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Abstract Understanding factors influencing carbon effluxes from soils to the atmosphere is important in a
world experiencing climatic change. Two important uncertainties related to soil organic carbon (SOC) stock
responses to a changing climate are (a) whether soil microbial communities acclimate or adapt to changes in soil
temperature and (b) how to represent this process in SOC models. To further explore these issues, we included
thermal adaptation of enzyme-mediated processes in a mechanistic SOC model (ReSOM) using the
macromolecular rate theory. Thermal adaptation is defined here to encompass all potential responses of soil
microbes and microbial communities following a change in temperature. To assess the effects of thermal
adaptation of enzyme-mediated processes on simulated SOC losses, ReSOM was applied to data collected
from a 13-year soil warming experiment. Results show that a model omitting thermal adaptation of enzyme-
mediated processes substantially overestimates observed CO, effluxes during the initial years of soil warming.
The bias against observed CO, effluxes was lower for models including thermal adaptation of enzyme-
mediated processes. In addition, for a simulated linear 3°C soil warming over 100 years, models including
thermal adaptation of enzyme-mediated processes simulated SOC losses of a factor of three smaller than models
omitting this process. As thermal adaptation of microbial community characteristics is generally not included in
models simulating feedback between the soil, biosphere and atmosphere, we encourage future studies to
assess the potential impact that microbial adaptation has on soil carbon — climate feedback representations in
models.

Plain Language Summary A major uncertainty in projecting how much soil organic carbon (SOC)
will be converted to CO, as a consequence of climate change is related to how soil microbes may adapt to
increasing soil temperatures. While this “microbial thermal adaptation™ has been shown to occur in short-term
lab incubation experiments, its effect on SOC cycling on a decadal timescale is not clear. To address this
knowledge gap, a mechanistic SOC model was used to simulate data collected from a 13-year soil warming
experiment, to assess how microbial thermal adaptation affects predicted SOC losses upon soil warming. The
model results show that incorporating microbial thermal adaptation into the model led to reduced CO, effluxes
from the soil to the atmosphere compared to the common approach of omitting this mechanism. Our results
imply that projected SOC losses for the decades to come may be reduced when this mechanism is incorporated
in land models. We therefore advocate for more research on the mechanisms controlling microbial thermal
adaptation, and how to implement this mechanism in SOC models.

1. Introduction

Changes in global soil organic carbon (SOC) stocks in the coming decades will depend on how both carbon
inputs, through primary productivity, and carbon losses, through organic carbon (OC) mineralization, are affected
by global change (Kirschbaum, 2000; Melillo et al., 2011). As soils down to 3 m depth contain 2—6 times the
amount of carbon present in the atmosphere (Scharlemann et al., 2014; Schuur et al., 2016), the transfer of even a
small fraction of this SOC to the atmosphere in the form of CO,, if not balanced by increasing inputs, can cause a
positive carbon — climate feedback (Friedlingstein et al., 2001, 2014). There are, however, large uncertainties in
the predicted direction and magnitude of changes in SOC stocks in the coming decades where terrestrial eco-
systems are predicted to range from being a small source to a large sink of C (Friedlingstein et al., 2014; Jones
et al., 2013; Mekonnen et al., 2018; Todd-Brown et al., 2014).
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Conventional SOC models assume that the stability of SOC is mainly due to its chemical structure (Parton
et al., 1987) following the humification theory, which has been challenged (Kleber & Lehmann, 2019; Lehmann
& Kleber, 2015). These relatively simple conventional SOC model structures ignore many known processes
affecting soil organic matter (SOM) dynamics (Bradford et al., 2016). Using emerging knowledge of SOC
cycling, recently-developed models explicitly incorporate soil microbes (Grant et al., 2017; Riley et al., 2014;
Wieder et al., 2014), extracellular enzymes (Schimel & Weintraub, 2003; Tang & Riley, 2015), and interactions
between organic molecules and minerals (Ahrens et al., 2015, 2020; Dwivedi et al., 2017), often in combination.
While these more mechanistic models can accurately simulate SOC concentrations on a regional scale (Zhang
et al., 2020), other studies document that the response of these models diverges from the response of conventional
models to changes in environmental variables (Abramoff et al., 2018; Sulman et al., 2018; Wieder et al., 2013,
2018). For instance, model intercomparison studies have demonstrated that this new generation of models pro-
duce divergent responses of SOC stocks to soil warming (Sulman et al., 2018; Wieder et al., 2018). One of the key
elements to improve microbially-driven SOC models, and thus predictions for the future, is to advance under-
standing of soil warming effects on microbially-driven processes, and thereby improve their representation in soil
biogeochemical models.

To address this need, multiple soil warming experiments have been initiated over the past several decades, with
the majority of these experiments warming the topsoil layers by 3—5°C. In many soil warming experiments, it has
been observed that soil CO, efflux (F¢o,) increases upon initial soil warming, but falls back to pre-warming levels
after 3—10 years (Jarvis & Linder, 2000; Melillo et al., 2002; Oechel et al., 2000; Rustad et al., 2001). However,
for longer-term soil warming experiments the Fro, from heated plots did not return to values similar to the control
plots after 13 years (Contosta et al., 2011), or showed an oscillatory behavior (Melillo et al., 2017). Two hy-
potheses have been put forward to explain the decreasing Fro, after multiple years of warming: substrate
depletion and microbial thermal adaptation (Bradford, 2013). The substrate depletion hypothesis posits that upon
soil warming, organic substrates that are readily available to soil microbes are consumed at increased rates,
thereby depleting this microbial resource more rapidly than it can be replenished by new inputs. The thermal
adaptation hypothesis posits that soil microbial communities adjust to increased soil temperatures, through
physiological adjustments of individuals, shifts in microbial community composition, evolutionary adaptation, or
a combination of these processes. This adaptation then decreases the rate of heterotrophic soil respiration per unit
microbial biomass (Bradford, 2013). In the present study, the term “thermal adaptation” is used to encompass all
potential microbial responses following a change in temperature, following Bradford (2013).

While the occurrence of substrate depletion upon soil warming has been confirmed experimentally (Bradford
et al., 2008; Pold et al., 2017), the importance of microbial thermal adaptation in response to soil warming is a
topic of debate (Bradford, 2013; Bradford et al., 2009; Hartley et al., 2009). On the one hand, multiple experi-
mental studies have found no evidence of warming-induced microbial thermal adaptation (Hartley et al., 2007;
Vicca et al., 2009; Walker et al., 2018). In addition, studies using theoretical models have shown that microbial
thermal adaptation does not need to be invoked as a mechanism to explain the return of heterotrophic soil
respiration to pre-warming values (Allison et al., 2010; Eliasson et al., 2005; Kirschbaum, 2004; W. Knorr
et al., 2005; Sulman et al., 2018; Walker et al., 2018). However, reproducing the ephemeral response of het-
erotrophic soil respiration to soil warming, using a model without microbial thermal adaptation, does not prove
that adaptation did not occur (Bradford, 2013). Allison et al. (2010), for example, showed that a microbially-
explicit SOC model with either thermal adaptation of microbial communities or substrate depletion could
theoretically reproduce the pattern of a short-term response of soil heterotrophic respiration to soil warming. Their
model results were, however, not validated against observations.

In contrast, other studies did confirm the presence of microbial thermal adaptation. Natural temperature gradient
studies have shown that soil microbial communities are adapted to their local temperature regime (Nottingham
etal., 2019). Long-term field experiments (DeAngelis et al., 2017; Melillo et al., 2017; Rousk et al., 2012) and lab
incubations where substrate depletion was prevented (Barcenas-Moreno et al., 2009; Bradford et al., 2008, 2010;
Dacal et al.,, 2019) have both shown microbial thermal adaptation. These results are consistent with the
“compensatory hypothesis” (Bradford et al., 2019; Dacal et al., 2019), which attributes a negative relationship
between microbial biomass specific respiration (R,) and temperature to evolutionary trade-offs between the
stability of the binding structure of enzymes and the rate at which they mediate metabolic activity. These
evolutionary trade-offs arise from the fact that temperature selects for enzymes that have different conformational

VAN DE BROEK ET AL.

2 of 21

ASULOIT SUOWIWO)) dANEI) d[qeoridde ayy Aq pauIoA0S a1k Sa[dnIE V() SN JO SI[NI 10§ ATeIqIT dUIUQ) AJ[IA\ UO (SUONIPUOI-PUE-SULId)/W0d Ao[ImM"AIeIqI[our[uo//:sdp) SuonIpuo)) pue sua ], ay) 23S [$70z/10/60] uo A1eiqry aurjuQ A9[ip “ANsioatun preateH £q 6198000(F20T/6201°01/10p/wiod Aafim Areiqraurjuo-sqndnSe;/:sdyy wogy papeojumod ‘Z1 ‘40T ‘19686917



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Biogeosciences 10.1029/20241G008619

flexibilities. At high temperatures, enzymes have a low conformational flexibility because of their greater rigidity,
which is needed to maintain the binding between enzymes and substrates (i.e., high-temperature adapted en-
zymes). At low temperatures, in contrast, there is a selection toward enzymes with a higher conformational
flexibility and thus higher reaction rates at cooler temperatures (i.e., low-temperature adapted enzymes). These
evolutionary trade-offs imply that if soil temperatures increase, higher metabolic rates and thus higher hetero-
trophic F¢o, will initially take place with the existing low temperature-adapted enzymes. However, microbes may
acclimate by producing high-temperature adapted enzymes with a lower conformational flexibility, as they spend
more time in a structure that favors their binding to substrates. This theory thus predicts that R will decrease after
an initial increase upon soil warming. This thermal adaptation of enzyme-mediated processes and its emergent
effects on microbial respiration are tested in the present study (see Section 2.2.5). It should be noted that the
contribution of other mechanisms influencing the response of microbial respiration to enhanced temperatures
(e.g., declines in substrate availability) has to date not been disentangled (Bradford et al., 2019; Dacal
et al., 2019).

Studying the effect of thermal adaptation of enzyme-mediated processes on changes in SOC stocks on timescales
relevant to Earth system processes is challenging. Therefore, we used a mechanistic soil biogeochemical model
(ReSOM; Riley et al., 2022; Tang & Riley, 2015) to assess the importance of this process. We did so by applying
the model to data collected over a period of 13 years from a long-term soil warming experiment at Harvard Forest
(MA, USA) (Melillo et al., 2011). The advantage of this modeling approach is that indirect effects of soil warming
on the surface Fq, associated with heterotropic respiration (Fcp,) can be accounted for (e.g., substrate depletion
or changes in soil moisture content). We incorporated thermal adaptation of enzyme-mediated processes into
ReSOM by representing the relationships between soil temperature and enzyme activity using the macromo-
lecular rate theory (MMRT) (Hobbs et al., 2013). We simulated scenarios for Frq, in the control and heated
(+5°C) treatments with (a) no thermal adaptation of enzyme mediated processes, (b) optimum-driven thermal
adaptation, and (c) enzyme rigidity thermal adaptation. The two latter scenarios were proposed by Alster
et al. (2020).

We assessed how including thermal adaptation of enzyme-mediated processes affects (a) simulations of the short-
term increase in Fgp, upon initiation of soil warming by simulating an existing soil warming experiment, and (b)
predictions of changes in the SOC stock in response to soil warming on a centennial time scale, for a hypothetical
soil warming experiment. We hypothesized that incorporating thermal adaptation of enzyme-mediated processes
into a process-based SOC model would lead to predictions of lower SOC losses upon soil warming.

2. Materials and Methods
2.1. Study Site

The data used in the model simulations were collected from a long-term soil warming experiment located at the
Harvard Forest Long-term Ecological Research (LTER) site in the northeastern United States (Melillo
etal., 2011). At the experimental site (Barre Woods; 42.48°N, 72.10°W), initiated in 2003, a 30 X 30 m plot was
continuously warmed (45°C above the ambient soil temperature) using heating cables buried at 10 cm depth
spaced 20 cm apart. The ambient soil temperature is recorded at 10-min intervals in an adjacent 30 X 30 m control
plot. The vegetation at the Barre Woods Soil Warming Study consists of an even-aged, mixed deciduous forest,
dominated by Quercus rubra, Q. velutina, and Acer rubrum (Melillo et al., 2011). The soils at the site are coarse-
loamy over sandy or sandy-skeletal mesic Typic Dystrudepts, with a pH of 5.2 in the organic horizon and 5.5 in
the mineral soil (Melillo et al., 2011). The mean annual temperature is 8°C and mean annual precipitation is
1,180 mm, evenly distributed throughout the year. Detailed information about the research site and the experi-
mental set-up can be found in (Frey & Melillo, 2021; Melillo et al., 2011). The measured data show that thermal
adaptation of Fgo, has taken place at Barre Woods, similar to another soil warming experiment at the same
research site (Prospect Hill, Melillo et al., 2017), as shown in the Text S10 in Supporting Information S1.

2.2. Model Description

2.2.1. ReSOM

The ReSOM model (Reaction-network-based model of SOM and microbes; Riley et al., 2022; Tang &
Riley, 2015) was used to assess the effect of thermal adaptation of enzyme-mediated processes on SOC dynamics.

VAN DE BROEK ET AL.

3 of 21

ASULOIT SUOWIWO)) dANEI) d[qeoridde ayy Aq pauIoA0S a1k Sa[dnIE V() SN JO SI[NI 10§ ATeIqIT dUIUQ) AJ[IA\ UO (SUONIPUOI-PUE-SULId)/W0d Ao[ImM"AIeIqI[our[uo//:sdp) SuonIpuo)) pue sua ], ay) 23S [$70z/10/60] uo A1eiqry aurjuQ A9[ip “ANsioatun preateH £q 6198000(F20T/6201°01/10p/wiod Aafim Areiqraurjuo-sqndnSe;/:sdyy wogy papeojumod ‘Z1 ‘40T ‘19686917



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Biogeosciences 10.1029/20241G008619

ReSOM is a microbially-driven model that accounts for interactions between SOC, enzymes, minerals, and
microbes to simulate SOC dynamics (Figure S13 in Supporting Information S1). Organic monomers and enzymes
can adsorb onto mineral surfaces, protecting monomers from microbial uptake and preventing enzymes from
catalyzing reactions. The model represents competition for monomers between microbes and minerals and
competition for enzymes between polymers and minerals. These competition mechanisms are simulated using the
equilibrium chemistry approximation (ECA, Tang & Riley, 2013). Depolymerization of polymers into monomers
is simulated as follows:

E'S'VE,max
kes (1+i+£+ﬂ>

kES kES kME

Fs= )]

where F is the rate of depolymerization (gC m~ day™"), E is the extracellular enzyme pool (g C m™>), § is the
polymeric OC pool (gC m™), Vi max the maximum rate of depolymerization (day™"), and k is the affinity
parameter (2C m™>) for decomposition (kgg) and sorption of enzymes to minerals (k,,z). Uptake of DOC by soil
microbes is simulated as:

-B-D-V,
FD= Z B,Max (2)
kBD<1+&+%+ M)

kup

where z is a scaling parameter for transport density (unitless), B the microbial biomass pool (gC m™>), D is the
monomeric OC pool (gC m™2), and & is the affinity parameter (gC m™~>) for microbial uptake of DOC (kgp) and
sorption of monomers to minerals (k).

Microbes are simulated using the dynamic energy budget (DEB) theory (Kooijman et al., 2008), which partitions
microbial metabolism into structural maintenance, structural growth, and extracellular enzyme production. The
DEB model used here includes a microbial internal reserve pool, serving as a buffer between substrate uptake and
microbial cell metabolism, following Tang and Riley (2015). During each model time step, the turnover rate of the
internal reserve pool determines how much energy is available for microbial metabolism. Before microbial
structural growth or enzyme production take place, energy requirements for microbial maintenance need to be
met. The remaining energy is subsequently used for microbial structural growth and extracellular enzyme pro-
duction, which are assumed to have equal priorities. Microbial turnover is simulated as a density-dependent
process, as implemented in a previous version of ReSOM (Sulman et al., 2018) following Georgiou et al. (2017).

In ReSOM, CO, is produced at different stages of microbial processing of SOC, with each step having a distinct
substrate use efficiency (SUE). These stages are microbial uptake of substrate (SUE = 0.5), microbial growth
(SUE = 0.8), and extracellular enzyme production (SUE = 0.8) (Tang & Riley, 2015). The overall carbon use
efficiency (CUE) is calculated as:

B> + Pegim .
F,

mon

CUE=1-

where ngga" is CO, produced during microbial metabolism (sum of maintenance respiration and CO, production

. . -3 -1 sim ; : ; .
during growth and enzyme production; gCm™" d™"), Pegy." is CO, produced during monomer uptake by microbes
(gCm™>d™"), and F,,, is the total flux of monomers to microbes (gC m~> d™"), before assimilation CO, losses

occur. For the present study, the Matlab® version of ReSOM used in Sulman et al. (2018) was adapted as
described in the following sections. For a full description of ReSOM, reference is made to Tang and Riley (2015).

2.2.2. Organic Horizon Compartment

The original version of ReSOM, as described in the previous section, was developed to simulate SOC dynamics in
a mineral soil. As the experimental site at Barre Woods has an organic horizon, we added an organic horizon
compartment to the ReSOM model (see Figure S14 in Supporting Information S1). The simulated organic horizon
consists of mainly organic matter with a minor fraction of mineral-associated OC (ca. 6% of total OC in the
organic horizon), as reported by Pold et al. (2017) for a nearby soil warming experiment. In the simulated organic
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horizon, OC enters the organic horizon as either metabolic or structural litter, based on the lignin to N ratio of
plant inputs (see Text S7 in Supporting Information S1). Both structural and metabolic litter are depolymerized
into one monomer pool, with specific enzymes mediating this process. Monomers can be taken up by r- and K-
strategists, or be adsorbed onto soil minerals, thereby protecting monomers from microbial uptake. It should be
noted that in the soil compartment (as described in the previous section), only one microbial pool is simulated.
Enzymes in the organic horizon can be adsorbed onto minerals, thereby preventing them from mediating the
depolymerization of metabolic and structural litter. The equations governing the transformations of OC in the
organic horizon are equal to the ones used in the mineral soil (see Tang & Riley, 2015).

2.2.3. Soil Moisture

As the original ReSOM model does not simulate the effect of soil moisture on microbial processing of SOC, we
applied the equations derived by Yan et al. (2018):

Ko+ 0,,( 0\
ﬁn = m (g—op) for 6 < H(IP (4)
b
= (;’_ 99 ) for 96, )
op

2.2.4. Effect of Temperature on Process Rates

There are three categories of temperature-dependent processes in ReSOM: (a) equilibrium reactions, (b)
nonequilibrium reactions, and (c) enzyme-mediated reactions (Abramoff et al., 2019; Tang & Riley, 2015).
Equilibrium reactions include processes of reversible binding (monomer-mineral, enzyme-polymer, and enzyme-
mineral) and microbial maintenance (Tang & Riley, 2015). The temperature dependency of the affinity param-
eters is simulated based on the transition state theory (Eyring, 1935):

Kro(D) = KT e|-272 (1= )| ©

Where K(T)) is the reference affinity (gC), AGg is the Gibbs free energy change of the equilibrium reaction (kJ
mol_l), R is the gas constant (J K~! mol_l), T is the current temperature (K) and T, is the reference temperature
(K). Nonequilibrium and non-enzyme reactions involve the maximum rates for adsorption of monomers and
enzymes, of which the temperature-dependency is calculated as (Tang & Riley, 2015):

VarolT) = V(o) 7 exp| =232 (1 ) @
where V(T,) is the reference maximum rate (d™') and AGygq is the Gibbs free energy change of the nonequi-
librium reaction (kJ mol™"). Enzyme-mediated processes include the uptake of monomers, depolymerization of
polymers by extracellular enzymes, and microbial reserve turnover. In previous applications of ReSOM, the
temperature-dependency of these processes was simulated based on the fraction of enzymes inactivated through
reversible denaturation at a given temperature, resulting in an optimum temperature at which the fraction of active
enzymes is maximal. In order to simulate thermal adaptation of enzyme-mediated processes in ReSOM according
to established hypotheses (Alster et al., 2020), this formulation has been replaced with the macromolecular rate
theory (Hobbs et al., 2013), as presented in Section 2.2.5.

2.2.5. Temperature Sensitivity and Thermal Adaptation of Enzyme-Mediated Processes

The temperature sensitivity of enzyme-mediated processes is implemented in ReSOM according to the macro-
molecular rate theory (MMRT; Hobbs et al., 2013). Specific processes leading to thermal adaptation of enzyme-
mediated processes (e.g., evolutionary trade-offs between the structure and function of enzymes or changes in
microbial community composition) were not identified in this study, but we simulated the combined effect of
these processes on rates of enzyme-mediated processes. The MMRT accounts for declines in enzymatic activity at
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temperatures below which denaturation of enzymes takes place, resulting in a unimodal relation between tem-
perature and rates of enzymatic processes. Since biological reactions are generally mediated by macromolecules
with large heat capacities (e.g., enzymes), the formulation of the MMRT renders the shape of the temperature
response curve a function of the change in heat capacity between the enzyme-substrate and the enzyme-transition
state complex (Hobbs et al., 2013):

L T\ AH:L +ACS(T—Ty) AS: + ACh ((T) — Ln(T

in() = (5T} _ A5+ ACHT =To) | AS}, +AC) (n(T) = Ln(Ty) ©
h RT R

where k is the rate, &, is the Boltzmann constant (J K™Y, h is Planck's constant (J s), R is the universal gas constant

(kJ K™' mol™"), T'is the temperature (K), 7}, is the reference temperature (K), AHi0 and ASi}0 are the differences

in enthalpy and entropy between the transition state and the ground state at 7, (kJ mol™" K™') and AC,i, is the
difference in heat capacity between the transition state and the ground state at constant pressure (kJ mol~' K™1).
Negative values of AC}; result in a negative curvature of the temperature-rate relationship, with larger negative

values resulting in a steeper and narrower curve. More detailed information about the MMRT is provided in
Hobbs et al. (2013), Schipper et al. (2014), and Arcus et al. (2016).

Applying (Equation 8) results in rate values (k) between 0 and oo. To avoid correlations between values of
maximum process rates (V,,,,,) and the value of k, we used the MMRT to calculate a rate modifier in the range [0—
1] by dividing the calculated values of k by the value of k at the optimum temperature (see below). The rate
modifier calculated using MMRT was applied to (a) the maximum DOC uptake by microbes (Vi .,), (b) the
metabolic turnover rate of microbes (k), (¢) the maximum SOC degradation rate (Vg ,,,), and (d) the maximum
and V. ). We assumed that

rate of desorption of monomers and enzymes from soil minerals (V, max_des_enz
other temperature-dependent, non-enzyme-mediated processes were not subjected to thermal adaptation.

max_des_mon

The MMRT model has four parameters that need to be specified: T, AC};, AH?D, and ASi}O. To limit the number
of parameters to estimate, we followed the recommendation by Alster et al. (2020) to fix the value of T, to 4-10 K
below the value of T, As the value of T, does not strongly affects the model fit (Alster et al., 2016; Schipper
et al., 2014), we fixed its value at 6 K below the median T, of 305.9 K found in a meta-analysis by Alster
et al. (2018), resulting in a value for T}, of 299.9 K. Furthermore, we used the strong linear relationship between
AH; and AS; from the meta-analysis by Alster et al. (2018) to obtain that AS; = 0.0033 AH; — 204.01
0 0 0 0
(R? = 0.91, data present in their supplementary data, only data obtained for soil environments were used). The

value for T, can be calculated by setting the first derivative of (Equation 8) to zero, for AC}L; < 0 (Arcus
et al., 2016):

AH; — ACy T,

Ty =~ "0 ©)
—ACy —R

To obtain a formulation of how T,y varies with soil temperature in the thermal adaptation scenarios (see below),

the value for T,

opt Was optimized during model calibration, while the value for AHiTO was calculated by re-

arranging (Equation 9):
AH}, = Ty (—AC}E, - R) +ACLT, (10)

In this study, we implemented three scenarios of thermal adaptation of enzyme-mediated processes. The first
scenario assumed no thermal adaptation, that is, a static MMRT curve irrespective of fluctuations in soil tem-
perature. In the other two scenarios, the shape of the MMRT curve was a function of the average soil temperature
over n days prior to the simulated day (#,q,p,)- TWo hypotheses proposed by Alster et al. (2020) were applied: (a)
the optimum driven scenario and (b) the enzyme rigidity driven scenario (Figure 1).

No adaptation scenario. This scenario (Figure 1a) assumes that the relationship between soil temperature and the
rate of enzyme-mediated processes is independent of soil temperature fluctuations. Two parameter values need to
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Figure 1. Relationships of rate modifiers for enzyme-mediated processes and soil temperature for the three thermal adaptation scenarios tested in this study for a situation

in which the soil temperature increases by

5 K: (a) no thermal adaptation, (b) optimum driven, and (c) enzyme rigidity (with a wider curve upon soil warming).

be optimized in this scenario to obtain the relationship between temperature and the rate modifier, 7, and ACS,
which remain constant throughout the simulation.

Optimum driven scenario. In this scenario (Figure 1b), the value for T, is a function of soil temperature, with
T,

opt increasing with temperature while the value for ACf, remains constant. The temperature affecting 7 is

calculated as the mean soil temperature over a fixed number of days prior to the simulated day (4,0, With the
relation between T, and the temperature during f, g,y (Tyye) being assumed to be linear:

Topl =ar Tavg+ﬂT (]1)

with o being the slope (K K™!) and f, the intercept (K). The variable o, thus represents the change in Top perK
change in soil temperature. This approach results in four MMRT parameters that need to be optimized: 7,

AC}, ar, and .

dapt>

Enzyme rigidity scenario. In this scenario (Figure 1c), an increase in soil temperature causes AC;; to become less

negative, resulting in a wider curve, and 7,

opt to increase. The relationship between T, and T, is calculated as in

opt avg

(Equation 11), while the relation between AC‘; and T, is calculated as:
AC} = ac Tyg + e (12)

with a being the slope (kJ mol™" K~?) and S the intercept (kJ mol™" K™'). The variable a thus represents the
change in ACi per K change in soil temperature. This approach results in five MMRT parameters that need to be

optimized: f,q,ps @7, B> A, and Pe. For a mechanistic explanation about these scenarios, reference is made to
Alster et al. (2020).

2.3. Data Processing

Data to drive and calibrate ReSOM were obtained from multiple sources reporting data collected from Harvard
Forest, as described in detail in the Supplementary Information S1. Briefly, to calculate rate modifiers based on
soil temperature and soil moisture, available data on soil and air temperature and soil moisture were obtained and
processed (Boose & Gould, 2004; Frey & Melillo, 2021). Aboveground plant carbon inputs were calculated using
data on annual litterfall (Finzi et al., 2019, 2021), while the temporal distribution of litterfall within the year was
calculated using data on litterfall at different times during the year (Munger & Wofsy, 2021). Litterfall inputs to
the organic horizon were divided into structural and metabolic carbon following Parton et al. (1987), using data
from Frey and Ollinger (2021) and Magill et al. (2004). The magnitude of belowground OC inputs was obtained
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using data from Finzi et al. (2020), while the temporal variability of belowground OC inputs within a year was
calculated using data from Abramoff and Finzi (2016). Model parameter values were optimized by comparing
modeled SOC stocks to SOC stock measurements down to 30 cm in the Barre Woods control plot in 2011 (Finzi
et al., 2020) (no SOC stocks for heated treatments were reported) and Fo, measurements, which were made
monthly during the growing season (April to November) every year starting in 2003 (Frey & Melillo, 2021).
Measured Fro, were partitioned into autotrophic and heterotrophic respiration components based on previous
calculations made at Harvard Forest (Savage et al., 2018), of which the heterotrophic Fro, was used as model
calibration data. The measured total SOC stock was partitioned to be comparable to the model pools using data
from DeAngelis et al. (2017), Gaudinski et al. (2000), McFarlane et al. (2013), and Pold et al. (2017). Detailed
information about data processing is provided in the Sections 1.1-1.9 in Supporting Information S1.

2.4. Model Application
2.4.1. Application to Barre Woods

While there are three soil warming experiments at Harvard Forest (Contosta et al., 2011; Melillo et al., 2011,
2017), ReSOM was only applied to the experiment at Barre Woods. The reason for this choice is that this warming
experiment consisted of 30 by 30 m megaplots which encompass whole trees, enabling us to account for the effect
of differences in litterfall between the control and heated plots. This is not possible for the other two experiments,
which consist of smaller plots (3 by 3 or 5 by 5 m). ReSOM was applied to the soil warming experiment at Barre
Woods from the onset of the experiment (May 2003) until 2016, and model output was produced at a 1-day time
step. The model simulated the evolution in the SOC stock in the organic horizon and the mineral soil to a depth of
0.3 m, and the resulting F¢o, from these model compartments. A model spin-up was run for a period of 100 years
to equilibrate the SOC content at the 2003 experiment onset. This time span was sufficient to obtain modeled SOC
pools at steady state. After the spin-up was run, both the control and heated treatments were simulated inde-
pendently with the same initial conditions after spin-up. Thermal adaptation was only simulated to occur for
microbial enzyme-mediated processes to assess the emergent effect on SOC stocks and Feq,. To test how thermal
adaptation of enzyme-mediated processes affects modeled SOC stocks and Fq,, the model was run using the
three thermal adaptation scenarios (see Section 2.2.5). Thermal adaptation was implemented to occur throughout
the entire simulation, including spin-up.

2.4.2. Model Calibration

The number of model parameter values that was optimized differed for the three thermal adaptation scenarios: 16
for the no thermal adaptation scenario, 18 for the optimum driven scenario, and 19 for the enzyme rigidity
scenario. Parameter optimization was performed in Matlab® using a genetic algorithm. This algorithm uses
concepts from evolutionary theory, such as selection, crossover, and mutation, to modify the sets of parameters
tested during every iteration of the optimization procedure to optimally explore the parameter space. The genetic
algorithm was run with a population size of 360 individuals (i.e., parameter sets) until the fitness value did not
improve for 15 consecutive iterations. The upper and lower bounds of parameter values allowed during cali-
bration are provided in Table S2 in Supporting Information S1.

To calculate the fitness values, the following measurements were compared to their modeled equivalent: the
measured heterotrophic F, for the control and heated treatment separately (109 data points per treatment), the
total SOC stock for the control treatment in 2011 (1 data point), and the distribution of this carbon into structural,
metabolic, and mineral-associated OC for the organic horizon, and polymeric and mineral-associated OC for the
soil layer. The errors for the modeled Fro, on the one hand, and SOC stocks on the other hand, were calculated
separately and combined in the overall model error. The error for modeled Fo, was calculated using the Nash-
Sutcliffe efficiency:

T (i—5)

(13)
Y (y,- - y)z

ENs = 1-—

where y; is the ith measurement, ¥; is the ith modeled value, and y is the average of measurement i to n. As the
genetic algorithm searches for the minimum error, the model error was formulated as —eyg + 1. This way, a
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perfect fit of the model results in an error of 0, while less good fits result in positive values. In addition, to detect a
systematic overunderestimation or overestimation of simulated Fp,, the mean absolute error (MAE) was

calculated:

n (35—,
MAE:Z(yl n)’z)

i=1

The errors for organic horizon and mineral soil OC stocks was calculated as the relative root mean squared error
(RRMSE):

2
ERRMSE = (u> (14)
y

Where y is the measured SOC stock in 2011 and j the modeled SOC stock. The overall model error (g,,) was
calculated as the sum of the individual errors (i.€., ey5 and egrysg, both unitless), with the errors for the Frq, given
a weight twice that of the individual errors for the organic horizon and soil OC stocks, as more data on F¢(, were
available. We note that while microbial and enzymatic properties have been measured at other soil warming
experiments at Harvard Forest (e.g., Mark A. Bradford et al., 2008; DeAngelis et al., 2015; Pold et al., 2017), it
was chosen not to include these in the model evaluation data. This would involve making adaptations to the model
so that it explicitly simulates the measured properties, which would mean including more model parameters that
need to be calibrated. Instead, these data are used for model evaluation (see Section 4.2). The optimized models
for each thermal adaptation scenario were compared using the Akaike Information Criterium (AIC):

SSR

where SSR is the sum of squared residuals for the measured versus modeled F(,, N is the number of observations,
and n,, is the number of calibrated model parameters.

2.4.3. Scenario Analysis

To assess the long-term effects of including thermal adaptation of enzyme-mediated processes in a SOC model,
the three calibrated models were run for the three thermal adaptation scenarios for 100 years over which a linear
soil warming of 3°C was imposed. This magnitude of warming was chosen as it is in the middle of the range of
predicted increases in atmospheric temperature in 2100 by the IPCC (IPCC, 2023). The same model inputs were
used as for the simulations of the Barre Woods site. First, the models were run for 100 years as described in
Section 2.4.1 up to the same date as soil warming in Barre Woods was initiated (May 2003). Subsequently, the
daily soil temperatures for the control run for the next 100 simulation years was equal to the average daily
temperatures of the respective days during the period 1978-2003, the soil temperature being linearly increased by
3°C during the 100 simulation years, relative to the soil temperature of the control treatment. It is noted that OC
inputs were not affected by soil warming in these projections, as the aim was to assess how the presence or
absence of microbial thermal adaptation influences SOC stocks and subsequent Fr,, without other confounding
factors.

3. Results
3.1. Parameter Optimization

The optimal values for the model parameters obtained using the genetic optimization algorithm are shown in
Table S1. The optimization procedure found a similar total error (i.e., the sum of (i) 2 (—eys_. + 1) + 2
(—ens—p + 1) and (ii) egrvsg; the subscripts ¢ and h refer to the control and heated plots, resp.) for the no thermal
adaptation (g, = 1.86; eys_. = 0.62, eys_, = 0.48, errmse = 0.06), the optimum driven (¢, = 1.89;
ens_c = 0.62, eys_j, = 047, egrmsg = 0.06) and enzyme rigidity (e = 1.84; eys . = 0.63, exs_, = 047,
errmse = 0.02) scenarios. Despite these similar errors, simulated changes in SOC content and net CO, loss over
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Figure 2. Simulated changes in soil organic carbon (SOC) stocks in the organic horizon (green lines), mineral horizon (brown
lines) and their combination (total C, black lines) for the control treatment (solid lines) and heated treatment (dashed lines).
Results are shown separately for the no thermal adaptation scenario (a), the optimum driven adaptation scenario (b), and the
enzyme rigidity scenario (c). The filled circles show October 2011 measured values for the SOC stock in the control
treatment for the organic horizon (green), mineral soil (brown), and their combination (black). The initiation of soil warming
is indicated by the vertical dashed line.

the 13-year period differed considerably between the models including and excluding thermal adaptation, as
shown in the next sections.

3.2. Simulated Changes in SOC Stocks

After parameter optimization, the measured organic horizon and mineral SOC stocks were accurately simulated
for the control treatments of all three scenarios (Figure 2). However, the magnitude of the simulated change in OC
in the organic horizon and mineral soil upon warming differed between the scenarios. The largest decrease in SOC
upon soil warming was simulated for the no thermal adaptation scenario (—31% and —15% for the organic horizon
and mineral soil, respectively), while the simulated decrease was substantially lower for the optimum driven (—4
and —3%) and the enzyme rigidity (—14% and —7%) scenarios. Including thermal adaptation of enzyme-mediated
processes thus led to a substantially lower simulated decrease in SOC stocks upon warming. No measurements of
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Figure 3. Daily observed and simulated surface heterotrophic CO, effluxes (F¢o,), combined for the organic horizon and mineral soil, for the control (a) and heated

(b) treatment for the three thermal adaptation scenarios. The initiation of soil warming is denoted by the vertical dashed line and black circles denote measured F,.

changes in SOC stocks were available for the site we simulated. However, we compare simulated and observed
heterotrophic Fgo, in Section 3.3.

In the organic horizon under the no thermal adaptation scenario, the relative losses from different SOC pools were
largest for metabolic (—39%) and structural (—37%) litter, while losses of mineral-associated OC were sub-
stantially smaller (—4%) (Figure S15 in Supporting Information S1). It is noted that in the simulated organic
horizon SOC consisted mainly of partially decomposed organic matter, with a minor fraction of mineral-
associated OC (Pold et al., 2017). A similar pattern of losses was observed in the optimum driven scenario,
albeit with smaller losses (—20% for metabolic litter, —12% for structural litter). In the enzyme rigidity scenario,
however, losses for structural litter (—27%) were larger than losses for metabolic litter (—17%). Under both
thermal adaptation scenarios, mineral-associated OC in the organic horizon slightly decreased upon soil warming
(—6% and —1% in the optimum driven and enzyme rigidity scenarios, respectively).

In the mineral soil horizon, a substantial amount of polymeric OC was lost upon warming under the no thermal
adaptation scenario (—31%), while the mineral-associated OC pool decreased by 3% (Figure S16 in Supporting
Information S1). The optimum driven and enzyme rigidity scenarios led to small gains in mineral-associated OC
(+4 and + 2% respectively), while the decrease in polymeric OC was less than under the no thermal adaptation
scenario (—13% and —20% for the optimum driven and the enzyme rigidity scenarios, respectively).

3.3. Modeled Versus Measured Fc(,

We calculated multiple goodness of fit measures to assess the extent to which the thermal adaptation scenarios
were able to reproduce measured Frq, (Figures 3 and 5, Table S3 in Supporting Information S1). These measures
were calculated separately for different time periods following the initiation of soil warming to assess model
performance during the initial peak in Fq, (years 1-4), in the subsequent years (years 5-13), and in all simulated
treatment years combined (years 1-13). This was done to emphasize the difference in model performance during
the peak in simulated F¢o,, and in subsequent years. Although the relative root mean squared errors (RRMSE)
were similar for the different scenarios when calculated for all simulated treatment years (0.61-0.67 gC m™>d ™),
there were substantial differences in the MAE and slope of the relationships between measured and modeled
daily Feo,.

The MAE:s calculated for all scenarios and all simulated treatment years combined were negative (Figure 5),
indicating an underestimation of the simulated average daily Fcq,. This overall negative MAE may indicate that
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Figure 4. Difference in simulated annual (a) and daily (b) CO, effluxes (F¢o,) between the control and heated treatment (AFco,) for the three thermal adaptation

scenarios, combined for the organic and mineral horizons. Positive values indicate that F¢.o, from the heated treatment were larger than from the control treatment. Black
dots in (b) indicate measured AF¢,, no data for observed annual differences is available. (c—e) Show measured versus modeled A, for the different scenarios, with red

dots indicating data for the first 4 years upon the initiation of warming. The units of mean absolute error (MAE) and RMSE are gC m~> d~'. MAE values with an * are

significantly different from 0.

the simulated OC inputs to the soil were underestimated. However, the MAE during the first 4 years of soil
warming for the no thermal adaptation scenario was positive and substantially larger (0.18 g€ m™>d~") compared
to both thermal adaptation scenarios (—0.34 and —0.20 gC m~> d™"). This difference was also apparent when
calculating the difference between annual Frp, in the heated and control treatment (AFgq,; gC m2 yr ")
(Figure 4a). The peak in A Fo, after the initiation of soil warming was lowest for the optimum driven scenario
(ca. 110 gC m~2 yr™Y), followed by the enzyme rigidity scenario (ca. 130 g C m™ yr~') and the no thermal
adaptation scenario (280 gC m™ yr~"). Although no measured data on the annual AFcp, was available, the
positive simulated annual AFg, bias for the no thermal adaptation scenario during the first 4 years after soil
warming (Figure 5d) suggests that this scenario overestimates measured daily Fo,.

This overestimation is also apparent when comparing measured daily AF¢q, values with modeled values for the
no thermal adaptation scenario (blue line in Figure 4b). The no thermal adaptation scenario thus significantly
overestimates measurements, with a MAE of 0.49 gC m™2 d™' during the initial 4 years of warming (Figure 4c).
This MAE is much lower for both thermal adaptation scenarios (—0.05 to 0.1 gC m~> d™'; Figures 4d and 4e¢).
While the model simulations thus generally underestimate the Fc,, the underestimation for both the control and
heated treatment by the thermal adaptation scenarios leads to a simulated AF¢q, consistent with measurements
(Figures 4d and 4e), while the no thermal adaptation scenario overestimates the response of the Fq, to soil
warming (Figure 4c). The simulated cumulative amount of CO, lost from the heated treatments relative to the
control treatment over 13 years of soil warming was substantially larger for the no thermal adaptation scenario
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Figure 5. Simulated versus measured daily CO, effluxes (Fco,), combined for the organic and soil horizons, for the control (a—) and heated treatment (d—f) and the three
thermal adaptation scenarios. Red symbols show Fq, during the first 4 years after initiation of soil warming, while black symbols show the fluxes in years 5-13. The
gray dotted lines are the 1:1 lines, error measures are reported on the graphs and in Table S3 in Supporting Information S1. The units of mean absolute error (MAE) and
RMSE are gC m~2 d~'. MAE values with an * are significantly different from 0.

(ca. 1,450 gC m™2) compared to the thermal adaptation scenarios (ca. 390 and 730 gC m™~> for the optimum driven
and enzyme rigidity scenarios, respectively) (Figure S18 in Supporting Information S1).

To compare the performance of the three model scenarios while accounting for model complexity, the AIC was
calculated for both modeled Ft, (Figure 5), and the daily simulated A F, (Figures 4c—4e). For both measures,
and for all time periods considered, the AIC was in the order of no adaptation < optimum driven < enzyme
rigidity. This suggests that the added complexity, in the form of additional model parameters to simulate thermal
adaptation, leads to overparameterization compared to the no thermal adaptation scenario. It should, however, be
noted that the calculation of AIC only accounts for the sum of squared residuals, a measure for the difference in
modeled versus measured values which does not account for a systematic overunderestimation or overestimation
of simulated Fr, (Equation 15). This lack of accounting for the systematic bias is an important shortcoming for
the results presented here, as all models have a similar error (see Section 3.1) while it is the consistent over-
estimation of Frq, predictions under soil warming without thermal adaptation that leads that an overestimation of
the additional amount of CO, produced under warming compared to the control (Figure 4c).

3.4. Differences in MMRT Parameters for the Different Scenarios

The optimized model parameters to calculate the MMRT rate modifiers are shown in Table S4 in Supporting
Information S1, while the resulting MMRT curves pre-warming (1998-2000) and post-warming (2010-2012) are
shown in Figure S25 in Supporting Information S1. In the no thermal adaptation scenario, the shape of the MMRT
curve was independent of soil temperature (Figure S25A in Supporting Information S1), leading to the same
positive relationship between soil temperature and maximum enzyme reaction rates irrespective of soil tem-
perature. The situation was different in both thermal adaptation scenarios. In the optimum driven scenario (Figure
S25B in Supporting Information S1), for every degree increase in soil temperature, the value for 7, increased by
0.65 K, causing lower maximum rates at the same temperature compared to before soil warming. In the enzyme

rigidity scenario, T, increased by 0.86 K and ACf, increased by 0.34 kI mol™' K™! per degree of average soil
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Relative SOC loss as a consequence of
linear 3 °C soil warming over 100 years

br—— No adaptation i
—— Enzyme rigidity
—— Optimum driven

15+ 1

Relative SOC loss (%)
o
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0 20 40 60 80 100

Years after the initiation of soil warming

Figure 6. Simulated relative loss of soil organic carbon (SOC) under linear soil warming of 3°C over 100 years using three
thermal adaptation scenarios: no thermal adaptation, enzyme rigidity, and optimum driven thermal adaptation. The optimized
model parameter values obtained in this study were used. The model was applied to data collected from the Barre Woods Soil
Warming Study at Harvard Forest, starting with the control steady state SOC pools at the beginning of the warming
experiment (2003). Note that C inputs to the system were held constant and were the same for all three scenarios.

warming. As in the optimum driven scenario, the change in the shape of the MMRT curve led to lower maximum
reaction rates at a given temperature after soil warming (Figure S25C in Supporting Information S1). For both
thermal adaptation scenarios, a variable was optimized to determine the time prior to the simulated day over
which the average temperature determines the value of 7, and ACf, (fadapy)- These values were 345 d and 365 d
for the optimum driven and enzyme rigidity scenarios, respectively, showing that it took about 1 year for the rates
of enzyme-mediated processes to adapt to elevated soil temperatures in the model simulations (Figure S19 in
Supporting Information S1).

3.5. Effect of Thermal Adaptation for a Gradual Centennial Increase in Soil Temperature

The model simulated substantially different SOC losses between the no thermal adaptation and the two thermal
adaptation scenarios when imposing a 3°C linear increase in soil temperature over 100 years (Figure 6). When
expressed relative to the amount of SOC before soil warming started, the no thermal adaptation scenario resulted
in a SOC loss of ca. 17%, while both thermal adaptation scenarios led to lower simulated losses of 4.5% and 7.5%.
We note that SOC inputs where not affected by soil warming in these projections.

4. Discussion
4.1. Simulation of the Ephemeral Character of the Soil CO, Efflux in Response to Soil Warming

The +5°C soil warming at the Barre Woods Soil Warming Study caused an increase in heterotrophic Frq, during
the initial years following soil warming (Melillo et al., 2011, Text S10 in Supporting Information S1). Our results
show that over the 13-year period, the models including thermal adaptation simulated a warming-induced in-
crease in the soil heterotrophic CO, flux (F¢o,) 50%—73% lower compared to the model where thermal adaptation
was omitted (Figures 4 and S18 in Supporting Information S1). This lower Fo, resulted in a lower loss of
available substrate in the soil (ca. 31% for the no thermal adaptation scenario vs. 13% and 20% losses for the
optimum driven and enzyme rigidity scenarios, respectively). In addition to thermal adaptation of enzyme-
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mediated processes, substrate depletion also contributed to the decrease in Frq, over time. As a real-world soil
experiment was simulated, our model set-up did not allow for the evaluation of a baseline scenario (i.e., a scenario
without substrate depletion). It is therefore not possible to quantify the relative contribution of both mechanisms
(thermal adaptation vs. substrate depletion) to the decrease in Feq, over time. However, our results show that in
the absence of thermal adaptation of enzyme-mediated processes (with substrate depletion being the only
mechanism), the increase in Fep, in the heated treatment compared to the control, and thus SOC losses, are
overestimated during the initial years of soil warming (Figure 4). This result is in line with evidence of both
substrate depletion and thermal adaptation jointly contributing to an ephemeral increase in Fr, in response to soil
warming (Bradford et al., 2008; Li et al., 2019). Our model results are thus in line with previous findings that
microbial thermal adaptation is at least partly, but not solely, responsible for the decreasing F, over time with
soil warming, together with a loss in available substrate.

4.2. Comparison With Previous Research at Harvard Forest

The comparison of the model results with data for which direct observations were available for the Barre Woods
Soil Warming Study (i.e., heterotrophic Fro,) showed that the models including thermal adaptation performed
better during the initial years following the initiation of soil warming compared to the model omitting this process.
To assess if the simulation of other model pools is in line with observations, data collected from two other +5°C
soil warming experiments at Harvard Forest were used: the Soil Warming x Nitrogen Addition Study (Contosta
etal., 2011) and the Prospect Hill Soil Warming Study (Melillo et al., 2017). The analysis presented in this section
allows an indirect assessment of model performance, which is used here to provide research directions for further
model development.

The simulated SOC losses due to soil warming differed between the no thermal adaptation scenario and the
scenarios including thermal adaptation (Table 1). Measurement-inferred losses using a CO, mass balance
approach have shown that in comparison to the control plot, heated soils lost 11.3% SOC (after 10 years, down to
30 cm depth; Melillo et al., 2002), 15% SOC (after 7 years of warming, down to 60 cm depth; Melillo et al., 2011),
23% (after 16 years, down to 20 cm; (M. A. Knorr et al., 2024) and 17% (after 26 years, down to 60 cm depth;
Melillo et al., 2017) across the three soil warming experiments at Harvard Forest. These observationally-
constrained estimates suggest that the no thermal adaptation scenario (—19.4%) is at the high end of reported
SOC losses, while both thermal adaptation scenarios underestimated SOC losses (—3.4% to —8.8%). It is noted
that quantifying changes in SOC stocks upon soil warming is very challenging, as Melillo et al. (2017) did not
detect changes in SOC stocks using soil samples at the Prospect Hill Soil Warming Study, while Finzi et al. (2020)
calculated that 103 soil samples would be necessary to detect a significant change in SOC stocks at this exper-
iment. In addition, calculating changes in SOC stocks from CO, mass balance approaches is challenging, given
uncertainties due to, for example, difficulties to separate the Fo, into heterotrophic and autotrophic respiration,
and the high number of measurements needed to reliably calculate annual F¢q, from individual measurements. It
is therefore challenging to make a direct comparison between simulated and measured changes in SOC stocks for
the simulated experiment.

In a previous modeling study simulating coupled plant-soil carbon and nitrogen dynamics at the Barre Woods
experiment, Grant (2014) simulated a SOC loss of 786 ¢ C m™? for the initial 7 years of the experiment. Simulated
SOC losses with ReSOM for the no thermal adaptation scenario are higher than this model results (a loss of ca.
1,150 g C m~2 during the initial 7 years), while the average simulated SOC loss for the thermal adaptation
scenarios combined for this time period (ca. 450 g C m™2) is lower.

Concerning changes in the amount of mineral-associated OC upon soil warming, the model omitting thermal
adaptation simulated a small decrease (—3.5%), while the models including thermal adaptation simulated a small
increase (2.4%-3.9%; Table 1). The results for all models are consistent with the observational study of Liu
et al. (2021), who found no significant effect of +5 K soil warming on the amount of mineral-associated OC in
micro and macroaggregates after 27 years of soil warming at Prospect Hill. However, Pold et al. (2017) reported
an observed decrease in the amount of mineral-associated OC of 45% after ca. 24 years of soil warming at
Prospect Hill. Drawing conclusions about model performance in terms of the effect of soil warming on changes in
the amount on mineral-associated OC is thus difficult, given the large range in reported data.
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Table 1
Comparison Between Selected Variables Simulated in This Study and Reported in Previous Studies
This study
Variable No thermal adaptation Optimum driven Enzyme rigidity Previous studies
ASOC* —19.4% —3.4% —8.8% —11.3%'
—15%
—17%"
—23%'
AMAOC® —3.5% +3.9% +2.4% —45%™
No effect”
AMBC,, +6.3% —10.0% +1.1% -31.7%*
—29.9%°
AMBC,,. ¢ +3.7% +10.0% —4.2% —20.9%°
—21.7%™
—45%'
ADOC,,* —29.3% +2.6% —20.7% —19%°
ADOC,,,! —26.6% —26.9% —14.5% —30%°
CUE, .01 0.31 0.31 0.33 0.25-0.50"
0.42 (0.25-0.67)1
0.15-0.18'
CUE,pprod" 0.29 0.27 0.30 0.25-0.50"
0.39 (0.19-0.66)"
0.10'

Note. Variables that report a simulated quantitative change are calculated as the difference for the last 3 years of soil warming
between the control and heated treatment. The results from the present study are presented separately for the three thermal
adaptation scenarios. “Relative change in SOC stocks, combined for the organic horizon and mineral soil. "Relative change in
the amount of mineral-associated OC. “Relative change in microbial biomass carbon in the organic horizon. *Relative change
in microbial biomass carbon in the mineral soil. “Relative change in the amount of OC available to microbes in the organic
horizon. ‘Relative change in the amount of OC available to microbes in the mineral soil. €CUE in the mineral soil for the last
3 years of the control treatment. "CUE in the mineral soil for the last 3 years of the heated treatment. ‘Melillo et al. (2002).
Melillo et al. (2011). ¥Melillo et al. (2017). '"M. A. Knorr et al. (2024). ™Pold et al. (2017). "Liu et al. (2021). °Bradford
et al. (2008). PFrey et al. (2008). Li et al. (2018).

With respect to changes in the amount of microbial biomass carbon due to soil warming, ReSOM simulated
changes between —10.0% and +10.0% for the different scenarios in the organic and mineral soil horizons (Table 1).
In contrast, studies have consistently reported a decrease in the amount of microbial biomass carbon for the +5°C
soil warming experiments at Harvard Forest in the range of —20% to —45% (Bradford et al., 2008; Frey et al., 2008;
Poldetal.,2017). In a study conducted at the Prospect Hill warming experiment at Harvard Forest, Pold et al. (2017)
found that 24 years of +5°C soil warming led to an increase in extracellular enzyme activity per unit microbial
biomass of 30%—78%, while microbial biomass decreased because the supply of substrate could not keep up with
microbial demand. Although the current version of ReSOM simulated an increase in the activity of extracellular
enzymes with warming, it failed to simulate a decrease in labile OC availability under the thermal adaptation
scenarios (see next paragraph). The latter may have caused overestimation of microbial biomass with warming. In
addition, in the current version of ReSOM, the microbial turnover rate is independent of soil temperature, although
turnover rates have been shown to increase with warming (Hagerty et al., 2014). This issue may also have
contributed to the overestimation of microbial biomass upon soil warming. More work is thus needed to include the
temperature sensitivity of additional processes (such as microbial turnover rate) to improve model simulations.

The model results showed that after 11-13 years of warming, the average simulated amount of substrate available
to microbes, relative to the control treatment, was lower under the no thermal adaptation scenario (—27.9% for the
organic horizon and soil combined) compared to the thermal adaptation scenarios (—12.2% for the optimum
driven scenario, —17.6% for the enzyme rigidity scenario) (Table 1, Figure S21 in Supporting Information S1).
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When comparing these results to Bradford et al. (2008), who reported an average decrease in DOC of 19% and of
mineralizable OC of 30% in the organic horizon and mineral topsoil combined at Prospect Hill, it seems that the
model omitting thermal adaptation better simulates the dynamics of available OC upon soil warming, while the
model including thermal adaptation underestimate its decrease. A potential reason is the higher calibrated
depolymerization rates in the no thermal adaptation scenario, compared to both thermal adaptation scenarios
(Table S1 in Supporting Information S1). While the reason for this behaviour is unclear, it seems that the lower
amounts of DOC simulated by the no thermal adaptation scenario led to the overestimation of F¢q,. As no ob-
servations of DOC content for the simulated experiment (i.e., Barre Woods) were available, changes in the size of
this pool could not be accounted for during model calibration. To simulate the dynamics of internal model pools
reliably, in addition to correctly simulating the overall behaviour of the system, data on simulated model pools are
thus necessary (Sierra et al., 2015).

The average CUEs simulated during the last three years (years 11-13) for the soil under the no adaptation scenario
(0.29-0.31) were similar to the CUEs in thermal adaptation scenarios (0.27-0.33) (Table 1, Figure S22 in Sup-
porting Information S1). These values are in between measurements made by (M. A. Knorr et al., 2024) at the Soil
Warming x Nitrogen Addition Study (between 0.10 and 0.18), and by Liu et al. (2021) for microbes in micro- and
macroaggregates at Prospect Hill (between ca. 0.25 and 0.50). In addition, in a study simulating soil warming at the
Prospect Hill soil warming experiment in Harvard Forest using the MEND model, Li et al. (2018) obtained CUEs of
0.42 for the control treatments and of 0.39 for the heated treatment. While these values are ca. 0.1 higher than the
values that emerged from ReSOM, the relative difference in CUE between the control and heated treatments was
similar. The CUE values emerging in ReSOM are thus consistent with values obtained in previous empirical
studies, but different from previous modelling studies. The commonly used measure to quantify microbial thermal
adaptation in soils is mass specific respiration (R;) (i.e., the amount of CO, produced per unit microbial biomass
(Bradford et al., 2008, 2019; Dacal et al., 2019)). For the simulated soil layer during the last three simulation years,
R, increased by 12.7% under the no thermal adaptation scenario in the heated compared to the control treatment,
decreased by 7.0% under the optimum driven scenario, and increased by 19.5% under the enzyme rigidity scenario.
This simulated decline in R, with soil warming for the optimum driven scenario is consistent with results from soil
incubation experiments along climate gradients (Bradford et al., 2019; Dacal et al., 2019). However, while
Bradford etal. (2008) reported a decrease in R, with soil warming at Harvard Forest, this decrease was attributed to a
decrease in microbial biomass and respiration in the heated soils. This result is contradictory to our simulated
increase in microbial biomass with soil warming under the optimum driven scenario. It thus seems that while the
model predicts the correct response for the optimum driven scenario, that is, a decrease in R, with soil warming, the
mechanisms causing this effect, that is, microbial biomass and CUE rsponses to soil warming, need to be improved.

In summary, while the models including thermal adaptation reproduce measurements of the Fco, well during the
initial years of soil warming, more work is needed to improve simulations of the effect of increasing temperatures
on the dynamics of multiple model pools, such as mineral-associated OC, microbial-available OC, and soil
microbes.

4.3. Considerations for Future Research Related to the Simulation of Thermal Adaptation of Enzyme-
Mediated Processes

While results from lab incubation experiments with samples collected along climatic gradients (Bradford
et al., 2019; Dacal et al., 2019) and long-term soil warming experiments (Bradford et al., 2008; Guo et al., 2020)
have shown that soil microbes adapt to changing thermal regimes, there are large uncertainties about how to include
this process in microbially explicit SOC models (Alster et al., 2020). In the present study, the macromolecular rate
theory (sensu Hobbs et al., 2013) was used to simulate the relationship between soil temperature and enzyme
activity. Alternatively, other relationships, such as the square root (Ratkowsky) model (Baath, 2018; Ratkowsky
et al., 1982), which requires fewer parameters to be calibrated, or the Chemical Kinetics Theory (Tang &
Riley, 2024) can be tested for their potential to simulate this process. Our simulations show that models including
thermal adaptation of enzyme-mediated processes outperform a model omitting this process in terms of simulating
the response of heterotrophic soil respiration to soil warming during the initial years of soil warming. However, as
we did not explicitly simulate the processes responsible for thermal adaptation, future studies should explore if
including these mechanisms in SOC models improves simulation results. For example, microbial thermal adap-
tation, in the broad sense as used in this study, has been attributed to changes in microbial community composition
and function upon soil warming (Bradford, 2013; Guo et al., 2020; Morrison et al., 2019), a process that has been
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observed in multiple soil warming experiments (DeAngelis et al., 2015; Frey et al., 2008; Guo et al., 2020; Pold
etal.,2015,2016; Zhou et al., 2012) and combined lab incubation and field studies (Oliverio et al., 2017). Given the
difficulties in teasing apart mechanisms contributing to microbial thermal adaptation in soils, SOC models
simulating the effect of biotic and abiotic factors on the microbial community composition (e.g., Allison, 2012;
Brzostek et al., 2014) can be used to explore the extent to which this process contributes to microbial thermal
adaptation. Further research should then assess whether including this process in SOM models improves pre-
dictions, given the trade-off between model complexity and data availability.

In the present study, the SOC cycle was simulated without accounting for interactions with soil nutrients or the
biosphere. This is an important caveat, as soil warming has a large effect on ecosystem properties affecting the SOC
cycle (Grant, 2014). For example, soil warming can affect the rate of both above (Butler et al., 2012; Melillo
etal.,2002,2011) and belowground (Arndal et al., 2018; Melillo et al.,2011; Song et al.,2019; WU et al., 2011) OC
inputs to the soil, along with nitrogen mineralization (Butler et al., 2012; Contosta et al., 2011; Melillo et al., 2002,
2011; Zhou et al., 2012). In this study, we accounted for changes in aboveground net primary productivity due to
soil warming, but assumed the annual rate of belowground OC inputs to be constant and equal in the simulated
control and heated treatments, due to the absence of data on this process. As changes in OC inputs have a large effect
on heterotrophic soil respiration, incorporating microbial thermal adaptation in ecosystem models is a necessary
next step to quantify the effect this process has on changing SOC stocks in the ongoing warming world.

5. Conclusions

Our results show that SOC models including thermal adaptation of enzyme-mediated processes simulate a
substantially lower soil CO, efflux upon warming compared to a model omitting this process during the initial
years following a 4+5°C soil warming at Harvard Forest. This distinction was mostly evident from a substantial
positive MAE of simulated differences in soil CO, production between the heated and control treatments upon
warming by the model without thermal adaptation. Models including thermal adaptation of enzyme-mediated
processes simulated cumulative CO, losses over the course of the 13-year soil warming experiment to be
50%-73% lower compared to a model omitting thermal adaptation. Using a scenario in which soil temperature
increases linearly by 3°C on a centennial timescale, including thermal adaptation of enzyme-mediated processes,
reduced projected SOC losses by up to a factor of ca. three compared to a model omitting thermal adaptation.
Given the limited research of this mechanism in real-world experiments to date, but the potentially large im-
plications for the simulation of SOC changes with soil warming, we encourage further research into this topic to
increase confidence in model simulations of future SOC stocks.
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