameters from Table 1. Herein, we simulate the solvent (i.e., n-hexane) penetrating into PS films 
with two different thicknesses (158 nm and 20 μm) which have been studied in the previous experiments (Ogieglo et al., 2013; P. Gall 
et al., 1990). And we compare our simulation results with the experimental measurements. 

First, we study the evolution of the polymer swelling in a PS film with the thickness of 158 nm. Fig. 4b shows the solvent con
centration (or the volume change) in the polymer film at different times. It is obvious that the solvent concentration profile in the 
polymer film is drastically different from what is expected from a Fickian diffusion system. In particular, a sharp transition zone 
connecting a dry polymer regime and nearly fully swollen regime exists in the film, which has also been frequently observed in the 
experiments of case II diffusion. Though the precise profile of the solvent concentration in the transition zone is very challenging to 
measure in the experiment, our model predicts that the transition zone width is around 40 nm, which is consistent with experimental 
results (Ogieglo et al., 2013). The tip of the transition zone is defined as the diffusion front as shown in Fig. 4b. Following the previous 
study (Hui et al., 1987b), we can define a steady state of case II diffusion in the glassy polymer when the penetrant’s concentration 
profile of the transition zone is highly self-similar with respect to an observer moving with the front, as shown in the inserted figure of 
Fig. 4b. Based on our calculation, case II diffusion reaches a steady state when the diffusion time is between 0.3 min and 7.2 min for a 

Fig. 6. The total stretches λ1 (or λ2) (a) and λ3 (b), the plastic stretches λ p
1 (or λp

2) (a) and λp
3 (b), and (c) the stresses in element “A”: σA

1 (or σA
2 ) and 

σA
3 , in PS film with a thickness of 158 nm at t = 3 min. 
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PS film with the thickness of 158 nm. 
Moreover, we calculate the thicknesses of the dry region and the swollen region in the polymer film as a function of time as shown 

in Fig. 5a. The time required for the diffusion front to reach the constraint substrate across the 158 nm film is about 7.2 min, and this 
corresponds to an average moving velocity of the front of 1.32 μm/hr, which is consistent with the experimental measurement of 
1.29 μm/hr (Ogieglo et al., 2013). The quantitative difference between the theoretical predictions and the experiments is noticeable. 
There are several possible reasons for the discrepancy. The primary reasons for such difference include the simplifications of the 
current theoretical model and experimental inaccuracies. As a matter for fact, the experiment studies (Ogieglo et al., 2013) have 
provided the uncertainties of the thickness measurement of the PS film during hexane sorption. Fig. 5b plots the thickness of the entire 
PS film during hexane sorption and compares theoretical predictions and experiments. Our theorical predictions still fall within the 
range of experimental data. We plot the moving distance of the diffusion front in Fig. 5c, and our simulation shows that the velocity of 
the diffusion front in the steady state is nearly constant, which also agrees with the observation in the same experiment (Ogieglo et al., 
2013). Fig. 5c also demonstrates that the velocity of diffusion front is faster initially, which has also been reported in case II diffusion in 
the glassy polymer (PMMA-methanol system) (Nixdorf et al., 2019). 

Fig. 6 plots the total stretches (λ1, λ2 and λ3), the plastic stretches (λ p
1, λ p

2 and λ p
3), and the stresses in element “A” at t = 3 min, 

corresponding to the orange curve in Fig. 4b. Due to the symmetry, the stretches and stresses along x1 are the same as those along x2. 
Within the sharp transition zone, the plastic stretch λp

3 along x3 is smaller than the total stretch λ3, and λp
1 is smaller than 1. As the plastic 

stretches (λp
1 and λp

3) in the transition zone is smaller than the total stretch (λ1 and λ3), and according to Eqs. (36-37), the elastic stresses 
in element “A” along x1 and x3 directions are tensile in the transition zone, as shown in Fig. 6c. Based on Eq. (38), the elastic stresses in 
element “A” directly determine the rates of plastic stretch, which significantly impact the velocity of movement of the diffusion front. 

We next analyze the penetration of n-hexane into PS film with a thickness of 20 μm. Fig. 7a plots the profile of the solvent con
centration (or the volume change) in the film at different times. The solvent concentration profile in the thicker film is quite different 
from that in a thinner film shown in Fig. 4b. Our simulation shows that the solvent concentration profile in PS film of a 20 μm thickness 
changes with time, indicating that n-hexane diffusion in the PS film does not reach a steady state. This finding is different from the 
previous experiments done by P. Gall et al. (1990), where the PS-hexane system exhibited a self-similar sharp transition zone after the 
front advanced by approximately 1 μm, resulting in the transition zone width of about 1 μm in the steady state. However, an earlier 
work by Hui et al. (1987b) has also pointed out that the steady-state diffusion of hexane in the PS film is not possible if the film 
thickness is several micrometers. Moreover, in a recent study (Nixdorf et al., 2019), this extremely sharp transition zone in the steady 
state observed in the experiments by P. Gall et al. (1990) is speculated to be caused by the different diffusion rates of colorant used in 
the experiments to visualize the diffusion and n-hexane in the PS film. Though a direct observation of the transition zone in PS-hexane 
system has not been reported, in situ measurement of the transition zone has been conducted in PMMA-methanol system (Nixdorf 
et al., 2019). This study found that the width of the transition zone was about 90 μm, including a 30 μm sharply defined head and a 60 
μm gentle tail. This width of transition zone obtained from the in situ measurement is much larger than the transition zone size ob
tained from the diffusion of the colorant (Thomas and Windle, 1978). 

Fig. 7b plots the moving distance of diffusion front at different time in a 20 μm thick PS film. Even though the diffusion does not 
reach a steady state, the velocity of diffusion front is nearly constant after 200 h. Our study demonstrates the size effect on the solvent 
diffusion into glassy polymer. For n-hexane penetrating into a 20 μm PS film, our predicted velocity of the diffusion front is 0.024 μm 
/hr (Fig. 7b), which is comparable with the measured velocity of the diffusion front about 0.036 μm/hr (P. Gall et al., 1990). The 
velocity of diffusion front is much smaller than that in the thinner PS film as shown in Fig. 5. 

The difference in the velocity of the diffusion front between a 158 nm PS film and a 20 μm PS film is related to the stress state in the 
transition zone. Fig. 8 plots the plastic stretches, the total stretches, and the stresses in element “A” of the 20 μm PS film at t = 2 ×

Fig. 7. n-hexane penetrates in PS film with a thickness of 20 μm. (a) The volume change profile is plotted for every 2 × 105 s along thickness. The 
inserted figure illustrates the overlaying of the profile of the concentration of solvent in the transition zone at different times. (b) The distance of 
diffusion front as a function of time. 
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106s. Our results show that the difference between the plastic stretches and total stretches in the transition zone of the 20 μm PS film is 
significantly smaller than that of the 158 nm PS film. This small difference in stretches implies that the tensile stress of element “A” in 
the transition zone of the 20 μm PS film (Fig. 8c) is much smaller than that in the transition zone of the 158 nm PS film (Fig. 6c). Based 
on Eq. (38), the plastic stretch rate in the 158 nm PS film become much higher due to the larger tensile stress in element “A”. As the 
velocity of the diffusion front in case II diffusion depends on the plastic flow rate, the velocity of diffusion front in the 158 nm PS film is 
much faster than that in the 20 μm PS film. Moreover, by comparing Fig. 4b and Fig. 7a, we can find that the size of the transition zone 
in the 158 nm PS film is much smaller than that in the 20 μm PS film. 

4. Case II diffusion in a polymer sphere 

4.1. Governing equations 

For a spherical glassy polymer ball with a radius of A submerged in a solvent, the solvent migrates into the sphere along radial 
direction and a core–shell structure can form as sketched in Fig. 9a. The inner surface of the soft swollen shell is bonded with the dry 
and stiff core. With the increase of time, the shell thickens and the rigid core shrinks. The rigid core constraint causes an inhomo
geneous stress and deformation field in the sphere. Force balance in the system requires that 

dσr

dr
+ 2

σr − σθ

r
= 0, (44)  

where the radial and hoop stresses from Eq. (15) are written as 

σr =
μB

λrλ2
θ

(
λ2

r − 1
)

+
μA

λrλ2
θ

(
λ2

r

(
λp

r

)− 2
− 1

)
+

kT
Ω

[

ln
(

1 −
1

λrλ2
θ

)

+
1

λrλ2
θ

+
χ

(
λrλ2

θ

)2

]

−
μ − μ0

Ω
, (45) 

Fig. 8. The total stretches λ1 (or λ2) and λ3, the plastic stretches λp
1 (or λp

2) and λp
3, and the stresses in element “A” σA

1 (or σA
2 ) and σA

3 along thickness 
(x3 direction), in PS film with a thickness of 20 μm at t = 2 × 106 s. 
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σθ =
μB

λrλ2
θ

(
λ2

θ − 1
)

+
μA

λrλ2
θ

(
λ2

θ(λp
θ)

− 2
− 1

)
+

kT
Ω

[

ln
(

1 −
1

λrλ2
θ

)

+
1

λrλ2
θ

+
χ

(
λrλ2

θ

)2

]

−
μ − μ0

Ω
, (46)  

with the radial stretch λr = dr
dR and the hoop stretches λθ = λϕ = r

R in which R and r are the distances away from the center of core in the 
reference state and the deformed state respectively in Fig. 9a. 

The surface of the sphere is stress-free, so 

σr(r = a) = 0. (47) 

The stresses in the glassy polymer for element “A” in Eq. (17) are written as 

σA
r =

μA

λrλ2
θ

(
λ2

r

(
λp

r

)− 2
− 1

)
, (48)  

σA
θ = σA

ϕ =
μA

λrλ2
θ

(
λ2

θ(λp
θ)

− 2
− 1

)
. (49) 

The corresponding hydrostatic pressure is 

pA =
1
3

(
σA

r + σA
θ + σA

ϕ

)
. (50) 

The deviatoric stress and effective shear stress have the same definition as Eqs. (25–26). The plastic stretch rates are 

λ̇
p
r = λp

r

[

γ̇0

(
τA

τ0

)nsA
r

τA +
pA

3η0

]

exp(Mϕ), (51)  

λ̇
p
θ = λ̇

p
ϕ = λp

θ

[

γ̇0

(
τA

τ0

)nsA
θ

τA +
pA

3η0

]

exp(Mϕ). (52) 

The kinetics law in a spherical coordinate system is 

Fig. 9. (a) Schematic of free swelling of a polymer sphere (PMMA-methanol system). (b) The volume-change profile of a core-shell structure with a 
radius A of 0.64 mm is plotted for every 5 × 103s. (c) The moving distance of the fully swollen front as a function of time, as the radius of the 
polymer sphere A in the reference state is 0.64 mm. ti is the induction time which is the time required to reach the fully swollen state on the spherical 
edge. The solid line is the theoretical prediction; the solid dots are the experimental results from the reference (Li and Lee, 2006). 
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jr = −

(
CD
kT

)
∂μ
∂R

. (53) 

The volume change of the polymer is 

ΩC = λrλ2
θ − 1. (54) 

The mass conservation is written as 

∂C(R, t)
∂t

+
∂jr

∂R
= 0. (55)  

4.2. Results and discussions 

We next use finite difference method to solve the system of partial differential Eqs. (44–55) for the eight functions: μ(R, t), C(R, t), 
λr(R,t), λθ(R,t), λp

r (R,t), λp
θ(R,t), λ̇p

r (R,t), and λ̇p
θ(R,t). In the numerical computation, the boundary conditions entail that the radial stress 

σr(A,t) = 0, and the chemical potential μ(A,t) = μ0. Meanwhile, the initial conditions specify the stretches λr(R, 0) = 1 and λθ(R,0) =

1, the plastic stretches λp
r0 = λp

θ0 = 1, the radial stress σr(R,0) = 0, the hoop stress σθ(R,0) = 0, the chemical potential μ(R,0) = μdry 

and the solvent concentration C(R,0) = 0. 
The detailed simulation steps are described as follows. First, for a given chemical potential profile μ(R, t), we compute the solvent 

concentration C(R, t) according to Eq. (53) and Eq. (55). Then we determine the stretch λθ(R, t) from the volume expansion that is the 
integration of ΩC from the spherical center to radius R, and calculate the stretch λr(R, t) from the solvent concentration C(R, t) using 
Eq. (54). With the values of λr(R, t) and λθ(R,t), we can calculate the plastic stretch rates λ̇p

r (R, t) and λ̇p
θ(R, t) with Eqs. (48–52) and Eqs. 

(25–26), and subsequently obtain the plastic stretch λp
r (R, t) and λp

θ(R, t) by using the same equation shown in Eq. (43). In the reference 

Fig. 10. The stress and stretch distribution in the core-shell structure when t = 1 × 104 s (dash-dot lines), t = 5 × 104 s (solid lines) and t = 1 ×

105 s (dash lines): (a) radial and hoop stresses (σr and σθ), (b) radial and hoop stresses in element “A” (σA
r and σA

θ ), (c) radial stretches (λr and λp
r ), and 

(d) hoop stretches (λθ and λp
θ). 
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state, Eq. (44) can be also rewritten as 

dσr

dR
=

2(σθ − σr )

R
λr

λθ
. (56) 

Thereafter, we obtain the radial stress by integrating Eq. (56). Meanwhile, we calculate the hoop stress by using Eq. (46). Finally, 
we update the chemical potential μ(X3, t) by employing Eq. (45) for the next time increment. We repeat above computation steps to 
obtain all these eight functions. In the numerical simulation of solvent diffusion into the glassy polymer sphere, we use the parameters 
from Table 1 (PMMA-methanol system) if not otherwise specified. 

Fig. 9b plots the solvent concentration (or the volume change) in the polymer sphere with a radius of 0.64 mm along the radius at 
different times, and we use all the parameters from Table 1 to best fit the experimental results from reference (Li and Lee, 2006). The 
steady state of diffusion in the core-shell structure is achieved when the penetrant’s concentration profile in the transition zone be
comes self-similar. In the steady state, we can define diffusion front and fully swollen front and the width of the transition zone which is 
the distance between diffusion front and fully swollen front as shown in Fig. 9b. The width of the transition zone is 126 μm, which is 
comparable with the experimental value of around 90 μm (Nixdorf et al., 2019). Fig. 9c shows the moving distance of fully swollen 
front versus time (t − ti), where the induction time ti is defined as the time required to reach the fully swollen state on the spherical 
edge. In a spherical core-shell structure, the moving velocity of the fully swollen front has two stages depending on its distance from the 
center. After the spherical edge is fully swollen, the moving velocity of the fully swollen front is almost a constant as long as the moving 
distance of the fully swollen front is less than 50% of the radius. Beyond this point, the diffusion velocity increases. These results are 
consistent with the experimental observations (Li and Lee, 2006). 

Knowing the stress distribution in the core-shell structure is important for understanding the diffusion process in the glassy 
polymer. Fig. 10a illustrates the radial and hoop stress distribution in the core-shell structure at t = 1 × 104 s, t = 5 ×104 s and t = 1 
× 105 s, corresponding to Fig. 9. As shown in Fig. 10a, the hoop stress and radial stress in the dry core remains constant and in a tensile 
state. In the swollen shell, the hoop stress is compressive, while the radial stress is tensile. Furthermore, the hoop stress is nearly 
constant in the fully swollen shell. In the swollen zone, the radial stress is tensile and gradually decreases to zero at the surface. 

Fig. 11. (a) The diffusion speed, (b) the induction time ti, and (c) the width of the transition zone as a function of radius R of the polymer sphere. In 
(a), the solid dot-line is theoretical prediction with using the parameters from Table 1; the open dots are experimental results from reference (Li and 
Lee, 2006). 
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Comparing the stresses in element “A” at t = 5 × 104 s and t = 1 × 105 s in Fig. 10b, the latter exhibits a little higher stress of element 
“A” in the transition zone. According to Eq. (51), this larger stress of element “A” leads to a higher plastic deformation rate, indicating a 
faster diffusion velocity, which is consistent with the result in Fig. 9c. The stress distributions associated with the stretches, which are 
shown in Fig. 10c–d. 

Interestingly, case II diffusion in the core-shell spherical structure also exhibits size effects. We calculate the moving velocity of the 
swollen front in the core-shell spherical structure based on the time-dependent moving distance of the fully swollen front as shown in 
Fig. 9, considering only the moving distance of less than 50% of the radius. Fig. 11a plots the moving velocity of the swollen front as a 
function of the radius of the sphere using all the same parameters from Table 1. The velocity of the swollen front increases as the radius 
decreases. Our theoretical predictions agree well with the experimental data except for the case when the radius of the sphere is less 
than 0.15 mm, where the predicted swollen front velocity is larger than the experimental data. This velocity increase is related to the 
fact that the sphere radius is comparable with a critical length of the diffusion-relaxation relation, at which the diffusion time is 
comparable with the relaxation time of plastic flow. 

In previous models, the induction time is assumed to be a material constant, which contradicts with experimental observations (Li 
and Lee, 2006). In our model, the induction time is also highly size-dependent as shown in Fig. 11b. Both our theory and Li’s ex
periments indicate that the induction time approaches zero when the radius of the PMMA bead is less than 0.15 mm for the 
PMMA-methanol system. Moreover, our theory predicts that the width of the transition zone is also size-dependent, as shown in 
Fig. 11c. In summary, the diffusion velocity, the induction time and the width of the transition zone are all size dependent for case II 
diffusion in a polymer sphere. 

5. Scaling behavior of case II diffusion in the glassy polymer 

Vrentas et al. (1975) made a notable contribution to the study of polymer-solvent systems by introducing a dimensionless quantity, 
the diffusional Deborah number, which is defined as 

De =
Λ
Θ

=
characteristic relaxation time
characteristic diffusion time

. (57) 

The characteristic time for penetrant diffusion is written as Θ = L2

D with L being a characteristic diffusion length and D being the 
diffusion coefficient of the penetrant in the polymer. Our model has two characteristic relaxation times of plastic flow of polymer 
chains: Λvol =

η0
μA

exp(− Mϕ) for volumetric deformation and Λshear = 1
γ̇0

exp(− Mϕ) for shear deformation, which depend on the volume 
fraction of solvent in polymers. According to the data from Table 1, the characteristic relaxation time for shear deformation, Λshear, is 
significantly smaller than 1 s; and it can be ignored, as the timescales in experiments are much longer than 1 s. The time scale for the 
volumetric plastic deformation is more relevant for case II diffusion. Thus, we can rewrite Eq. (58) and define a critical length as 

Lc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D0ϕ2η0exp(− Mϕ)

μB

√

. (58) 

Based on Eq. (58), we can obtain the maximum critical length as Lmax
c = 2

eM

̅̅̅̅̅̅̅
D0η0

μB

√
, when ϕ = 2

M. The maximum value of the critical 

length only depends on material properties. When the sample size is comparable to the maximum critical length Lmax
c , the characteristic 

diffusion time is comparable to the characteristic time of plastic flow. This results in a situation where the solvent in the transition zone 
does not have enough time to reach chemical equilibrium. Consequently, the stretch in the spring of element “A” cannot fully relax, as 

Fig. 12. The critical length for the case II diffusion of a solvent in a glass polymer as a function of the solvent concentration: (a) PS-hexane system 
and (b) PMMA-methanol system. 
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shown in Fig. 6, causing a tensile stress in the transition zone. However, as the sample size becomes much larger than the maximum 
critical length Lmax

c , the elastic strain in the spring of element “A” in the transition zone can almost fully relax through the plastic flow of 
the dashpot of element “A”, as shown in Fig. 8. This elastic-to-plastic transition in element “A” leads to a slower propagation of the 
diffusion front, which is consistent with the Argon’s theory (Argon et al., 1999). 

Considering the parameters in Table 1, we plot the length scale Lc as a function of the volume fraction of solvent in PS-hexane 
system and PMMA-methanol system as shown in Fig. 12. For PS-hexane system in Fig. 12a, the maximum critical length Lmax

c is 
about 127 nm. Thus, the total stretch and plastic stretch in the diffusion front in the 158 nm PS film is very different as shown in Fig. 6. 
But the difference between the total stretch and plastic stretch in the 20 μm PS film is negligible as shown in Fig. 8. Fig. 12b shows that 
PMMA-methanol system has a maximum critical length Lmax

c of 14.2 μm. The minimum radius of the polymer sphere we considered in 
Section 4 is 100 μm, which is seven times of maximum critical length Lmax

c . We observe a dramatic increase in the propagation velocity 
of the diffusion front when R ≤ 150 μm as shown in Fig. 11a. 

6. Concluding remarks 

In this article, we formulate a 3D model of case II diffusion in glassy polymers and compare our theoretical predictions with several 
different experimental studies. In the formulation, we integrate the elasto-visco-plastic constitutive model of the glassy polymer, the 
Flory-Rehner theory for polymer gels and the nonequilibrium thermodynamics. Our model predicts the stress field in the diffusion 
front which has been often ignored in previous studies. As the stress field is highly dependent on the sample size, the diffusion front 
velocity, the induction time and the width of diffusion front are all size-dependent. In particular, we predict that the moving velocity of 
the diffusion front dramatically increases when the sample size is comparable to the critical size given in Eq. (58). Our model also 
reveals that the propagation of the diffusion front accelerates as the diffusion distance is greater than 50% of the initial radius in the 
core-shell structure, which also agrees with the previous experimental observation. Even though we only studied the thin film and the 
core-shell structure as examples, the model proposed in this article can be used to study case II diffusion in glassy polymers with 
arbitrarily complex shapes. Admittedly, to make quantitative predictions for more general cases, complex numerical simulation code 
or integrating our model with finite element analysis tools, such as COMSOL MULTIPHYSICS, will be needed. 
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