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Abstract—Researchers are increasingly focusing on spiking
neurons to enhance the energy efficiency of edge machine
learning (ML) models. Spiking neural encoding has evolved
from traditional methods like Integrate and Fire and Time
to First Spike to techniques such as Delta and Sigma-delta
modulation (SD), enabling sparser and energy-efficient feature
representation. In this work, we introduce the Sigma-Delta-Sigma
(EAY/SDS) neuren, a noise-invariant spiking neural encoding
technique. Our aim with this neural encoding is to emulate the
robustness of a specific class of biological neurons to input noise
by effectively filtering out noise-like features from the input
stimuli. While noise injection in training prevents overfitting,
improper noise profiles can be detrimental to the inference
accuracy of a model. Our ohjective with the SDS encoding is
to develop noise-resilient spiking neural network models capable
of being trained with ideal features, while still being able to
extract features from low-quality data during the inference phase.
To assess the robustness of our technique, we implement an
information encoding ensemble model that demonstrates a 6.2x
improvement in robustness when the Signal-to-Noise Ratio (SNR)
of the incoming signal is 1 dB. Furthermore, we evaluate the
performance of the SDS peurons in more complex models such
as a Liguid State Machine (LSM), where the model exhibits
a 3.87% improvement in the predictive accuracy against the
baseline model when tested against input features with SNR
degradation from 55 to 1 dB.

Index Terms—Sigma-Delta-Sigma, overfitting, spiking neural
network, Liquid State Machine

I. INTRODUCTION

Spiking neural models have garnered considerable attention
recently due to their efforts to mimic the energy efficiency
observed in biological systems [1]. These models encode
information in sparse dimensions, offering enhanced energy
efficiency and facilitating efficient feature representation by
minimizing redundancy. In the nascent period of spiking-
based neural architectures, the primary effort was focused on
the biomimicry of neurons present within vertebrates. This
led to the extensive implementation of networks based on
encoding techniques such as Integrate-and-Fire (IF), Leaky-
Integrate-and-Fire (LIF), time-to-first spike (TTFS). etc. Re-
cently, we have seen a paradigm shift in encoding techniques,
wherein the focus has shifted from biomimicry to emulating
certain characteristics observed within biological neurons. For
instance, the research community has extensively explored
various neural encoding fechniques to replicate properties
observed in biological systems, such as those found in audio
cochlear [2] and dynamic vision-based systems [3]. This has
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led to sparser schemes such as Delta modulation (A) and
Sigma-delta (¥A) encoding. These schemes enable feature
communication between neurons only when they exceed a cer-
tain threshold, leading to even sparser feature representations
between layers within a network.

In this work, we extend the capabilities of delta-modulated
neurons by introducing a novel evolution in this encoding
approach termed Sigma-Delta-Sigma (X AY/SDS) neural en-
coding. Our proposed encoding method stands out for its
adeptness in filtering out noise-like components from critical
features, achieved through a unique feedback mechanism and
intrinsic delay within the encoding technique. Our inspiration
for developing this schema stems from observations of noise-
invariant neurons found in specific bird species [4] and res-
onant frequency selective traits observed in primate auditory
systems [5]. Our research aims to emulate and enhance these
functionalities using our proposed scheme, aiming to construct
noise-robust spiking models capable of feature extraction even
in the presence of noisy input stimuli.
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Fig. 2 Schematic representation of (2) Time domain signal, and (b) 2-
transform diagram for the encoding scheme.

From an applications perspective, il is imperalive 10 un-
derstand the motivation for developing a noise-invariant neu-
ral encoding schema. In Machine Learning (ML) models,
noise is often introduced into training features to prevent
overfitting and to ensure robust inferences when faced with
non-deterministic variations within test features. However,
injecting an inaccurate noise profile during training can result
in underfitting and distorted feature representations, ultimately
undermining model performance [6]. Through our proposed
neural encoding schema, we aim to train models on ideal
feature sets without the need for noise injection, while still
be able to perform feature extraction with distorted, low-
quality data. During testing, the neural connections prioritize
the transmission of significant features while attenuating noise
components. By implementing this neural encoding approach,
our objective is to develop noise-resilient spiking neural net-
work models capable of performing classification lasks even
with lower-quality incoming features.

The remainder of this paper is organized as follows: Sec-
tion 11 provides a detailed discussion on the SDS neural
encoding and its functional adaptations from existing delta-
modulated neurons. In Section I we delve into the noise-
robustness property of the schema by implementing an en-
semble model to assess the model’s ability to accurately
encode and decode information even in the presence of noise.
Additionally, we evaluate the robustness of SDS neurons
within the framework of a Liquid State Machine (LSM) and
quantify the network’s performance in predicting time-series
features when exposed to inferior features from a Signal-to-
Noise Ratio (SNR) perspective, as outlined in Section IV.

1. EVOLUTION OF A MODULATED NEURONS

Recent years have seen an emergence of advanced spiking
neural encoding techniques tailored to specific applications.
The evolving landscape of temporal encoding methods has
witnessed a divergence, particularly marked by approaches
that rely on the differential amplitude between consecutive
feature samples in a time series format. This paradigm shift
is exemplified in notable instances such as the adoption of
spiking neural encoding-based Dynamic Vision Sensor (DVS)
cameras [7] and audio cochlear feature extractors [8], both

integrating spiking networks with Asynchronous Delta Mod-
ulation (Fig. 1b). Within this class of neurons, researchers
have introduced another encoding technique. the asynchronous
Sigma Delta (SD) neuron (Fig. 1c), distinguished by its
partitioning of neural encoding into two distinct phases: Sigma
decoding and Delta encoding. The versatility of the SD encod-
ing technique is underscored by its successful application in
video processing applications [9], demonstrating substantial
enhancements in energy efficiency.

A notable commonality between these two neurons lies in
the foundational encoding blocks employed within the schema,
as illustrated in Fig. la. This progression marks a substantial
advancement in the temporal encoding landscape, with promis-
ing implications across diverse applications. The adoption
of these techniques in current state-of-the-art neuromorphic
hardware, such as Loihi 2.0, further validates their impact [9].
From an encoding perspective, a distinguishing characteristic
of these neural encoding techniques compared to existing
methods is the increasing sparsity of activations as information
traverses successive layers of neurons. This phenomenon is
driven by the mechanisms of the encoding techniques, where a
post-neural spike occurs when the incoming feature/activation
surpasses a predefined A threshold or deviates from its previ-
ous activation value by a certain threshold.

A. LAY neuron: Noise-robust Encoding schema

In this work, we draw upon the aforementioned encod-
ing techniques and propose our novel SDS neural encoding
(Fig. 1d). At this juncture, it is important to understand how
the SDS neuron is an evolution in the class of delta-modulated
neurons. To begin with, the SD neuron is essentially a A
modulated neuron with a £ decoding block that integrates
dendrite connections from multiple pre-synaptic neurons, Our
proposed SDS neuron is essentially a AY. modulated neuron
with a similar pre-synaptic ¥ decoding block. Another critical
difference within our encoding technique is the internal A
operation block. Within the previously mentioned Delta and
SD neuron classes, the delta operation is essentially performed
on the current input and a delayed version of the input feature.
However, within the SDS neuron, this delta operation performs
a negated addition between the input feature and the output
spike. From an encoding perspective, the SDS neural encoding
stands out from its predecessors due to two distinet signal
processing features. Firstly, a portion of the soma output from
the comparator element is subtracted from the input stimuli
at the dendrite terminal. This introduces a negative feedback
mechanism, represented by the A operation block within the
encoding scheme. Secondly, an additional integration phase is
embedded within the encoding process which accumulates the
aforementioned A operation over multiple time steps. These
elements effectively impart two different filtering characteris-
tics to the incoming stimuli and noise-like features.

To examine the filtering properties of the neural encoding
scheme, we construct the time-domain representation and
the equivalent discrete Z-transform signal flow diagram, as
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Fig. 3. Internal featore transformation and transient operative characteristics of the proposed 5SS encoding schema.

depicted in Fig. 2. By analyzing the signal flow, we can derive
the output QQ[n] as follows:
Qlnl = X[n—1]+Qn] —Uln] —Qn—1]+U[n—1]
= X[n—1]+e[n] —e[n—1]
, where X[n], Uln], and e[n] represent the discrete input stim-

uli, integrator input, and deduced error vector, respectively.
The equivalent z-transform for the designated output Y(z) is:

¥(z)= X(z)z‘l + E(z)(1 - z‘l)

Y(z) _
m— = {]]

E(z) -1
=1—=z 2
X() (2)

, where Eq. | and Eq. 2 represent the deduced signal and
noise transfer function, respectively. As evident from these
equations, the input signal features undergo a low-pass filtering
operation while the noise features are shifted towards higher
frequency regions and attenuated at the lower end of the spec-
trum. This mechanism allows us to diminish noisy components
from critical features, provided these elements lie beyond the
corner frequency of the low-pass filter and are modulated by
the feedback strength and integration period of the neuron, Tt is
noteworthy that, o maintain a similar sparse feature density
profile to its predecessors, each SDS neuron is linked with
a delta encoding block depicted in Fig. 3, showcasing the
internal transformation occurring to an incoming feature at
each encoding step within the neuron.

HI. Noise-RoBuUST ENSEMBLE MODEL WITH SDS
ENCODING

To evaluate the noise-filtering capabilities of our proposed
encoding, we utilize an ensemble-based signal regenerative
model. This ensemble model serves the dual purpose of
assessing feature preservation and noise filtering simultane-
ously while extracting features from the incoming signal. By
employing the ensemble model, we aim to replicate real-
world scenarios where the nature of noise during inference
is uncerfain necessitating training with idealized features and
subsequent fine-tuning for non-deterministic noise conditions.
However, using our proposed neural encoding, models trained

with idealistic features still demonstrate robust noise perfor-
mance during testing, obviating the need for fine-tuning. In
Fig. 4a, we illustrate the pair of ensemble models employed
to validate our hypothesis. Ref. Ensemble 1 processes the
incoming time-series feature through a fully connected layer
of neurons, generating a spike train, They are then fed into the
second ensemble with a similar structure, which, under ideal
conditions, reconstructs the original signal from the incoming
spike activations. By implementing the ensemble model, we
ensure that the SDS neuron can faithfully encode information
in the spiking domain and decode the spike train to retrieve
the original signal.

During the training phase, the first reference ensemble
model weights are updated using idealistic features with an
SNR value > 100dB. The weights for the second ensemble
model are obtained from the first ensemble through a transpose
operation and a scaling factor gg;. In the subsequent fest-
ing phase, Reference Ensemble | encounters degraded signal
features through the injection of artificial noise profiles and
is characterized by their respective SNR values. The signal
output regenerated by Ensemble 1T is then assessed for its
fidelity against the ideal signal, measured by the normalized
mean square error (NMSE). The ensemble model is trained
using the Nengo PyTorchSpiking package, which facilitates
the emulation of spiking neuron models based on the YA
neural encoding scheme. To evaluate the performance of the
neural encoding, we compare our results with a baseline
ensemble model featuring £ A neuron banks. Additionally, we
vary the ensemble size to assess the network’s performance as
more features are extracted from a larger neuron bank. Fig. 4b
demonstrates the network’s performance across different test
cases, with the reconstruction error (NMSE) calculated for
input features spanning a range of SNR values. The critical
findings within this simulation can be summarized as follows:

« In aconstant ensemble size setting, the SDS neuron-based
ensemble model consistently surpasses the performance
of the SD baseline model by an average factor of 6.2x
when the SNR of the input feature reaches | dB. This
underscores the robustness of the neural encoding scheme
in effectively filtering out noise-like features, even as the
noise spectral power approaches that of the signal.

« For a fixed ensemble size (N=50), as we vary the Signal-
to-Noise Ratio (SNR) of the incoming features from 20
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Fig. 4. (a) Ensemble model with transient feature transformation and (b) Robustness (NMSE variation) of ensemble model against SNR depradation.

to 1 dB, the degradation in model performance with
SDS encoding is approximately 1.482x compared to the
57.56x degradation for the baseline. This confirms the
neural encoding scheme’s capability to maintain con-
sistent regenerative performance across different noise
levels. It demonstrates the effectiveness of the SDS-based
ensemble in operating efficiently even with low-quality
data, despite being trained under ideal conditions.

It is essential to assess whether the ensemble’s feature
extraction capabilities improve with an increase in the
neuron bank size. As we raise N from 10 to 100 neurons
per layer, the average reduction in Normalized Mean
Square Error (NMSE) is 1.418 times. In comparison to
the baseline model, this figure is approximately 1.425
times, indicating that our encoding scheme maintains the
ensemble’s feature extraction capabilities. This observa-
tion confirms the neuron’s ability to extract meaningful
features while effectively filtering out noisy components.

IV. LiQuip STATE MACHINE BASED PREDICTOR MODEL
FOR TIME-SERIES DATA

To further evaluate the noise-invariant properties of the SDS
neural encoding within a practical machine leaming (ML)
framework, we construct a Liquid State Machine (LSM) based
on the original Echo State Network (ESN) model outlined
in [10]. The LSM model comprises three layers (see Fig.5):
an input layer responsible for mapping incoming time-series
features to a collection of recurrently connected neurons
constituting the reservoir layer and an output layer. Random-
ized weights are assigned to both the input and reservoir
layers based on an initial seed matrix. Connections from the
reservoir layer extend to the output layer, where weights are
trained using the Moore-Penrose pseudo-inverse method and
optimized to minimize the least squares fitting (LSQ) error.
We employ a training methodology similar to that detailed
in Section T for training the LSM model. In this approach,
the output layer weights are updated using an input feature
dataset characterized by a signal-to-noise ratio (SNR) value of
> 55dB. Subsequently, during the testing phase, the network
is subjected to various time-series features with SNR values

Fig. 5. Implemented LSM with predictive modeling for time series data
hased on DA (haseline) and TAE encoding

ranging from 55 (ideal) to 1 dB. Through the evaluation of
the LSM model incorporating the SDS neuron, we aim to
scrutinize two fundamental aspects of the encoding process.
Firstly, within the context of a randomly connected network,
it is crucial to assess the effectiveness of the noise-filtering
characteristics inherent in the proposed technique. Secondly,
compared to the ensemble model, the LSM network embodies
a more intricate feature abstraction model, necessitating a
thorough examination of the performance enhancement facil-
itated by our technique in a prediction-based paradigm. In
our simulations, we assess the model across different reservoir
sizes: specifically 10, 20, and 50, and analyze the normalized
error between the predicted output series and the ground truth
(Figure 6a-c). The model is trained using the open-source
Lava framework developed by Intel Labs. We individually
train the network based on our proposed SDS neural encoding
and benchmark it against the existing SD-based encoding
schema. From our simulation of the LSM model, the following
observalions emerge across VArious reservoir sizes:

« Noise robusiness is more pronounced in smaller
reservoirs: When the reservoir size is small (N=10), the
degradation in predictive performance for the baseline SD
neuron is notably higher (> 3.8%) compared to the SDS
implementation, as the input feature SNR is reduced from
55 to 1 dB. This indicates that when the model cannot
extract more features due to a limited network size, the
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noise-filtering characteristic of the SDS neuron ensures
improved reliability in terms of accuracy. Another critical
aspect to highlight is the increased performance degrada-
tion when the incoming feature is slightly contaminated
(25 <SNR< 10 dB). Figure 6a shows an average 1.86x
improvement over the SD implementation when the in-
coming SNR is 20 dB. However, these benefits diminish
as the noise power approaches the signal power, leading
to significant corruption of the predicted output label.

« Resilience to noise degradation has diminishing re-
turns: LSM models are renowned for their inherent noise
robustness, attributed to the feature extraction capabilities
of the reservoir layer. Hence, as we augment the reservoir
size (N=50), the enhancement in reliability diminishes to
a point where both models exhibit similar performance
degradation as the SNR approaches | dB. This trend
is evident in Fig. 6¢, where the percentage change in
NMSE follows a comparable trajectory for both encoding
schemes. Moreover, the overall improvement in NMSE as
reservoir sizes increase from 10 to 50 highlights a 1.18x
enhancement in the network’s predictive capabilities. This

degradation in the presence of external noise. To this end,
our work also showcased an LSM-based predictive model that
exhibited increased noise robustness for lower network sizes,
even under heavily corrupted signal conditions. This ensured
a higher level of reliability in terms of performance, a critical
consideration for real-world applications.
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