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ARTICLE INFO ABSTRACT
Keywords: In this article, we formulate a nonequilibrium thermodynamic theory for case II diffusion in a
Case I diffusion glassy polymer. In the model, we integrate the three-dimensional elasto-visco-plasticity of a

Glassy polymer
Thermodynamic modeling
Thin film

Core-shell structure

glassy polymer, the Flory-Rehner theory for polymer network swelling, and the kinetics law for
solvent migration with the concentration-dependent diffusivity. Our theory is given in a general
3D tensorial form, which, therefore, can be used to model case II diffusion in glassy polymers with
arbitrary geometries and under different mechano-chemical loading conditions. An intrinsic
length determined by the combination of the polymer viscosity and solvent diffusivity arises from
the theory, which dictates the size-dependent case II diffusion in glassy polymers. The theory
developed in the article may provide important guidance for designing semi-permeable mem-
branes, waterproof coating, and drug-delivery systems, where case II diffusion can commonly
occur.

1. Introduction

Solvent diffusion in glassy polymers can be commonly seen in many practical applications, such as semipermeable membranes
(Baker and Lokhandwala, 2008; Baker and Low, 2014), waterproof coating (Zhao et al., 2019; Zou et al., 2021) and drug delivery
systems (Colombo et al., 2000), as shown in Fig. 1. Depending on the interaction between the solvent molecules and the polymer
chains, the diffusion can be categorized as Fickian diffusion and non-Fickian diffusion (Ercken et al., 1996; Hajova et al., 2013). In
contrast to Fickian diffusion, non-Fickian diffusion in glassy polymers often exhibits a sharp diffusion front, and the amount of solvent
adsorbed by the glassy polymer increases linearly with time (Thomas and Windle, 1982). This type of diffusion is also often classified as
case II diffusion, which usually occurs when the solvent behaves like a plasticizer for the glassy polymer (Nealey et al., 1995; Zhou
et al., 2001).

In the past, a series of experiments have been conducted on case II diffusion in glassy polymers. The examples of case II diffusion
systems include Polymethyl methacrylate (PMMA) with methanol (Ercken et al., 1996; Hui et al., 1987a, b; More et al., 1992; Nixdorf
et al., 2019; Thomas and Windle, 1978), Polystyrene (PS) with alkane (Nealey et al., 1995; P. Gall et al., 1990; Zhou et al., 2001) and
Polyvinyl chloride (PVC) with acetone (Perry et al., 1994). Experimental studies have revealed that the sharp diffusion front observed
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Nomenclature

C Concentration of solvent

D Diffusion coefficient

Dy Prefactor of D

Dfn’lp Rate of the plastic shape change of element “A”

De Deborah number

F, Fx Deformation gradient

F4 Deformation gradients of element “A”

Fi? Plastic component of F4

Fie Elastic component of F

F& Deformation gradient of element “B”

Hix = dcll(F) ad;Ft,(kF)

J = det(F), volume change

JAP = det(F*?)

JA = det(F*)

jp Plastic volume expansion rate

L. Critical length at which the characteristic diffusion time is comparable to the characteristic relaxation time of plastic
flow

Lmax Maximum critical length of L.

m Material property

M = mn, material property

M; Number of solvent molecules

n Exponential factor

Ng’p Direction tensor of element “A”

pt Hydrostatic pressure of element “A”

s Athermal shear strength of the gel

So Athermal shear strength of the dry glassy polymer

3“3 Deviatoric stress tensor of element “A”

Sik First Piola-Kirchhoff stress

w Free energy density of the gel

Whnix Free energy density due to the mixing of the polymer chains and the solvent

Wirerch  Free energy density due to the stretching of the network

7 Equivalent plastic shear strain rate for the primary relaxation process

70 Prefactor of y

Cas Cp Internal variables

Mo Bulk viscosity of the dry glassy polymer

(C) Characteristic diffusion time

A Characteristic relaxation time

Aeg Stretch of fully swollen polymer in the equilibrium state

yin Initial plastic stretch along x;

u Chemical potential of solvent in the polymer

Ho Chemical potential of unmixed pure solvent

Ha Shear modulus of element “A”

Ug Shear modulus of element “B”

Hary Chemical potential of the dry polymer

a‘i‘} Stress component of element “A”

6}]3- Stress component of element “B”

ojj Cauchy (true) stress

1 Stress component due to the mixing of the polymer chains and the solvent

i Equivalent shear stress of element “A”

¢ Volumetric fraction of solvent

X Flory interaction parameter

Q Volume per solvent molecule

() Time derivative
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in case II diffusion in a glassy polymer can be ascribed to the decrease of the glass-transition temperature of the polymer after swelling
(Ercken et al., 1996). When a glassy polymer sphere is submerged into solvent, a core-shell structure can form, with a swollen rubbery
outer shell and a dry glassy inner core (Foreman and Vollmer, 2015; Li and Lee, 2006). It has also been acknowledged that the interplay
between the viscoelasticity of the polymer network and solvent migration dynamics within the polymer network determines the main
features of case II diffusion (Argon et al., 1999; Thomas and Windle, 1982).

To understand the formation of the sharp diffusion front and other characteristics in case II diffusion, tremendous modeling efforts
have been made. Thomas and Windle (1982) were among the first to model the formation of the sharp diffusion front during case II
diffusion by assuming the viscosity of a glassy polymer decreases with the increase of the solvent concentration. Building upon their
work, Hui et al. (1987a, b) obtained an asymptotic solution describing transient state and steady state of case II diffusion, with
considering the effect of the osmosis. Hui et al. (1987b) also pointed out that the assumption of a linear rheological behavior of glassy
polymers adopted in their model may be oversimplified. Thereafter, Argon et al. (1999) considered a more realistic rheological model
for visco-plastic flow of glassy polymers and developed a mechanistic model that accounts for the coupled diffusion and
elasto-visco-plastic deformation rates associated with the self-similar propagation front. However, most of the previous models were
developed specifically for certain geometries (e.g., thin film, half space), and typically assumed that the polymers were either stress
free or subjected to simple mechanical constraints. Though these models have successfully explained some features of case II diffusion
in glassy polymers, additional efforts are required to formulate a more general model for case II diffusion in glassy polymers with
arbitrary geometries and subjected to complex loading conditions. Moreover, recent experiments have shown that case II diffusion in a
glassy polymer is size-dependent. For instance, at room temperature, the moving velocity of the diffusion front for the system of
n-hexane in PS increases from 0.036 ym/hr to 1.33 ym/hr as the thickness of the polymer film decreases from 20 ym to 158 nm (Ogieglo
et al.,, 2013; P. Gall et al., 1990). Similarly, faster moving velocity of the diffusion front of methanol have been observed in smaller
PMMA beads (Li and Lee, 2006). However, the size-dependent effects observed in case II diffusion remains unexplained (Li and Lee,
2006).

In this article, we aim to formulate a general 3D model for case II diffusion in glassy polymers. We incorporate the nonequilibrium
thermodynamics of solvent diffusion, the Flory-Rehner theory for polymer network swelling and the three-dimensional elasto-visco-
plastic model of the glassy polymer. The theory is generally applicable for modeling case II diffusion of solvent in glassy polymers with
arbitrary shapes and subjected to any loading conditions. Herein, we also compare our theoretical predictions with different exper-
iments to demonstrate the validity of the model. The outline of this article is as follows. The governing differential equations for case II
diffusion are presented in Section 2. Section 3 applies the model to study case II diffusion in a laterally constrained thin film. Section 4
applies the model to study case II diffusion in a polymer sphere. Section 5 discusses size effects in case II diffusion based on the simple
scaling analysis. Finally, Section 6 provides a conclusion.
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Fig. 1. (a) Schematic of case II diffusion in the glassy polymer. After swelling, the polymer becomes rubbery, and as a result, its modulus
dramatically decreases. (b) The application of case II diffusion in drug delivery systems.
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2. Theory

In this section, we develop a nonequilibrium thermodynamics model for non-Fickian diffusion of solvent in a glassy polymer which
is also subjected to mechanical loadings. As shown in Fig. 2, a polymer (in the glassy state when it is dry), the external forces, and the
solvent-containing environment together form a composite thermodynamic system. The system exchanges energy with the rest of the
world by heat, but not by work; and it does not exchange matter with the rest of the world.

2.1. Constitutive model of a glassy polymer containing solvent

Fig. 2a illustrates a block of a dry glassy polymer with volume denoted by V. When the dry polymer is subjected to mechanical
forces and in contact with a solvent, the polymer can deform and imbibe solvent (Fig. 2b). In an isothermal condition, the second law of
thermodynamics requires that:

SW < siSF i + (11— py)5C, (1)

where W is the free energy density of the gel (the polymer mixed with solvent molecules), which depends on the deformation gradient
Fi, the concentration of solvent C, and other internal variables as

W =W(Fi,C, (4, Cp,..) 2

and C = ’% with M; being the number of solvent molecules, 4, is the chemical potential of unmixed pure solvent, y is the chemical
potential of solvent in the polymer, Fi is the deformation gradient, s is the first Piola-Kirchhoff stress, and ¢, and ¢ are the internal
variables describing the kinetic and dissipation processes inside the polymer. We will specify these internal variables later. Combining
Eq. (1) and Eq. (2), we obtain the following inequality:

ow 0

w ow
- 6Fix +%5C+;

f(%a — sixb6Fx — (4 — py)6C < 0. 3)

OF
We adopt molecular incompressibility assumption, so the change of volume between the current state and the reference state is the
volume of the absorbed solvent, i.e.

QC = det(F) — 1, “

where Q is the volume per solvent molecule.

Following the Coleman-Noll procedure in continuum mechanics, we require Eq. (3) to be satisfied independently for all
conceivable physical processes (Gurtin et al., 2012), which results in the local mechanical equilibrium and chemical equilibrium
(Hong et al., 2009):

_ OW  pu—p, ddet(F)
TOFx  Q  OFx

6]

Sik

b / Solvent-containing environment (y,T) \

Fig. 2. (a) In the reference state, a dry polymer in the glassy state contains no solvent and is subject to no applied forces. (b) In the current state, the
network is in equilibrium with applied forces, and with a solvent-containing environment of a fixed chemical potential of pure solvent and a fixed
temperature.
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and the nonequilibrium processes described by the internal variables:

oW,

Zf@ <0, ©

where éa denotes the rate of internal variable ¢,. In Eq. (5), we have M;th) = Higdet(F) = %eijkeKLMP}LFkM.

The Cauchy (true) stress o is given as

siF K
= LSy 7
% Get(F) )
Combined with Eq. (5), Eq. (7) is written as
H— Ky aW(FiK7C7Ca7C/j7'") F,
i 5 = . 8
oitTg % OF det(F) ®)
Following the Flory-Rehner theory (Flory and Rehner, 1943), we write the free energy of the polymer containing solvent as
W = Wyereh + Winix (9)

where W,y is the free energy density due to the mixing of the polymer chains and the solvent and W, is the free energy density due
to the stretching of the network.
The Helmholtz free energy of mixing is taken to be the form given by Flory (Flory, 1942)

kT 1 X
Woir(C) = - {szcm(l +Q—C) 17 QC}’ (10)

where y is the Flory interaction parameter.

The resistance to the deformation inside the polymer has two mechanisms: intermolecular resistance to chain-segment movement
(elastic spring and viscoplastic dashpot, element “A” in Fig. 3), and entropic resistance to chain stretching (Langevin spring, element
“B” in Fig. 3). To the first-order approximation, the proposed model only considers the relaxation process of element “A”. As shown in
Fig. 3, the parallel deformation gradients are the same:

FB = F) = Fy. (11)

We can further decompose the deformation gradient F4 of element “A” into an elastic component Fit° and a plastic component FiF
(Lee, 1969),

Fi = FYFy”. a2)

The plastic volume change in element “A” is JA4? = det(F*?). It is noted that for a glassy polymer only subjected to mechanical
stresses, the volume change associated with its plastic deformation is usually assumed to be negligible (Mulliken and Boyce, 2006).
Nevertheless, for case II diffusion, solvent diffusion can cause the significant volume change of the polymer.

The stretching of the network causes a reduction in the entropy of the network. The Helmholtz free energy due to the stretching of
the network is taken to be (Flory, 1953)

1 1 e JA
Wt = St [FiFx —3 —2In(J)] + SHa (FiFy) —3—2In (W):l , (13)

where yj is the shear modulus of element “B”, s, is the shear modulus of element “A”, and the elastic deformation of element “A” can
be obtained from Eq. (12) as:
Ry = FYEY 4)

A combination of Egs. (8-13) gives

— T

e L —

B

Fig. 3. Schematic of viscoelastic model (glassy polymer): element “A” represents glassy behavior, and element “B” represents rubbery behavior.
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H—Ho

Ojj + 5;‘,‘ = O's- + 0'3 + H(sijy (15)

where the stress components are:

of =E2 (FicFi —y), (16)
o =10 (FhFA Y Fi =), az
and
kT 1 y
n S fu(i-1) 4 2) as

in which J = det(F) is the volume change, and HiFjx = &j.

2.2. Rate-dependent elasto-plasticity of a solvent-containing glassy polymer

The finite strain elasto-visco-plastic model of a solvent-containing glassy polymer adopted in the current study closely follows what
presented by Bergstrom and Boyce (Bergstrom, 1998; Bergstrom and Boyce, 2000), and Boyce et al. (Boyce et al., 2001, 2000). It is
noted that our elasto-visco-plastic model for glassy polymers only considers the primary relaxation process in the following derivation.
The rate of plastic deformation of element “A” is given as

Fi = Fy \DJIFFY (19)
with the rate of the plastic shape change containing both the deviatoric and volumetric components:
DA” = yN,] -i-j‘,,zS,,7 (20)
where
=f(=".p") (21)

is an equivalent plastic shear strain rate for the relaxation process,
i, =g (22)
is the plastic volume expansion rate, and

=i/ (23)

is the direction tensor which is taken to be coaxial with the deviatoric stresses acting on intermolecular network (element “A”). In Eqs.
(21-23),

1
ggﬁk (24)

is the hydrostatic pressure, and
= 7SA SA (25)

is the equivalent shear stress, where

e —— (26)

ij ij

is the deviatoric stress tensor.
We consider the deviatoric plastic strain rate of the glassy polymer to be given by a power-law (Argon et al., 1999; Loeffel and
Anand, 2011)

‘[A n
v = 7(} (T) ’ 7)

where 7,= 0exp( 26) with 73 being the pre-exponential factor, AG being the activation energy and T being the temperature, n is the
exponential factor, and s is the athermal shear strength.
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For case II diffusion, the solvent often behaves like a plasticizer (Nealey et al., 1995; Zhou et al., 2001) for the glassy polymer.
Therefore, the athermal plastic resistance (s) can be significantly lowered by the absorbed diluent as it reduces the intermolecular
interactions. Often this reduction is taken to be of exponential form as (Argon et al., 1999; Thomas and Windle, 1982)

s = soexp(—ma), (28)

where ¢ = % is the volumetric fraction of the solvent and sy is the athermal shear strength of the dry glassy polymer. Thus, the

deviatoric plastic strain rate in the swollen polymer is written as

LAY
Y="70 <S_U) exp(M¢), (29)
where M = mn. Similarly, the equivalent plastic volumetric strain rate can be given as
= Lexplot), (30)
0

where 7, is the bulk viscosity of the dry glassy polymer, which describes the viscous resistance to the rate of volume change.

2.3. Solvent diffusion in the polymer

When the solvent diffuses in a glassy polymer, we adopt a linear kinetics law between the volumetric flux of solvent (T’Q) and the
chemical potential gradient as
— CD—
J = _k_TV'u’ (31)

where D is the diffusion coefficient. It is reasonable to assume the diffusion coefficient to be dependent on volume fraction of solvent in
the polymer: the higher volume fraction of solvent, the larger of the diffusion coefficient is. We simply adopt the Kozeny-Carman
equation (Chapuis and Aubertin, 2003) for describing the diffusivity of porous media to assume that

D = Dy¢p’, (32)

where Dy is the prefactor.

2.4. Material parameters

In the past, polystyrene (PS) with n-hexane and polymethyl methacrylate (PMMA) with methanol were the two systems which have
been most intensively studied in the context of case II diffusion. The parameters of PS-hexane system and PMMA-methanol system used
for the modeling are summarized in Table 1. It is noted that each material parameter listed in Table 1 is usually obtained from a single
study, and the measurements of those parameters are based on specific models and assumptions adopted in those studies. To improve

Table 1
Parameters in the calculation of case II diffusion in the PS-hexane system (thin film) and the PMMA-methanol system (core-shell structure).
Parameter notation Values Notes
Glassy modulus Ha 1 GPa This number is taken from the reference (Argon et al., 1999). In the reference, it is the glassy
modulus for PS. We use the same number for PMMA in this paper.
Rubbery modulus Hp 1 MPa This number is estimated based on experimental data of PMMA from the reference (Mulliken and
Boyce, 2006). This number is also used for PS in the current study.
Athermal shear So 238 MPa This number is taken from the reference (Argon et al., 1999). In the reference, it is the athermal
strength shear strength for PS. We use the same number for PMMA in this paper.
Flory’s interaction X 1.3 This number comes from the PS-pentane system in the reference (Hajova et al., 2013). We use the
parameter same number for PS-hexane and PMMA-methanol systems.
Exponential factor n 9 In the reference (Argon et al., 1999), the value of n is in a range between 7.3 and 8.8 for PS. In our
current study, we use the same number for PS and PMMA as n = 9.
Material property M 100 (PS) M = mn. For PS, the material constant m is in a range between 10 and 20 (Thomas and
90 (PMMA) Windle,1981). Therefore, M in a range between 90 and 180 for PS. We use M = 100 for PS-hexane
system and M = 90 for PMMA-methanol system in this paper.
Bulk viscosity 1o 104Pa-s This number is taken from the reference (Chang et al., 2021). In the reference, it is the bulk
viscosity for PS. We use the same number for PMMA system in this paper.
Prefactor 70 1012 571 This prefactor is estimated based on the strain rate pre-factor of PS in the reference (Argon et al.,
1999). This number is also used for PMMA system in current study.
Prefactor of diffusion Dy 3 x 10715 m?/s (PS) The pre-factor of diffusion coefficient is estimated based on the reference (Argon et al., 1999;
coefficient 3 x107 1 m?/s Ercken et al., 1996). More details are given in Section 2.4.
(PMMA)
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the agreement between theoretical predictions from the current study and experimental measurements, we have made slight ad-
justments for some parameters. The polymer in the dry state has extremely low solvent concentration, and we assume that the chemical
potential of solvent in the initially dry polymer is pg4, — pg = — 5.23 x 107207,

The prefactors of the diffusion coefficients of PS-hexane and PMMA-methanol systems at room temperature are obtained based on
the following estimation. The diffusion coefficient of CgHisl in PS at ¢» = 0.14 is known to be 1 x 1077m?/s (Argon et al., 1999),
which implies a prefactor value of Dy = 5.2 x 10~16m? /s according to Eq. (32). To account for the lower molecular weight of hexane
(CgH14) compared to CgHj3l, we use a prefactor value of Dy = 3 x 1071°m? /s for C¢Hi4 in PS, which gives the best agreement with
experimental data as shown later. Similarly, the diffusion coefficients of methanol in PMMA were found to be 3.7 x 10~1'm?/s at 38.
5°C and 4.5 x 10~ 'm?2 /s at 40.5°C (Ercken et al., 1996). Based on the Arrhenius relation, we estimate the prefactor Dy to be 1.1 x

107%m? /s at 23°C with ¢ = 0.25. To match the experimental results, we make an adjustment that Dy = 3 x 10~1'm?/s for the
PMMA-methanol system in the modeling.

3. Case II diffusion in a biaxially constrained thin film
3.1. The governing equations

In Section 2, we have formulated a nonequilibrium thermodynamic model to study non-Fickian diffusion of solvent in the glassy
polymer. In this section and next one, we study case II diffusion process in a polymer thin film and a polymer sphere. When a glassy
polymer thin film is submerged into a solvent-containing environment (Fig. 4a), the solvent molecules mainly diffuse along the
thickness direction (x3 in the Fig. 4a) in the film. For a laterally constrained thin film, we have

=L =1, (33)
and

03 = 0. (34)
Using the Egs. (33-34) and Eq. (15), we can obtain

Hp (12 Ha (1200\-2 kT 1 L x H—H
—=(13—1 = (A4 -1 — |In[1—— —+5| - =0. 35
/13(3 )+/13(3(3) )+Q n{1-7 +/13+/1§ o (35)
The stresses of element “A” in Eq. (17) are written as
_Ha(2my-2
o =5 (B0 7 1) (36)
—ot =Py
ot =ap =G (7 -1). (37)

The hydraulic pressure p*, the equivalent shear stress 7, and the deviatoric stress s;* are given by Egs. (24-26) respectively. We
obtain the rates of plastic stretch /'11; from Egs. (19-27) as

a b
0.25 05
,T % 02
X, yX O
Thin polymer film %
2 0.15
C
9]
<
o
Solvent-containing environment g 0.1
E
g
o
i 1 0.05
0

diffusion distance (nm)

Fig. 4. (a) Schematic of case II diffusion in a glassy polymer film subject to biaxial constraint. (b) n-hexane penetrates into a PS film with a thickness
of 158 nm. The inserted figure illustrates the overlaying of the profiles of solvent centration in the transition zone at different times. The volume
change profile is captured every minute along thickness from 1 min to 10 min. The width of the transition zone is 41 nm which is comparable to the
experiment result (Ogieglo et al., 2013).
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. ' TA ”S’? pA
A =% {70 (*) g 370} exp(M¢), (38)

So

with i = 1,2, 3. The linear kinetics law described by Eq. (31) is rewritten as
CD\ ou
= ) 39
" (kT) ox; (39)

with the volume change
QC=1 -1 (40
Meanwhile, the mass conservation is given by:
9C(Xs,1) | )3
a T ox (41

3.2. Results and discussions

We use the finite difference method to solve the series of partial differential equations derived above for the seven functions: (X3,

t), C(Xs,t), 13(X3,t), /1’1’ (X3,0), /11; (X3,0), /ﬁ (X3,t), and )12 (X3,t). The boundary conditions entail that the stretch A3(0,t) = Aq, the chemical
potential x(0,t) = p, and the solvent concentration C(0,t) = Co, where QCy = d¢q — 1 with 1,4 being satisfied with

”J(gz_]) g] 1_L i X

« )T ") T T

= 2
Teq 0, (42)

based on Eq. (35).

The initial conditions specify the plastic stretches A5, = 45, = 45, = 1, the chemical potential y(X3,0) = g, and solvent con-
centration C(X3,0) = 0 (because the initial chemical potential of the solvent is very small).

The detailed computation steps are given as follows. First, for a given chemical potential profile y(X3,t), we compute the solvent

a - b 220
—m—dry (experiment) .
—e— swollen (experiment) = =e= = experiment
2004 dry (theory) o — — — theory
[ swollen (theory) — 200+
c €
~ c
wv ~
3 2
c 9]
§ 100 _g
= <
— =
N £
= =
04
o~ & a4 e 8 o MG
time (min) time (min)
C
200
€
c.
= 150
[}
1
c
i
(%]
5 100
c
kel
=] ”,
‘;E 50|+ 7
°
0
0 2 4 6 8 10
time (min)

Fig. 5. (a) Thickness of the swollen and dry layers of a 158 nm PS film during the hexane sorption. (b) The total thickness of a 158 nm PS film
during hexane sorption. The red dash line is the average value of experimental data, the red shadow is the range of experimental data, and the black
solid line is the theoretical prediction. (c) The distance of diffusion front as a function of time. In (a) and (b), the solid lines are theoretical pre-
dictions; the dot-dash lines are experimental results from the reference (Ogieglo et al., 2013).
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concentration C(X3, t) using Eq. (39) and Eq. (41), and then determine the stretch A3 (X3, t) from the solvent concentration C(X3, t) using
Eq. (40). With the value of 13(X3,t), we can calculate the plastic stretch rate if (X3, t) using Eq. (38) and Eqs. (24-26), and subsequently
obtain the plastic stretch A (X3, t) using

t

X=i+ / Par, (43)

P =

0

in which 2 is the initial plastic stretch along x;. Finally, we update the chemical potential y(Xs,t) for next time increment by
employing Eq. (35). We repeat the above computation steps to obtain the full numerical solutions. In the numerical simulation of the
solvent diffusion into PS, we use the parameters from Table 1. Herein, we simulate the solvent (i.e., n-hexane) penetrating into PS films
with two different thicknesses (158 nm and 20 pm) which have been studied in the previous experiments (Ogieglo et al., 2013; P. Gall
et al.,, 1990). And we compare our simulation results with the experimental measurements.

First, we study the evolution of the polymer swelling in a PS film with the thickness of 158 nm. Fig. 4b shows the solvent con-
centration (or the volume change) in the polymer film at different times. It is obvious that the solvent concentration profile in the
polymer film is drastically different from what is expected from a Fickian diffusion system. In particular, a sharp transition zone
connecting a dry polymer regime and nearly fully swollen regime exists in the film, which has also been frequently observed in the
experiments of case II diffusion. Though the precise profile of the solvent concentration in the transition zone is very challenging to
measure in the experiment, our model predicts that the transition zone width is around 40 nm, which is consistent with experimental
results (Ogieglo et al., 2013). The tip of the transition zone is defined as the diffusion front as shown in Fig. 4b. Following the previous
study (Hui et al., 1987b), we can define a steady state of case II diffusion in the glassy polymer when the penetrant’s concentration
profile of the transition zone is highly self-similar with respect to an observer moving with the front, as shown in the inserted figure of
Fig. 4b. Based on our calculation, case II diffusion reaches a steady state when the diffusion time is between 0.3 min and 7.2 min for a
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¢4, in PS film with a thickness of 158 nm at t = 3 min.
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PS film with the thickness of 158 nm.

Moreover, we calculate the thicknesses of the dry region and the swollen region in the polymer film as a function of time as shown
in Fig. 5a. The time required for the diffusion front to reach the constraint substrate across the 158 nm film is about 7.2 min, and this
corresponds to an average moving velocity of the front of 1.32 ym/hr, which is consistent with the experimental measurement of
1.29 ym/hr (Ogieglo et al., 2013). The quantitative difference between the theoretical predictions and the experiments is noticeable.
There are several possible reasons for the discrepancy. The primary reasons for such difference include the simplifications of the
current theoretical model and experimental inaccuracies. As a matter for fact, the experiment studies (Ogieglo et al., 2013) have
provided the uncertainties of the thickness measurement of the PS film during hexane sorption. Fig. 5b plots the thickness of the entire
PS film during hexane sorption and compares theoretical predictions and experiments. Our theorical predictions still fall within the
range of experimental data. We plot the moving distance of the diffusion front in Fig. 5¢, and our simulation shows that the velocity of
the diffusion front in the steady state is nearly constant, which also agrees with the observation in the same experiment (Ogieglo et al.,
2013). Fig. 5c also demonstrates that the velocity of diffusion front is faster initially, which has also been reported in case II diffusion in
the glassy polymer (PMMA-methanol system) (Nixdorf et al., 2019).

Fig. 6 plots the total stretches (11, 4> and 13), the plastic stretches (14, 1 5 and 1 %), and the stresses in element “A” at t = 3 min,
corresponding to the orange curve in Fig. 4b. Due to the symmetry, the stretches and stresses along x; are the same as those along x,.
Within the sharp transition zone, the plastic stretch /5 along x3 is smaller than the total stretch A3, and 4] is smaller than 1. As the plastic
stretches (/Iﬁ and /Ig) in the transition zone is smaller than the total stretch (1; and A3), and according to Eqs. (36-37), the elastic stresses
in element “A” along x; and x3 directions are tensile in the transition zone, as shown in Fig. 6¢. Based on Eq. (38), the elastic stresses in
element “A” directly determine the rates of plastic stretch, which significantly impact the velocity of movement of the diffusion front.

We next analyze the penetration of n-hexane into PS film with a thickness of 20 ym. Fig. 7a plots the profile of the solvent con-
centration (or the volume change) in the film at different times. The solvent concentration profile in the thicker film is quite different
from that in a thinner film shown in Fig. 4b. Our simulation shows that the solvent concentration profile in PS film of a 20 ym thickness
changes with time, indicating that n-hexane diffusion in the PS film does not reach a steady state. This finding is different from the
previous experiments done by P. Gall et al. (1990), where the PS-hexane system exhibited a self-similar sharp transition zone after the
front advanced by approximately 1 um, resulting in the transition zone width of about 1 ym in the steady state. However, an earlier
work by Hui et al. (1987b) has also pointed out that the steady-state diffusion of hexane in the PS film is not possible if the film
thickness is several micrometers. Moreover, in a recent study (Nixdorf et al., 2019), this extremely sharp transition zone in the steady
state observed in the experiments by P. Gall et al. (1990) is speculated to be caused by the different diffusion rates of colorant used in
the experiments to visualize the diffusion and n-hexane in the PS film. Though a direct observation of the transition zone in PS-hexane
system has not been reported, in situ measurement of the transition zone has been conducted in PMMA-methanol system (Nixdorf
et al., 2019). This study found that the width of the transition zone was about 90 um, including a 30 ym sharply defined head and a 60
um gentle tail. This width of transition zone obtained from the in situ measurement is much larger than the transition zone size ob-
tained from the diffusion of the colorant (Thomas and Windle, 1978).

Fig. 7b plots the moving distance of diffusion front at different time in a 20 ym thick PS film. Even though the diffusion does not
reach a steady state, the velocity of diffusion front is nearly constant after 200 h. Our study demonstrates the size effect on the solvent
diffusion into glassy polymer. For n-hexane penetrating into a 20 ym PS film, our predicted velocity of the diffusion front is 0.024 um
/hr (Fig. 7b), which is comparable with the measured velocity of the diffusion front about 0.036 ym/hr (P. Gall et al., 1990). The
velocity of diffusion front is much smaller than that in the thinner PS film as shown in Fig. 5.

The difference in the velocity of the diffusion front between a 158 nm PS film and a 20 ym PS film is related to the stress state in the
transition zone. Fig. 8 plots the plastic stretches, the total stretches, and the stresses in element “A” of the 20 ym PS film att =2 x
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Fig. 7. n-hexane penetrates in PS film with a thickness of 20 ym. (a) The volume change profile is plotted for every 2 x 10° s along thickness. The

inserted figure illustrates the overlaying of the profile of the concentration of solvent in the transition zone at different times. (b) The distance of
diffusion front as a function of time.
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10°%s. Our results show that the difference between the plastic stretches and total stretches in the transition zone of the 20 ym PS film is
significantly smaller than that of the 158 nm PS film. This small difference in stretches implies that the tensile stress of element “A” in
the transition zone of the 20 ym PS film (Fig. 8c) is much smaller than that in the transition zone of the 158 nm PS film (Fig. 6¢). Based
on Eq. (38), the plastic stretch rate in the 158 nm PS film become much higher due to the larger tensile stress in element “A”. As the
velocity of the diffusion front in case II diffusion depends on the plastic flow rate, the velocity of diffusion front in the 158 nm PS film is
much faster than that in the 20 ym PS film. Moreover, by comparing Fig. 4b and Fig. 7a, we can find that the size of the transition zone
in the 158 nm PS film is much smaller than that in the 20 ym PS film.

4. Case II diffusion in a polymer sphere
4.1. Governing equations

For a spherical glassy polymer ball with a radius of A submerged in a solvent, the solvent migrates into the sphere along radial
direction and a core-shell structure can form as sketched in Fig. 9a. The inner surface of the soft swollen shell is bonded with the dry
and stiff core. With the increase of time, the shell thickens and the rigid core shrinks. The rigid core constraint causes an inhomo-
geneous stress and deformation field in the sphere. Force balance in the system requires that

do, 0, — 0y

a0 (44)

where the radial and hoop stresses from Eq. (15) are written as

Hg (2 Ha (120302 kT 1 1 X H=H
o, =15 (A2-1)+ (A,(/v,) _1>+7 1n<1—— +—+ - , (45)
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Fig. 8. The total stretches 1; (or 12) and 43, the plastic stretches Z; (or #5) and 4%, and the stresses in element “A” ¢4 (or ¢4) and ¢4 along thickness
(x3 direction), in PS film with a thickness of 20 ym at t = 2 x 10°s.
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with the radial stretch 4, = % and the hoop stretches 4y = 4, = § in which R and r are the distances away from the center of core in the
reference state and the deformed state respectively in Fig. 9a.
The surface of the sphere is stress-free, so

o.(r=a)=0. 47)

The stresses in the glassy polymer for element “A” in Eq. (17) are written as

o= s (2 "), (48)
7% = =z (5057 -1). (49)

The corresponding hydrostatic pressure is

(aA o+ 0A> (50)
The deviatoric stress and effective shear stress have the same definition as Eqs. (25-26). The plastic stretch rates are
. ™\"s¢  pA
P=wlnl—) Z+Z|exp(M 51
r r |:70 (TO) A + 3110:| exp( ¢)7 ( )
p C(™\"sd  pt
= ﬁ; =1 [}'(. (E) 2 3 }exp(M(/)) (52)

The kinetics law in a spherical coordinate system is
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The volume change of the polymer is
QC =27 — 1.
The mass conservation is written as

dC(R,1) | djr

=0.
ot JdR

4.2. Results and discussions
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(53)

54

(55)

We next use finite difference method to solve the system of partial differential Eqs. (44-55) for the eight functions: y(R,t), C(R,t),
Ar(R,t), 2o(R,t), B(R,t), (R,t), /'1[,) (R,t), and ZZ (R,t). In the numerical computation, the boundary conditions entail that the radial stress
or(A,t) =0, and the chemical potential yu(A,t) = u,. Meanwhile, the initial conditions specify the stretches 4.(R,0) = 1 and 44(R,0) =
1, the plastic stretches ) = 4}, = 1, the radial stress ¢,(R,0) = 0, the hoop stress 5(R,0) = 0, the chemical potential y(R, 0) = pgy,

and the solvent concentration C(R,0) = 0.

The detailed simulation steps are described as follows. First, for a given chemical potential profile u(R,t), we compute the solvent
concentration C(R, t) according to Eq. (53) and Eq. (55). Then we determine the stretch 1y(R, t) from the volume expansion that is the
integration of QC from the spherical center to radius R, and calculate the stretch A.(R, t) from the solvent concentration C(R, t) using
Eq. (54). With the values of 1,(R, t) and 1y(R,t), we can calculate the plastic stretch rates i‘: (R,t) and i‘; (R, t) with Egs. (48-52) and Eqs.
(25-26), and subsequently obtain the plastic stretch 22 (R, t) and #(R, t) by using the same equation shown in Eq. (43). In the reference

a b
2 30
. & ———radial stress crf ;
1\ > A
: Ry R = —— hoop stress o, :
0 T D L ) © 20455
— A > t=1x10%s 8 f ~
(] 05
% : ,"" t:5X1°"5I /’ é b 5x10% =
e K e o 20 |
o H ! 2 10- i
g 5 [ i € i
v 4T .l 8 =
. I c 15 i
——radial stress ¢, g T 03 04 05 \
1 7]
o O wr
. hoop stress o, =
0.0 02 04 06 00 02 04 06
position R (mm) position R (mm)
C d
— 1.06- Aﬁ
124 ——)° JR—
r
1.044
<
2 S
5117 = 1.02
) t 1.024
z 2
g o)
= < 1.00
1.0
: i . . . 0.98 : . . : . i
00 02 04 06 0.0 02 0.4 06

position R (mm)

position R (mm)

Fig. 10. The stress and stretch distribution in the core-shell structure when t = 1 x 10* s (dash-dot lines), t =5 x 10* s (solid lines) and t =1 x
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state, Eq. (44) can be also rewritten as

do, 2(69—0,) A
_ A 56
dR R Ao (56)

Thereafter, we obtain the radial stress by integrating Eq. (56). Meanwhile, we calculate the hoop stress by using Eq. (46). Finally,
we update the chemical potential y(X3,t) by employing Eq. (45) for the next time increment. We repeat above computation steps to
obtain all these eight functions. In the numerical simulation of solvent diffusion into the glassy polymer sphere, we use the parameters
from Table 1 (PMMA-methanol system) if not otherwise specified.

Fig. 9b plots the solvent concentration (or the volume change) in the polymer sphere with a radius of 0.64 mm along the radius at
different times, and we use all the parameters from Table 1 to best fit the experimental results from reference (Li and Lee, 2006). The
steady state of diffusion in the core-shell structure is achieved when the penetrant’s concentration profile in the transition zone be-
comes self-similar. In the steady state, we can define diffusion front and fully swollen front and the width of the transition zone which is
the distance between diffusion front and fully swollen front as shown in Fig. 9b. The width of the transition zone is 126 ym, which is
comparable with the experimental value of around 90 ym (Nixdorf et al., 2019). Fig. 9c shows the moving distance of fully swollen
front versus time (t — t;), where the induction time ¢; is defined as the time required to reach the fully swollen state on the spherical
edge. In a spherical core-shell structure, the moving velocity of the fully swollen front has two stages depending on its distance from the
center. After the spherical edge is fully swollen, the moving velocity of the fully swollen front is almost a constant as long as the moving
distance of the fully swollen front is less than 50% of the radius. Beyond this point, the diffusion velocity increases. These results are
consistent with the experimental observations (Li and Lee, 2006).

Knowing the stress distribution in the core-shell structure is important for understanding the diffusion process in the glassy
polymer. Fig. 10a illustrates the radial and hoop stress distribution in the core-shell structureatt =1 x 10*s,t=5 x10*sandt =1
x 10° s, corresponding to Fig. 9. As shown in Fig. 10a, the hoop stress and radial stress in the dry core remains constant and in a tensile
state. In the swollen shell, the hoop stress is compressive, while the radial stress is tensile. Furthermore, the hoop stress is nearly
constant in the fully swollen shell. In the swollen zone, the radial stress is tensile and gradually decreases to zero at the surface.
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Comparing the stresses in element “A” att =5 x 10* sandt = 1 x 10° s in Fig. 10b, the latter exhibits a little higher stress of element
“A” in the transition zone. According to Eq. (51), this larger stress of element “A” leads to a higher plastic deformation rate, indicating a
faster diffusion velocity, which is consistent with the result in Fig. 9c. The stress distributions associated with the stretches, which are
shown in Fig. 10c—d.

Interestingly, case II diffusion in the core-shell spherical structure also exhibits size effects. We calculate the moving velocity of the
swollen front in the core-shell spherical structure based on the time-dependent moving distance of the fully swollen front as shown in
Fig. 9, considering only the moving distance of less than 50% of the radius. Fig. 11a plots the moving velocity of the swollen front as a
function of the radius of the sphere using all the same parameters from Table 1. The velocity of the swollen front increases as the radius
decreases. Our theoretical predictions agree well with the experimental data except for the case when the radius of the sphere is less
than 0.15 mm, where the predicted swollen front velocity is larger than the experimental data. This velocity increase is related to the
fact that the sphere radius is comparable with a critical length of the diffusion-relaxation relation, at which the diffusion time is
comparable with the relaxation time of plastic flow.

In previous models, the induction time is assumed to be a material constant, which contradicts with experimental observations (Li
and Lee, 2006). In our model, the induction time is also highly size-dependent as shown in Fig. 11b. Both our theory and Li’s ex-
periments indicate that the induction time approaches zero when the radius of the PMMA bead is less than 0.15 mm for the
PMMA-methanol system. Moreover, our theory predicts that the width of the transition zone is also size-dependent, as shown in
Fig. 11c. In summary, the diffusion velocity, the induction time and the width of the transition zone are all size dependent for case II
diffusion in a polymer sphere.

5. Scaling behavior of case II diffusion in the glassy polymer
Vrentas et al. (1975) made a notable contribution to the study of polymer-solvent systems by introducing a dimensionless quantity,

the diffusional Deborah number, which is defined as

A characteristic relaxation time
De=—= —— . (57)
®  characteristic diffusion time

The characteristic time for penetrant diffusion is written as ® = % with L being a characteristic diffusion length and D being the
diffusion coefficient of the penetrant in the polymer. Our model has two characteristic relaxation times of plastic flow of polymer
chains: Ay = Z—iexp(—Mr/)) for volumetric deformation and Agyear = %exp(—M(/)) for shear deformation, which depend on the volume
fraction of solvent in polymers. According to the data from Table 1, the characteristic relaxation time for shear deformation, Aspeqr, is
significantly smaller than 1 s; and it can be ignored, as the timescales in experiments are much longer than 1 s. The time scale for the

volumetric plastic deformation is more relevant for case II diffusion. Thus, we can rewrite Eq. (58) and define a critical length as

L — [Pot mexp(=M) (58)
Hp

Based on Eq. (58), we can obtain the maximum critical length as L™ = e%/[ DE—ZO, when ¢ = 2. The maximum value of the critical

length only depends on material properties. When the sample size is comparable to the maximum critical length L"*, the characteristic
diffusion time is comparable to the characteristic time of plastic flow. This results in a situation where the solvent in the transition zone
does not have enough time to reach chemical equilibrium. Consequently, the stretch in the spring of element “A” cannot fully relax, as
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Fig. 12. The critical length for the case II diffusion of a solvent in a glass polymer as a function of the solvent concentration: (a) PS-hexane system
and (b) PMMA-methanol system.
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shown in Fig. 6, causing a tensile stress in the transition zone. However, as the sample size becomes much larger than the maximum
critical length L™, the elastic strain in the spring of element “A” in the transition zone can almost fully relax through the plastic flow of
the dashpot of element “A”, as shown in Fig. 8. This elastic-to-plastic transition in element “A” leads to a slower propagation of the
diffusion front, which is consistent with the Argon’s theory (Argon et al., 1999).

Considering the parameters in Table 1, we plot the length scale L, as a function of the volume fraction of solvent in PS-hexane
system and PMMA-methanol system as shown in Fig. 12. For PS-hexane system in Fig. 12a, the maximum critical length L?* is
about 127 nm. Thus, the total stretch and plastic stretch in the diffusion front in the 158 nm PS film is very different as shown in Fig. 6.
But the difference between the total stretch and plastic stretch in the 20 ym PS film is negligible as shown in Fig. 8. Fig. 12b shows that
PMMA-methanol system has a maximum critical length L7® of 14.2 ym. The minimum radius of the polymer sphere we considered in
Section 4 is 100 um, which is seven times of maximum critical length LT**. We observe a dramatic increase in the propagation velocity
of the diffusion front when R < 150 ym as shown in Fig. 11a.

6. Concluding remarks

In this article, we formulate a 3D model of case II diffusion in glassy polymers and compare our theoretical predictions with several
different experimental studies. In the formulation, we integrate the elasto-visco-plastic constitutive model of the glassy polymer, the
Flory-Rehner theory for polymer gels and the nonequilibrium thermodynamics. Our model predicts the stress field in the diffusion
front which has been often ignored in previous studies. As the stress field is highly dependent on the sample size, the diffusion front
velocity, the induction time and the width of diffusion front are all size-dependent. In particular, we predict that the moving velocity of
the diffusion front dramatically increases when the sample size is comparable to the critical size given in Eq. (58). Our model also
reveals that the propagation of the diffusion front accelerates as the diffusion distance is greater than 50% of the initial radius in the
core-shell structure, which also agrees with the previous experimental observation. Even though we only studied the thin film and the
core-shell structure as examples, the model proposed in this article can be used to study case II diffusion in glassy polymers with
arbitrarily complex shapes. Admittedly, to make quantitative predictions for more general cases, complex numerical simulation code
or integrating our model with finite element analysis tools, such as COMSOL MULTIPHYSICS, will be needed.
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