

Draft Manuscript for Review

**Crystals and melt inclusions record deep storage of
superhydrous magma prior to the largest known eruption of
Cerro Machín volcano, Colombia**

Journal:	<i>Journal of Petrology</i>
Manuscript ID	JPET-Aug-23-0126.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	24-Aug-2024
Complete List of Authors:	Castilla, Silvia; University of Maryland at College Park, Geology Newcombe, Megan E.; University of Maryland at College Park, Department of Geology Piccoli, Philip; University of Maryland at College Park, Geology Peterson, Liam D.; University of Maryland at College Park, Department of Geology
Keyword:	melt inclusions, plagioclase hygrometer, plinian eruption, storage condition, superhydrous melt
Journal of Petrology now offers Virtual Collections of published papers. You may choose up to three collections from the list below. Virtual collections will increase the visibility of your work.:	Subduction Zones < Province Themes, Melt and Fluid Inclusions < Material Themes, Continental Crustal Genesis and Evolution < Process Themes

SCHOLARONE™
Manuscripts

1 **Crystals and melt inclusions record deep storage of superhydrous magma**
2 **prior to the largest known eruption of Cerro Machín volcano, Colombia**

3

4 Castilla, Silvia^{1*}; Newcombe, Megan E.¹; Piccoli, Philip M.¹; Peterson, Liam D.¹

5

6 ¹ Department of Geology, University of Maryland, College Park, Maryland, 20742, United States

7

8

9 ***Corresponding author:** sccm1705@terpmail.umd.edu

10 **Tel:** +1 4372431560

12 **ABSTRACT**

13 Cerro Machín, a volcano located in the northern segment of the Andes, is considered one of the
14 most dangerous volcanoes in Colombia with an explosive record that involves at least five plinian
15 events. Prior studies focused on the last dome-building eruption have suggested the presence of a
16 water-rich mid-crustal magma reservoir. However, no direct volatile measurements have been
17 published and little work has been completed on the explosive products of the volcano. Here, we
18 study the largest known eruption of Cerro Machín volcano which occurred 3600 yr BP producing
19 dacitic pyroclastic fall deposits that can be traced up to 40 km from the vent. Lapilli pumice clasts
20 have a mineral assemblage of plagioclase, amphibole, quartz, and biotite phenocrysts, with
21 accessory olivine, Fe-Ti oxides, and apatite. The occurrence of Fo_{89-92} olivine rimmed by high
22 Mg# amphibole and the established high-water contents in the magma imply the presence of
23 magma near or at water saturation at pressures ~ 500 MPa. Measurements of up to 10.7 wt% H_2O
24 in melt inclusions hosted in plagioclase and quartz in the 3600 years BP eruption products support
25 the idea that Cerro Machín is a remarkably water-rich volcanic system. Moreover, this is supported
26 by measurements of $\sim 103 - 161$ ppm H_2O in plagioclase phenocrysts. The application of two
27 parameterizations of water partitioning between plagioclase and silicate melt allows us to use our
28 water in plagioclase measurements to estimate equilibrium melt water contents of $5 \pm 1 - 11 \pm 2$
29 wt% H_2O , which are in good agreement with the water contents we measured in melt inclusions.
30 Results of amphibole geobarometry are consistent with a magma reservoir stored in the mid-to-
31 lower crust at a modal pressure of 700 ± 250 MPa, corresponding to a depth of ~ 25 km. Minor
32 crystallization in the shallow crust is also recorded by amphibole barometry and calculated
33 entrapment pressures in melt inclusions. Amphibole is present as unzoned and zoned crystals. Two
34 populations of unzoned amphibole crystals are present, the most abundant indicate crystallization

35 conditions of 853 ± 26 °C (1 se; standard error), and the less abundant crystallized at an average
36 temperature of 944 ± 24 °C (1 se). Approximately 18% of the amphibole crystals are normally or
37 reversely zoned, providing evidence for a minor recharge event that could have been the trigger
38 mechanism for the explosive eruption. Plagioclase crystals also show normal and reverse zoning.
39 The moderate Ni concentrations (<1600 µg/g) in the high-Fo olivine xenocrysts suggest that Cerro
40 Machín primary magmas are generated by inefficient interaction of mantle peridotite with a high-
41 silica melt produced by slab melting of basaltic material. Some sediment input is also suggested
42 by the high Pb/Th (>2.2), Th/La (0.3 – 0.4), and low La/Th (<13; relative to mantle array) ratios.
43 Whole rock chemistry reveals heavy rare earth element (HREE) depletion and Sr enrichment that
44 likely formed during the crystallization of garnet and amphibole in the upper part of the mantle or
45 lower portion of the crust, promoting the formation of water-rich dacitic magma that was then
46 injected into the middle-to-lower crust. Textural and compositional differences in the crystal cargo
47 that erupted during dome-building and plinian events support the idea that large volumes of magma
48 recharge lead to effusive eruptions, while only small recharge events are needed to trigger plinian
49 eruptions at Cerro Machín.

50 **Keywords:** melt inclusions; plagioclase hygrometer; plinian eruption; storage condition;
51 superhydrous melt

52 **1. INTRODUCTION**

53 Cerro Machín is a stratovolcano located in one of the most populated areas of Colombia (Méndez
54 *et al.*, 2002) and is considered one of the most dangerous volcanoes in the country (Gómez *et al.*,
55 2021). Stratigraphic studies have revealed its highly explosive eruptive past including one
56 vulcanian and five plinian to subplinian eruptions (VEI = 5; Rueda, 2005) of dacitic composition
57 over the last 5000 years (Rueda, 2005). Seismic activity reported from 2007 – 2015 accompanied
58 by variations in composition and temperatures of the hot springs, ground deformation, and radon
59 outputs (Londoño, 2016; Inguaggiato *et al.*, 2017) suggest an active magmatic system. Prior work
60 on the dome-building eruptions of Cerro Machín used amphibole chemistry to constrain the pre-
61 eruptive magma water content (Laeger *et al.*, 2013); however, there are no direct measurements of
62 magma volatile concentrations reported in the literature. In light of this, we performed water and
63 carbon dioxide measurements in quartz- and plagioclase-hosted melt inclusions found in pumice
64 clasts from the largest known plinian eruption (3600 yr BP). Surprisingly, our results suggest that
65 Cerro Machín erupts dacitic magma containing up to 10.7 wt% H₂O (magmas containing >8 wt%
66 H₂O have been previously defined as superhydrous magmas; Goltz *et al.*, 2020) that, according to
67 amphibole barometry, is stored in a region that extends from lower- to mid-crustal pressures (with
68 a 25th percentile of 550 ± 200 MPa and a 75th percentile of 700 ± 200 MPa using the Putirka, 2016
69 barometer).

70 The presence of superhydrous magma beneath a small number of continental arcs has been
71 argued based on volatile measurements in lower crustal cumulates (Urann *et al.*, 2022), coexistence
72 of high-Mg# (molar Mg/(Mg+Fe)) amphibole and forsterite in natural samples (Goltz *et al.*, 2020),
73 the products of water-saturated phase equilibria experiments (Conrad *et al.*, 1988; Carmichael,
74 2002; Prouteau & Scaillet, 2003; Grove *et al.*, 2005; McCanta *et al.*, 2007; Krawczynski *et al.*,

75 2012; Lu *et al.*, 2015), calculations from volcanic and hydrothermal gas discharges (Fischer &
76 Marty, 2005), and electron microprobe measurements of melt inclusions with analytical totals <92
77 % (Grove *et al.*, 2003). We have identified the presence of deep water-rich magma beneath Cerro
78 Machín using multiple techniques including: (1) comparison of the mineral phase assemblage at
79 Cerro Machín volcano (CMV) with phase equilibria experiments on similar magma compositions;
80 (2) measurements of water in melt inclusions; and (3) measurements of water concentrations in
81 plagioclase. We present these measurements and constraints of the water budget of the CMV
82 system, and we consider the following possible origins of the water-rich nature of CMV magma:
83 (1) interaction between hydrous high-Si melts, derived from the subducting plate, and peridotite in
84 the overlying mantle wedge (Kelemen *et al.*, 2003; Yogodzinski *et al.*, 2015); and (2) extensive
85 fractionation of garnet and amphibole in the deep crust or upper mantle (Alonso-Perez *et al.*, 2009;
86 Castillo, 2012; Blatter *et al.*, 2023).

87 2. GEOLOGICAL BACKGROUND

88 Cerro Machín volcano is located in the northern segment of the Central Cordillera of Colombia
89 (latitude 4°29'N; longitude 75°23'W) and formed as the result of subduction of the Nazca Plate
90 beneath the South American Plate (Fig. 1a). Along with eight other volcanoes, including Nevado
91 del Ruiz volcano—Colombia's most active volcano, renowned for the 1985 eruption that claimed
92 more than 20,000 lives—Cerro Machín belongs to the Cerro Bravo-Cerro Machín volcanic
93 complex. Its edifice is located at the intersection between two major faults, the Cajamarca fault, a
94 dominantly strike-slip fault with vertical displacement, and the Machín fault that is interpreted as
95 a normal fault with dextral-lateral displacement (Mosquera *et al.*, 1982; Rueda, 2005; Murcia *et
96 al.*, 2008).

97 Cerro Machín's volcanic edifice reaches an altitude of 2750 m.a.s.l and has a crater diameter
98 of 2.4 km. It has been classified as a stratovolcano with a dacitic intra-crater lava-dome complex
99 (Cepeda *et al.*, 1995; Arango Palacio, 2012). The volcanic sequence comprises at least six major
100 events. Radiometric carbon dating suggests that these events occurred >5000, 4500, 3600, 2500,
101 1200, and 900 yr BP (Cepeda *et al.*, 1995; Méndez *et al.*, 2002; Rueda, 2005), suggesting that the
102 repeat interval of VEI > 5 eruptions is ~900 years (Rueda, 2005). Given that the last event of this
103 magnitude occurred ~900 years ago, it is particularly important to carefully consider any increasing
104 activity at CMV. From 2007 to 2015, seismic activity in the Cerro Bravo-Cerro Machín Volcanic
105 Complex was reported by the Colombian Geological Survey (Londoño, 2016), suggesting an active
106 magmatic system. Since then, CMV activity has been designated as "level III" (yellow) by the
107 Colombian Geological Survey, which means "changes in the volcanic activity in this case related
108 to seismic events and fumarolic activity" (Colombian Geological Survey, 2023). In light of this,
109 developing our understanding of the CMV volcanic system is time-sensitive and of crucial
110 importance for assessing the likelihood and nature of future eruptions.

111 In this study, we focus on pyroclastic fall deposits associated with the third and most
112 explosive event at ~3600 yr BP (designated event "P1" with a VEI of 5 by Rueda, 2005). We
113 prioritized the study of this eruption because it is recognized as the most hazardous example of
114 CMV activity and possibly the worst-case scenario for a future eruption. Moreover, the associated
115 deposits constitute a marker horizon up to 40 km from the vent (Méndez *et al.*, 2002; Rueda, 2005)
116 providing easy access for sampling and description. Close to the vent, we observed interlayering
117 of clast-supported and matrix-supported layers that contained charcoal fragments and that were
118 identified as pyroclastic flows. We avoid using these samples in order to minimize the possibility
119 of post-eruptive water loss during their high-temperature emplacement. All samples were therefore

120 obtained at location CMV-008 (Fig. 1b) where no charcoal fragments were observed and where
121 most of the other stratigraphic units were exposed (e.g., on Fig. 2a, the 5000 yr BP event is labeled
122 “Espirillal”, the 4500 yr BP event is labeled “P0” and the 3600 yr BP event is labeled “P1”
123 following the unit names proposed by Rueda, 2005). The P1 deposit was divided into two
124 lithofacies (designated *a* and *b*) based on their different sedimentary structures—massive versus
125 laminated, and coarse- versus fine-grained (Fig. 2b). Single pumice clasts were collected from the
126 massive lithofacies (*b*) which likely represents the climactic phase of the eruption (Paladio-
127 Melosantos *et al.*, 1996; Rosi *et al.*, 2001). However, we acknowledge that there may have been
128 other transient activity of this eruption that is not represented in this location. The size of the
129 collected pumice clasts ranges from medium lapilli to coarse lapilli with diameters of 10–64 mm.
130 We intentionally selected pumices from the relatively small lapilli grain-size fraction because such
131 small clasts are quenched rapidly upon eruption, thereby minimizing the effects of diffusive water
132 loss during post-eruptive cooling (Lloyd *et al.*, 2013).

133 3. METHODS

134 3.1. Sample preparation

135 We selected ten pumice clasts to cut in half, and one-half of each pumice clast was made into a thin
136 section by Spectrum Petrographics, Inc. The remaining halves of these pumice clasts as well as
137 some additional pumice clasts were lightly crushed and sieved for crystal picking. Plagioclase and
138 quartz phenocrysts were separated by hand using a binocular microscope. Phenocrysts were
139 immersed in isopropanol to increase the visibility of cracks, melt inclusions, and melt re-entrants
140 (i.e. melt embayments) within the crystals. Selected crystals were mounted in Crystalbond and
141 polished on two sides until melt inclusions were doubly or singly exposed. We chose melt
142 inclusions that were wholly enclosed (i.e., no cracks or re-entrant features) regardless of their

143 position within the crystal (i.e., in the core or closer to the rim). We analyzed a total of 35 melt
144 inclusions hosted in 27 different crystals by Fourier Transform Infrared Spectroscopy (FTIR;
145 Section 3.2; Supplementary Table A1). All melt inclusions contained multiple small vapor bubbles,
146 with a greater abundance of bubbles observed in the quartz-hosted melt inclusions. These bubbles
147 unfortunately made it difficult to measure water concentration profiles in melt re-entrants.

148 After FTIR analysis, melt inclusions were placed in dental resin for electron microprobe
149 (EPMA) analysis. Due to the fragility of some wafers, a total of 13 melt inclusions were lost and
150 only 22 were measured by EPMA (Supplementary Table A1). Once hardened, mounts were
151 polished with 0.3- μ m diamond paste to remove any contaminants acquired during the preparation
152 process (e.g., vacuum grease and resin). To corroborate our FTIR results, a set of eight melt
153 inclusions hosted in quartz crystals were mounted in indium for analysis by secondary ion mass
154 spectrometry (SIMS; Section 3.5).

155 A set of 17 plagioclase crystals with a size range between 1.5 and 7.6 mm were prepared
156 for water content analysis by FTIR. Each crystal was cut in half and the two halves were polished
157 into two mutually perpendicular slabs. Measurements were performed in both slabs in order to
158 calculate total water content from three perpendicular axes, regardless of their optical direction
159 (Johnson & Rossman, 2004). After their analysis by FTIR, crystals were placed in a 1-inch diameter
160 dental resin plug for analysis by EPMA.

161 **3.2. Fourier Transform Infrared Spectroscopy analyses of melt inclusions**

162 Transmission infrared spectra of 35 plagioclase- and quartz-hosted melt inclusions were obtained
163 using a Thermo Nicolet iN10 MX Fourier transform infrared spectrometer with a liquid nitrogen-
164 cooled MCT detector at the University of Maryland. The sample and surroundings were
165 continuously purged with dry, CO₂-free air to limit any contribution from atmospheric water and

166 carbon dioxide to the spectra. The width of the square aperture used to focus the infrared beam was
167 adjusted to 10, 15, 20, 25, and 30 microns based on the size of each melt inclusion. Spectra from
168 at least three different aperture sizes were measured per melt inclusion in order to calculate the
169 uncertainty in the absorbance peak heights due to aperture size. Spectra were collected at 4 cm⁻¹
170 resolution between a wavenumber range of 700 to 7000 cm⁻¹ and 256 scans were averaged to
171 reduce noise. Molecular water absorbs infrared light at frequencies of 5,200 cm⁻¹ and 1,630 cm⁻¹,
172 while hydroxyl absorbs infrared light at 4,500 cm⁻¹ (Newman *et al.*, 1986). Both molecular water
173 (H₂O_m) and hydroxyl (OH) contribute to the fundamental OH stretching vibration at 3,550 cm⁻¹.
174 When melt inclusions showed a saturated 3,550 cm⁻¹ peak, total water concentrations (H₂O_m +
175 OH) were calculated from the heights of the 5,200 cm⁻¹ and 4,500 cm⁻¹ peaks using the calibration
176 equations of Zhang *et al.* (1997). We additionally applied the molar absorption coefficients of
177 Newman *et al.* (1986), Ohlhorst *et al.* (2001), and Nishimura *et al.* (2005) (see Supplementary
178 Table A1). For these calibrations, water concentration was calculated from peak heights using the
179 Beer-Lambert Law (Eq. 1)

$$180 \quad C = \frac{(mw)*(A)}{\rho*d*\varepsilon} \quad (1)$$

181 where C is the concentration of water in weight fraction of the absorbing species, mw is the
182 molecular weight (g/mol) of the volatile species (18.02 for total H₂O and 44.01 for CO₂), A is the
183 absorbance peak height, ρ is the density of the glass (g/L), d is the inclusion thickness (cm), and ε
184 is the molar absorption coefficient (L/mol·cm). The absorbance peak height was measured with the
185 OMNIC software using a straight baseline in all cases. This approach was chosen due to the absence
186 of pronounced curvature in the baselines of the spectra and the absence of adjacent overlapping
187 peaks, making a linear baseline the most reproducible and easily defined method (e.g., Behrens *et*

188 *al.*, 1996; Ihinger *et al.*, 1999; Zhang, 1999; Von Aulock *et al.*, 2014; Chen *et al.*, 2015). In rhyolitic
189 compositions, glass densities strongly depend on total water concentration, therefore the use of an
190 iterative process is required to converge on appropriate values [Eq. 2 (Myers *et al.*, 2019; modified
191 from Skirius, 1990)]:

$$\rho = 2350 - 12.6 C_{H_2O} \quad (2)$$

192 where ρ is the glass density (g/L), C_{H_2O} is the concentration of total dissolved H₂O in wt% for each
193 analytical spot. Carbon dioxide is present as molecular CO₂, which exhibits an absorbance peak at
194 2,350 cm⁻¹. The absorption coefficient (ε) for molecular CO₂ in rhyolitic glass is 1,214 L/mol·cm
195 (Behrens *et al.*, 2004). In Table 1, we report water contents calculated by the Zhang *et al.* (1997)
196 and Newman *et al.* (1986) calibrations and carbon dioxide calculated by the Behrens *et al.* (2004)
197 calibration.

198 Multiple methods were used to measure the thicknesses of the melt inclusions. Wafer
199 thicknesses of doubly exposed melt inclusions were measured using a calibrated stereo zoom lens
200 with a 1-mm objective on the Leica S9i Stereomicroscope. We turned the wafers on their sides such
201 that we could see the wafer edges when observed using the microscope (see Supplementary Figure
202 A3). The thickness of each wafer was measured in multiple places along the wafer edge using the
203 LASX software and these measurements were averaged for use in the following calculations.

204 Some of the melt inclusions were singly exposed. For these wafers, the method of Tolland *et*
205 *al.* (2019) was applied to estimate the proportion of melt versus quartz sampled by the FTIR beam.
206 The total wafer thicknesses of these samples were left thick enough that we could measure them
207 using a Mitutoyo digimatic indicator, a tool with a precision of approximately ± 3 μ m, without
208 risking breakage or loss of the wafers. The proportion of melt versus quartz in the beam path can
209 then be estimated using the relative heights of the quartz overtone bands at $\sim 2,136$ cm⁻¹ for analyses

211 measured through the melt inclusion, and through the quartz host at a location near the melt
 212 inclusion, by applying the following equation [Eq. 3 (Tollan *et al.*, 2019)]:

213
$$\text{Thickness of MI } (\mu\text{m}) = \frac{A_{\text{Quartz}} - A_{\text{Quartz+MI}}}{A_{\text{Quartz}}} \times \text{measured wafer thickness } (\mu\text{m}) \quad (3)$$

214 where A_{Quartz} is the integrated absorbance of the $2,136 \text{ cm}^{-1}$ overtone of pure quartz adjacent to the
 215 melt inclusion, $A_{\text{Quartz+MI}}$ is the integrated absorbance of the $2,136 \text{ cm}^{-1}$ overtone band through the
 216 melt inclusion and measured wafer thickness is the total thickness of the quartz wafer.

217 Total water concentration was measured in 17 plagioclase crystals by FTIR using polarized
 218 transmission spectra in three orthogonal directions (X, Y, Z) that did not necessarily correspond to
 219 optical directions (Johnson & Rossman, 2004). Two perpendicular line traverses (referred to as
 220 North-South and East-West) were measured across both halves of the crystals to characterize
 221 variations in their water concentrations. Water concentrations in the plagioclase crystals were
 222 quantified using the Beer-Lambert Law with the following modifications:

223
$$C = \frac{A_{\text{int}}}{\rho * d * \varepsilon_{\text{int}}} \quad (4)$$

224 where C is the concentration of water in weight ppm H_2O , A_{int} is the total integrated area of OH-
 225 related bands in the region $3,700 - 2,600 \text{ cm}^{-1}$; ρ is the density of plagioclase (2.65 g/cm^3); d is the
 226 thickness of the crystal section which was measured by a micrometer with $\pm 3 \mu\text{m}$ uncertainty; and
 227 ε_{int} is the integral absorbance coefficient for the hydrous species Type IIa OH in plagioclase
 228 ($202,600 \pm 20,260 \text{ L} \cdot \text{mol}^{-1} \text{ H}_2\text{O} \text{ cm}^{-2}$; Mosenfelder *et al.*, 2020). Note that the water in plagioclase
 229 is thought to dissolve as hydroxyl; however, the concentration of water is quantified as weight ppm
 230 H_2O (Johnson & Rossman, 2004).

231 **3.3. X-ray fluorescence (XRF)**

232 Whole rock chemistry of five pumice clasts with different textures from P1 was measured by X-
233 ray fluorescence (XRF) spectrometry at the Department of Earth & Environment at Franklin and
234 Marshall College. A PANalytical Zetium X-ray fluorescence vacuum spectrometer was used to
235 analyze bulk major and trace element compositions of the pumice clasts. Iron was measured by
236 titration against standard $K_2Cr_2O_7$ solution in acid medium using sodium diphenylamine sulfonate
237 as the indicator. Three replicate measurements of FeO in the NBS-688 basalt standard were used
238 to calculate a correction factor for the batch of samples and the error percentage in the FeO
239 measurements (0.1%). Moreover, %FeO (by titration) was used to calculate % Fe_2O_3 , Fe^{2+} , and
240 Fe^{3+} . These values were used to estimate the whole rock Mg# and the oxygen fugacities of the
241 samples (see Results section).

242 **3.4. Electron probe microanalysis (EPMA)**

243 Major element concentrations of minerals, melt inclusions, and matrix glass were analyzed using a
244 JEOL 8900R electron probe microanalyzer (EPMA) at the Maryland Nanocenter, University of
245 Maryland – College Park. The operating conditions for amphibole and plagioclase analyses were
246 an accelerating voltage of 15 kV, a beam current of 20 nA, and a beam diameter of 10 μm . The
247 same conditions were used for olivine analyses, but with a beam diameter of 1 μm . Quantitative
248 analyses were made using well-characterized natural and synthetic standards. Amphibole standards
249 include Kakanui Hornblende (USNM 143965) for Na_2O , K_2O , FeO, CaO, MgO, Al_2O_3 , SiO_2 , TiO_2 ,
250 and Rhodonite (USGS PXBH) for MnO. For olivine analyses we used San Carlos Olivine (USNM
251 111312/444) for SiO_2 , FeO, MgO and NiO; Bushveld Chromite for Cr_2O_3 ; Rhodonite (USGS
252 PXBH) for MnO; Anorthite (USNM 137041) for CaO Al_2O_3 ; albite for Na_2O ; microcline for K_2O ;
253 and ilmenite for TiO_2 . Plagioclase standards include Lake County plagioclase for CaO, Al_2O_3 ,
254 SiO_2 ; albite (USGS FSTA) for Na_2O ; Kakanui Hornblende (USNM 143965) for TiO_2 , MgO and

255 FeO; Rhodonite (USGS PXBH) for MnO; and microcline for K₂O. Concentrations were calculated
256 from x-ray fluxes using a phi-rho-Z algorithm (Armstrong, 1988).

257 Melt inclusions and glass matrix were analyzed with operating conditions of 15 kV, an
258 electron beam current of 2.5 nA, and a beam diameter of 10 μm . Low current was used to minimize
259 diffusion of mobile species such as Na and H₂O. Accuracy was assessed by measuring 10 analyses
260 of the Morgan & London (1996) hydrous glasses (Supplementary Table B1). Each melt inclusion
261 was observed using back-scattered electron imaging (BSE) for signs of post-entrapment
262 crystallization (PEC), cracks, and surface topography.

263 **3.5. Secondary Ion Mass Spectrometry (SIMS)**

264 Water concentrations (total H quantified as H₂O equivalents) in five melt inclusions were measured
265 using the Cameca NanoSIMS 50L at the Carnegie Earth and Planets Laboratory, Washington D.C.
266 The vacuum in the analysis chamber was maintained between 2.5×10^{-9} and 1.7×10^{-9} torr.
267 Analyses were conducted using entrance slit (ES) 5 and aperture slit (AS) 4. A 15x15- μm area was
268 chosen for each analysis which was subsequently pre-sputtered for ~ 3 min with a 2-nA Cs⁺ primary
269 beam to remove the Au coat and surface contamination. Following pre-sputtering, the raster size
270 was reduced to a 10x10- μm area for the duration of the analytical counting time (7 min 10 s).
271 Electronic gating and beam blanking further focused the ion collection to the central 5x5- μm region
272 of the analytical area. Negatively charged ¹²C⁻, ¹⁶O¹H⁻, ¹⁹F⁻, ³⁰Si⁻, ³²S⁻ and ³⁵Cl⁻ ions were
273 simultaneously detected using electron multipliers with a mass resolving power of >8000 (MRP;
274 as defined by Cameca), allowing discrimination of ¹⁶O¹H⁻ from ¹⁷O. The real-time imaging (RTI)
275 function of the NanoSIMS 50L was used to generate heat maps of ion counts and check for hot
276 spots (e.g., cracks) that represent sources of contamination. If hot spots were identified, the beam
277 was moved to another area until a suitable analytical area was identified. The electron gun was used

278 to charge-compensate the sample surface due to the implantation of Cs^+ ions and the removal of
279 negatively charged ions and electrons during analyses. Electron gun tuning followed the same
280 procedure as Peterson *et al.* (2023). Counts of volatile ions ($^{12}\text{C}^-$, $^{16}\text{O}^1\text{H}^-$, $^{19}\text{F}^-$, $^{32}\text{S}^-$, and $^{35}\text{Cl}^-$)
281 were ratioed against $^{30}\text{Si}^-$ to account for instrumental drift; e.g., due to variations in the primary
282 beam and electron gun tuning. The data were then SiO_2 -corrected by multiplying $^{30}\text{Si}^-$ normalized
283 ion counts by the SiO_2 concentration of the target, as measured by electron microprobe, divided by
284 50 (e.g., $^{16}\text{O}^1\text{H}^-/^{30}\text{Si}^- \times \text{SiO}_2/50$). We note that the factor of 50 is applied for convenience because
285 most geological materials contain ~50 wt% SiO_2 , so adoption of this factor produces a SiO_2
286 correction factor close to 1; however, the choice of scalar does not affect the reported volatile
287 concentrations. The SiO_2 correction was applied to account for variations in the SiO_2 content of the
288 standards and samples that would otherwise produce variations in measured $^{30}\text{Si}^-$ normalized ion
289 counts (e.g., Newcombe *et al.*, 2020; Peterson *et al.*, 2023; Towbin *et al.*, 2023). No blank
290 corrections and no secondary drift corrections were applied to the data.

291 Water concentrations were calibrated using FTIR measurements of a set of rhyolite glasses
292 (71 – 73 wt% SiO_2) with 3 to 6 wt% of H_2O (see Supplementary Table C1 for references). Suprasil
293 3002 glass containing ~2 ppm H_2O (Newcombe, 2022) was used to monitor the analytical blank
294 (2.7 ± 0.35 ppm; see Supplementary Table C1). Repeat measurements of standard N6 were used to
295 assess the reproducibility of analyses of materials with high-water contents.

296 **4. RESULTS**

297 **4.1. Petrography and mineral chemistry**

298 Lapilli pumice clasts contain plagioclase, amphibole, quartz, and biotite phenocrysts, with
299 accessory Fe-Ti oxides and apatite (listed by order of abundance). All of these mineral phases are

300 also present as microlites in the groundmass. Rare olivine (n=10) with a Mg# of 89–92 and
301 orthopyroxene (n=1) with a Mg# of 92 were also observed.

302 Plagioclase is present as euhedral to subhedral phenocrysts (>2 mm), microphenocrysts (0.5
303 – 2 mm) and microcrysts (<0.5 mm) that can be grouped into three distinct textures (listed here in
304 decreasing order of abundance): (1) low-An (An_{24-38}) crystals presenting oscillatory and patchy
305 zoning with limited compositional variation from core (An_{24-34}) to rim (An_{28-38}); (2) oscillatory
306 zoned crystals with an intermediate An core (An_{36-43}) and an euhedral rim (An_{30-35}) (Fig. 3a); and
307 (3) rare anhedral zoned crystals with a rounded core (An_{28-34}), occasionally mantled by a reabsorbed
308 rim, and an outermost higher An rim (An_{42-48}). The low-An crystals with limited compositional
309 variation are by far the most abundant (~70%; see Fig. 4a).

310 Amphibole ranges from euhedral to anhedral microphenocrysts (0.5 – 2 mm) and
311 microcrysts (<0.5 mm). Most amphiboles have magnesio-hastingsite compositions following the
312 classification of Leake *et al.* (1997), while some are classified as pargasite. Analyses with low totals
313 (<98 wt %) and deviations from the idealized stoichiometry were recognized using the amphibole
314 formula of Ridolfi (2021) and Li *et al.* (2020). Four different populations of amphiboles can be
315 distinguished on the basis of their mineral chemistry: (1) low-Mg unzoned amphiboles with a Mg#
316 range of 53 – 62 (Fig. 3b); (2) high-Mg unzoned amphiboles with a Mg# of 66 – 76; (3) normally
317 zoned amphiboles with a Mg-rich core (Mg# 61 – 77) and a Mg-depleted rim (Mg# 54 – 58) (Fig.
318 3c); and (4) reversely zoned crystals with Mg# 53 – 60 in their core, mantled by a Mg-rich rim with
319 Mg# 65 – 76. The unzoned, low-Mg amphiboles are by far the most abundant (77%; Fig. 4b).

320 Quartz microphenocrysts (0.5 – 2 mm) and microcrysts (<0.5 mm) are anhedral, and
321 frequently contain vapor-bubble-filled melt embayments/re-entrants. Biotite is present as euhedral
322 to subhedral phenocrysts, microphenocrysts and microcrysts that are broken or deformed. Rounded

323 microcysts and phenocrysts surrounded by plagioclase crystals were also observed. Fe-Ti oxides
324 occur as inclusions in plagioclase, amphibole, and biotite or as microcysts in the groundmass. Rare
325 olivine occurs as microphenocrysts and microcysts with a Mg# of 89 – 92. Rare olivine and
326 orthopyroxene crystals are surrounded by allotriomorphic amphibole overgrowths with Mg#
327 ranging from 73 – 80 (Fig. 3d).

328 **4.2. Whole rock chemistry**

329 Major and trace element concentrations in the lapilli pumice clasts show little variation in SiO₂
330 (Supplementary Table B2), regardless of their textural differences (white versus gray pumices). All
331 samples are classified as medium-K, calc-alkaline dacites on a total alkalis versus silica (TAS)
332 diagram, with SiO₂ contents ranging from 63.6 to 66.4 wt%, and total alkalis ranging from 5.9 to
333 6.4 wt% (Fig. 5a). Harker diagrams for Al₂O₃, TiO₂, FeO_T, P₂O₅, and CaO show negative
334 correlations with SiO₂, which is consistent with fractional crystallization of plagioclase, pyroxene,
335 apatite, and Fe-Ti oxides (see Supplementary Figure B1). Whole rock MgO is negatively correlated
336 with SiO₂; however, this negative correlation is not observed in analyses of matrix glass or melt
337 inclusions, which are found to have SiO₂ contents of 65.2 to 79.2 wt%. Whole rock K₂O is
338 positively correlated with SiO₂ due to its incompatible behavior in the mineral phases present.

339 The calc-alkaline affinity of CMV dacites is supported by trace element distribution plots
340 normalized to primitive mantle values (from Sun & McDonough, 1989). An enrichment of large
341 ion lithophile elements (LILE; including the fluid-mobile trace elements K, Ba, Pb, Sr) and the
342 presence of a negative Nb anomaly are typical features of arc-derived calc-alkaline magmas
343 (Schmidt & Jagoutz, 2017).

344 The Cerro Machín Volcano (CMV) dacites can be classified as adakites based on their
345 major and trace element composition (Samaniego *et al.*, 2005; Fig. 5b, c, d). Moreover, CMV

346 samples are characterized as high-silica adakites on a Cr/Ni vs. TiO₂ diagram (Fig. 5d; Martin *et*
347 *al.*, 2005). The potential origins of this adakite signature and the distinctive major and trace element
348 concentrations in CMV dacites are discussed in Section 5.5.

349 A Mg# range of 63 – 71 was calculated using FeO and MgO from the whole rock chemistry
350 as molar Mg/(Mg +Fe²⁺)*100. Additionally, FeO and Fe₂O₃ calculated from whole rock chemistry
351 analysis (see section 3.3), an average temperature of 866 °C ± 35 °C (using the Putirka (2016)
352 amphibole-liquid thermometer; see section 4.5) and a modal pressure of 7 00 MPa (see section 4.5)
353 were used to obtain oxygen fugacities (Kress & Carmichael, 1991) above the nickel–nickel oxide
354 buffer (NNO) with ΔNNO between +0.89 and +1.59.

355 **4.3. Volatile concentrations in melt inclusions**

356 Melt inclusions ranging in size from 27 to 137 µm are observed in plagioclase and quartz
357 phenocrysts. The inclusions typically have spherical shapes but faceted melt inclusions with
358 trigonal bipyramidal shapes are also observed (Fig. 6a). Most melt inclusions contain multiple
359 vapor bubbles, and we observed a greater abundance of vapor bubbles in the quartz-hosted melt
360 inclusions than the plagioclase-hosted melt inclusions (Fig. 6b). A total of 35 melt inclusions hosted
361 in plagioclase (16) and quartz (19) were analyzed using FTIR. We applied several published
362 calibrations to calculate the water concentrations in the melt inclusions (Supplementary Table A1;
363 Zhang *et al.*, 1997; Ohlhorst *et al.*, 2001; Newman & Lowerstern, 2002; Nishimura *et al.*, 2005).
364 Here we report water contents calculated using the Zhang *et al.* (1997) calibration (Table 1) as it is
365 the most widely used for rhyolite melt inclusions; however, we recognize the considerable
366 uncertainties associated with the high-water analyses (uncertainties among the different
367 calibrations are ~1 wt% for melts containing ~10 wt% H₂O). The measured water and carbon
368 dioxide concentrations range between 0.5 to 10.7 wt% H₂O using the Zhang *et al.* (1997) calibration

369 and 0 to 445 ppm of CO₂ using the Behrens *et al.* (2004) calibration (Fig. 6c). Most melt inclusions
370 have H₂O contents between ~3 and ~6 wt% (25th and 75th percentiles, respectively). Regardless of
371 the calibration used, our high-water melt inclusions are among the most water-rich ever reported
372 (Borisova *et al.*, 2006; Gavrilenco *et al.*, 2019), suggesting that Cerro Machín is a remarkably
373 hydrous volcanic system.

374 We measured five of the quartz-hosted singly exposed melt inclusions by NanoSIMS. The
375 calibration curve was based on FTIR measurements in rhyolite glasses with up to 6 wt% H₂O
376 (Supplementary Table C1; Fig. 7a). We obtained concentrations from 5.8 wt% to 7.7 wt% H₂O
377 (Fig. 7b) and most of the SIMS values overlap within one standard deviation of our FTIR
378 measurements. Despite the agreement, we acknowledge the large uncertainties of our FTIR
379 measurements that demonstrate the limitations of this technique. Melt inclusions d1-Qz2, d1-Qz5
380 and d1-Qz7 (for which the melt inclusion thicknesses are estimated to occupy 9%, 14% and 6%,
381 respectively, of their total wafer thicknesses) provide evidence of good agreement between both
382 approaches (Fig. 7b). We note that Tolland *et al.* (2019) recommend that melt inclusion thickness
383 should range between ~15 and 50% of the total wafer thickness in order to minimize the uncertainty
384 of the singly-exposed melt inclusion approach. Unfortunately, our melt inclusions are quite small
385 compared to those analyzed by Tolland *et al.* (2019), and our wafers had melt inclusion thicknesses
386 that occupied <15% of the total wafer thickness. The disparity observed between our NanoSIMS
387 and FTIR data for d1-Qz3 and d1-Qz6 might be related to the low melt inclusion:quartz thickness
388 ratios of these wafers (9 and 4% of the total quartz thickness, respectively) which places a
389 significant uncertainty on the melt inclusion thickness estimates and ultimately, on the FTIR
390 calculations (Table 1; Tolland *et al.*, 2019). The significant drop in precision for these two melt

391 inclusions highlights the limitations of the singly-exposed melt inclusion approach for small melt
392 inclusions.

393 We used our measured water and carbon dioxide concentrations to calculate melt inclusion
394 entrapment pressures (Wallace *et al.*, 1999). Saturation pressures were calculated based on the
395 Newman & Lowenstern (2002) model for rhyolitic melts (Fig. 6c) and the Papale *et al.* (2006)
396 model using SOWLCAD from EUROVOLC: Volcano Dynamics Computational Centre
397 (Supplementary Table A1). We find that melt inclusions with water contents ~ 5 wt% were trapped
398 at pressures lower than 200 MPa whereas melt inclusions with water contents between 6.3 – 10.7
399 wt% were trapped at pressures from 234 to 462 MPa (VolatileCalc model, Newman & Lowerstern,
400 2002) or up to 728 MPa (Papale, 2006 model). These results are in good agreement with our mineral
401 thermobarometry estimates, although there is a bias in the melt inclusion record towards lower
402 pressures. The origin of this bias is discussed in Section 5.1.1.

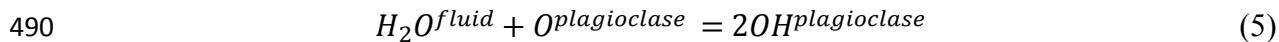
403 Isopleths of constant vapor compositions containing between 1 and 10 mol. % CO₂ (i.e., 99
404 to 90 mol. % H₂O) provide a good match to our melt inclusion data (Fig. 6c) suggesting that the
405 CMV magma was buffered by an aqueous supercritical fluid and was supersaturated up to pressures
406 of 462 MPa (applying the VolatileCalc model). Supersaturation of the CMV magma is further
407 supported by the persistent presence of bubbles in the melt inclusions. Vapor bubbles in melt
408 inclusions that occupy relatively small (typically < 10 vol. %; Moore *et al.*, 2015) and
409 approximately constant volume fractions of the inclusions have been attributed to melt shrinkage
410 and post-entrapment crystallization during cooling—such vapor bubbles have been found to
411 sequester CO₂ such that the measured CO₂ concentration in the melt is much lower than the initial
412 trapped CO₂ concentration (Hartley *et al.*, 2014; Moore *et al.*, 2015; Rasmussen *et al.*, 2020). In
413 CMV melt inclusions, however, the vapor bubbles occupy large and variable volume fractions of

414 the melt inclusions (Fig. 6a, b ; Supplementary Table A2 and Supplementary Figures A1 and A2).
415 This feature may indicate decrepitation of the melt inclusions during decompression (e.g.,
416 Bachmann *et al.*, 2010; Wallace *et al.*, 2021; Borisova *et al.*, 2005), or alternatively, the persistent
417 presence of vapor bubbles may indicate that the bubbles were present in the magma during the
418 initial entrapment of the melt inclusions (Steele-MacInnis *et al.*, 2017); i.e., the magma was
419 saturated with a supercritical fluid. Modeling of melt inclusions containing co-entrapped vapor
420 bubbles suggests that the co-entrapped vapor buffers CO₂ in the melt during cooling such that there
421 is minimal loss of CO₂ into the vapor phase (Steele-MacInnis *et al.*, 2017). As such, it is not
422 appropriate to apply corrections to our measured CO₂ concentrations for the diffusion of CO₂ into
423 the vapor, and it is possible that our measured CO₂ concentrations are a robust estimate of the CO₂
424 concentration in the initially trapped magma. However, we also acknowledge that some portion of
425 the CO₂ in each melt inclusion may have been sequestered into the vapor phase during post-
426 entrapment modification, in which case our melt inclusion pressure estimates may represent lower
427 bounds.

428 4.4. Water concentration and partitioning in plagioclase

429 Nominally anhydrous minerals (NAMs) have been proposed as a powerful tool for estimating pre-
430 eruptive water contents of magmas (e.g. Urann *et al.*, 2022). Reported concentrations of water in
431 volcanic feldspar range up to hundreds of ppm H₂O (by weight) (Caseres *et al.*, 2018; Hamada *et*
432 *al.*, 2011; Johnson & Rossman, 2004; Seaman *et al.*, 2006) and have been used to constrain the
433 water content of their host melts by applying Henrian partition coefficients (Hamada *et al.*, 2013;
434 Caseres *et al.*, 2017, 2018). We analyzed water concentrations in 17 plagioclase crystals with
435 maximum diameters ranging between 1.5 and 7.6 mm and a compositional range of An₂₈ to An₄₀.
436 Crystals show oscillatory zoning with occasional melt inclusions; minimal and restricted evidence

437 of re sorption or disequilibrium features was observed. To calculate total water, FTIR spectra were
438 measured in three perpendicular directions, and the thickness-normalized hydroxyl peak areas were
439 summed. These measurements required the preparation of two mutually perpendicular slabs from
440 each crystal (Fig. 8a). In the majority of the crystals, we obtained approximately uniform water
441 contents (edge to edge) indicating the absence of observable water gradients associated with
442 diffusive processes (Fig. 8b). We note that such gradients may be present within the outer few 10s
443 of microns of the crystals, but if present, these gradients are not resolvable by our FTIR
444 measurements. In order to constrain the diffusive length scale for water in the plagioclase crystals,
445 we estimate the timescale of magma ascent based on the lack of observable breakdown rims on
446 CMV amphibole crystals, and we calculate the characteristic diffusion length scale of water in
447 plagioclase (x) during this magma ascent timescale (t) using the simplified equation $x = \sqrt{Dt}$, where
448 D is the diffusivity of water in plagioclase. Using constraints on the time required for amphibole
449 breakdown rims to develop (Rutherford & Hill, 1993), we estimate that CMV magma likely
450 ascended from its storage region to the surface in less than ~ 3 days. Using the Arrhenius
451 relationship provided by Johnson & Rossman (2013) at a temperature of 851 °C (obtained from
452 amphibole thermobarometry), we obtain a diffusivity of water in plagioclase of $1.0 \times 10^{-14} m^2/s$.
453 Therefore, applying the equation $x = \sqrt{Dt}$, we calculate a characteristic diffusion length scale for
454 water in the plagioclase crystals of ~ 50 microns. This calculation suggests that the centers of the
455 plagioclase crystals (which range in size from 1.5 to 7.6 mm) likely preserve the pre-eruptive water
456 contents (i.e., the water contents they had in the magma storage region in the weeks to months
457 preceding the eruption). To further support our assumption that the measured water concentrations
458 represent their pre-eruptive storage values without syneruptive diffusive modification, we plotted

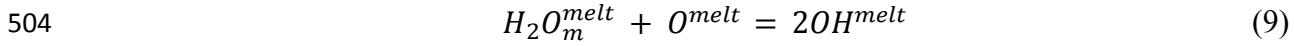
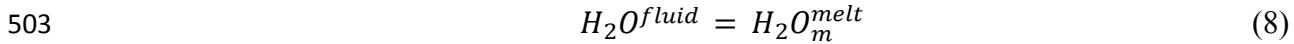

459 plagioclase crystal size versus water content. We did not find any relationship, supporting a lack
460 of diffusional control on the central water concentrations of the CMV plagioclase crystals (Fig. 8c).

461 Currently and to the extent of our knowledge, there are no experimental studies of water
462 partitioning between plagioclase and felsic melts relevant to CMV, and only one study for basaltic
463 to basaltic-andesite melts under terrestrial conditions has been reported (Hamada *et al.*, 2013). The
464 Hamada *et al.* (2013) study found evidence for non-Henrian behavior of water partitioning between
465 plagioclase and melt. They fit their partitioning data to two constant partition coefficients, one for
466 low-water (<1 wt% H₂O) melts and one for high-water (> 4 wt% H₂O) melts. Other studies
467 calculated a partition coefficient (defined as $K_d = \frac{\text{Concentration of water in plagioclase (wt\%)}}{\text{Concentration of water in melt (wt\%)}}$) of
468 ~0.002 (Mosenfelder *et al.*, 2020) based on plagioclase-melt inclusion pairs from dacitic-rhyolitic
469 systems such as Mt. Saint Helens (Johnson, 2005), Mt. Hood (Caseres *et al.*, 2018), Mt. Mazama
470 (Mosenfelder *et al.*, 2018) and the Huckleberry Ridge Tuff, Yellowstone (Rappoccio *et al.*, 2020).
471 Partitioning data from Hamada *et al.* (2013) and Caseres *et al.* (2018) are compiled and plotted in
472 Fig. 9.

473 The observation by Hamada *et al.* (2013) and Xu *et al.* (2024) that water concentrations in
474 plagioclase may be a nonlinear function of the water concentration in the equilibrium melt suggests
475 that the application of Henrian partition coefficients to water concentrations in plagioclase crystals
476 is likely inappropriate. We note that hydrogen exists predominantly as hydroxyl and molecular
477 water in silicate melts (Stolper, 1982; Dixon *et al.*, 1995) and predominantly as hydroxyl (or
478 equivalently, protons associated with the oxygen lattice) in nominally anhydrous minerals
479 (Rossman, 1996; Keppler & Bolfan-Casanova, 2006). The complex speciation of hydrogen in melts
480 and minerals makes it unlikely that its partitioning is independent of water concentration because

481 the activity of molecular water and hydroxyl in silicate melts (and potentially in minerals) is known
 482 to vary non-linearly with total water concentration (e.g., Stolper, 1982).

483 In light of the complex speciation behavior of water in melts and minerals, thermodynamic
 484 models of partitioning and solubility in NAMs (i.e., nominally anhydrous minerals) have been
 485 developed (Kohlstedt & Mackwell, 1998; Keppler & Bolfan-Casanova, 2006; Adam *et al.*, 2016;
 486 Mitchell *et al.*, 2017). Such models consider activity-composition relations of water in silicate melts
 487 and also account for different OH dissolution mechanisms in minerals. For example, the following
 488 reaction describes the dissolution of water in plagioclase as two independent hydroxyl groups
 489 (Keppler & Bolfan-Casanova, 2006):



491 in which H_2O^{fluid} is a hydrous fluid, $O^{\text{plagioclase}}$ is an unprotonated oxygen in the plagioclase structure
 492 and $OH^{\text{plagioclase}}$ is a hydroxyl group dissolved into the plagioclase structure (likely charge balanced
 493 by a vacancy or another trace element defect). The equilibrium constant for this reaction (K_1) can
 494 be approximated as follows:

$$495 \quad K_1 = \frac{X_{OH}^{\text{plagioclase}}{}^2}{X_O^{\text{mineral}} \cdot f_{H_2O}} \quad (6)$$

496 where $X_{OH}^{\text{plagioclase}}$ is the mole fraction of OH in plagioclase, $X_O^{\text{plagioclase}}$ is the mole fraction of
 497 unprotonated oxygens in plagioclase (a large enough reservoir that this quantity can be considered
 498 constant) and f_{H_2O} is the fugacity of water. Rearranging for $X_{OH}^{\text{plagioclase}}$, we find that the mole
 499 fraction of OH in plagioclase is expected to be proportional to the square root of water fugacity:

$$500 \quad X_{OH}^{\text{plagioclase}} \propto \sqrt{f_{H_2O}} \quad (7)$$

501 Water dissolves into silicate melts as both molecular water (H_2O_m) and hydroxyl (OH), via
 502 the following reactions (Stolper, 1982):

505 Combining these reactions, the equilibrium constant for the combined reaction (K_2) can be
 506 approximated as follows:

507
$$K_2 \cong \frac{X_{OH}^{melt2}}{X_O^{melt} \cdot f_{H2O}}$$
 (10)

508 At low total water concentrations, water dissolves in silicate melts predominantly as OH,
 509 and the dissolution of small quantities of water results in a negligible change in X_O^{melt} , such that
 510 X_O^{melt} can be assumed to be constant, and the following relationship holds (Newcombe *et al.*, 2017):

511
$$X_{OH}^{melt} \propto \sqrt{f_{H2O}}$$
 (11)

512 This suggests that, in the low-pressure limit, $X_{OH}^{melt} \propto X_{OH}^{plagioclase} \propto \sqrt{f_{H2O}}$, which would
 513 indicate a constant melt-plagioclase partition coefficient for OH ; however, this treatment may not
 514 extrapolate to higher f_{H2O} , where the assumption of constant X_O^{melt} will be violated and the
 515 pressure dependence of the equilibrium constants may become significant. Notably, VolatileCalc
 516 (Newman & Lowenstern, 2002) predicts a maximum OH solubility in rhyolitic melt of ~2 wt%.
 517 Applying a constant OH partition coefficient of 0.006 [determined by applying the absorption
 518 coefficient for water in plagioclase of Mosenfelder *et al.* (2015) to the OH partitioning data of
 519 Hamada *et al.* (2013)], this implies a maximum dissolved OH in plagioclase of ~120 ppm. Our
 520 CMV plagioclase crystals contain water concentrations up to ~161 ppm, indicating that a constant
 521 OH partition coefficient cannot be accurately extrapolated to the high-water concentrations
 522 measured at CMV.

523 In the absence of high-pressure experiments to examine the partitioning behavior of water
524 between plagioclase and melt under conditions relevant to CMV, we fit the partitioning data of
525 Hamada *et al.* (2013) and Caseres *et al.* (2018) to a square root relationship between water in
526 plagioclase and water in melt. This empirical approach provides a good fit to the data across the
527 studied range of melt water contents (up to ~6 wt% H₂O; Fig. 9). By applying a least-squares
528 minimization to the existing experimental data (see caption to Fig. 9), we propose that the following
529 relationship can be used to calculate the water concentration of plagioclase in equilibrium with
530 basaltic to dacitic melt containing up to ~6 wt% H₂O:

$$531 C_{H_2O}^{plagioclase} (ppm) = 48 \sqrt{C_{H_2O}^{melt} (wt\%)}, \quad (12)$$

532 where $C_{H_2O}^{plagioclase}$ is the concentration of water in plagioclase in wt ppm H₂O, and $C_{H_2O}^{melt}$ is the
533 total concentration of water in melt calculated as wt% H₂O.

534 Notably, the application of equation 12 to CMV magma containing > 6 wt% H₂O requires
535 extrapolation beyond the experimentally constrained water concentration range. Furthermore, at
536 high-water concentrations, the shape of the square root function means that small changes in the
537 measured water concentration of plagioclase result in large changes in the calculated water
538 concentration of the equilibrium melt; e.g., an increase in plagioclase water concentration from 150
539 to 160 ppm results in an increase in the calculated equilibrium melt water content from 10 to 11
540 wt% H₂O.

541 By applying equation 12 to the range of water concentrations that we measured in the
542 plagioclase crystals (103 – 161 ppm H₂O; Table 2), we calculate equilibrium melt water contents
543 from 5 ± 1 to 11 ± 2 wt% H₂O (with a 25th percentile of 6 wt% H₂O and a 75th percentile of 8 wt%
544 H₂O), which are in good agreement with the water contents we measured in melt inclusions (Fig.
545 10a). Alternatively, application of a constant partition coefficient of 0.002 (Mosenfelder *et al.*,

546 2020) results in a range of equilibrium melt water contents from 5 to 8 wt%. We note that further
547 experiments are required to determine whether equation 12 is adequate to describe water
548 partitioning between silicate melts and plagioclase crystals, or whether additional terms are
549 required to account for dependences on melt and/or crystal composition, temperature, pressure, or
550 oxygen fugacity (e.g., Lin *et al.* 2019).

551 Finally, we applied the plagioclase-liquid hygrometer of Waters & Lange (2015). This
552 model is calibrated up to 350 MPa and down to a minimum temperature of 750 °C. Since we have
553 evidence that the CMV system extends to pressures >350 MPa, most of the CMV system is outside
554 the calibration range of the Waters & Lange (2015) model (shown as dashed curves in Fig. 10b).
555 Notably, magmatic water concentrations calculated using this model show minimal sensitivity to
556 pressure but significant sensitivity to temperature (Fig. 10b). In light of the minimal pressure
557 sensitivity, we have applied the model beyond its calibrated range, and note that the results should
558 be interpreted with caution. We considered a range of anorthite contents from An₂₀ to An₄₀, a range
559 of melt compositions from dacite (corresponding to the average CMV whole rock composition) to
560 rhyolite (corresponding to the average composition of the melt inclusions), and a pressure range of
561 200 – 1000 MPa. We found that pressure exerts little influence on the results (<~0.3 wt% H₂O) so
562 we fixed the pressure to 350 MPa (the maximum pressure that the model is calibrated to) in Fig.
563 10b. If we assume a temperature of 820 °C from plagioclase-liquid thermometry (Putirka, 2008;
564 see section 4.5.3) and 866 °C from amphibole-liquid thermometry (Putirka, 2016; see section
565 4.5.2), we obtain maximum water contents between 5.1 and 6.2 wt% H₂O (Fig. 10a). To match the
566 highest measured water concentrations in CMV melt inclusions (10.7 wt% H₂O), extrapolation of
567 the Waters and Lange model suggests that lower temperatures of ~700 °C would be required (Fig.
568 10b; see discussion in sections 4.5.3 and 5.2).

569 **4.5. Pressure, temperature and melt composition**

570 The high-water contents recorded by melt inclusions and plagioclase-hygroscopy indicate high
571 pressures for magma crystallization and storage. Here, we present pre-eruptive magmatic pressures
572 and temperatures calculated from analyses in the core and rim of amphibole and plagioclase crystals
573 in pumice clasts. For crystals across which transects were measured, we used an average
574 composition for core and rim. We report pressure estimates using amphibole geobarometers
575 formulated by linear regression (Ridolfi, 2021), linear least-squares regression with a
576 thermodynamic basis (Putirka, 2008; Putirka, 2016), and random forest machine learning (Higgins
577 *et al.*, 2022). Results are provided in Supplementary Table D1 and Fig. 11.

578 **4.5.1. Amphibole-only geothermobarometry**

579 The amphibole-only geothermobarometer of Ridolfi (2021) indicates a cluster of pressures between
580 196 ± 24 and 404 ± 48 MPa for both the unzoned and zoned amphibole crystals, consistent with
581 the storage pressure of 360 ± 43 MPa obtained using this method for the 900 yr BP dome-building
582 eruption of CMV (Laeger *et al.*, 2013). A single high-pressure value of 773 ± 93 MPa was also
583 recorded by using this barometer. The high-Mg amphiboles formed at higher temperatures ($916 \pm$
584 22 °C on average) than the more abundant low-Mg amphiboles (851 ± 22 °C on average). Normally
585 zoned amphiboles have cores formed at $899 - 923$ °C mantled by rims formed at $839 - 858$ °C,
586 while the compositions of the reversely zoned amphiboles reflect lower temperatures at their cores
587 ($841 - 874$ °C) than their rims ($870 - 929$ °C).

588 We applied an amphibole-only geobarometer-hygrometer from Krawczynski *et al.* (2012)
589 to our high Mg# amphiboles (Mg# 70 – 80). Our results suggest pressures from 280 MPa to 598
590 MPa with an uncertainty of ± 94 MPa. Higher pressures are found for amphibole overgrowths
591 around olivine crystals. Experiments performed by Krawczynski *et al.* (2012) suggest that the

592 coexistence of amphibole and olivine only occurs in a narrow temperature window between 915
593 and 1050 °C.

594 *4.5.2. Amphibole-liquid geothermobarometry*

595 We tested our amphibole-only geothermobarometry results against the amphibole-liquid
596 geothermobarometer of Putirka (2016). Equilibrium conditions between amphibole crystals and
597 whole-rock composition, average melt composition, and glass matrix were determined using the
598 $K_D = 0.28 \pm 0.11$ criterion (Putirka, 2016). The low-Mg amphibole crystals ($Mg\# < 64$) were found
599 to be in equilibrium with the average glass composition, whereas the high-Mg amphiboles ($Mg\# >$
600 64) did not meet the criteria. Results are detailed in Supplementary Table E1. Our melt inclusion
601 data indicate that the magma was saturated with a water-rich fluid, so when applying the hydrous
602 version of the amphibole-melt barometer (equation 7a of Putirka, 2016), water concentrations were
603 increased iteratively until the maximum water able to dissolve at each pressure (i.e., water-
604 saturation) was reached. The resulting pressure estimates are higher than those obtained using the
605 Ridolfi (2021) calibration, ranging from 320 to 1040 MPa with an uncertainty of ± 200 MPa and a
606 mode of ~ 670 MPa. Temperature estimates are consistent with the amphibole-only
607 geothermobarometry results (Fig. 11).

608 Finally, we obtained a wide range of crystallization pressures from 200 ± 25 to 1000 ± 320
609 MPa using a machine learning approach (Higgins *et al.*, 2022) with a mode of 700, and a barometry
610 uncertainty of 250 MPa which overlaps with the results obtained by the Putirka (2016)
611 thermobarometer. The single-phase thermobarometer calibration of Higgins *et al.* (2022) uses an
612 experimental data set that was used to train regression models with the extraTrees v1.0.5 package
613 (Simm *et al.*, 2014) in R. The extraTrees package involves a classification and regression machine
614 learning approach that uses a set of independent decision trees to make a prediction output (P, T)

615 by analyzing input data (mineral chemistry of the selected phase). Temperatures of amphibole
616 crystallization determined by the Higgins *et al.* (2022) thermometer are in good agreement with the
617 Putirka (2016) and Ridolfi (2021) thermometers (Fig. 11).

618 There is a clear discrepancy in our amphibole barometry estimates between the Ridolfi
619 (2021) amphibole-only barometer and the amphibole-liquid barometers of Putirka (2016) and
620 Higgins *et al.* (2022). This discrepancy can be attributed to the experimental amphibole database
621 used to produce the calibration equations of Ridolfi & Renzulli (2012), and updated in Ridolfi
622 (2021). The Ridolfi database lacks data for silica-rich magmas at relatively high pressure as pointed
623 out by Erdmann *et al.* (2014), and this may be biasing our CMV results.

624 Notably, additional constraints from the coexistence of olivine and high-Mg amphibole
625 (Krawczynski *et al.*, 2012) indicate magma storage pressures higher than those obtained using the
626 Ridolfi (2021) amphibole barometer. In light of this, we suggest that the Putirka (2016) and Higgins
627 *et al.* (2022) amphibole-liquid barometers are likely providing more robust estimates of magma
628 storage pressure at CMV.

629 4.5.3. *Plagioclase-melt thermometry*

630 We compare temperature calculations from amphibole thermometry with the plagioclase-melt
631 thermometer of Putirka (2005, 2008) for which we supplied X_{An} , average glass composition (note
632 that we checked for plagioclase-melt equilibrium using the equilibrium constant for albite (Ab) and
633 anorthite (An) exchange between plagioclase (pl) and melt (liq) expressed as $K_D(\text{An-Ab})^{\text{pl-liq}} = 0.1$
634 ± 0.05 criterion), an average H_2O content (6 ± 1 wt%) estimated using the equilibrium partition
635 coefficient 0.002 of water in plagioclase (see Table 2 and Supplementary Table E2; the
636 uncertainties in partition coefficients in plagioclase are discussed in section 4.4) and the modal
637 pressure of 7 00 MPa. We obtained an average temperature of 820 ± 48 °C (see Supplementary

638 Table D2), which is slightly lower than the temperature obtained from amphibole thermometry but
639 still similar within uncertainty (851 ± 22 °C; obtained by Ridolfi, 2021). We obtained even lower
640 temperatures ($708 - 727 \pm 48$ °C) using the maximum H₂O content estimated from melt inclusions
641 (10.7 wt%) in the pressure range 200 – 1000 MPa (extreme values obtained from the Higgins *et al.*
642 (2022) amphibole barometry). This temperature range is consistent with the range indicated by the
643 Waters & Lange (2015) plagioclase hygrometer (section 4.4) for the range of water concentrations
644 measured in the melt inclusions (Fig. 10b), although we note that pressures >350 MPa and
645 temperatures <750 °C extend beyond the calibrated range of this hygrometer.

646 *4.5.4. Amphibole-only chemometry*

647 To obtain information about the major element composition of the melts in equilibrium with the
648 mineral phases present at the time of crystallization, we calculated melt composition parameters
649 using amphibole chemometry (i.e., the application of machine learning techniques to constrain melt
650 composition from analyses of amphibole; Higgins *et al.*, 2022). The corresponding melts calculated
651 from the low-Mg amphiboles indicate dacitic or rhyolitic composition whereas melt composition
652 calculated from the high-Mg population of amphiboles is suggestive of andesitic parental melts
653 (Fig. 12).

654 *4.5.5. Summary of thermobarometry and chemometry constraints:*

655 • The low-Mg unzoned amphiboles (Mg# 53 – 62) in equilibrium with the average glass
656 composition record crystallization at a temperature of $\sim 866 \pm 35$ °C (Amp-liquid by Putirka,
657 2016) or $\sim 851 \pm 22$ °C by Ridolfi (2021), and 853 ± 26 °C by Higgins *et al.* (2022; Amp-
658 only). Plagioclase phenocrysts record similar temperatures regardless of the phenocrysts
659 population, with an average of $\sim 820 \pm 48$ °C (assuming 6 ± 1 wt% H₂O) or ~ 708 °C ± 48
660 °C (assuming 10.7 wt% H₂O).

661 ● The small population (~5%) of high-Mg unzoned amphiboles (Mg# 61 – 77) that were not
662 in equilibrium with the average glass composition record crystallization from a higher
663 temperature magma (~950 ± 24 °C).

664 ● Approximately 18% of amphiboles are normally or reversely zoned, reflecting the
665 interaction between these high and low temperature magmas. The observed coexistence of
666 high-Mg amphibole and olivine suggests that the primitive magma temperature was likely
667 between 915 and 1050 °C (Krawczynski *et al.*, 2012).

668 ● Amphibole chemometry indicates a predominantly dacitic magma reservoir at 700 ± 250
669 MPa that is supported by the remarkably homogeneous composition of CMV erupted
670 materials, even from other eruptions (Méndez *et al.*, 2002; Laeger *et al.*, 2013) (see Fig. 5a).
671 However, a few crystals suggest the presence of andesitic melt compositions in the
672 shallower magma storage region (from ~220 – 470 MPa; using the Higgins *et al.*, 2022
673 geothermobarometer). Melt inclusions and matrix glasses preserve evidence of rhyolitic
674 magma in the shallow storage region (<500 MPa) beneath CMV, but the andesitic melts
675 recorded by amphibole chemometry appear to have been erased.

676 **5. DISCUSSION**

677 **5.1. Evidence for the presence of superhydrous magma at CMV**

678 Multiple lines of evidence point to the presence of superhydrous magma (containing >8 wt% H₂O)
679 at CMV: (1) Direct measurements of water concentrations >8 wt% in quartz-hosted melt inclusions;
680 (2) Measurements of high-water concentrations in plagioclase crystals; (3) co-existence of high-
681 forsterite olivine and high-Mg# amphibole, and other equilibrium phase relationships that will be
682 discussed in more detail below.

683 *5.1.1. H₂O concentrations in plagioclase- and quartz-hosted melt inclusions*

684 Of the 35 melt inclusions analyzed by FTIR, two quartz-hosted melt inclusions were found to
685 contain >8 wt% H₂O (using the Zhang *et al.*, 1997 calibration; other calibrations produce even
686 higher concentrations). NanoSIMS analyses of a subset of quartz-hosted melt inclusions indicate
687 water concentrations of up to 7.7 wt% H₂O. If ‘superhydrous melt’ is defined as melt containing
688 >8 wt% H₂O (e.g., Goltz *et al.*, 2020), then our FTIR results indicate that we can directly measure
689 superhydrous melt. Measurements of such high-water concentrations in melts are rare in the
690 literature (Borisova *et al.*, 2006; Gavrilenko *et al.*, 2019). Several processes make it difficult to
691 preserve high-water contents in quenched melts: high-water contents reduce the quenchability of
692 silicate melts (Gavrilenko *et al.*, 2019); rapid diffusion of H in minerals and melts means that water
693 can be rapidly lost from melt inclusions by post-entrapment diffusion during magma ascent (Barth
694 *et al.*, 2023); and stability limitations on melt inclusion host minerals may bias the melt inclusion
695 record [e.g., adiabatic ascent of magma can result in resorption of crystals that formed in the deep
696 crust (Annen *et al.*, 2006), and large pressure drops during magma ascent can trigger melt inclusion
697 rupture (Borisova *et al.* 2005; Bachmann *et al.* 2010; MacLennan, 2017; Wallace *et al.*, 2021)]. For
698 these reasons, it is perhaps unsurprising that the melt inclusion record at CMV is biased towards
699 lower water concentrations; however, the presence of even two melt inclusions containing >8 wt%
700 H₂O (B1 Qz5 and d1 Qz10 in Table 1) indicates that CMV is a remarkably water-rich system.

701 *5.1.2. H₂O concentrations measured in plagioclase*

702 In section 4.4, we describe how water concentrations in plagioclase crystals can be used to estimate
703 the pre-eruptive water concentration of CMV magma. The lack of water gradients in the 17
704 plagioclase crystals analyzed indicates that any diffusive water loss experienced by the crystals
705 during their ascent in a degassing magma was confined to the outer ~50 μ m of the crystals and was

706 therefore unresolvable by our FTIR measurements. We can therefore assume that the water
707 concentrations measured in the crystal cores reflect equilibrium conditions with the pre-eruptive
708 melt just prior to the final ascent. Assuming a square root relationship between the water in the
709 plagioclase crystals and the water in the coexisting melt (Equation 12), the plagioclase crystals
710 containing 103 – 161 ppm H₂O are in equilibrium with a melt containing 5 to 11 wt% H₂O, which
711 agrees with our melt inclusions measurements (Fig. 10) and supports the presence of superhydrous
712 melt at CMV. Notably, the wide range of water concentrations obtained for the plagioclase crystals
713 might be related to minor crystallization as the magma ascended through the crust recording
714 multiple depths of crystallization in a water-saturated system. The major element composition of
715 CMV plagioclase also supports the presence of melts with relatively high-water contents.
716 Experimental constraints show that plagioclase with An₂₇₋₆₆ crystallizes close to or at water
717 saturation (~7 wt% at ~220 MPa) within the temperature range 750 – 900 °C (Rutherford & Devine,
718 1996; Scaillet & Evans, 1999; Prouteau & Scaillet, 2003), which applies to shallow crystallization
719 of the CMV system.

720 5.1.3. *Coexistence of high-forsterite olivine and high-Mg# amphibole*

721 Experimental phase equilibrium studies of primitive magnesian andesites and high-Mg basalts have
722 shown that amphibole coexists with high-Mg olivine under water-saturated conditions at pressures
723 in excess of 500 MPa, suggestive of water contents in excess of 10 wt% (Grove *et al.*, 2003;
724 Krawczynski *et al.*, 2012). The observation of coexisting high-forsterite olivine and high-Mg#
725 amphibole in arc magmas is regarded as a hallmark of superhydrous magmatic systems (e.g., Goltz
726 *et al.*, 2020). High-Mg amphibole crystals are observed in CMV pumices to form overgrowths on
727 rare olivine crystals and a single orthopyroxene crystal. The coexistence of amphibole (Mg# 73 –
728 80) and olivine (Mg# 89 – 92) crystals at CMV supports the presence of superhydrous magma.

729 In addition to the above lines of evidence for the presence of superhydrous magma at CMV,
730 we note that superhydrous systems have been inferred elsewhere using geophysical techniques. In
731 the South American Andes, the presence of silicic water-rich melts (> 8 wt%) in the mid-to-lower
732 crust of the Andean magmatic arc has been inferred by magnetotelluric studies which reveal a broad
733 conduction zone associated with a low-velocity region at >20 km depth (equivalent to ~700 MPa)
734 (Yuan *et al.*, 2000; Brasse *et al.*, 2002; Schilling *et al.*, 2006; Laumonier *et al.*, 2017). This
735 conduction zone in the upper mantle-lower crust region (25 – 40 km equivalent to ~800 – 1400
736 MPa) also has been observed in geophysical studies in the Bolivian Altiplano in the Central Andes,
737 the Altiplano-Puna, Southern Washington Cascades volcanic arc (USA), and the Taupo Volcanic
738 Zone (New Zealand) (Brasse *et al.*, 2002; Laumonier *et al.*, 2017). Application of such techniques
739 to the CMV region would be an interesting avenue of future research.

740 **5.2. Composition and distribution of magma in the crust beneath CMV**

741 In order to constrain storage conditions of the largest eruption of Cerro Machín volcano (event P1,
742 Rueda, 2005), we applied several petrologic thermometers, barometers and hygrometers.
743 Uncertainties from the barometry models do not provide enough support to distinguish between a
744 transcrustal reservoir or multiple discrete regions of magma through the crustal column. However,
745 given that most of the pressures from the barometry are between ~550 and ~700 MPa (25th and 75th
746 percentiles, respectively), we interpret that the magma reservoir is mostly located in the mid-to-
747 lower crust corresponding to depths of ~15 – 23 km, assuming a crustal density beneath CMV of
748 2,900 kg/m³ (Pedraza *et al.*, 2022). This is also supported by the presence of amphibole coexisting
749 with high-Mg olivine which indicates pressures in excess of 500 MPa. Some crystallization might
750 have occurred in the shallow crust at a depth of < ~12 km (< 500 MPa) as recorded by some
751 amphibole crystals, and by entrapment pressures calculated from melt inclusions.

752 Notably, seismic activity from 2000 to 2008, mainly concentrated in the main dome inside
753 the crater, became deeper from 2009 to 2015 with up to 8500 volcano-tectonic earthquakes (VT)
754 reported at depths between 15 and 30 km to the southeast of the crater (Londoño, 2016). These
755 seismic events are consistent with a CMV magma reservoir at a depth that matches the range of
756 pressures obtained by geobarometry (Fig. 13). This shift in the seismicity spatial distribution was
757 interpreted as new magmatic activity, also supported by an increase in helium isotopic signature
758 ($^{3}\text{He}/^{4}\text{He}$) and a decrease in $\log \text{C}/^{3}\text{He}$ between 2011 and 2013 (Inguaggiato *et al.*, 2017).

759 A small population of high-Mg amphibole phenocrysts (n=4) formed at higher temperatures
760 than the main dacitic reservoir. Amphibole chemometry indicates that these phenocrysts
761 crystallized from andesitic melts (Fig. 12). Surprisingly, these crystals indicate pressures of <400
762 ± 250 MPa (Fig. 12), while the main dacitic reservoir (green-yellowish magma body in Fig. 13)
763 was at a pressure of $\sim 700 \pm 250$ MPa. This suggests that andesitic melts were intruded into the
764 shallow-to-mid crustal storage region, bypassing the lower crustal dacite. The lower SiO_2 in this
765 hypothetical andesite recharge magma (green-orangish magma injection in Fig. 13) may have aided
766 the magma ascent to the mid-to-shallow crust, since silica-poor magmas are less viscous than their
767 silica-rich counterparts (e.g., Collins *et al.*, 2020). This high-temperature melt replenishment
768 resulted in the growth of high-Mg rims on the reversely zoned crystals. However, the low
769 abundance of high-Mg and reversely zoned amphiboles (see Fig. 4b) implies that only a small
770 quantity of andesitic magma was injected into the main dacitic reservoir such that it did not
771 drastically change the average crystallization conditions, as evidenced by the rim composition of
772 normal zoned amphibole crystals.

773 In addition to constraints from amphibole and plagioclase thermobarometry, we can also
774 constrain the magmatic architecture beneath CMV using experimentally determined phase relations

775 obtained from volcanoes with a similar composition to CMV. The equilibrium mineral assemblage
776 for the main CMV dacitic magma includes plagioclase (with relatively low An content), amphibole
777 (Mg# 53 – 62), quartz and biotite phenocrysts, with accessory Fe-Ti oxides and apatite, and rare
778 olivine (n=10) and orthopyroxene (n=1) mantled by amphibole. Normal and reverse-zoned
779 plagioclase and amphibole crystals as well as high-Mg amphiboles indicate disequilibrium
780 conditions in the main dacitic reservoir that may represent a magma recharge event. A literature
781 survey of other calc-alkaline dacite systems with this equilibrium mineral assemblage [Ruapehu
782 volcano, New Zealand (Gamble *et al.*, 1999; Conway *et al.*, 2020), Taupo, New Zealand (Conrad
783 *et al.*, 1988), Pinatubo, Phillipines (Borisova *et al.*, 2005; Rutherford & Devine, 1996), Mt. Shasta,
784 California (Grove, *et al.*, 2005), Trans-Mexican Volcanic Belt (Crabtree & Lange, 2011; Gómez-
785 Tuena *et al.*, 2007), Black Butte, California (McCanta *et al.*, 2007), Mt. Pelee, Lesser Antilles Arc
786 (Pichavant *et al.*, 2002)] reveals that the lack of pyroxene and the abundance of hornblende and
787 biotite make CMV assemblage relatively rare, the most similar system being Pinatubo (Table 3).
788 The major element composition of Pinatubo dacite is similar to CMV dacites whereas Cr, Ni, Sr
789 and La tend to be higher in CMV dacites (Table 3) consistent with their classification as high-silica
790 adakites (see section 5.4). In addition to its petrography, CMV is also similar to Pinatubo in terms
791 of being water-rich (Pinatubo melt inclusions contain up to 8.79 wt% H₂O; Borisova *et al.*, 2006)
792 and oxidized (*f*O₂ of Pinatubo magma is NNO+3; Rutherford & Devine, 1996).

793 Herein, we compare with stable phase equilibria experiments on Pinatubo and Taupo dacites
794 to constraint P-T conditions of CMV. These experiments have been performed over a pressure
795 range from 100 to 960 MPa, at water-saturated and undersaturated conditions (Conrad *et al.*, 1988;
796 Rutherford & Devine, 1996; Scaillet & Evans, 1999; Prouteau & Scaillet, 2003). Results of these
797 experiments suggest the following:

798 ● To the extent that Pinatubo and Taupo can be considered analogous to CMV, the lack of
799 pyroxene in CMV magma likely constrains the water content to >10.5 wt% in the deep
800 crust. In order to avoid orthopyroxene or clinopyroxene crystallization, the melt should
801 contain >7 wt% H₂O at 400 MPa and >~10.5 wt% H₂O at 960 MPa (Prouteau & Scaillet,
802 2003). Alternatively, pyroxene may be consumed in a peritectic reaction with melt and
803 hornblende at low pressure; however, this may not apply to the CMV system, given that
804 hornblende crystallized at a modal pressure of ~700 MPa (using the Putirka (2016) and
805 Higgins *et al.* (2022) geothermobarometers) with no breakdown rims, suggesting that a
806 significant portion of CMV magma was sourced from the mid-to-deep crust and was
807 transported rapidly enough that there would not be enough time for pyroxene crystals to
808 dissolve. [Notably, we do observe a single orthopyroxene crystal, but the high Mg# of that
809 crystal suggests that it may be a mantle xenocryst.]

810 ● In a water-saturated system, hornblende is the liquidus silicate phase, crystallizing at ~910
811 °C at 960 MPa. This is broadly consistent with our amphibole thermobarometry results that
812 indicate the majority of amphiboles crystallized from dacitic melt at temperatures <~900
813 °C (Fig. 11).

814 ● Our plagioclase-liquid thermometry results suggest that plagioclase (low An content)
815 began crystallizing at ~815 °C at CMV (See Supplementary Table D2). Plagioclase is the
816 first tectosilicate to crystallize, at a temperature of ~800 °C at 960 MPa (Fig. 14), at water-
817 saturated conditions (Prouteau & Scaillet, 2003). If CMV is saturated with a water-rich
818 fluid, as is suggested by our melt inclusion data, then plagioclase saturation at 820 °C
819 (average temperature obtained using Putirka, 2008 thermometer, see Supplementary Table

820 D2) implies a plagioclase crystallization from a pressure of ~900 MPa (Prouteau & Scaillet,
821 2003), simultaneous with amphibole crystallization.

822 • Our measurements of >9 wt% H₂O in two quartz-hosted melt inclusions suggest that some
823 quartz phenocrysts formed in the mid-to-deep crust. According to the results of Prouteau &
824 Scaillet (2003), stabilization of quartz at ~960 MPa under water-rich and/or water-saturated
825 conditions likely requires that some portion of the magma cooled to <750 °C in the mid-to-
826 deep crust. This is in agreement with our water in plagioclase measurements that are
827 consistent with temperatures of ~700 °C according to the model of Waters & Lange (2015)
828 (see Fig. 10b), although we note that this temperature is beyond the calibrated range of that
829 model.

830 • Quartz and biotite coexist over a pressure range between ~185 – 200 MPa and 1000 MPa
831 (Conrad *et al.* 1988; Borisova *et al.*, 2005; Rutherford & Devine, 1996) and temperatures
832 <~830 °C.

833 • The lack of cummingtonite at CMV, unlike at Pinatubo, supports storage pressures of >300
834 MPa and temperatures >800 °C (Rutherford & Devine, 1996).

835 Assuming that CMV magma is close enough in composition to Pinatubo for the phase
836 equilibria described above to apply, phase relations observed in CMV pumices indicate that the
837 3600 yr BP eruption of CMV tapped a relatively homogeneous dacite reservoir containing up to
838 10.7 wt% H₂O in the deep crust. Amphibole chemometry provides evidence for a small quantity of
839 andesitic recharge magma to explain the stabilization of amphibole to ~950 °C. Overall,
840 thermobarometry and phase equilibria constraints indicate that the CMV magmatic system is
841 mature – the dacitic reservoir exhibits limited evidence for chemical variability or magma mixing
842 (e.g., mafic enclaves are not observed at CMV).

843 **5.3. Origin of superhydrous magma at CMV: Crustal control?**

844 CMV magmas contain among the highest water concentrations ever reported for dacite and
845 rhyolite (Fig. 15) and, as discussed in section 5.1.3, the coexistence of high-forsterite olivine and
846 high-Mg# amphibole suggests that the primary magma was likely superhydrous and saturated with
847 a water-rich fluid to pressures >500 MPa. A recent study by Rasmussen *et al.* (2022) found that the
848 storage depths of Aleutian arc magmas correspond to the pressure of water saturation in the
849 magmas, suggesting that the initial water content of magma exerts a primary control on shallow-
850 to-mid crustal magma storage depths. In light of this, the evidence at CMV for magma saturation
851 with a water-rich fluid to pressures >500 MPa (a higher pre-eruptive storage depth than is typical
852 for arc magma; Popa *et al.*, 2021; Rasmussen *et al.*, 2022) suggests that the high-water content of
853 CMV magma is likely inherited at least in part from the primary magma, rather than simply being
854 a product of extensive fractional crystallization.

855 **5.4. Mantle melting and the origin of the adakite signature at CMV**

856 If the high-water concentration of CMV magma is a feature of the primary mantle melt, we
857 must consider the mantle processes that could lead to the production of water-rich magma beneath
858 CMV. Water concentrations of primitive magmas from volcanic arcs typically range from ~2 to ~6
859 wt% which has been proposed to result from a compensatory relationship between melt fraction
860 and water in the mantle wedge (Plank *et al.*, 2013). However, experimental work suggests that
861 under certain conditions, primary mantle-derived arc magmas may have higher water contents (>10
862 wt%) when separated at the top of the mantle wedge (Carmichael, 2002; Grove *et al.*, 2003;
863 McCanta *et al.*, 2007; Grove *et al.*, 2012; Krawczynski *et al.*, 2012; Müntener *et al.*, 2021). These
864 high-water contents result from hydrous flux melting of the mantle (Kelemen, 1986; Kelemen *et
865 al.*, 1990; Grove *et al.*, 2002, 2006). The major and trace element composition of CMV magma

866 indicates a geochemical signature typical of high-silica adakites (Fig. 5c and d). High-silica
867 adakites ($\text{SiO}_2 > 60$ wt%) are considered to form by the melting of hydrated basaltic material at a
868 pressure high enough to stabilize garnet. Calculations by Martin *et al.* (2005) indicate that 15 to 25
869 % of partial melting of a typical basalt containing 100 to 200 ppm of Sr leaves a plagioclase-free
870 residue with no more than 1100 ppm Sr, so melting of oceanic crust (basalt in eclogite facies +
871 oceanic sediment) beneath CMV is supported by measurements of Sr < 1100 ppm in the erupted
872 materials. Moreover, low Nb in CMV dacites might be the result of residual rutile during basalt
873 melting (Plank, 2014). Additionally, high Pb/Th (> 2.2), Th/La (0.3 – 0.4) and low La/Th (< 13;
874 relative to mantle array) ratios are indicative of melted sediment and, to a lesser extent, fluids from
875 the slab (Fig. 16a and b; Supplementary Figure B2a). The resulting slab melts might have interacted
876 with mantle peridotite as evidenced by the high concentration of MgO (0.45 to 4 wt%), CaO+Na₂O
877 < 11 wt%, Mg# 63 – 71, and Cr/Ni ratios of 0.5 – 4.5 wt% (Stern & Kilian, 1996; Rapp *et al.*, 1999;
878 Martin *et al.*, 2005).

879 The low Y (< 18 ppm), low Yb (< 1.03 ppm), Sr/Y = 49 – 52, Dy/Yb = 2.3 – 2.4, and high
880 La/Yb = 17 – 25 (Yb and Dy data from Laeger *et al.*, 2013) may be produced by fractionation of
881 garnet (see Supplementary Figure B2b) from water-rich magma in the deep crust or upper mantle
882 (Rooney *et al.*, 2011; Castillo, 2012; Laeger *et al.*, 2013; Bissig *et al.*, 2017; Blatter *et al.*, 2023).
883 Fractionation of garnet is supported by the observed depletion of HREEs (Fig. 16c). Additionally,
884 we calculated REE “shape coefficients” (SCs) λ_1 and λ_2 in order to clarify the interplay between
885 garnet crystallization and source compositions in generating the REE patterns. Following the model
886 of Gao *et al.* (2023), ~1–5% fractional crystallization of garnet following 10% partial melting of
887 the UOC source provides a good match to the CMV data (Fig. 16d). Given that garnet stability

888 increases in silicate liquids with high dissolved water contents (Alonso-Perez *et al.*, 2009), its
889 presence in the source supports water-rich conditions at CMV.

890 An alternative model to explain the generation of silicic melts in the mantle wedge is the
891 mélange diapir model. This model suggests that sediments or a ‘mélange’ of sediments and other
892 materials ascend in diapirs and mix with the mantle wedge prior to wedge melting (Nielsen &
893 Marschall, 2017; Parolari *et al.*, 2021), as opposed to the classic metasomatized mantle model,
894 which supports the melting of slab materials before their interaction with the mantle wedge. A
895 corollary of the mélange diapir model is that mélange material entrained in a diapir is expected to
896 reach higher temperatures in the mantle wedge than it would at the slab surface, resulting in higher
897 expected melt fractions and potentially the generation of adakite-type, high-silica magmatism
898 (Castro & Gerya, 2008); however, we note that this model is a topic of debate, with some studies
899 arguing that it is unable to reproduce trends in the major elements, trace element ratios and
900 abundances, and isotopic compositions of typical volcanic arc magmas (e.g., Turner & Langmuir,
901 2022a; Turner & Langmuir, 2022b).

902 **5.5. Origin and composition of the primitive melt: primary dacite or high-Mg andesite?**
903 The juvenile material of Cerro Machín products has a dacitic composition containing 64 – 67 wt%
904 SiO₂, 4.42 – 4.94 wt% CaO, 2.04 – 2.10 wt% K₂O and Mg# 63 – 71. The lack of basaltic and
905 andesitic compositions in Cerro Machín tephra and the high Mg# of the dacite leads us to consider
906 whether CMV could be fed by dacitic primary magma.

907 Primary, mantle-derived dacitic melts have been hypothesized to form via multiple episodes
908 of melt-rock reaction at the slab-mantle interface between peridotite and hydrous-silicic slab partial
909 melts (Sobolev *et al.*, 2005; Straub *et al.*, 2011; Rebaza *et al.*, 2023), which produces olivine-free
910 secondary pyroxenites. The melting of secondary pyroxenite produces high-Ni primary melts

911 (because Ni is less compatible in pyroxene than in olivine) that explains the presence of high-Ni
912 olivines in some arc magmas (Hauri, 1996; Kogiso *et al.*, 2004; Sobolev *et al.*, 2005; Zellmer *et*
913 *al.*, 2015). However, the moderate Ni content of CMV olivines argues against a pyroxenite source
914 and instead indicates equilibrium with a peridotite source (Fig. 17a). Evidence for the interaction
915 of high silica slab melts with mantle peridotite was presented in section 5.4 and it is also supported
916 here by the CMV olivine compositions that were used to constrain X_{Mg} of the parental liquid based
917 on equilibrium relationships between olivine and basaltic liquid (Roeder & Emslie, 1970). Using a
918 value for $K_D(\text{Fe-Mg})^{\text{ol-liq}}$ (Fe-Mg distribution coefficient between olivine and liquid) of 0.3
919 (Roeder & Emslie, 1970; Putirka, 2008), the measured olivine compositions of Fo₈₉₋₉₂ indicates
920 that the Mg# of the primary melt ranged between 0.71 and 0.76. These values indicate equilibrium
921 conditions with at least one of the bulk dacites (Fig. 17b) suggesting the possibility of a primary
922 origin for the CMV dacites. However, when plotted on a FeO*/MgO versus SiO₂ diagram, the trend
923 outlined by the CMV dacites suggests they have fractionated from a high-Mg andesitic primary
924 melt composition (Fig. 17c). Furthermore, trace element evidence for garnet and amphibole
925 crystallization in the deep crust or upper mantle suggests that the primary melt underwent
926 significant fractional crystallization prior to its injection into the shallow-to-mid crust beneath
927 CMV. In this scenario, the idea that the CMV primary magma was a water-rich, high-Mg# andesite,
928 similar to that proposed to feed the Shasta volcanic system (e.g., Grove *et al.*, 2012; Krawczynski,
929 *et al.*, 2012), is more appropriate. This is also supported by amphibole chemometry results that
930 suggest the presence of andesitic melt beneath CMV, even though the erupted products are
931 uniformly dacitic.

932 **5.6. Triggering mechanism for the largest plinian eruption of CMV**

933 Commonly cited eruption triggering mechanisms include magma recharge events and ‘second
934 boiling’ (in which crystallization drives an undersaturated magma to vapor saturation, thereby
935 increasing overpressure). We consider second boiling (i.e., exsolution of volatiles induced by
936 protracted crystallization) to be an unlikely eruption trigger at CMV because there is extensive
937 evidence that the magma was saturated with a supercritical fluid in the mid-to-deep crust (i.e., prior
938 to shallow-crustal crystallization). Instead, insights into the possible triggering mechanism for the
939 3600 yr BP eruption of Cerro Machín volcano come from the chemical diversity and textures of
940 the crystal phases present in the eruptive products. Chemical and textural variabilities in
941 phenocrysts from arc magmas have been proposed to be the result of reheating events caused by
942 the injection of a hotter (recharge) magma into the main reservoir (Barclay *et al.*, 1998; Murphy *et*
943 *al.*, 1998; Holtz *et al.*, 2005; Borisova *et al.*, 2014; Conway *et al.*, 2020). Possible evidence of this
944 process at Cerro Machín include: (1) plagioclase crystals with normal and reverse zoning (Fig. 4a);
945 (2) unzoned amphibole crystals with high and low Mg# as well as the presence of zoned crystals
946 with low and high Mg# rims (Fig. 4b); and (3) resorbed plagioclase crystals, rounded biotites, and
947 rounded quartz crystals that could reflect reheating by a recharge magma – although these features
948 could also be related to latent heat produced during decompression-driven crystallization (Blundy
949 & Cashman, 2001).

950 Notably, evidence for recharge (i.e., crystals with resorption textures and/or chemical
951 zoning) is not widely present in the eruptive products of this plinian eruption, but such features
952 were commonly observed by Laeger *et al.* (2013) in products of the ~900 yr BP dome-building
953 eruption of Cerro Machín. The variability in eruptive styles from the same dacitic composition at
954 CMV might be related to the volume of the magma injection events that preceded the eruptions
955 (Ruprecht & Bachmann, 2010). Explosive eruptions are thought to be preceded by volumetrically

956 minor recharge events compared to effusive eruptions (~30 vol% for the 1846 – 1847 eruption of
957 Quilatoa volcano; Ruprecht & Bachmann, 2010), as minor injections of hotter magma do not
958 provide sufficient heat to reduce silicic magma viscosity that might enable an effusive eruption;
959 however, they are able to destabilize the system by increasing magma overpressure and allowing
960 conduits to open (Prouteau & Scaillet, 2003; Ruprecht & Bachmann, 2010). The small volume of
961 magma recharge (illustrated as a red-greenish magma injection in Fig. 13) for the Cerro Machín
962 plinian eruption is supported by the presence of relatively few crystals of amphibole with high Mg#
963 (Fig. 4b) and the minor quantity of plagioclase with high An content or reverse zoning (Fig. 4a).
964 The minor difference in temperature (20 °C) between the two populations of amphibole crystals
965 (Mg# ~55 and Mg# ~77) suggests that magma mixing between two similar composition magmas
966 with small temperature differences can drive very explosive eruptions at Cerro Machín volcano,
967 highlighting the high hazard potential posed by this volcano. Recent work by Popa *et al.* (2021)
968 suggested that vapor-saturated, water-rich systems (containing >~5.5 wt% H₂O) are less likely to
969 produce highly explosive eruptions, due to the ability of the vapor to compress during recharge
970 events, thereby reducing overpressure. Our results suggest that this is not the case for CMV, where
971 supersaturated magma containing > 5 wt% H₂O has produced plinian eruptions at this volcano.

972 6. CONCLUDING REMARKS

973 The largest known plinian eruption of Cerro Machín volcano with a VEI of 5 (Rueda, 2005)
974 produced a pyroclastic fall deposit that was recognized from proximal to distal areas for presenting
975 two distinctive lithofacies (*a* and *b*). Crystals from lapilli pumice clasts from the lithofacies *b* —
976 interpreted to represent the climactic event — were analyzed in order to unravel the pre-eruptive
977 conditions. Evidence for a dacitic magma reservoir beneath Cerro Machín volcano at the base of
978 the crust (reported to be <35 km in Colombia; Schaefer, 1995) to mid-upper crustal pressures is

979 supported by amphibole barometry, calculated saturation pressures of volatiles in melt inclusions,
980 and mineral phase relations. Studies have suggested the presence of superhydrous magmas (> 8
981 wt% H₂O) beneath certain arcs (Goltz *et al.*, 2020; Laumonier *et al.*, 2017) but superhydrous melts
982 have not been previously supported by FTIR or SIMS measurements of melt inclusions possibly
983 due to re-equilibration processes (Plank *et al.*, 2013; Barth & Plank, 2021) or quenchability
984 limitations (Gavrilenko *et al.*, 2019). We present direct evidence for superhydrous conditions at
985 Cerro Machín: we measured 0.5 – 10.7 wt% H₂O in quartz- and plagioclase-hosted melt inclusions,
986 and we measured 10.3 – 161 ppm of water in plagioclase crystals that are estimated to have
987 crystallized in melts with 5 – 11 wt% H₂O. Superhydrous conditions are also supported by the co-
988 existence of high-Fo olivine and amphibole (Krawczynski *et al.*, 2012).

989 Trace element characteristics indicate an adakite signature for CMV magmas that may have
990 been produced by fractionation of garnet and amphibole from primitive hydrous high-Mg andesites
991 near the Moho. Amphibole chemometry and chemical zoning patterns of amphibole and feldspar
992 crystals suggest that a small replenishment of fresh H₂O-rich magma with an andesitic composition
993 may have triggered magma mixing and facilitated the largest known plinian eruption of Cerro
994 Machín volcano.

995 ACKNOWLEDGEMENTS

996 We would like to thank Dr. P. Ruprecht, Dr. M. Krawczynski and Dr. A. Borisova for providing
997 thoughtful reviews that led to significant improvements to this manuscript. We also thank Dr. M.
998 Reid for her helpful comments and editorial handling. We are grateful to Professor Stanley
999 Mertzman for his help with the whole-rock analysis and for answering our questions regarding the
1000 sample preparation process. We also thank Jianhua Wang for his support during the NanoSIMS
1001 sessions. We thank Ricardo Méndez and Gloria Patricia Cortés (Colombian Geological Survey)

1002 and Dr. Natalia Pardo (Los Andes University, Colombia) for their help and support in the planning
1003 work of the field campaigns conducted in Cerro Machín area in 2020. We are grateful to Professor
1004 Luca Caricchi for insightful conversations about amphibole thermobarometry and chemometry.
1005 We thank Professor John Stix for providing a glass standard for the FTIR measurements. We
1006 acknowledge the support of the Maryland Nanocenter and the Advanced Imaging and Microscopy
1007 Lab at the University of Maryland. Castilla acknowledges Fulbright Colombia - Pasaporte a la
1008 Ciencia scholarship for their support to contribute to the “Foco-reto país Colombia: Society” by
1009 providing new information about Cerro Machin volcano eruptive behavior, useful to hazard
1010 evaluation of the territories around the volcano. Newcombe acknowledges support from NSF grant
1011 2237994.

1012 DATA AVAILABILITY STATEMENT

1013 The data underlying this article are available in EarthChem Library, at
1014 <https://doi.org/10.60520/IEDA/113201>. and in its online supplementary material. The sample used
1015 in this study is registered in SESAR database by the IGNS code 10.58052/IE7070001.

1016 REFERENCES

1017 Adam, J., Turner, M., Hauri, E. H., & Turner, S. (2016). Crystal/melt partitioning of water and
1018 other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-
1019 volatile incompatible elements and implications for the generation of intraplate magmatism.
1020 *American Mineralogist*, 101(4), 876-888.

1021 Alonso-Perez, R., Müntener, O., & Ulmer, P. (2009). Igneous garnet and amphibole fractionation
1022 in the roots of island arcs: experimental constraints on andesitic liquids. *Contributions to
1023 Mineralogy and Petrology*, 157(4), 541-558.

1024 Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide materials: Comparison of
1025 Monte Carlo, ZAF and $\phi(\rho_z)$ procedures. In *Microbeam Analysis*, D.E. Newbury (ed.), San
1026 Francisco Press, p. 239-246.

1027 Anenburg, M., & Williams, M. J. (2022). Quantifying the tetrad effect, shape components, and
1028 Ce–Eu–Gd anomalies in rare earth element patterns. *Mathematical Geosciences*, 54(1), 47-70.

1029 Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic
1030 magmas in deep crustal hot zones. *Journal of Petrology*, 47(3), 505-539.

1031 Arango Palacio, E. (2012). *Morfología, petrografía y geoquímica de los domos intracratéricos*
1032 *del volcán Cerro Machín, Colombia*. [Bachelor thesis, Universidad de Caldas].

1033 Aubaud, C., Withers, A. C., Hirschmann, M. M., Guan, Y., Leshin, L. A., Mackwell, S. J., &
1034 Bell, D. R. (2007). Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and
1035 nominally anhydrous minerals. *American Mineralogist*, 92(5-6), 811-828.

1036 Bacon, C. R., Newman, S., & Stolper, E. M. (1992). Water, CO₂, Cl, and F in melt inclusions in
1037 phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon. *American*
1038 *Mineralogist*, 77(9-10), 1021-1030.

1039 Barclay, J., Rutherford, M. J., Carroll, M. R., Murphy, M. D., Devine, J. D., Gardner, J., &
1040 Sparks, R. S. J. (1998). Experimental phase equilibria constraints on pre-eruptive storage
1041 conditions of the Soufrière Hills magma. *Geophysical Research Letters*, 25(18), 3437- 3440.

1042 Barth, A., & Plank, T. (2021). The ins and outs of water in olivine-hosted melt inclusions:
1043 hygrometer vs. speedometer. *Frontiers in Earth Science*, 9, 614004.

1044 Barth, A., Plank, T., & Towbin, H. (2023). Rates of dehydration in hydrous, high-Fo, magmatic
1045 olivines. *Geochimica et Cosmochimica Acta*, 342, 62-73.

1046 Bachmann, O., Wallace, P. J., & Bourquin, J. (2010). The melt inclusion record from the rhyolitic
1047 Kos Plateau Tuff (Aegean Arc). *Contributions to Mineralogy and Petrology*, 159, 187-202.

1048 Behrens, H., Romano, C., Nowak, M., Holtz, F., & Dingwell, D. B. (1996). Near-infrared
1049 spectroscopic determination of water species in glasses of the system MAlSi₃O₈ (M= Li, Na, K):
1050 an interlaboratory study. *Chemical Geology*, 128(1-4), 41-63.

1051 Behrens, H., Tamic, N., & Holtz, F. (2004). Determination of the molar absorption coefficient for
1052 the infrared absorption band of CO₂ in rhyolitic glasses. *American Mineralogist*, 89(2-3), 301-
1053 306.

1054 Bissig, T., Leal-Mejía, H., Stevens, R. B., & Hart, C. J. (2017). High Sr/Y magma petrogenesis
1055 and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite
1056 porphyries of the middle Cauca Au-Cu belt, Colombia. *Economic Geology*, 112(3), 551-568.

1057 Blatter, D. L., Sisson, T. W., & Hankins, W. B. (2023). Garnet stability in arc basalt, andesite,
1058 and dacite—an experimental study. *Contributions to Mineralogy and Petrology*, 178(6), 33.

1059 Blundy, J., & Cashman, K. (2001). Ascent-driven crystallization of dacite magmas at Mount St
1060 Helens, 1980–1986. *Contributions to Mineralogy and Petrology*, 140, 631-650.

1061 Borisova, A. Y., Pichavant, M., Beny, J. M., Rouer, O., & Pronost, J. (2005). Constraints on
1062 dacite magma degassing and regime of the June 15, 1991, climactic eruption of Mount Pinatubo
1063 (Philippines): new data on melt and crystal inclusions in quartz. *Journal of Volcanology and*
1064 *Geothermal Research*, 145(1-2), 35-67.

1065 Borisova, A. Y., Pichavant, M., Polv , M., Wiedenbeck, M., Freydier, R., & Candaudap, F.
1066 (2006). Trace element geochemistry of the 1991 Mt. Pinatubo silicic melts, Philippines:
1067 Implications for ore-forming potential of adakitic magmatism. *Geochimica et Cosmochimica*
1068 *Acta*, 70(14), 3702-3716.

1069 Borisova, A. Y., Toutain, J. P., Dubessy, J., Pallister, J., Zwick, A., & Salvi, S. (2014). H₂O–
1070 CO₂–S fluid triggering the 1991 Mount Pinatubo climactic eruption (Philippines). *Bulletin of*
1071 *Volcanology*, 76, 1-9.

1072 Bourdon, E., Eissen, J. P., Monzier, M., Robin, C., Martin, H., Cotten, J., & Hall, M. L. (2002). Adakite-like lavas from Antisana Volcano (Ecuador): evidence for slab melt metasomatism
1073 beneath Andean Northern Volcanic Zone. *Journal of Petrology*, 43(2), 199-217.

1075 Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W., & Haak, V. (2002). The Bolivian
1076 altiplano conductivity anomaly. *Journal of Geophysical Research: Solid Earth*, 107(B5), EPM-4.

1077 Carmichael, I. S. (2002). The andesite aqueduct: perspectives on the evolution of intermediate
1078 magmatism in west-central (105–99 W) Mexico. *Contributions to Mineralogy and Petrology*,
1079 143(6), 641-663.

1080 Caseres, J., Mosenfelder, J. L., & Hirschmann, M. M. (2017). Partitioning of hydrogen and
1081 fluorine between feldspar and melt under the conditions of lunar crust formation. *48th Annual*
1082 *Lunar and Planetary Science Conference*, 1964, 2303

1083 Caseres, J., Mosenfelder, J. L., & Hirschmann, M. M. (2018). H₂O and F contents in Mt. Hood
1084 magmas recorded by plagioclase phenocrysts. *AGU Fall Meeting Abstracts*, 2018, V43I-0249.

1085 Castillo, P. R. (2012). Adakite petrogenesis. *Lithos*, 134, 304-316.

1086 Castro, A., & Gerya, T. V. (2008). Magmatic implications of mantle wedge plumes:
1087 Experimental study. *Lithos*, 103(1-2), 138-148.

1088 Cepeda, H., Murcia, L. A., Monsalve, M. L., Méndez, R. A., & Núñez, A. (1995). Volcán Cerro
1089 Machín, Departamento del Tolima, Colombia: Pasado, Presente y Futuro. INGEOMINAS,
1090 Informe Interno.

1091 Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015). Applications of micro-
1092 fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review.
1093 *International Journal of Molecular Sciences*, 16(12), 30223-30250.

1094 Collins, W. J., Murphy, J. B., Johnson, T. E., & Huang, H. Q. (2020). Critical role of water in the
1095 formation of continental crust. *Nature Geoscience*, 13(5), 331-338.

1096 Colombian Geological Survey. (2023). Generalidades Volcán Cerro Machín
1097 <https://www2.sgc.gov.co/sgc/volcanes/VolcanCerroMachin/Paginas/generalidades-volcan->
1098 [cerromachin.aspx#:~:text=Est%C3%A1%20conformado%20por%20un%20edificio,m%20y%20](https://www2.sgc.gov.co/sgc/volcanes/VolcanCerroMachin/Paginas/generalidades-volcan-)
1099 [150%20m%20de%20altura](https://www2.sgc.gov.co/sgc/volcanes/VolcanCerroMachin/Paginas/generalidades-volcan-) (accessed 8 August 2023).

1100 Conrad, W. K., Nicholls, I. A., & Wall, V. J. (1988). Water-saturated and-undersaturated melting
1101 of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of
1102 silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. *Journal of*
1103 *Petrology*, 29(4), 765-803.

1104 Conway, C. E., Chamberlain, K. J., Harigane, Y., Morgan, D. J., & Wilson, C. J. (2020). Rapid
1105 assembly of high-Mg andesites and dacites by magma mixing at a continental arc stratovolcano.
1106 *Geology*, 48(10), 1033-1037.

1107 Coogan, L. A., Saunders, A. D., & Wilson, R. N. (2014). Aluminum-in-olivine thermometry of
1108 primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces.
1109 *Chemical Geology*, 368, 1-10.

1110 Crabtree, S. M., & Lange, R. A. (2011). Complex phenocryst textures and zoning patterns in
1111 andesites and dacites: evidence of degassing-induced rapid crystallization?. *Journal of Petrology*,
1112 52(1), 3-38.

1113 Davidson, J., Turner, S., Handley, H., Macpherson, C., & Dosseto, A. (2007). Amphibole
1114 “sponge” in arc crust?. *Geology*, 35(9), 787-790.

1115 Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of
1116 young subducted lithosphere. *Nature*, 347(6294), 662-665.

1117 Dixon, J. E., Stolper, E. M., & Holloway, J. R. (1995). An experimental study of water and
1118 carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility
1119 models. *Journal of Petrology*, 36(6), 1607-1631.

1120 Drummond, M. S., Defant, M. J., & Kepezhinskas, P. K. (1996). Petrogenesis of slab-derived
1121 trondhjemite-tonalite-dacite/adakite magmas. *Earth and Environmental Science Transactions of
1122 the Royal Society of Edinburgh*, 87(1-2), 205-215.

1123 Erdmann, S., Martel, C., Pichavant, M., & Kushnir, A. (2014). Amphibole as an archivist of
1124 magmatic crystallization conditions: problems, potential, and implications for inferring magma
1125 storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. *Contributions to
1126 Mineralogy and Petrology*, 167, 1-23.

1127 Fischer, T. P., & Marty, B. (2005). Volatile abundances in the sub-arc mantle: insights from
1128 volcanic and hydrothermal gas discharges. *Journal of Volcanology and Geothermal Research*,
1129 140(1-3), 205-216.

1130 Gamble, J. A., Wood, C. P., Price, R. C., Smith, I. E. M., Stewart, R. B., & Waight, T. (1999). A
1131 fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of
1132 open system behaviour in an arc volcano. *Earth and Planetary Science Letters*, 170(3), 301-314.

1133 Gao, Y., O'Neill, H. S. C., & Mavrogenes, J. A. (2023). Garnet versus amphibole: Implications
1134 for magmatic differentiation and slab melting. *Geology*, 52(2), 125-129.

1135 Gavrilko, M., Krawczynski, M., Ruprecht, P., Li, W., & Catalano, J. G. (2019). The quench
1136 control of water estimates in convergent margin magmas. *American Mineralogist*, 104(7), 936-
1137 948.

1138 Goltz, A. E., Krawczynski, M. J., Gavrilko, M., Gorbach, N. V., & Ruprecht, P. (2020).
1139 Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano,
1140 Kamchatka. *Contributions to Mineralogy and Petrology*, 175(12), 1-26.

1141 Gómez, D., López, C., Monsalve, M. L., Agudelo, A., Cortés Jímenez, G. P., Calvache, M. C.
1142 (2021). Active volcanism in Colombia and the role of the Servicio Geológico Colombiano.
1143 *Volcanica* 4.S1: 113-139.

1144 Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2007). Igneous petrogenesis of the
1145 Transmexican Volcanic Belt. *Boletín de la Sociedad Geológica Mexicana*, 57(3), 227-283.

1146 Grove, T. L., Baker, M. B., Price, R. C., Parman, S. W., Elkins-Tanton, L. T., Chatterjee, N., &
1147 Müntener, O. (2005). Magnesian andesite and dacite lavas from Mt. Shasta, northern California:
1148 products of fractional crystallization of H₂O-rich mantle melts. *Contributions to Mineralogy and
1149 Petrology*, 148(5), 542-565.

1150 Grove, T. L., Chatterjee, N., Parman, S. W., & MÚdard, E. (2006). The influence of H₂O on
1151 mantle wedge melting. *Earth and Planetary Science Letters*, 249(1-2), 74-89.

1152 Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Müntener, O., & Gaetani, G. A.
1153 (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation
1154 trends. *Contributions to Mineralogy and Petrology*, 145(5), 515-533.

1155 Grove, T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H₂O in subduction zone
1156 magmatism. *Annual Review of Earth and Planetary Sciences*, 40, 413-439.

1157 Grove, T., Parman, S., Bowring, S., Price, R., & Baker, M. (2002). The role of an H₂O-rich fluid
1158 component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta
1159 region, N California. *Contributions to Mineralogy and Petrology*, 142(4), 375- 396.

1160 Hamada, M., Kawamoto, T., Takahashi, E., & Fujii, T. (2011). Polybaric degassing of island arc
1161 low-K tholeiitic basalt magma recorded by OH concentrations in Ca-rich plagioclase. *Earth and*
1162 *Planetary Science Letters*, 308(1-2), 259-266.

1163 Hamada, M., Ushioda, M., Fujii, T., & Takahashi, E. (2013). Hydrogen concentration in
1164 plagioclase as a hygrometer of arc basaltic melts: Approaches from melt inclusion analyses and
1165 hydrous melting experiments. *Earth and Planetary Science Letters*, 365, 253-262.

1166 Hartley, M. E., MacLennan, J., Edmonds, M., & Thordarson, T. (2014). Reconstructing the deep
1167 CO₂ degassing behavior of large basaltic fissure eruptions. *Earth and Planetary Science Letters*,
1168 393, 120-131.

1169 Hauri, E. H. (1996). Major-element variability in the Hawaiian mantle plume. *Nature*, 382(6590),
1170 415-419.

1171 Hauri, E., Wang, J., Dixon, J. E., King, P. L., Mandeville, C., & Newman, S. (2002). SIMS
1172 analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR.
1173 *Chemical Geology*, 183(1-4), 99-114.

1174 Higgins, O., Sheldrake, T., & Caricchi, L. (2022). Machine learning thermobarometry and
1175 chemometry using amphibole and clinopyroxene: a window into the roots of an arc volcano
1176 (Mount Liamuiga, Saint Kitts). *Contributions to Mineralogy and Petrology*, 177(1), 10.

1177 Holtz, F., Sato, H., Lewis, J., Behrens, H., & Nakada, S. (2005). Experimental petrology of the
1178 1991–1995 Unzen dacite, Japan. Part I: phase relations, phase composition and pre-eruptive
1179 conditions. *Journal of Petrology*, 46(2), 319-337.

1180 Ihinger P.D. Zhang Y. Stolper E.M. (1999) The speciation of dissolved water in rhyolitic melt.
1181 *Geochimica et Cosmochimica Acta*, 63, 3567–3578.

1182 Inguaggiato, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2017). The
1183 hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed
1184 during 2011–2013. *Chemical Geology*, 469, 60–68.

1185 Johnson, E. A. (2005). Magmatic water contents recorded by hydroxyl concentrations in
1186 plagioclase phenocrysts from Mount St. Helens, 1980–1981. *Geochimica et Cosmochimica Acta*
1187 Supplement, 69(10), A743.

1188 Johnson, E. A., & Rossman, G. R. (2004). A survey of hydrous species and concentrations in
1189 igneous feldspars. *American Mineralogist*, 89(4), 586–600.

1190 Johnson, E. A., & Rossman, G. R. (2013). The diffusion behavior of hydrogen in plagioclase
1191 feldspar at 800–1000 C: Implications for re-equilibration of hydroxyl in volcanic phenocrysts.
1192 *American Mineralogist*, 98(10), 1779–1787.

1193 Kelemen, P. B. (1986). Assimilation of ultramafic rock in subduction-related magmatic arcs. *The*
1194 *Journal of Geology*, 94(6), 829–843.

1195 Kelemen, P. B., Hanghøj, K., & Greene, A. R. (2003). One view of the geochemistry of subduction-
1196 related magmatic arcs, with an emphasis on primitive andesite and lower crust. *Treatise on*
1197 *Geochemistry*, 3, 659.

1198 Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., & Irving, A. J. (1990). High-field-strength
1199 element depletions in arc basalts due to mantle–magma interaction. *Nature*, 345(6275), 521–524.

1200 Kelley, K. A., & Cottrell, E. (2009). Water and the oxidation state of subduction zone magmas.
1201 *Science*, 325(5940), 605–607.

1202 Keppler, H., & Bolfan-Casanova, N. (2006). Thermodynamics of water solubility and
1203 partitioning. *Reviews in Mineralogy and Geochemistry*, 62(1), 193–230.

1204 Kogiso, T., Hirschmann, M. M., & Pertermann, M. (2004). High-pressure partial melting of
1205 mafic lithologies in the mantle. *Journal of Petrology*, 45(12), 2407–2422.

1206 Kohlstedt, D. L., & Mackwell, S. J. (1998). Diffusion of hydrogen and intrinsic point defects in
1207 olivine. *Zeitschrift für physikalische Chemie*, 207(1–2), 147–162.

1208 Krawczynski, M. J., Grove, T. L., & Behrens, H. (2012). Amphibole stability in primitive arc
1209 magmas: effects of temperature, H₂O content, and oxygen fugacity. *Contributions to Mineralogy*
1210 and Petrology, 164(2), 317–339.

1211 Kress, V. C., & Carmichael, I. S. (1991). The compressibility of silicate liquids containing Fe₂O₃ and the effect of composition, temperature, oxygen fugacity and pressure on their redox states.
1212 *Contributions to Mineralogy and Petrology*, 108, 82-92.

1213

1214 Laeger, K., Halama, R., Hansteen, T., Savov, I. P., Murcia, H., Cortés, G. P., & GarbeSchönberg, D. (2013). Crystallization conditions and petrogenesis of the lava dome from the ~ 900 years BP eruption of Cerro Machín Volcano, Colombia. *Journal of South American Earth Sciences*, 48, 193–208.

1215

1216

1217

1218 Laumonier, M., Gaillard, F., Muir, D., Blundy, J., & Unsworth, M. (2017). Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. *Earth and Planetary Science Letters*, 457, 173–180.

1219

1220

1221 Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali – silica diagram. *Journal of Petrology*, 27(3), 745–750.

1222

1223 Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Schumaker, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., & Youzhi, G. (1997). Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. *The Canadian Mineralogist*, 35(1), 219-246.

1224

1225

1226

1227

1228

1229 Li, X., Zhang, C., Behrens, H., & Holtz, F. (2020). Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression. *Lithos*, 362, 105469.

1230

1231

1232 Lin, Y. H., Hui, H., Li, Y., Xu, Y., & Van Westrenen, W. (2019). A lunar hygrometer based on plagioclase-melt partitioning of water. *Geochemical Perspectives Letters*, 10, 14-19.

1233

1234 Lloyd, A. S., Plank, T., Ruprecht, P., Hauri, E. H., & Rose, W. I. (2013). Volatile loss from melt inclusions in pyroclasts of differing sizes. *Contributions to Mineralogy and Petrology*, 165(1), 129–153.

1235

1236

1237 Londoño, J. M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. *Journal of Volcanology and Geothermal Research*, 324, 156–168.

1238

1239

1240

1241 Lu, Y. J., Loucks, R. R., Fiorentini, M. L., Yang, Z. M., & Hou, Z. Q. (2015). Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. *Geology*, 43(7), 583-586.

1242

1243

1244 Maclennan, J. (2017). Bubble formation and decrepitation control the CO₂ content of
1245 olivine-hosted melt inclusions. *Geochemistry, Geophysics, Geosystems*, 18(2), 597-616.

1246 Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of
1247 adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some
1248 implications for crustal evolution. *Lithos*, 79(1-2), 1-24.

1249 McCanta, M. C., Rutherford, M. J., & Hammer, J. E. (2007). Pre-eruptive and syn-eruptive
1250 conditions in the Black Butte, California dacite: Insight into crystallization kinetics in a silicic
1251 magma system. *Journal of Volcanology and Geothermal Research*, 160(3–4), 263– 284.

1252 Méndez, R. A., Cortés, G. P., & Cepeda, H. (2002). Catálogo de las unidades litoestratigráficas
1253 de Colombia: Formación Machí n. In Memoria explicativa INGEOMINAS (p. 10).

1254 Mitchell, A. L., Gaetani, G. A., O'leary, J. A., & Hauri, E. H. (2017). H₂O solubility in basalt at
1255 upper mantle conditions. *Contributions to Mineralogy and Petrology*, 172, 1-16.

1256 Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins.
1257 *American Journal of Science*, 274(4), 321-355.

1258 Moore, G., & Carmichael, I. S. E. (1998). The hydrous phase equilibria (to 3 kbar) of an andesite
1259 and basaltic andesite from western Mexico: constraints on water content and conditions of
1260 phenocryst growth. *Contributions to Mineralogy and Petrology*, 130(3), 304-319.

1261 Moore, L. R., Gazel, E., Tuohy, R., Lloyd, A. S., Esposito, R., Steele-MacInnis, M.,... & Bodnar,
1262 R. J. (2015). Bubbles matter: An assessment of the contribution of vapor bubbles to melt
1263 inclusion volatile budgets. *American Mineralogist*, 100(4), 806-823.

1264 Morgan G., B., London, D. (1996). Optimizing the electron microprobe analysis of hydrous alkali
1265 aluminosilicate glasses. *American Mineralogist*, 81 (9-10): 1176–1185. doi:
1266 <https://doi.org/10.2138/am-1996-9-1016>

1267 Mosenfelder, J. L., Andrys, J. L., von der Handt, A., Kohlstedt, D. L., & Hirschmann, M. M.
1268 (2020). Hydrogen incorporation in plagioclase. *Geochimica et Cosmochimica Acta*, 277, 87-110.

1269 Mosenfelder, J. L., Caseres, J. R., Andrys, J., Wright, H. M. N., & Hirschmann, M. M. (2018).
1270 Trace H and F Concentrations in Feldspar as Monitors of Volatile Processes in the Earth and
1271 Moon. In *AGU Fall Meeting Abstracts* (Vol. 2018, pp. MR23B-0085).

1272 Mosenfelder, J. L., Rossman, G. R., & Johnson, E. A. (2015). Hydrous species in feldspars: A
1273 reassessment based on FTIR and SIMS. *American Mineralogist*, 100(5-6), 1209-1221.

1274 Mosquera, D., Núñez, A., & Vesga, C. (1982). Mapa Geologico de la plancha 244-Ibague. Escala
1275 100.000. Revista Ingeominas.

1276 Moyen, J. F. (2009). High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. *Lithos*,
1277 112(3-4), 556-574.

1278 Müntener, O., Ulmer, P., & Blundy, J. D. (2021). Superhydrous arc magmas in the Alpine
1279 context. *Elements*, 17(1), 35-40.

1280 Murcia, H., Hurtado, B., Cortés, G. P., Macías, J. L., & Cepeda, H. (2008). The ~2500 yr B.P.
1281 Chicoral non-cohesive debris flow from Cerro Machín Volcano, Colombia. *Journal of*
1282 *Volcanology and Geothermal Research*, 171(3), 201–214.

1283 Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., Lejeune, A. M., Brewer, T. S.,
1284 Macdonald, R., Black, S., & Young, S. (1998). The role of magma mixing in triggering the
1285 current eruption at the Soufriere Hills volcano, Montserrat, West Indies. *Geophysical Research*
1286 *Letters*, 25(18), 3433-3436.

1287 Myers, M. L., Wallace, P. J., & Wilson, C. J. (2019). Inferring magma ascent timescales and
1288 reconstructing conduit processes in explosive rhyolitic eruptions using diffusive losses of hydrogen
1289 from melt inclusions. *Journal of Volcanology and Geothermal Research*, 369, 95-112.

1290 Newcombe, M. E., Plank, T., Barth, A., Asimow, P. D., & Hauri, E. (2020). Water-in-olivine
1291 magma ascent chronometry: Every crystal is a clock. *Journal of Volcanology and Geothermal*
1292 *Research*, 398, 106872.

1293 Newcombe, M. E., Brett, A., Beckett, J. R., Baker, M. B., Newman, S., Guan, Y., Eiler, J. M., &
1294 Stolper, E. M. (2017). Solubility of water in lunar basalt at low $p\text{H}_2\text{O}$. *Geochimica et*
1295 *Cosmochimica Acta*, 200, 330-352.

1296 Newcombe, M.E. (2022). SIMSblank. <https://doi.org/10.5281/zenodo.7093278>.

1297 Newman, S., & Chesner, C. (1989). Volatile compositions of glass inclusions from the 75Ka
1298 Toba Tuff, Sumatra. *Geological Society of America, Abstracts with Programs* 21, 271.

1299 Newman, S., & Lowenstern, J. B. (2002). VolatileCalc: a silicate melt– H_2O – CO_2 solution model
1300 written in Visual Basic for excel. *Computers & Geosciences*, 28(5), 597-604.

1301 Newman, S., Stolper, E. M., & Epstein, S. (1986). Measurement of water in rhyolitic glasses;
1302 calibration of an infrared spectroscopic technique. *American Mineralogist*, 71(11-12), 1527-1541.

1303 Nielsen, S. G., & Marschall, H. R. (2017). Geochemical evidence for mélange melting in global
1304 arcs. *Science advances*, 3(4), e1602402.

1305 Nishimura, K., Kawamoto, T., Kobayashi, T., Sugimoto, T., & Yamashita, S. (2005). Melt
1306 inclusion analysis of the Unzen 1991–1995 dacite: implications for crystallization processes of
1307 dacite magma. *Bulletin of Volcanology*, 67, 648-662.

1308 Ohlhorst, S., Behrens, H., & Holtz, F. (2001). Compositional dependence of molar absorptivities
1309 of near-infrared OH-and H₂O bands in rhyolitic to basaltic glasses. *Chemical Geology*, 174(1-3),
1310 5-20.

1311 Paladio-Melosantos, M. L. O., Solidum, R. U., Scott, W. E., Quiambao, R. B., Umbal, J. V.,
1312 Rodolfo, K. S., Tubianosa, B. S., Delos Reyes, P. J., Alonso, R. A., & Ruelo, H. B. (1996).
1313 Tephra falls of the 1991 eruptions of Mount Pinatubo. In: Newhall, C. G. & Punongbayan, R. S.
1314 (eds) *Fire and Mud. Eruptions and Lahars of Mount Pinatubo, Philippines*. Seattle: University of
1315 Washington Press, pp. 513-535.

1316 Papale, P., Moretti, R., & Barbato, D. (2006). The compositional dependence of the saturation
1317 surface of H₂O+ CO₂ fluids in silicate melts. *Chemical Geology*, 229(1-3), 78-95.

1318 Parolari, M., Gómez-Tuena, A., Errázuriz-Henao, C., & Cavazos-Tovar, J. G. (2021). Orogenic
1319 andesites and their link to the continental rock cycle. *Lithos*, 382, 105958.

1320 Pedraza, N. F., Velazquez, J. D., Molina, I., & Pedraza, A. (2022). Gravity Studies at Cerro
1321 Machín Volcano, Colombia. *Boletín Geológico*, 49(1), 55-65.

1322 Peterson, L. D., Newcombe, M. E., Alexander, C. M. D., Wang, J., Sarafian, A. R., Bischoff, A.,
1323 & Nielsen, S. G. (2023). The H₂O content of the ureilite parent body. *Geochimica et Cosmochimica
1324 Acta*, 340, 141-157.

1325 Pichavant, M., Martel, C., Bourdier, J. L., & Scaillet, B. (2002). Physical conditions, structure,
1326 and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc).
1327 *Journal of Geophysical Research: Solid Earth*, 107(B5), ECV-1.

1328 Plank, T. (2014) The chemical composition of subducting sediments. In: Holland H. D. &
1329 Turekian K. K. (eds) *Treatise on Geochemistry*, 2nd ed. Elsevier, pp.607–629.

1330 Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., & Wallace, P. J. (2013). Why do mafic arc
1331 magmas contain~ 4 wt% water on average?. *Earth and Planetary Science Letters*, 364, 168-179.

1332 Popa, R. G., Bachmann, O., & Huber, C. (2021). Explosive or effusive style of volcanic eruption
1333 determined by magma storage conditions. *Nature Geoscience*, 14(10), 781-786.

1334 Prouteau, G., & Scaillet, B. (2003). Experimental constraints on the origin of the 1991 Pinatubo
1335 dacite. *Journal of Petrology*, 44(12), 2203-2241.

1336 1337 1338 Putirka, K. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. *American Mineralogist*, 101(4), 841-858.

1339 1340 1341 Putirka, K. D. (2005). Igneous thermometers and barometers based on plagioclase+ liquid equilibria: Tests of some existing models and new calibrations. *American Mineralogist*, 90(2-3), 336-346.

1342 1343 Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. *Reviews in Mineralogy and Geochemistry*, 69(1), 61-120.

1344 1345 1346 Rapp, R. P., Shimizu, N., Norman, M. D., & Applegate, G. S. (1999). Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. *Chemical Geology*, 160(4), 335-356.

1347 1348 1349 Rappoccio, R., Johnson, E. A., Myers, M., Wallace, P. J., & Wilson, C. J. N. (2020). Hydroxyl in Quartz and Feldspar Phenocrysts from the Bishop Tuff, CA, and the Huckleberry Ridge Tuff, Yellowstone. *AGU Fall Meeting Abstracts*, 2020, V003-0005.

1350 1351 Rasmussen, D. J., Plank, T. A., Roman, D. C., & Zimmer, M. M. (2022). Magmatic water content controls the pre-eruptive depth of arc magmas. *Science*, 375(6585), 1169-1172.

1352 1353 1354 Rasmussen, D. J., Plank, T. A., Wallace, P. J., Newcombe, M. E., & Lowenstern, J. B. (2020). Vapor-bubble growth in olivine-hosted melt inclusions. *American Mineralogist*, 105(12), 1898-1919.

1355 1356 1357 Rebaza, A. M., Mallik, A., & Straub, S. M. (2023). Multiple episodes of rock-melt reaction at the slab-mantle interface: Formation of high silica primary magmas in intermediate to hot subduction zones. *Journal of Petrology*, 64(3), egad011.

1358 1359 Régnier, A. (2015). *Cerro Machín, Colombia: A highly explosive volcano showing signs of unrest*. [Master Thesis, Université de Genève].

1360 1361 Richards, J. P., & Kerrich, R. (2007). Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. *Economic Geology*, 102(4), 537-576.

1362 1363 Ridolfi, F. (2021). Amp-TB2: an updated model for calcic amphibole thermobarometry. *Minerals*, 11(3), 324.

1364 1365 1366 Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa. *Contributions to Mineralogy and Petrology*, 163(5), 877–895.

1367 Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole
1368 in calc-alkaline magmas: an overview, new thermobarometric formulations and application to
1369 subduction-related volcanoes. *Contributions to Mineralogy and Petrology*, 160(1), 45–66.

1370 Roeder, P. L., & Emslie, R. (1970). Olivine-liquid equilibrium. *Contributions to Mineralogy and*
1371 *Petrology*, 29(4), 275-289.

1372 Roman, D. C., Cashman, K. V., Gardner, C. A., Wallace, P. J., & Donovan, J. J. (2006). Storage
1373 and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine
1374 Volcano, Alaska. *Bulletin of Volcanology*, 68, 240-254.

1375 Rooney, T. O., Franceschi, P., & Hall, C. M. (2011). Water-saturated magmas in the Panama
1376 Canal region: a precursor to adakite-like magma generation?. *Contributions to Mineralogy and*
1377 *Petrology*, 161, 373-388.

1378 Rosi, M., Paladio-Melosantos, M., Di Muro, A., Leoni, R., & Bacolcol, T. (2001). Fall vs flow
1379 activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). *Bulletin of*
1380 *Volcanology*, 62, 549-566.

1381 Rossman, G. R. (1996). Studies of OH in nominally anhydrous minerals. *Physics and Chemistry*
1382 *of Minerals*, 23(4-5), 299-304.

1383 Rueda, H. (2005). *Erupciones Plinianas del Holoceno en el Volcán Cerro Machín, Colombia.*
1384 *Estratigrafía, petrografía y dinámica eruptiva*. [MSc Thesis. Universidad Nacional Autónoma de
1385 México] México

1386 Ruprecht, P., & Bachmann, O. (2010). Pre-eruptive reheating during magma mixing at Quizapu
1387 volcano and the implications for the explosiveness of silicic arc volcanoes. *Geology*, 38(10), 919-
1388 922.

1389 Ruprecht, P., & Plank, T. (2013). Feeding andesitic eruptions with a high-speed connection from
1390 the mantle. *Nature*, 500(7460), 68-72.

1391 Rutherford, M. J., & Devine, J. D. (1996). Pre-eruption pressure-temperature conditions and
1392 volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Newhall, C. G. & Punongbayan, R. S.
1393 (eds) *Fire and Mud. Eruptions and Lahars of Mount Pinatubo, Philippines*. Seattle: University of
1394 Washington Press, pp. 751–766.

1395 Rutherford, M. J., & Hill, P. M. (1993). Magma ascent rates from amphibole breakdown: an
1396 experimental study applied to the 1980–1986 Mount St. Helens eruptions. *Journal of Geophysical*
1397 *Research: Solid Earth*, 98(B11), 19667-19685.

1398 Saito, G., Kazahaya, K., Shinohara, H., Stimac, J., & Kawanabe, Y. (2001). Variation of volatile
1399 concentration in a magma system of Satsuma-Iwojima volcano deduced from melt inclusion
1400 analyses. *Journal of Volcanology and Geothermal Research*, 108(1-4), 11-31.

1401 Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen, J. P., & Cotten, J. (2005).
1402 Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and
1403 petrology of Cayambe Volcanic Complex (Ecuador). *Journal of Petrology*, 46(11), 2225-2252.

1404 Scaillet, B., & Evans, B. W. (1999). The 15 June 1991 eruption of Mount Pinatubo. I. Phase
1405 equilibria and pre-eruption P-T-f O₂-f H₂O conditions of the dacite magma. *Journal of*
1406 *Petrology*, 40(3), 381-411.

1407 Schaefer, S. J. (1995). *Nevado del Ruiz volcano, Colombia: magmatic system and evolution*.
1408 [Doctoral dissertation, Arizona State University].

1409 Schilling, F. R., Trumbull, R. B., Brasse, H., Haberland, C., Asch, G., Bruhn, D.,... & Vietor, T.
1410 (2006). Partial melting in the Central Andean crust: a review of geophysical, petrophysical, and
1411 petrologic evidence. *The Andes*, 459-474.

1412 Schmidt, M. W., & Jagoutz, O. (2017). The global systematics of primitive arc melts.
1413 *Geochemistry, Geophysics, Geosystems*, 18(8), 2817-2854.

1414 Schmitt, A. K. (2001). Gas-saturated crystallization and degassing in large-volume, crystal-rich
1415 dacitic magmas from the Altiplano-Puna, northern Chile. *Journal of Geophysical Research: Solid*
1416 *Earth*, 106(B12), 30561-30578.

1417 Seaman, S. J., Dyar, M. D., Marinkovic, N., & Dunbar, N. W. (2006). An FTIR study of
1418 hydrogen in anorthoclase and associated melt inclusions. *American Mineralogist*, 91(1), 12-20.

1419 Shimizu, K., Ushikubo, T., Kuritani, T., Hirano, N., & Yamashita, S. (2022). Modification for the
1420 matrix effect in SIMS-derived water contents of silicate glasses. *Geochemical Journal*, 56(6),
1421 223-230.

1422 Simm, J., De Abril, I. M., & Sugiyama, M. (2014). Tree-based ensemble multi-task learning
1423 method for classification and regression. *IEICE TRANSACTIONS on Information and*
1424 *Systems*, 97(6), 1677-1681.

1425 Sisson, T. W., & Grove, T. L. (1993). Experimental investigations of the role of H₂O in calc-
1426 alkaline differentiation and subduction zone magmatism. *Contributions to Mineralogy and*
1427 *Petrology*, 113, 143-166.

1428 Skirius, C. M. (1990). *Pre-eruptive H₂O and CO₂ content of plinian and ash-flow Bishop Tuff*
1429 *magma*. [Doctoral dissertation, University of Chicago].

1430 Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., & Nikogosian, I. K. (2005). An olivine-free
1431 mantle source of Hawaiian shield basalts. *Nature*, 434(7033), 590-597.

1432 Steele-MacInnis, M., Esposito, R., Moore, L. R., & Hartley, M. E. (2017). Heterogeneously
1433 entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents.
1434 *Contributions to Mineralogy and Petrology*, 172, 1-13.

1435 Stolper, E. (1982). The speciation of water in silicate melts. *Geochimica et Cosmochimica Acta*,
1436 46(12), 2609-2620.

1437 Stern, C. R., & Kilian, R. (1996). Role of the subducted slab, mantle wedge and continental crust
1438 in the generation of adakites from the Andean Austral Volcanic Zone. *Contributions to
1439 Mineralogy and Petrology*, 123, 263-281.

1440 Straub, S. M., Gomez-Tuena, A., Stuart, F. M., Zellmer, G. F., Espinasa-Perena, R., Cai, Y., &
1441 Iizuka, Y. (2011). Formation of hybrid arc andesites beneath thick continental crust. *Earth and
1442 Planetary Science Letters*, 303(3-4), 337-347.

1443 Straub, S. M., Zellmer, G. F., Gómez-Tuena, A., Espinasa-Pereña, R., Martin-del Pozzo, A. L.,
1444 Stuart, F. M., & Langmuir, C. H. (2014). A genetic link between silicic slab components and
1445 calc-alkaline arc volcanism in central Mexico. *Geological Society, London, Special Publications*,
1446 385(1), 31-64.

1447 Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts:
1448 implications for mantle composition and processes. *Geological Society, London, Special
1449 Publications*, 42(1), 313-345.

1450 Tolland, P., Ellis, B., Troch, J., & Neukampf, J. (2019). Assessing magmatic volatile equilibria
1451 through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique
1452 and application to the Mesa Falls Tuff, Yellowstone. *Contributions to Mineralogy and Petrology*,
1453 174, 1-19.

1454 Towbin, H. W., Plank, T., Klein, E., & Hauri, E. (2023). Measuring H₂O concentrations in
1455 olivine by secondary ion mass spectrometry: Challenges and paths forward. *American
1456 Mineralogist*, 108(5), 928-940.

1457 Turner, S. J., & Langmuir, C. H. (2022a). An evaluation of five models of arc volcanism. *Journal
1458 of Petrology*, 63(3), egac010.

1459 Turner, S. J., & Langmuir, C. H. (2022b). Sediment and ocean crust both melt at subduction
1460 zones. *Earth and Planetary Science Letters*, 584, 117424.

1461 Urann, B. M., Le Roux, V., Jagoutz, O., Müntener, O., Behn, M. D., & Chin, E. J. (2022). High
1462 water content of arc magmas recorded in cumulates from subduction zone lower crust. *Nature
1463 Geoscience*, 1-8.

1464 Von Aulock, F. W., Kennedy, B. M., Schipper, C. I., Castro, J. M., Martin, D. E., Oze, C.,
1465 Watkins, J. M., Wallace, P. J., Puskar, L., Bégué, F., Nichols, A. R. L. & Tuffen, H. (2014).
1466 Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation
1467 to data analysis. *Lithos*, 206, 52-64.

1468 Wade, J. A., Plank, T., Melson, W. G., Soto, G. J., & Hauri, E. H. (2006). The volatile content of
1469 magmas from Arenal volcano, Costa Rica. *Journal of Volcanology and Geothermal Research*,
1470 157(1-3), 94-120.

1471 Wallace, P. J. (2005). Volatiles in subduction zone magmas: concentrations and fluxes based on
1472 melt inclusion and volcanic gas data. *Journal of Volcanology and Geothermal Research*, 140(1-
1473 3), 217-240.

1474 Wallace, P. J., & Gerlach, T. M. (1994). Magmatic vapor source for sulfur dioxide released
1475 during volcanic eruptions: evidence from Mount Pinatubo. *Science*, 265(5171), 497-499.

1476 Wallace, P. J., Anderson Jr, A. T., & Davis, A. M. (1999). Gradients in H₂O, CO₂, and exsolved
1477 gas in a large-volume silicic magma system: Interpreting the record preserved in melt inclusions
1478 from the Bishop Tuff. *Journal of Geophysical Research: Solid Earth*, 104(B9), 20097-20122.

1479 Wallace, P. J., Plank, T., Bodnar, R. J., Gaetani, G. A., & Shea, T. (2021). Olivine-hosted melt
1480 inclusions: a microscopic perspective on a complex magmatic world. *Annual Review of Earth and
1481 Planetary Sciences*, 49, 465-494.

1482 Waters, L. E., & Lange, R. A. (2015). An updated calibration of the plagioclase-liquid
1483 hygrometer-thermometer applicable to basalts through rhyolites. *American Mineralogist*, 100(10),
1484 2172-2184.

1485 Wei, S. S., Ruprecht, P., Gable, S. L., Huggins, E. G., Ruppert, N., Gao, L., & Zhang, H. (2021).
1486 Along-strike variations in intermediate-depth seismicity and arc magmatism along the Alaska
1487 Peninsula. *Earth and Planetary Science Letters*, 563, 116878.

1488 Xu, Y., Lin, Y., Zheng, H., & van Westrenen, W. (2024). Non-Henrian behavior of hydrogen in
1489 plagioclase–basaltic melt partitioning. *Chemical Geology*, 661, 122153.

1490 Yogodzinski, G. M., Brown, S. T., Kelemen, P. B., Vervoort, J. D., Portnyagin, M., Sims, K. W.,
1491 Hoernle, K., Jicha, B. R. & Werner, R. (2015). The role of subducted basalt in the source of island
1492 arc magmas: Evidence from seafloor lavas of the western Aleutians. *Journal of Petrology*, 56(3),
1493 441-492.

1494 Yuan, X., Sobolev, S. V., Kind, R., Oncken, O., Bock, G., Asch, G., Schurr, B., Graeber, F.,
1495 Rudloff, A., Hanka, W., Wylegalla, K., Tibi, R., Haberland, Ch., Rietbrick, A., Giese, P., Wigger,
1496 P., Rower, P., Zandt, G., Beck, S., Wallace, T., Pardo, M., & Comte, D. (2000). Subduction and
1497 collision processes in the Central Andes constrained by converted seismic phases. *Nature*,
1498 408(6815), 958-961.

1499 Zellmer, G. F., Edmonds, M., & Straub, S. M. (2015). Volatiles in subduction zone
1500 magmatism. *Geological Society, London, Special Publications*, 410(1), 1-17.

1501 Zhang Y. (1999) H₂O in rhyolitic glasses and melts: Measurement, speciation, solubility and
1502 diffusion. *Reviews of Geophysics*, 37, 493–516.

1503 Zhang, Y., Belcher, R., Ihinger, P. D., Wang, L., Xu, Z., & Newman, S. (1997). New calibration
1504 of infrared measurement of dissolved water in rhyolitic glasses. *Geochimica et Cosmochimica
1505 Acta*, 61(15), 3089–3100.

1506 **Figure captions**

1507 Figure 1. Location of Cerro Machín volcano, Colombia. (a) Neotectonic map of Colombia
1508 including the volcanic chain. (b) Digital elevation model of the outcrop locations (blue dots).
1509 Samples from location CMV-008 (represented by a yellow star) were selected for geochemical
1510 analysis. Isopachs indicating deposit thickness in cm are shown in black. Towns and roads are
1511 shown in dark grey.

1512 Figure 2. Proximal outcrops of the study eruption units ~3 km from the vent at location CMV-008.
1513 (a) Photograph of different eruptive units identified at location CMV-008: El Espartillal unit
1514 (>5000 yr BP), P0 unit (4500 yr BP), and P1 unit (3600 yr BP). The white arrow points to the P1
1515 deposit that was sampled for this study. (b) Close-up image of the P1 deposit to the right of the
1516 shovel in panel a. Lithofacies *a* and *b* are separated by a sharp contact marked in this image by a
1517 fine dashed white line for visibility. Lithofacies *a* is fine-grained and laminated. It likely represents
1518 the opening phase of the eruption, which may have been phreatomagmatic. Lithofacies *b* is coarse-
1519 grained and massive. Pumice clasts were handpicked from this lithofacies from the bottom, middle

1520 and upper portion of P1. The deposit fines upwards and is thought to represent the climactic phase
1521 of the eruption.

1522 Figure 3. Photomicrographs of the different textures identified in plagioclase (Pl), amphibole
1523 (Amp), and olivine (Ol) crystals. Each panel shows plane-polarized and cross-polarized light
1524 images. The cross-polarized light segments of each image can be identified by their black
1525 backgrounds (composed of vesicles and isotropic glass). (a) Photomicrograph of zoned and
1526 euhedral plagioclase with similar anorthite content from core to rim. (b) Photomicrograph of
1527 amphibole phenocryst with invariant Mg# from core to rim. (c) Photomicrograph of amphibole
1528 microphenocryst with normal zoning. (d) Anhedral microphenocryst of olivine surrounded by a
1529 rim of amphibole.

1530 Figure 4. Populations of plagioclase and amphibole crystals analyzed in nine thin sections. Crystals
1531 were picked based on textural observations under the microscope. Different crystal sizes were
1532 analyzed from each textural group. (a) Histogram showing the frequency of different plagioclase
1533 textures. Light gray represents plagioclase with An₂₄₋₃₈ and dark gray with An₄₂₋₄₈. (b) Histogram
1534 showing the frequency of different amphibole textures. Yellow represents amphiboles with Mg# =
1535 53 – 62 and red with Mg# = 66 – 76.

1536 Figure 5. Whole rock chemistry of CMV samples (orange triangles). CMV data available in the
1537 literature are also plotted (grey triangles; from Laeger *et al.*, 2013; Régnier, 2015). (a) Total alkalis
1538 vs. silica (TAS) diagram (after Le Bas *et al.*, 1986). Melt inclusions (orange circles) and glass (pink
1539 circles) measurements are also plotted (Supplementary Table B3). (b) Sr/Y versus Y. The typical
1540 arc magmatic rocks and the adakite fields are defined by Defant & Drummond (1990). (c) MgO
1541 versus SiO₂ diagram (Martin *et al.*, 2005) discriminating high-silica adakites (HSA) from low-silica

1542 adakites (LSA). (d) Cr/Ni vs. TiO₂ diagram (Martin *et al.*, 2005) discriminating high-silica adakites
1543 (HSA) from low-silica adakites (LSA).

1544 Figure 6. Volatiles in melt inclusions hosted in plagioclase and quartz. (a) Photomicrograph of
1545 trigonal bipyramidal melt inclusion hosted in quartz. Note the halo of small inclusions around this
1546 melt inclusion, which may have formed during rupture and re-sealing of the inclusion (e.g., Wallace
1547 *et al.*, 2021). (b) Photomicrograph of quartz-hosted melt inclusion filled with bubbles. The
1548 inclusion likely ruptured and decrepitated during decompression (e.g., Bachmann *et al.*, 2010). (c)
1549 Concentrations of H₂O and CO₂ in quartz- and plagioclase-hosted melt inclusions. Isobars, open-
1550 and closed-system degassing paths and vapor isopleths for 1, 10 20 and 40% CO₂ were calculated
1551 using VolatileCalc (Newman & Lowenstern, 2002). Uncertainties are shown in Fig. 9.

1552 Figure 7. (a) Calibration curve for H₂O (total H quantified as H₂O equivalents) in rhyolite glasses
1553 by SIMS. (b) Comparison of water contents obtained by NanoSIMS and FTIR for five singly-
1554 exposed quartz-hosted melt inclusions. Error bars are one standard deviation. Error bars on FTIR
1555 data account for uncertainties in sample thickness, absorption peak height, and propagating
1556 uncertainties on the Zhang *et al.* (1997) fit parameters. The sample thickness estimates are the
1557 largest source of error. Error bars on the NanoSIMS data are due to the reproducibility of the
1558 analysis based on replicate measurements on N6-glass (8% uncertainty) (See Supplementary Table
1559 C2).

1560 Figure 8. FTIR measurements of water in plagioclase crystals. (a) Polarized FTIR spectra measured
1561 along three perpendicular directions in a plagioclase crystal. (b) Total water concentrations
1562 measured in three plagioclase crystals (from 17 plagioclase crystals analyzed) representing the full
1563 range of measured water concentrations. Note that all crystals have approximately uniform water

1564 concentrations from core to rim. Profile lengths are shorter than the initial crystal size because
1565 crystals were cut in half for FTIR measurements. (c) Water in plagioclase versus crystal size for 17
1566 plagioclase crystals. Notably, no relationship between size and water content is observed.

1567 Figure 9. Water concentration (weight ppm H₂O) of hydrated plagioclase versus total H₂O
1568 concentration of coexisting basaltic andesitic glass from Hamada *et al.* (2013), MORB from
1569 Hamada *et al.* (2013) and dacites from Mt. Hood from Caseres *et al.* (2018). The partition
1570 coefficient proposed by Hamada *et al.* (2013) for melts with >4 wt% H₂O is shown in blue and a
1571 partition coefficient of 0.002 (Caseres *et al.*, 2018; Mosenfelder *et al.*, 2020) is shown in purple.
1572 We fit a square root relationship (Equation 7; shown as a black curve) to the Hamada *et al.* (2013)
1573 and Caseres *et al.* (2018) data by applying least-squares minimization. Note that the Hamada *et al.*
1574 (2013) data are recalculated using the FTIR absorption coefficient provided by Mosenfelder *et al.*
1575 (2015). Shaded areas correspond to an error of 10%.

1576 Figure 10. (a) Comparison of total water measured in melt inclusions by FTIR and SIMS, and
1577 estimates of total water in CMV melt based upon measured water concentrations in plagioclase
1578 (section 4.4). For the water-in-plagioclase partitioning calculations, we assume a partition
1579 coefficient of 0.002 (Mosenfelder *et al.*, 2020) and we also apply the square root function proposed
1580 in this study (Equation 12). (b) Plagioclase hygrometry model of Waters & Lange (2015) run at a
1581 range of anorthite contents from An₂₀ to An₄₀, a range of melt compositions from dacite
1582 (corresponding to the average CMV whole rock composition) to rhyolite (corresponding to the
1583 average composition of the melt inclusions), and a pressure of 350 MPa (the maximum pressure
1584 that the model is calibrated to). Dashed lines denote extrapolation of the model to temperatures
1585 lower than 750 °C. (c) Density plots for the water data in panel a.

1586 Figure 11. Pressures and temperatures of crystallization. (a) Constraints from equilibrium
1587 amphibole-liquid pairs using Putirka (2016) in yellow, Ridolfi (2021) in gray, and Higgins *et al.*
1588 (2022) in blue. Data points represent measurements in the rim (open circles) and core (filled circles)
1589 of individual crystals. (b) Probability density estimates of temperature. (c) Temperatures obtained
1590 by plagioclase-liquid equilibrium pairs using Putirka (2008). (d) Probability density estimates of
1591 pressure. (e) Saturation pressures of melt inclusions calculated by VolatileCalc (Newman &
1592 Lowenstern, 2002; see section 4.3).

1593 Figure 12. Melt composition based on amphibole chemometry of Higgins *et al.* (2022). Amphiboles
1594 crystallizing from a rhyolitic and dacitic magma are plotted as light and dark red circles,
1595 respectively. Amphiboles crystallizing from an andesitic magma are plotted as black circles.

1596 Figure 13. Summary schematic diagram representing the combined geochemical and seismic
1597 datasets. Crystallization conditions calculated from amphibole, plagioclase, and melt inclusions
1598 overlap with seismicity depths at CMV from 2009 – 2015 and CO₂ isotope measurements from
1599 2013 – 2014 campaigns (Inguaggiato *et al.*, 2017). The main dacitic reservoir is represented in
1600 green-yellowish whereas the andesitic magma recharge is in green-orangish.

1601 Figure 14. Phase diagram for Pinatubo dacite based on the experiments of Conrad *et al.* (1988),
1602 Prouteau & Scaillet (2003) and Rutherford & Devine (1996). Plagioclase and hornblende stability
1603 curves are shown for water-saturated magma and magma containing 7 wt% H₂O. Biotite and quartz
1604 stability curves are taken from Rutherford & Devine (1996). The dashed line for the quartz stability
1605 curve is extrapolated using Prouteau & Scaillet (2003) experiments on Pinatubo dacite at 960 MPa
1606 and 400 MPa at water saturation conditions (indicated as “x”). The dashed line for the biotite
1607 stability curve is extrapolated using Conrad *et al.* (1988) experiments on Taupo dacite at 1000 MPa

1608 at water saturation conditions (indicated as “x”). Water concentration was calculated using the
1609 VolatileCalc solubility curve for rhyolite (Newman & Lowestern, 2002). Water concentration was
1610 projected for pressures >500 MPa. CMV amphibole thermobarometry results are plotted using the
1611 same color code as Fig. 12. The P-T region in which quartz, biotite, plagioclase and hornblende are
1612 all stable is shaded in red.

1613 Figure 15. Compilation of H_2O vs CO_2 measurements in dacites and rhyolites from various volcanic
1614 arcs (modified from Wallace, 2005). Data are shown for the Satsuma-Iwojima (Saito *et al.*, 2001),
1615 Altiplano-Puna, Northern Chile (Schmitt, 2001), Augustine (Roman *et al.*, 2006), Toba Tuff
1616 (Newman & Chesner, 1989), Pinatubo (Wallace & Gerlach, 1994), and Mt. Mazama (Bacon *et al.*,
1617 1992). Note that Borisova *et al.* (2006) report concentrations in experimentally rehomogenized
1618 Pinatubo melt inclusions up to 8.79 wt% H_2O (by SIMS), but that study did not report CO_2
1619 concentrations, so the data are not plotted here. Isobars for 100, 200 and 500 MPa were calculated
1620 using VolatileCalc (Newman & Lowenstern, 2002).

1621 Figure 16. (a) Pb/Th vs. Th/La and (b) Ba/Th vs. La/Th diagrams support the role of melting
1622 sediments in adakite genesis. (c) Multi-element diagram normalized to primitive mantle (Sun &
1623 McDonough, 1989). Whole-rock geochemical CMV samples are orange triangles. For comparison
1624 CMV data available in the literature are also plotted (gray triangles; Laeger *et al.*, 2013; Régnier,
1625 2015). Samples that do not exhibit a garnet signature are plotted for comparison (N-MORB, E-
1626 MORB from Sun & McDonough, 1989; the Mexican Volcanic Belt (MVB) from Straub *et al.*,
1627 2014). (d) Petrogenetic process vectors (PPVs) of Gao *et al.* (2023) are shown to explain the origin
1628 of CMV adakites from the rare earth element (REE) perspective. The PPVs connect the shape
1629 coefficients (λ_1 and λ_2 ; calculated using Anenburg & Williams, 2022 - BLambdaR program) of the
1630 upper oceanic crust (UOC) with the observed shape coefficients of CMV dacites. Approximately

1631 ~5% fractional crystallization of garnet following 10% partial melting of the UOC source provides
1632 a good match to the CMV data.

1633 Figure 17. (a) Ni and forsterite contents in olivine phenocrysts. Green and red fields are olivines
1634 calculated to be in equilibrium with pyroxenite and peridotite source compositions (fields and
1635 shallow crystallization lines are taken from Ruprecht & Plank, 2013 and Straub *et al.*, 2011). (b)
1636 The Rhodes diagram as a test of olivine-liquid equilibrium (olivine Mg# vs whole-rock Mg#). The
1637 envelope of olivine–liquid Fe–Mg distribution coefficient (K_D) of 0.30 ± 0.03 is drawn after Roeder
1638 & Emslie (1970). One whole rock composition is in chemical equilibrium with olivine. (c)
1639 FeO*/MgO versus SiO₂ diagram showing the calc-alkaline (CA) and tholeiitic (TH) dividing line
1640 of Miyashiro (1974). Primary melts defining the mantle melting array are taken from Grove *et al.*
1641 (2012). Fractional crystallization paths in H₂O magma suites are shown for three different starting
1642 compositions: basaltic, primitive basaltic andesite (compiled from Sisson & Grove, 1993), and
1643 primitive magnesian andesite (from Mt. Shasta, California, Grove *et al.*, 2003). The crystallization
1644 path for CMV dacites projects toward high -SiO₂ andesitic primary mantle melt composition.
1645 Modified after Grove *et al.* (2012).

1646 **Tables**

1647 Table 1. Water and carbon dioxide concentrations measured by FTIR (in 35 melt inclusions) and
1648 NanoSIMS (in 5 melt inclusions).

1649 Table 2. Water in melt calculated using a partition coefficient of 0.002 as calculated for natural
1650 plagioclase-melt pairs from a dacitic system (Mt. Hood; Caseres *et al.*, 2018; Mosenfelder *et al.*,
1651 2020) and the square root parameterization of the plagioclase-melt partition coefficients (section
1652 4.4) reported by Hamada *et al.* (2013) and Caseres *et al.* (2018).

1653 Table 3. Compositions of Cerro Machín and Pinatubo dacites (Prouteau & Scaillet, 2003), the high-
1654 Mg andesite of Mt. Shasta (Grove *et al.*, 2005), and average Cenozoic adakites (Drummond *et al.*,
1655 1996).

1656 **Supplementary data**

1657 Supplementary Table A1. Concentration of volatiles in melt inclusions as determined by FTIR
1658 and NanoSIMS. Estimated saturation entrapment pressures from the Newman & Lowestern
1659 (2002) and Papale *et al.* (2006) models.

1660 Supplementary Table A2. Volume occupied by bubbles in the melt inclusions.

1661 Supplementary Table A3. Spectra data for melt inclusions B1 Qz5 and d1 Qz10.

1662 Supplementary Figure A1. Photomicrographs of some melt inclusions used for calculations of
1663 the bubble volumes. Melt inclusions are highlighted by a red arrow. Multiple bubbles from the
1664 same crystal were considered for calculations. Results are tabulated in Supplementary Table A2.

1665 Supplementary Figure A2. Melt inclusion volumes vs. Bubble volumes diagram. Volumes were
1666 calculated assuming spherical geometries for the melt inclusions and bubbles. An average of
1667 three diameter measurements was used to calculate the radius. When multiple bubbles were
1668 observed within the melt inclusion, all bubbles were summed together to calculate the total
1669 volume occupied by bubbles.

1670 Supplementary Figure A3. FTIR data. (a) Photomicrograph taken by the FTIR of B1 Qz5 melt
1671 inclusion with 10.7 wt% H₂O. Inset: Magnified image of the melt inclusion. The red cross denotes
1672 the center of the pictures. (b) Picture of the wafer thickness for crystal B1 Qz5 under the binocular.
1673 Red arrows indicate where the thickness was measured. (c) Thickness-normalized spectra for two
1674 crystals B1 Qz5, and d1 Qz10 with 10.7 and 9.6 wt% H₂O, respectively. Raw data is in
1675 Supplementary Table A3.

1676 Supplementary Table B1. Electron microprobe analyses of Morgan glasses.

1677 Supplementary Table B2. Whole rock analyses of five pumice clasts.

1678 Supplementary Table B3. Electron microprobe analyses of glass and melt inclusions.

1679 Supplementary Figure B1. Whole-rock geochemical plots of the analyzed samples. CMV data
1680 available in the literature are also plotted (whole rock chemistry: gray triangles, glass: gray circles;
1681 Laege *et al.*, 2013; Régnier, 2015). A. Total Alkalies vs. Silica (TAS) diagram (after Le Bas *et al.*,
1682 1986); (B-J) variation diagrams of the main major oxides. Arrows indicate samples trends in the
1683 data.

1684 Supplementary Figure B2. (a) Pb/Th versus Nd/Th support the role of sediment melting in CMV
1685 dacites genesis. MORB, eclogite melt and sediment melt fields are taken from Wei *et al.* (2021).

1686 (b) Dy/Yb versus SiO₂ diagram to show expected fractionation effects with differentiation. The
1687 schematic inset shows expected fractionation effects. Vectors represent example suites that have
1688 fractionated garnet and amphibole from a different parent composition (vectors taken from
1689 Davidson *et al.*, 2007). CMV samples (data taken from Laege *et al.*, 2013; Régnier, 2015) are
1690 consistent with variable amounts of garnet fractionation. Legend is the same as Supplementary
1691 Figures B1.

1692 Supplementary Table C1. NanoSIMS standards from Carnegie Earth and Planets Laboratory.

1693 Supplementary Table C2. Repeat analyses of NanoSIMS standard N6.

1694 Supplementary Table C3. Raw SIMS data.

1695 Supplementary Figure C1. Photomicrographs of the five melt inclusions measured by NanoSIMS.
1696 The first column shows the indium mounts containing the quartz crystals analyzed. Red arrows
1697 point to the melt inclusion analyzed in each crystal.

1698 Supplementary Table D1. Summary of temperature and pressure conditions calculated from
1699 amphibole compositions using the Higgins *et al.* (2022), Ridolfi (2021) (temperature \pm 22 °C,
1700 pressure \pm 12% MPa) and Putirka (2016) (temperature \pm 30 °C, pressure \pm 200 MPa)
1701 geothermobarometers. High-Mg amphibole crystals, cores of normally zoned crystals and rims of
1702 reversed zoned crystals did not meet the equilibrium conditions ($K_D = 0.28 \pm 0.11$ criterion) for
1703 Putirka (2016) geothermobarometer.

1704 Supplementary Table D2. Summary of temperature conditions calculated from plagioclase
1705 composition using the Putirka (2008) (temperature \pm 48 °C) geothermometer.

1706 Supplementary Table E1. Electron Microprobe analyses of amphibole. Data was filtered using
1707 anomalies in total values, Al_2O_3 , FeO and MgO . Also, data was filtered using amphibole formula
1708 of Li *et al.* (2020). The Fe-Mg exchange coefficients yield $K_D(Fe-Mg)_{Amp-liq} = 0.28 \pm 0.11$
1709 ($Mg\# < 65$) (Putirka, 2008), using average glass composition.

1710 Supplementary Table E2. Electron Microprobe analyses of plagioclase. Data was filtered using
1711 anomalies in total values, Al_2O_3 , CaO and Na_2O . The An-Ab exchange coefficients yield $K_D(An-$
1712 $Ab)_{pl-liq} = 0.1 \pm 0.05$ (Putirka, 2008), using average glass composition.

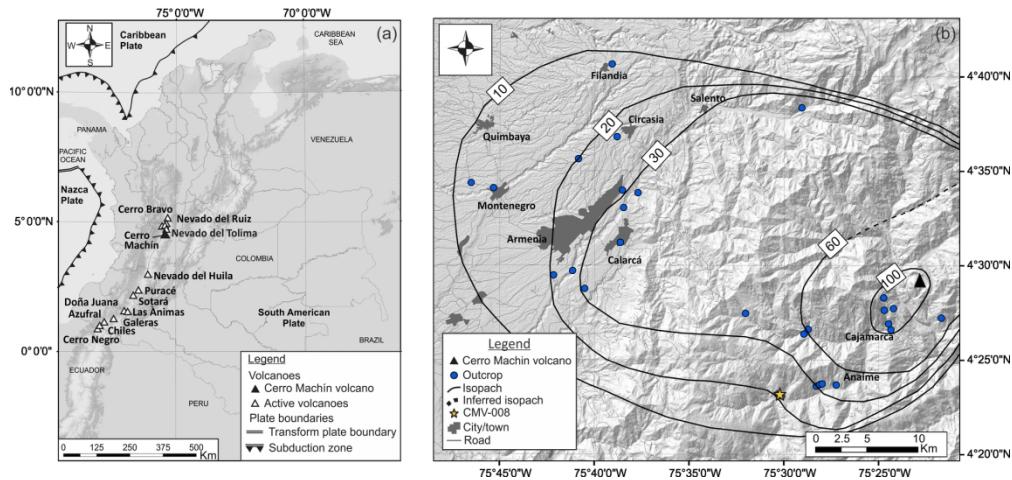


Figure 1. Location of Cerro Machín volcano, Colombia. (a) Neotectonic map of Colombia including the volcanic chain. (b) Digital elevation model of the outcrop locations (blue dots). Samples from location CMV-008 (represented by a yellow star) were selected for geochemical analysis. Isopachs indicating deposit thickness in cm are shown in black. Towns and roads are shown in dark grey.

178x98mm (300 x 300 DPI)

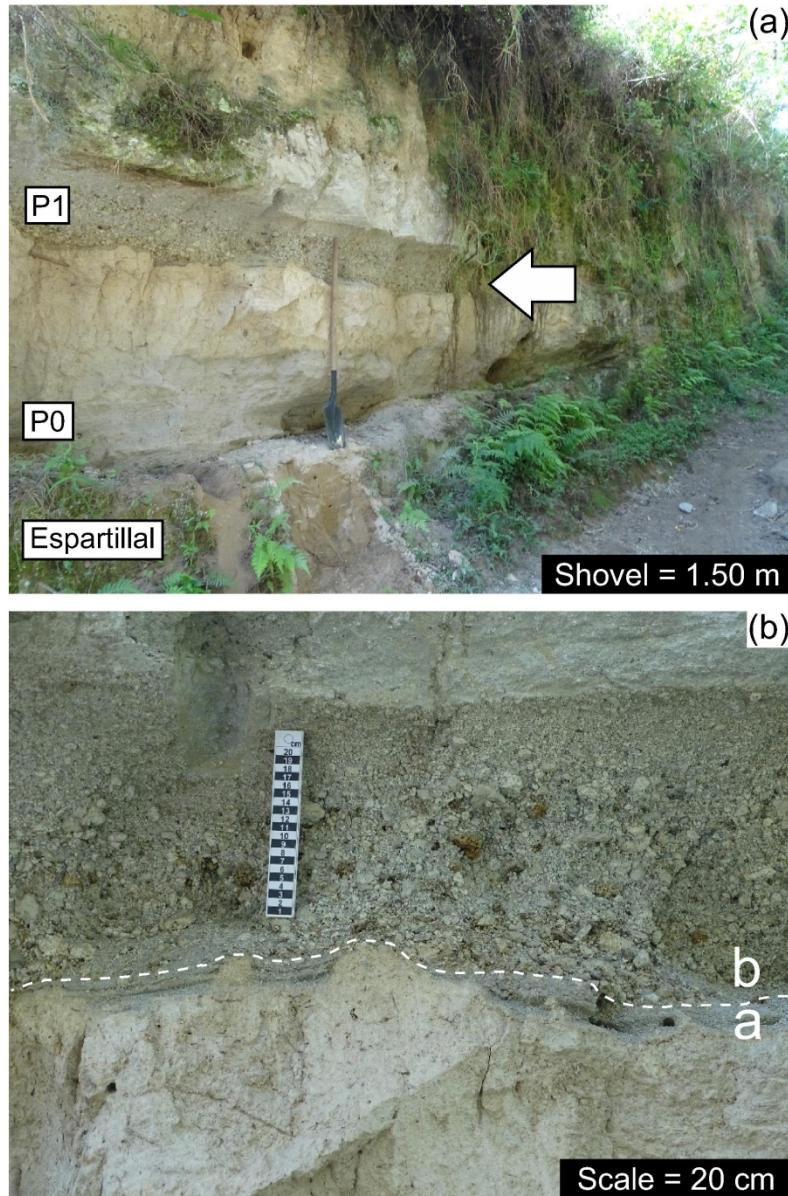


Figure 2. Proximal outcrops of the study eruption units ~3 km from the vent at location CMV-008. (a) Photograph of different eruptive units identified at location CMV-008: El Espartillal unit (>5000 yr BP), P0 unit (4500 yr BP), and P1 unit (3600 yr BP). The white arrow points to the P1 deposit that was sampled for this study. (b) Close-up image of the P1 deposit to the right of the shovel in panel a. Lithofacies *a* and *b* are separated by a sharp contact marked in this image by a fine dashed white line for visibility. Lithofacies *a* is fine-grained and laminated. It likely represents the opening phase of the eruption, which may have been phreatomagmatic. Lithofacies *b* is coarse-grained and massive. Pumice clasts were handpicked from this lithofacies from the bottom, middle and upper portion of P1. The deposit fines upwards and is thought to represent the climactic phase of the eruption.

80x122mm (600 x 600 DPI)

Table 1: Water and carbon dioxide concentrations measured by FTIR (in 35 melt inclusions) and NanoSIMS (in 5 melt inclusions).

No.	Pumice	Crystal	FTIR		NanoSIMS H ₂ O (wt.%)	Thickness (microns)	Size MI (micron s)
			H ₂ O (wt.%)	CO ₂ (ppm)			
1	B1	PI7	3.5 ± 0.8	59 ± 15		24 ± 2	48
2	B1	PI9	3.2 ± 0.2	b.d.l.		21 ± 1	51
3	B1	Qz5	10.7 ± 1.4	185 ± 32		24 ± 2	94
4	B2	PI5	4.1 ± 1.3	110 ± 23		27 ± 3	50
5	B2	PI6	6.3 ± 0.6	87 ± 12		19 ± 1	52
6	B2	PI8M1	4.9 ± 1.1	70 ± 21		20 ± 3	43
7	B2	PI8M2	4.8 ± 1.0	90 ± 17		20 ± 3	49
8	B2	Qz6	2.5 ± 1.0	230 ± 59		16 ± 2	43
9	M1	Qz1	6.9 ± 1.2	136 ± 17		24 ± 2	49
10	M1	PI1*	1.6 ± 0.5	b.d.l.		12 ± 2	27
11	M1	PI2M1*	1.4 ± 0.3	b.d.l.		17 ± 3	44
12	M1	PI2M2*	1.1 ± 0.2	b.d.l.		17 ± 3	53
13	M1	PI2M3*	1.5 ± 0.3	b.d.l.		17 ± 3	42
14	M8	PI2*	1.6 ± 0.3	b.d.l.		16 ± 1	62
15	M8	PI3	3.0 ± 0.5	b.d.l.		24 ± 1	43
16	M8	PI5	2.1 ± 0.4	b.d.l.		21 ± 3	54
17	M8	Qz1	4.3 ± 0.4	130 ± 19		23 ± 1	42
18	T7	PI11	1.9 ± 0.4	69 ± 13		32 ± 3	48
19	T7	PI12	2.7 ± 0.4	21 ± 3		174 ± 1	96
20	T7	PI9P	1.7 ± 0.4	b.d.l.		29 ± 1	55
21	T7	Qz2M1	4.1 ± 1.4	105 ± 41		28 ± 1	40
22	T7	Qz2M2	3.7 ± 0.8	99 ± 39		28 ± 1	46
23	T7	Qz2M3	3.5 ± 1.2	91 ± 38		28 ± 1	44
24	T9	Qz1	3.2 ± 0.6	126 ± 28		39 ± 3	77
25	T9	Qz3	4.6 ± 0.5	109 ± 14		36 ± 3	52
26	d1	Qz2**	8.2 ± 4.9	289 ± 24	7.1 ± 0.6+	21 ± 14	72
27	d1	Qz3**	2.2 ± 2.0	49 ± 6	5.8 ± 0.5+	52 ± 57	84
28	d1	Qz4**	4.5 ± 2.1	167 ± 23		21 ± 9	66
29	d1	Qz5**	6.8 ± 1.1	155 ± 16	7.7 ± 0.6+	54 ± 9	125
30	d1	Qz6**	10.3 ± 5.8	445 ± 119	6.1 ± 0.5+	15 ± 8	72
31	d1	Qz7**	7.9 ± 1.9	428 ± 81	7.4 ± 0.6+	30 ± 7	70
32	d1	Qz8**	0.5 ± 0.1	b.d.l.		40 ± 7	56
33	d1	Qz9	7.4 ± 0.5	184 ± 19		57 ± 3	107
34	d1	Qz10	9.6 ± 2.2	377 ± 122		41 ± 9	137
35	d1	Qz11	7.3 ± 0.7	59 ± 9		35 ± 3	107

Uncertainties calculated using Monte Carlo simulation.

** Singly exposed melt inclusions. Note the relatively large error bars on these measurements. Quantifications of these uncertainties are discussed in section 4.3.

* Melt inclusions in which $\sim 3550 \text{ cm}^{-1}$ peak was used for water calculations. Molar absorbance coefficient was taken from Newman *et al.* (1986).

+ Uncertainties (1σ) calculated using replicate measurements of the high-water standard N6 (Withers and Behrens, 2002).

b.d.l. = below detection limit.

Melt inclusions measured in the same crystal are noted as M1, M2, M3 in the "Crystal" column.

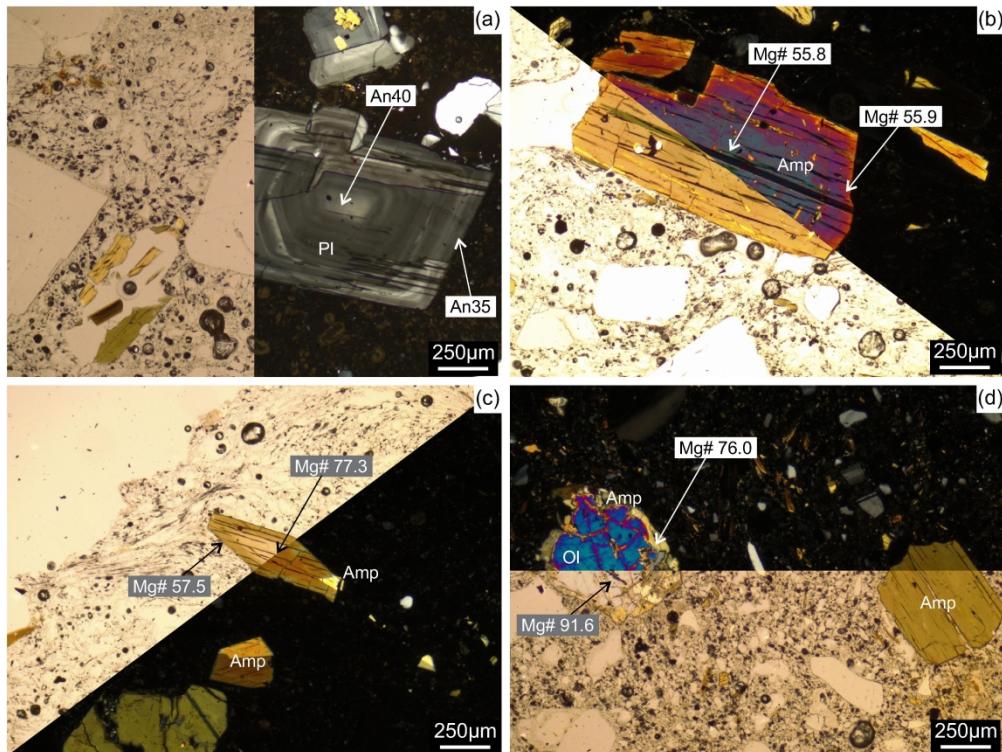


Figure 3. Photomicrographs of the different textures identified in plagioclase (Pl), amphibole (Amp) and olivine (Ol) crystals. Each panel shows plane-polarized and cross-polarized light images. The cross-polarized light segments of each image can be identified by their black backgrounds (composed of vesicles and isotropic glass). (a) Photomicrograph of zoned and euhedral plagioclase with similar anorthite content from core to rim. (b) Photomicrograph of amphibole phenocryst with invariant Mg# from core to rim. (c) Photomicrograph of amphibole microphenocryst with normal zoning. (d) Anhedral microphenocryst of olivine surrounded by a rim of amphibole.

168x136mm (600 x 600 DPI)

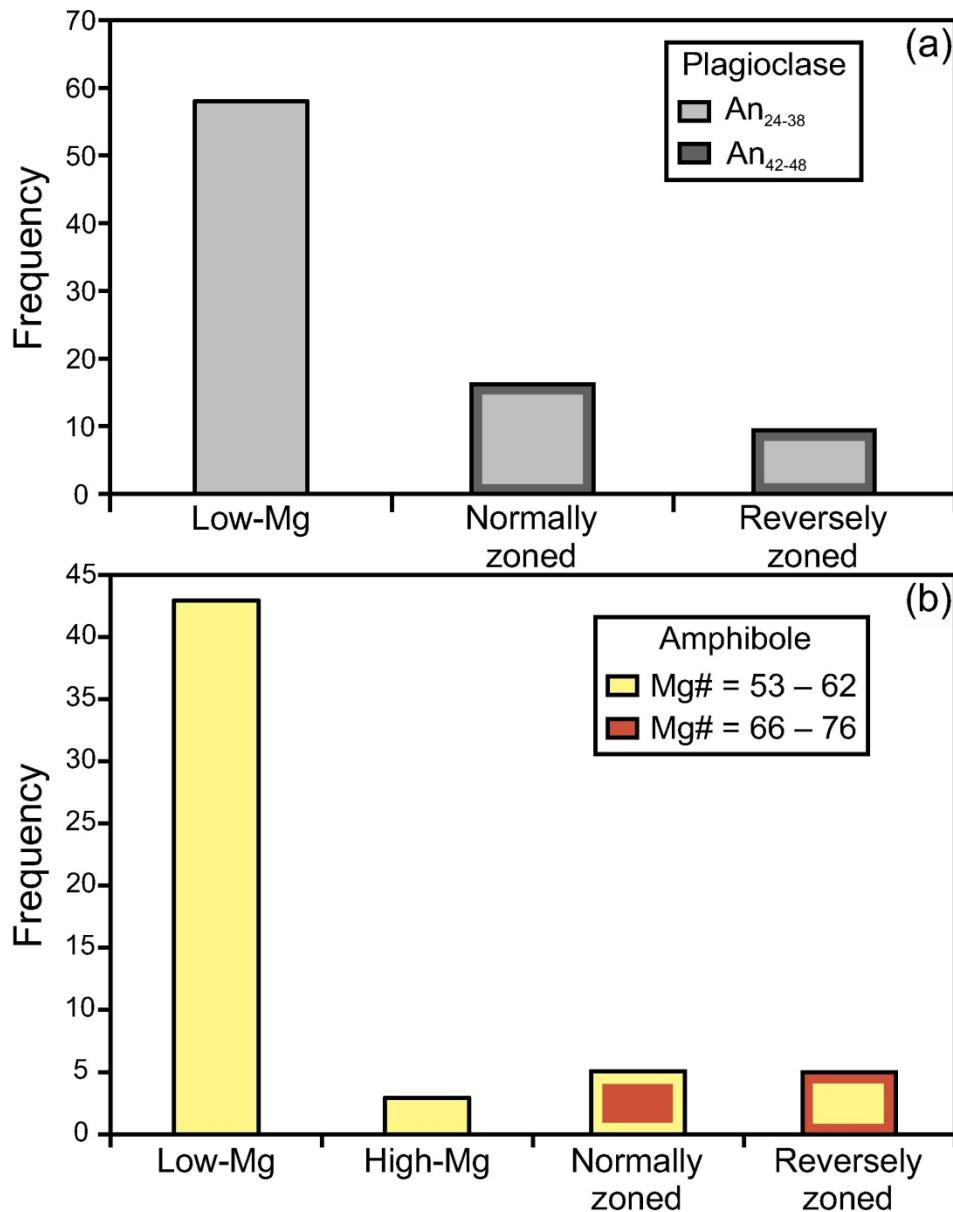


Figure 4. Populations of plagioclase and amphibole crystals analyzed in nine thin sections. Crystals were picked based on textural observations under the microscope. Different crystal sizes were analyzed from each textural group. (a) Histogram showing the frequency of different plagioclase textures. Light gray represents plagioclase with An_{24-38} and dark gray with An_{42-48} . (b) Histogram showing the frequency of different amphibole textures. Yellow represents amphiboles with $Mg\# = 53 - 62$ and red with $Mg\# = 66 - 76$.

85x107mm (600 x 600 DPI)

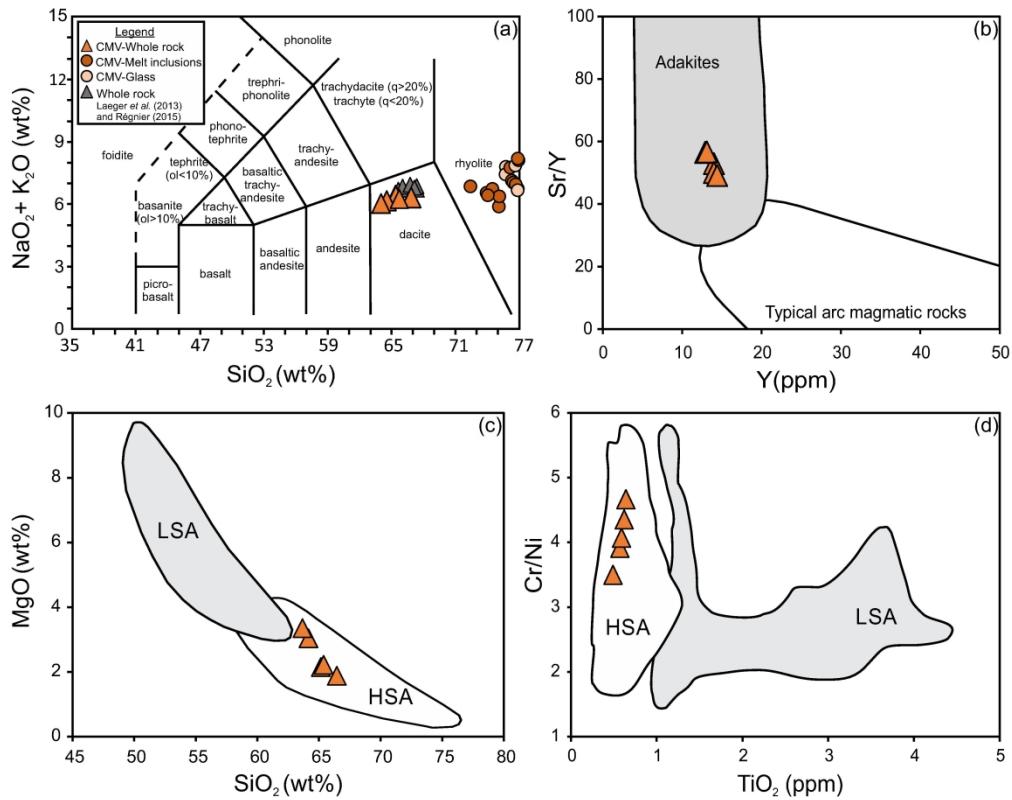


Figure 5. Whole rock chemistry of CMV samples (orange triangles). CMV data available in the literature are also plotted (grey triangles; from Laeger *et al.*, 2013; Régnier, 2015). (a) Total alkalis vs. silica (TAS) diagram (after Le Bas *et al.*, 1986). Melt inclusions (orange circles) and glass (pink circles) measurements are also plotted (Supplementary Table B3). (b) Sr/Y versus Y . The typical arc magmatic rocks and the adakite fields are defined by Defant & Drummond (1990). (c) MgO versus SiO_2 diagram (Martin *et al.*, 2005) discriminating high-silica adakites (HSA) from low-silica adakites (LSA). (d) Cr/Ni vs. TiO_2 diagram (Martin *et al.*, 2005) discriminating high-silica adakites (HSA) from low-silica adakites (LSA).

170x134mm (600 x 600 DPI)

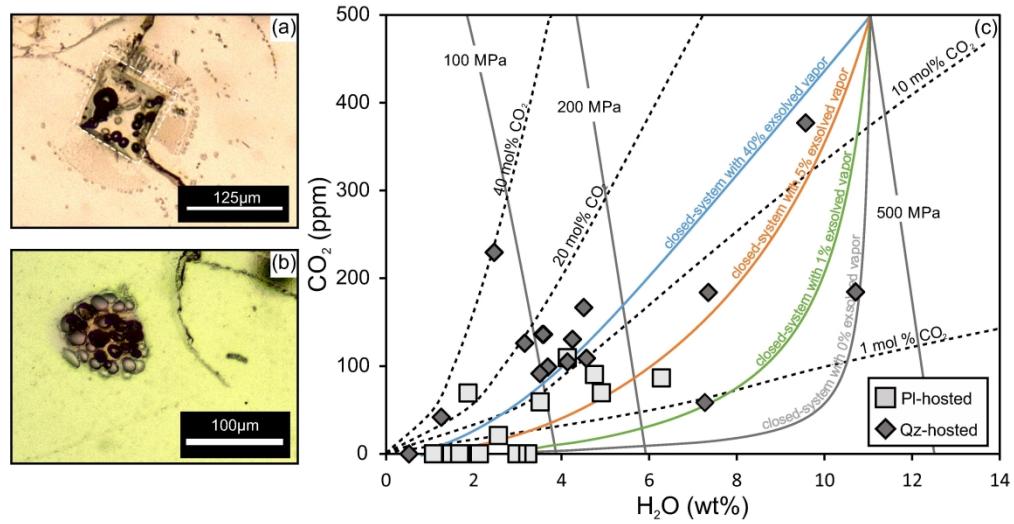


Figure 6. Volatiles in melt inclusions hosted in plagioclase and quartz. (a) Photomicrograph of trigonal bipyramidal melt inclusion hosted in quartz. Note the halo of small inclusions around this melt inclusion, which may have formed during rupture and re-sealing of the inclusion (e.g., Wallace *et al.*, 2021). (b) Photomicrograph of quartz-hosted melt inclusion filled with bubbles. The inclusion likely ruptured and decrepitated during decompression (e.g., Bachmann *et al.*, 2010). (c) Concentrations of H₂O and CO₂ in quartz- and plagioclase-hosted melt inclusions. Isobars, open- and closed-system degassing paths and vapor isopleths for 1, 10 20 and 40% CO₂ were calculated using VolatileCalc (Newman & Lowenstern, 2002). Uncertainties are shown in Fig. 9.

171x88mm (600 x 600 DPI)

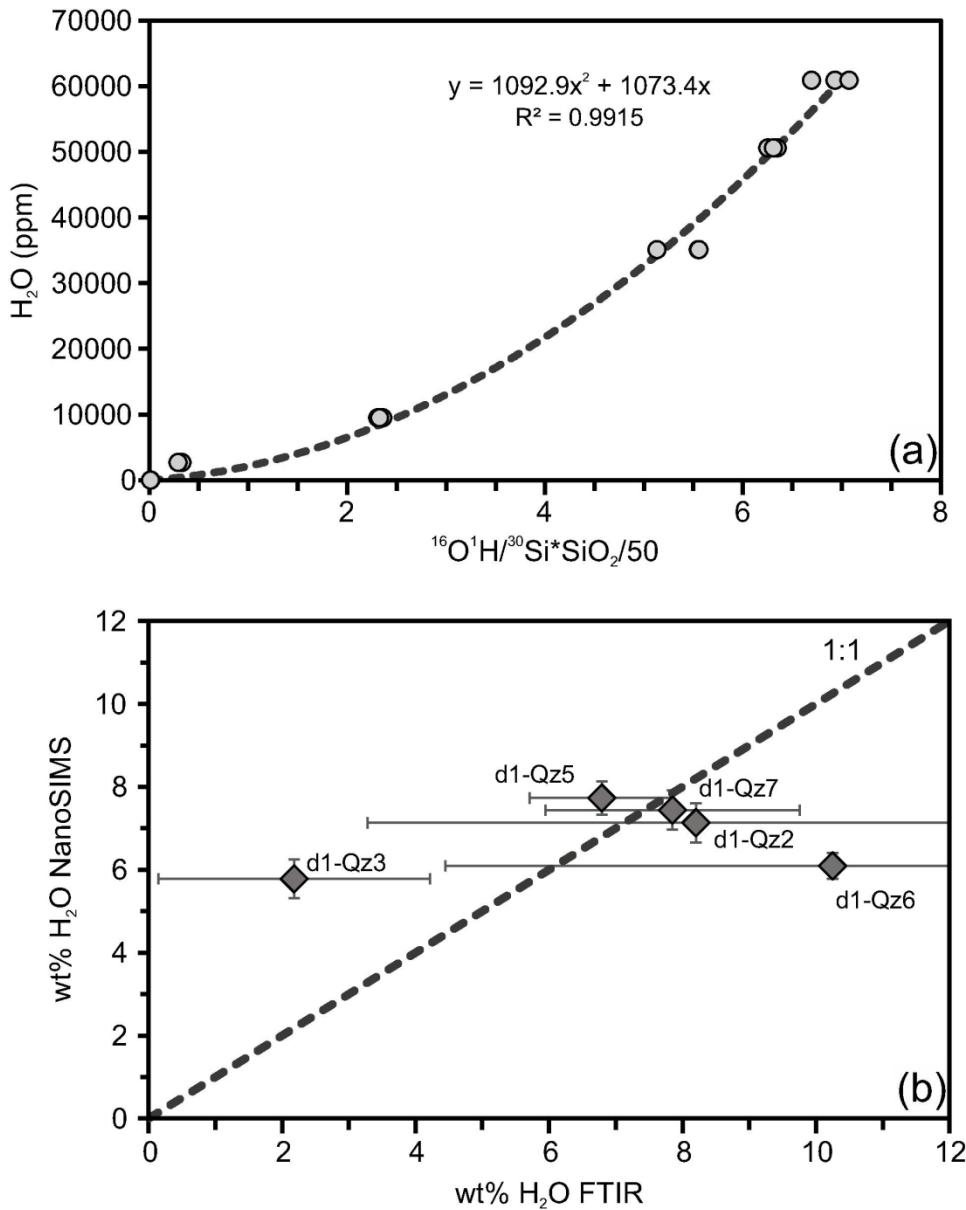


Figure 7. (a) Calibration curve for H_2O (total H quantified as H_2O equivalents) in rhyolite glasses by SIMS. (b) Comparison of water contents obtained by NanoSIMS and FTIR for five singly-exposed quartz-hosted melt inclusions. Error bars are one standard deviation. Error bars on FTIR data account for uncertainties in sample thickness, absorption peak height, and propagating uncertainties on the Zhang *et al.* (1997) fit parameters. The sample thickness estimates are the largest source of error. Error bars on the NanoSIMS data are due to the reproducibility of the analysis based on replicate measurements on N6-glass (8% uncertainty) (See Supplementary Table C2).

81x102mm (600 x 600 DPI)

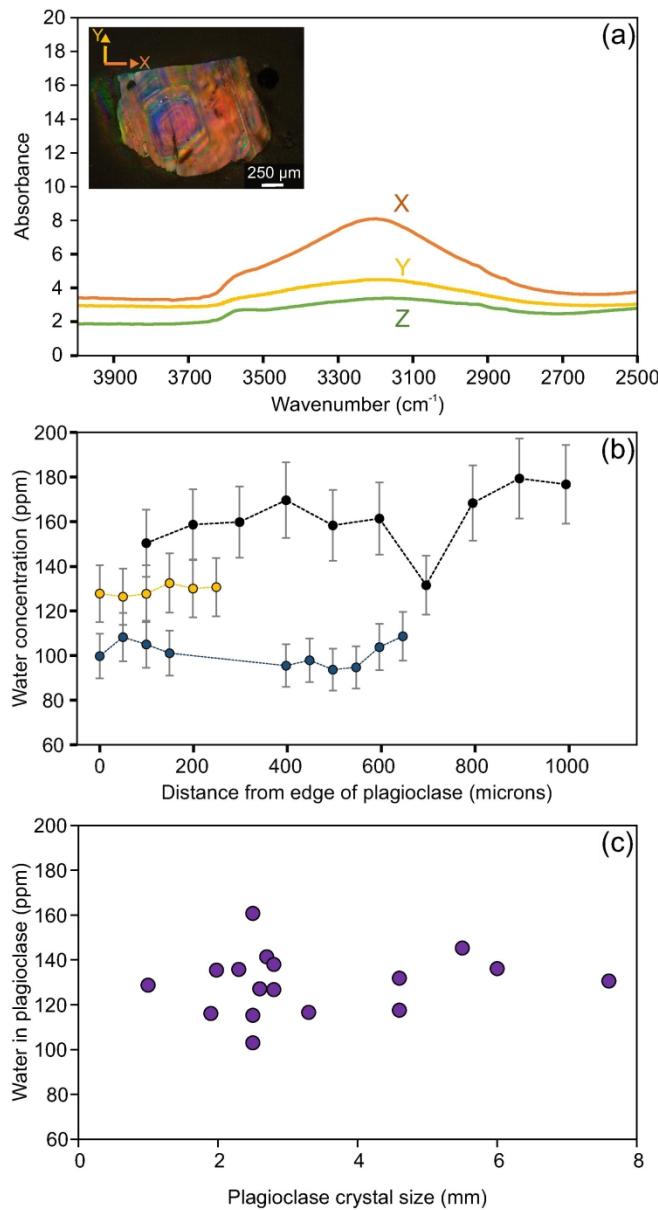


Figure 8. FTIR measurements of water in plagioclase crystals. (a) Polarized FTIR spectra measured along three perpendicular directions in a plagioclase crystal. (b) Total water concentrations measured in three plagioclase crystals (from 17 plagioclase crystals analyzed) representing the full range of measured water concentrations. Note that all crystals have approximately uniform water concentrations from core to rim.

Profile lengths are shorter than the initial crystal size because crystals were cut in half for FTIR measurements. (c) Water in plagioclase versus crystal size for 17 plagioclase crystals. Notably, no relationship between size and water content is observed.

80x149mm (600 x 600 DPI)

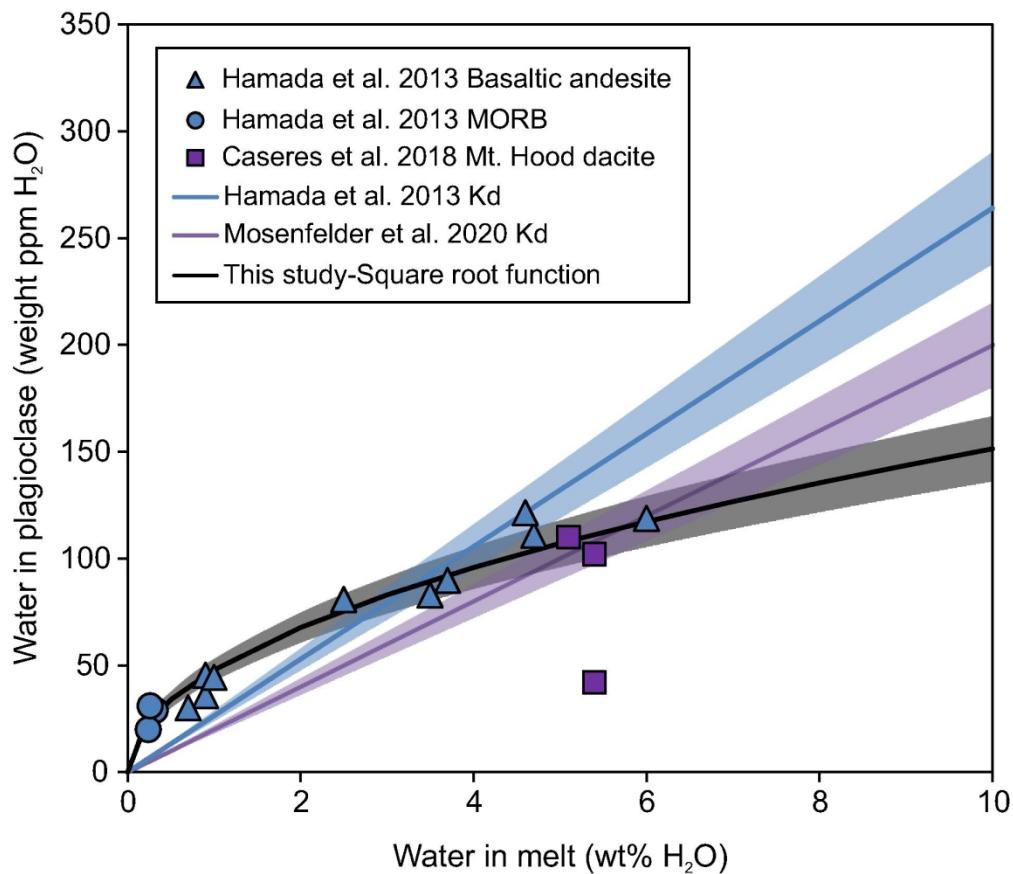


Figure 9. Water concentration (weight ppm H₂O) of hydrated plagioclase versus total H₂O concentration of coexisting basaltic andesitic glass from Hamada *et al.* (2013), MORB from Hamada *et al.* (2013) and dacites from Mt. Hood from Caseres *et al.* (2018). The partition coefficient proposed by Hamada *et al.* (2013) for melts with >4 wt% H₂O is shown in blue and a partition coefficient of 0.002 (Caseres *et al.*, 2018; Mosenfelder *et al.*, 2020) is shown in purple. We fit a square root relationship (Equation 7; shown as a black curve) to the Hamada *et al.* (2013) and Caseres *et al.* (2018) data by applying least-squares minimization. Note that the Hamada *et al.* (2013) data are recalculated using the FTIR absorption coefficient provided by Mosenfelder *et al.* (2015). Shaded areas correspond to an error of 10%.

80x69mm (600 x 600 DPI)

Table 2: Water in melt calculated using a partition coefficient of 0.002 as calculated for natural plagioclase-melt pairs from a dacitic system (Mt. Hood; [Caseres et al., 2018](#); [Mosenfelder et al., 2020](#)) and the square root parameterization of the plagioclase-melt partition coefficients (section 4.4) reported by [Hamada et al. \(2013\)](#) and [Caseres et al. \(2018\)](#).

No	Pumice	Plagioclase	Water in Pl (weight ppm)	Water in melt (wt. %)	
				Melt H ₂ O with constant Kd (0.002)	Melt H ₂ O with variable Kd (Square root)
1	B1	PI1	129 ± 12	6 ± 1	7 ± 1
2	B1	PI2	103 ± 10	5 ± 1	5 ± 1
3	B1	PI3	115 ± 11	6 ± 1	6 ± 1
4	B1	PI13	141 ± 14	7 ± 1	9 ± 2
5	B1	PI14	135 ± 13	7 ± 1	8 ± 2
6	B2	PI1	117 ± 11	6 ± 1	6 ± 1
7	B2	PI2	117 ± 11	6 ± 1	6 ± 1
8	M7	PI1	136 ± 13	7 ± 1	8 ± 2
9	M7	PI2	127 ± 12	6 ± 1	7 ± 2
10	M7	PI3	127 ± 12	6 ± 1	7 ± 2
11	M9	PI1	132 ± 13	7 ± 1	8 ± 2
12	M9	PI2	116 ± 11	6 ± 1	6 ± 1
13	T7	PI1	145 ± 14	7 ± 1	9 ± 2
14	T7	PI2	131 ± 13	7 ± 1	7 ± 2
15	T9	PI1	138 ± 13	7 ± 1	8 ± 2
16	T9	PI2	136 ± 13	7 ± 1	8 ± 2
17	T9	PI3	161 ± 16	8 ± 1	11 ± 2

Uncertainties are propagated assuming an error of ± 10% for water in plagioclase from [Mosefelder et al. \(2020\)](#).

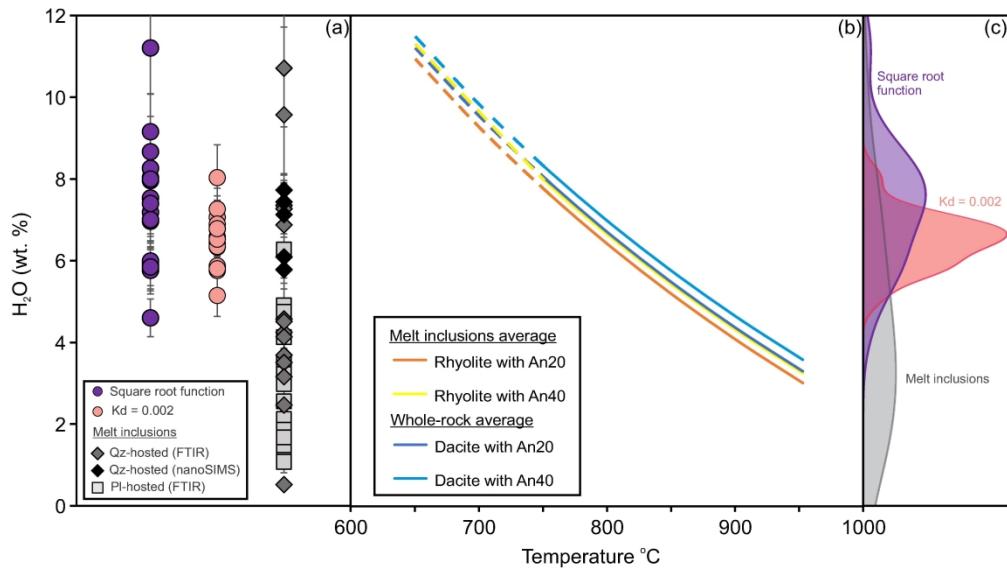


Figure 10. (a) Comparison of total water measured in melt inclusions by FTIR and SIMS, and estimates of total water in CMV melt based upon measured water concentrations in plagioclase (section 4.4). For the water-in-plagioclase partitioning calculations, we assume a partition coefficient of 0.002 (Mosenfelder *et al.*, 2020) and we also apply the square root function proposed in this study (Equation 12). (b) Plagioclase hygrometry model of Waters & Lange (2015) run at a range of anorthite contents from An₂₀ to An₄₀, a range of melt compositions from dacite (corresponding to the average CMV whole rock composition) to rhyolite (corresponding to the average composition of the melt inclusions), and a pressure of 350 MPa (the maximum pressure that the model is calibrated to). Dashed lines denote extrapolation of the model to temperatures lower than 750 $^{\circ}\text{C}$. (c) Density plots for the water data in panel a.

177x99mm (600 x 600 DPI)

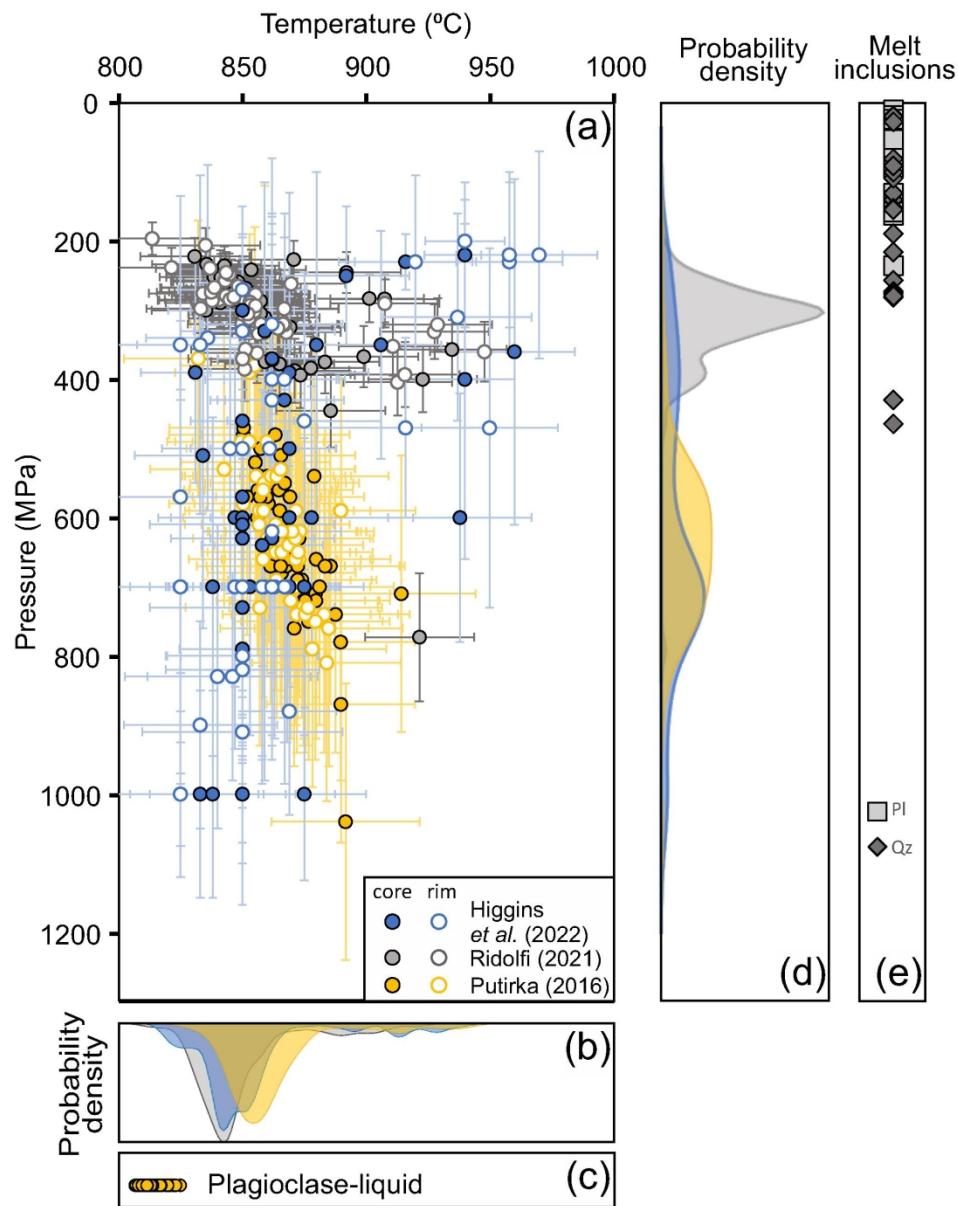


Figure 11. Pressures and temperatures of crystallization. (a) Constraints from equilibrium amphibole-liquid pairs using Putirka (2016) in yellow, Ridolfi (2021) in gray, and Higgins *et al.* (2022) in blue. Data points represent measurements in the rim (open circles) and core (filled circles) of individual crystals. (b) Probability density estimates of temperature. (c) Temperatures obtained by plagioclase-liquid equilibrium pairs using Putirka (2008). (d) Probability density estimates of pressure. (e) Saturation pressures of melt inclusions calculated by VolatileCalc (Newman & Lowenstern, 2002; see section 4.3).

85x107mm (600 x 600 DPI)

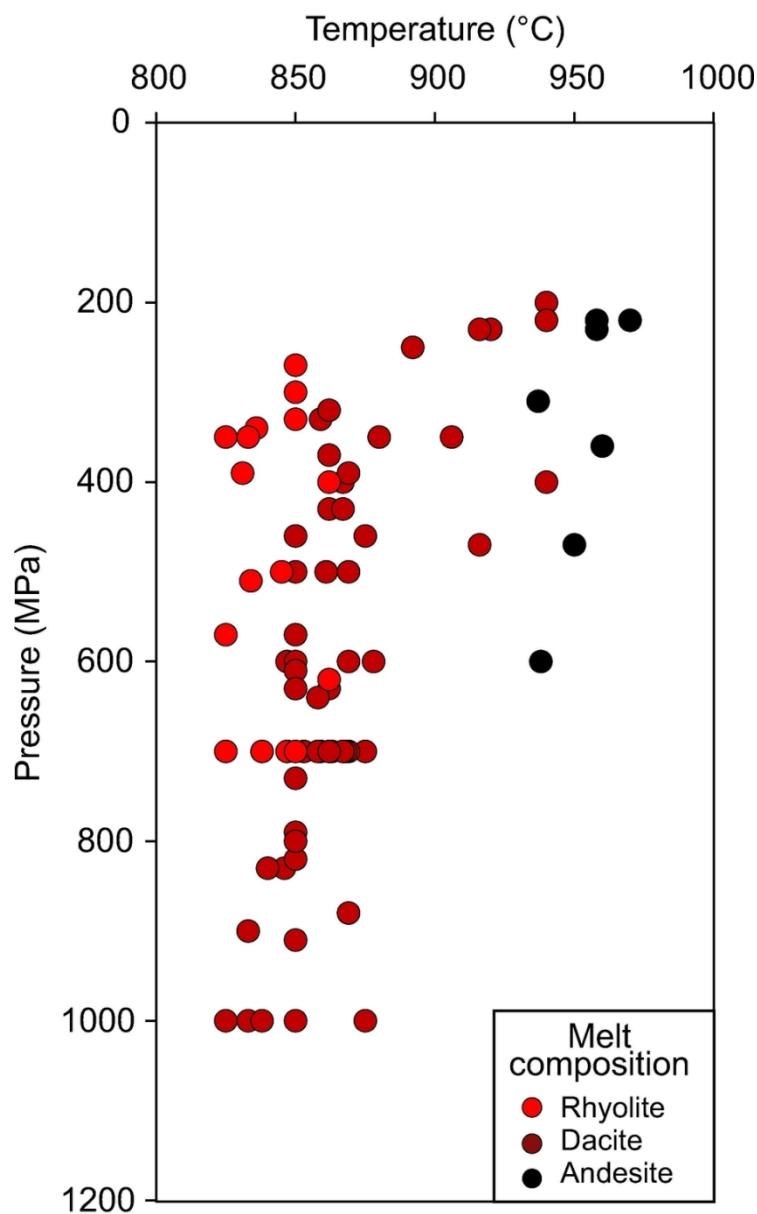


Figure 12. Melt composition based on amphibole chemometry of Higgins et al. (2022). Amphiboles crystallizing from a rhyolitic and dacitic magma are plotted as light and dark red circles, respectively. Amphiboles crystallizing from an andesitic magma are plotted as black circles.

79x129mm (300 x 300 DPI)

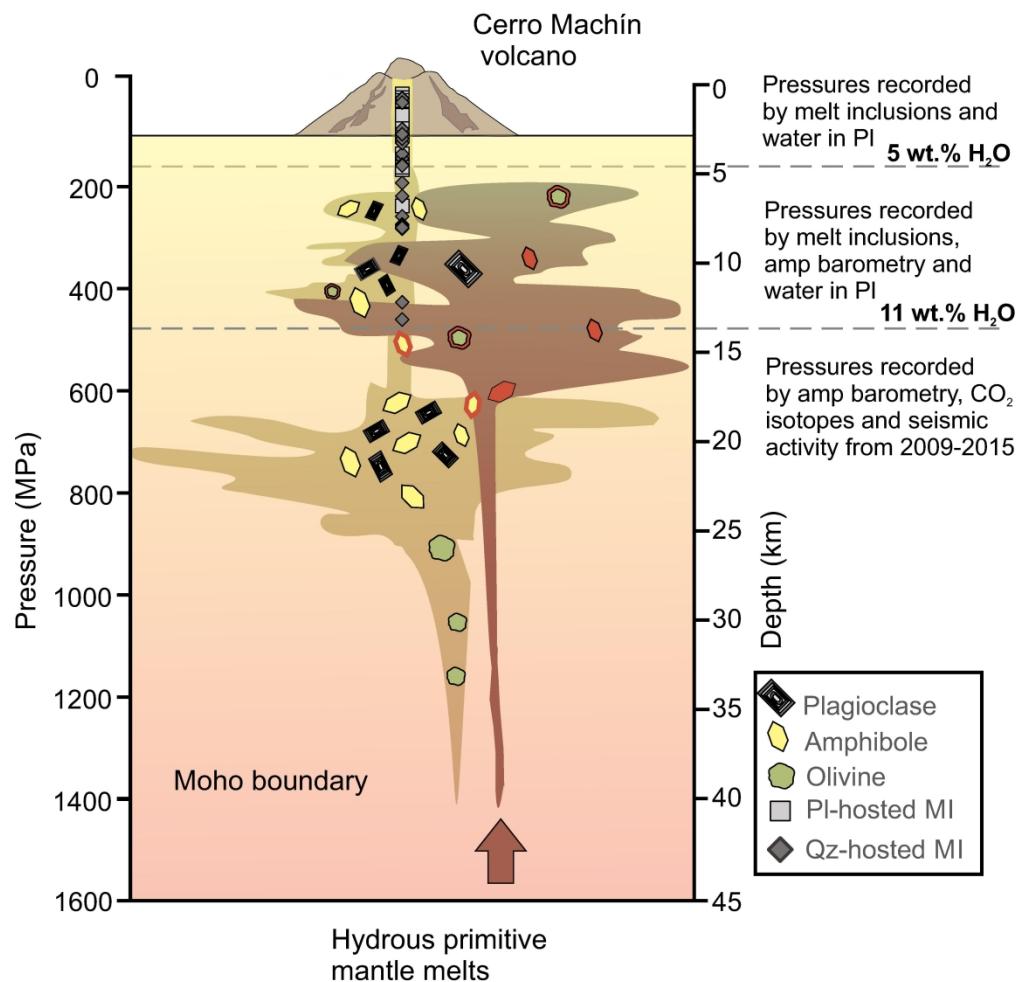


Figure 13. Summary schematic diagram representing the combined geochemical and seismic datasets. Crystallization conditions calculated from amphibole, plagioclase and melt inclusions overlap with seismicity depths at CMV from 2009 – 2015 and CO₂ isotope measurements from 2013 – 2014 campaigns (Inguaggiato *et al.*, 2017). The main dacitic reservoir is represented in green-yellowish whereas the andesitic magma recharge is in green-orangish.

168x162mm (600 x 600 DPI)

Table 3: Compositions of Cerro Machín and Pinatubo dacites (Prouteau & Scaillet, 2003), the high-Mg andesite of Mt. Shasta (Grove *et al.*, 2005), and average Cenozoic adakites (Drummond *et al.*, 1996).

	(1)	(2)	(3)	(4)
wt%				
SiO ₂	63.69	64.60	63.90	56.9
Al ₂ O ₃	16.97	16.50	17.40	17.10
TiO ₂	0.62	0.53	0.61	0.36
FeO _t		4.37	4.21	
Fe ₂ O ₃				
_t	4.19			5.98
MgO	3.35	2.39	2.47	5.90
CaO	4.94	5.23	5.23	8.82
Na ₂ O	4.07	4.49	4.40	3.03
K ₂ O	1.89	1.54	1.52	0.74
ppm				
Cr	135	37.3	54	213
Ni	31	16.4	39	28
Sr	707	581	869	566
Y	14.4		9.5	10
Yb		1.2	0.91	
La	21	15.9	17.55	
(1) Cerro Machín (2P-B-Coarse)				
(2) Pinatubo, 1991				
(3) Adakites, Cenozoic				
(4) Mt. Shasta, Cascade Arc (Sample 99-12A)				

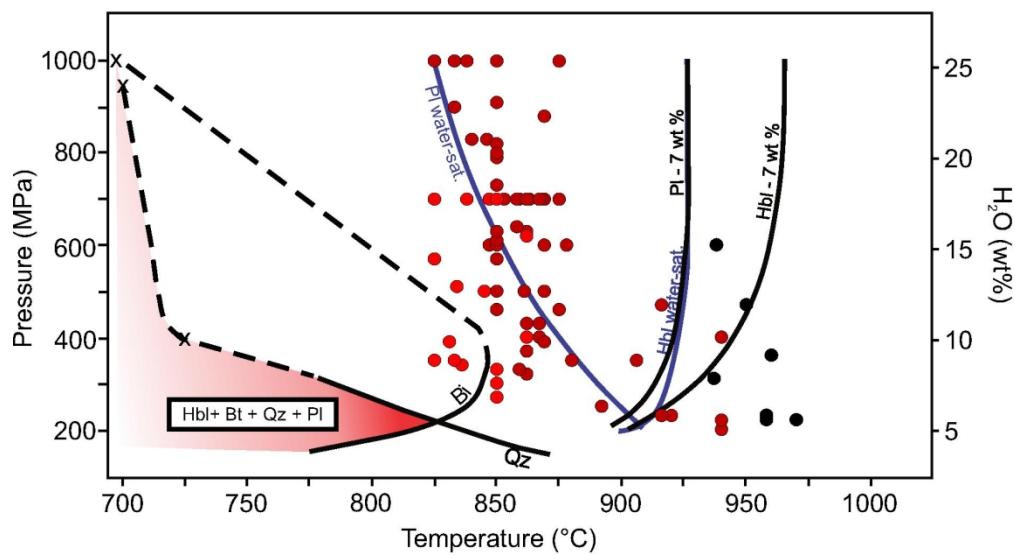


Figure 14. Phase diagram for Pinatubo dacite based on the experiments of Conrad *et al.* (1988), Prouteau & Scaillet (2003) and Rutherford & Devine (1996). Plagioclase and hornblende stability curves are shown for water-saturated magma and magma containing 7 wt% H₂O. Biotite and quartz stability curves are taken from Rutherford & Devine (1996). The dashed line for the quartz stability curve is extrapolated using Prouteau & Scaillet (2003) experiments on Pinatubo dacite at 960 MPa and 400 MPa at water saturation conditions (indicated as "x"). The dashed line for the biotite stability curve is extrapolated using Conrad *et al.* (1988) experiments on Taupo dacite at 1000 MPa at water saturation conditions (indicated as "x"). Water concentration was calculated using the VolatileCalc solubility curve for rhyolite (Newman & Lowestern, 2002). Water concentration was projected for pressures >500 MPa. CMV amphibole thermobarometry results are plotted using the same color code as Fig. 12. The P-T region in which quartz, biotite, plagioclase and hornblende are all stable is shaded in red.

80x43mm (600 x 600 DPI)

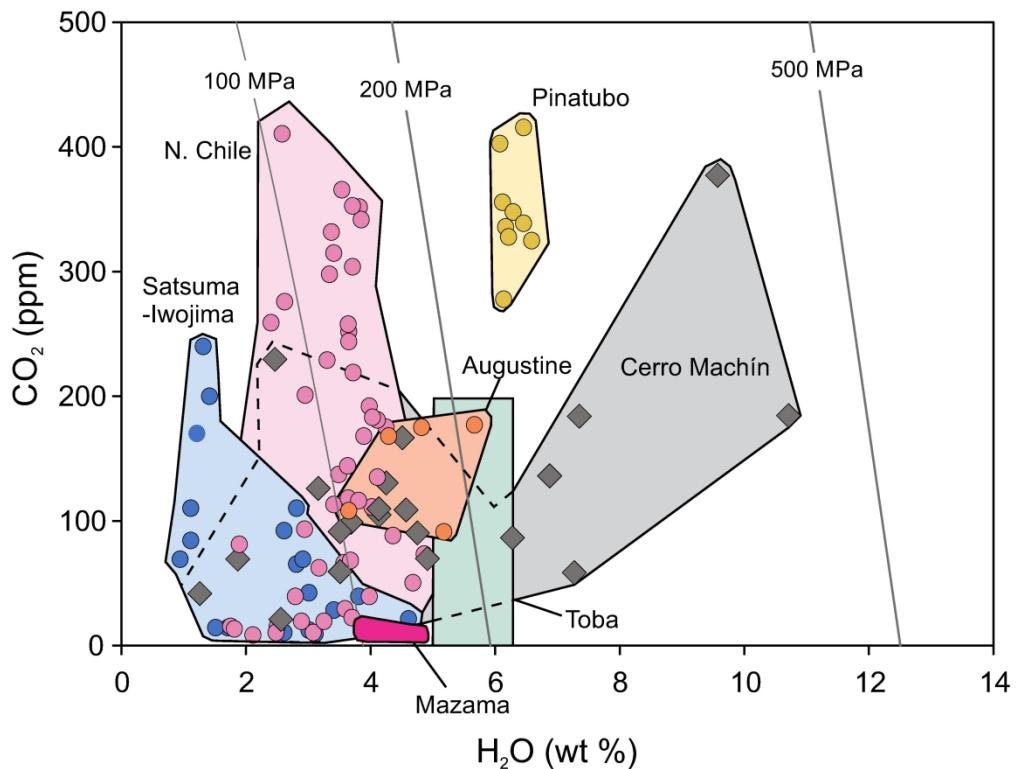


Figure 15. Compilation of H_2O vs CO_2 measurements in dacites and rhyolites from various volcanic arcs (modified from Wallace, 2005). Data are shown for the Satsuma-Iwojima (Saito *et al.*, 2001), Altiplano-Puna, Northern Chile (Schmitt, 2001), Augustine (Roman *et al.*, 2006), Toba Tuff (Newman & Chesner, 1989), Pinatubo (Wallace & Gerlach, 1994), Mt. Mazama (Bacon *et al.*, 1992). Note that Borisova *et al.* (2006) report concentrations in experimentally rehomogenized Pinatubo melt inclusions up to 8.79 wt% H_2O (by SIMS), but that study did not report CO_2 concentrations so the data are not plotted here. Isobars for 100, 200 and 500 MPa were calculated using VolatileCalc (Newman & Lowenstern, 2002).

170x129mm (600 x 600 DPI)

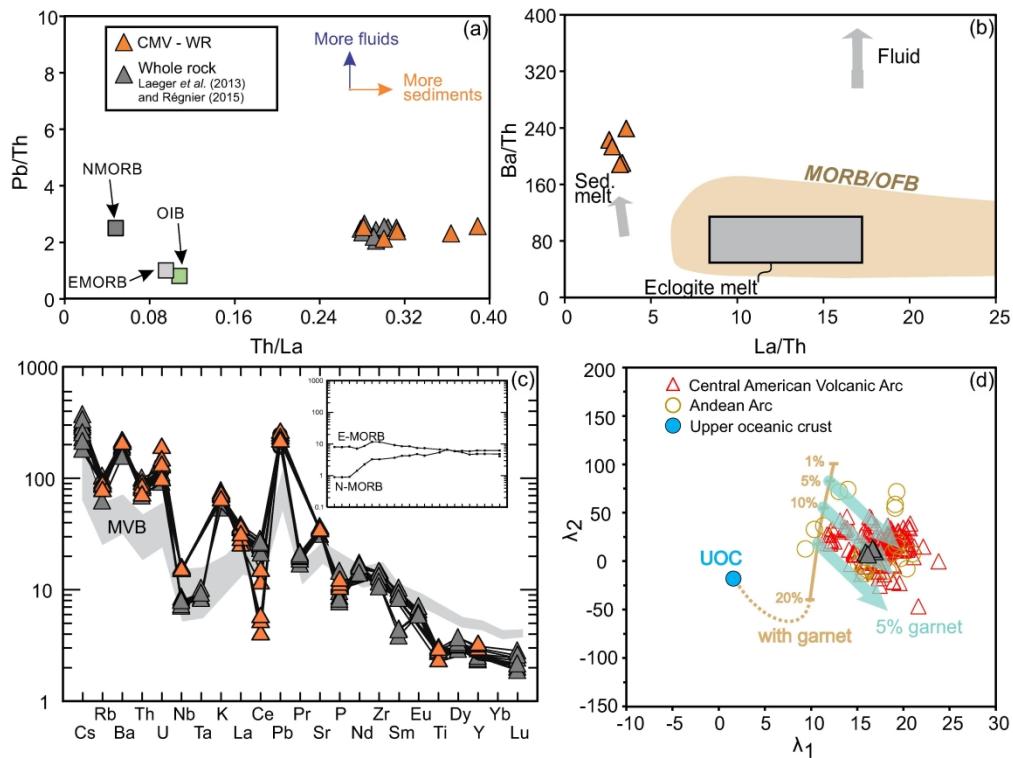


Figure 16. (a) Pb/Th vs. Th/La and (b) Ba/Th vs. La/Th diagrams support the role of melting sediments in adakite genesis. (c) Multi-element diagram normalized to primitive mantle (Sun & McDonough, 1989). Whole-rock geochemical CMV samples are orange triangles. For comparison CMV data available in the literature are also plotted (gray triangles; Laeger *et al.*, 2013; Régnier, 2015). Samples that do not exhibit a garnet signature are plotted for comparison (N-MORB, E-MORB from Sun & McDonough, 1989; the Mexican Volcanic Belt (MVB) from Straub *et al.*, 2014). (d) Petrogenetic process vectors (PPVs) of Gao *et al.*, (2023) are shown to explain the origin of CMV adakites from the rare earth element (REE) perspective. The PPVs connect the shape coefficients (λ_1 and λ_2 ; calculated using Anenburg & Williams, 2022 - BLambdaR program) of the upper oceanic crust (UOC) with the observed shape coefficients of CMV dacites. Approximately ~5% fractional crystallization of garnet following 10% partial melting of the UOC source provides a good match to the CMV data.

168x126mm (600 x 600 DPI)

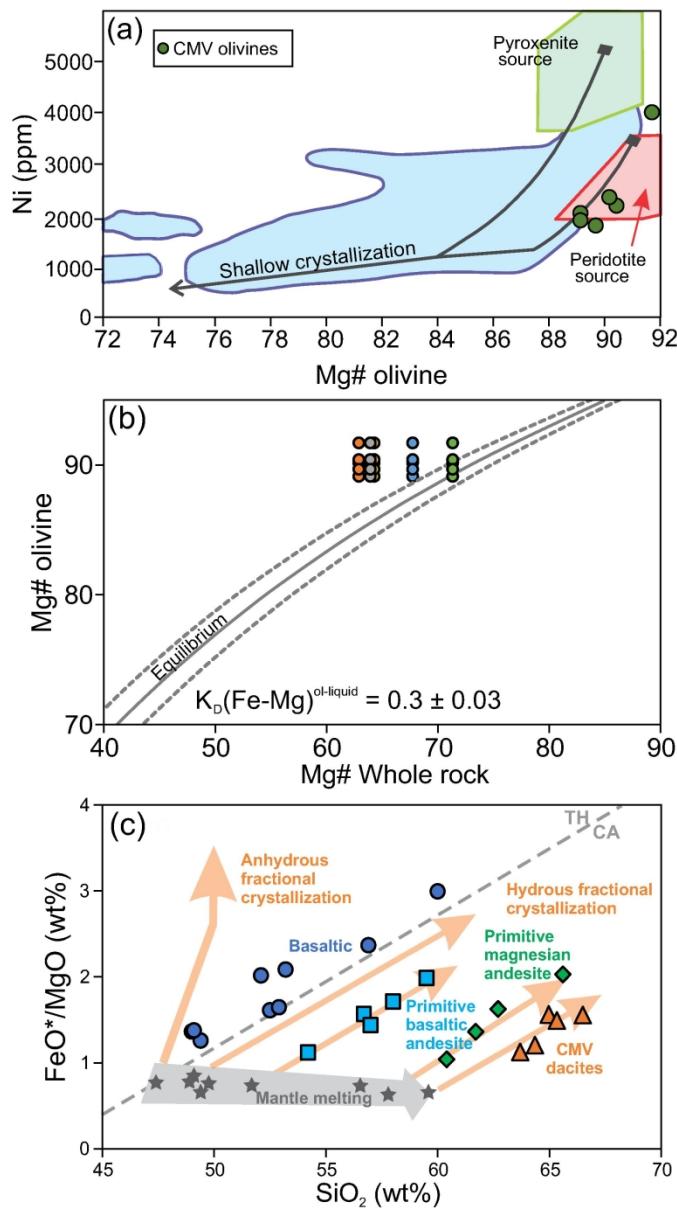


Figure 17. (a) Ni and forsterite contents in olivine phenocrysts. Green and red fields are olivines calculated to be in equilibrium with pyroxenite and peridotite source compositions (fields and shallow crystallization lines are taken from Ruprecht & Plank, 2013 and Straub *et al.*, 2011). (b) The Rhodes diagram as a test of olivine-liquid equilibrium (olivine Mg# vs whole-rock Mg#). The envelope of olivine-liquid Fe-Mg distribution coefficient (K_D) of 0.30 ± 0.03 is drawn after Roeder & Emslie (1970). One whole rock composition is in chemical equilibrium with olivine. (c) FeO^*/MgO versus SiO_2 diagram showing the calc-alkaline (CA) and tholeiitic (TH) dividing line of Miyashiro (1974). Primary melts defining the mantle melting array are taken from Grove *et al.* (2012). Fractional crystallization paths in H_2O magma suites are shown for three different starting compositions: basaltic, primitive basaltic andesite (compiled from Sisson & Grove, 1993), and primitive magnesian andesite (from Mt. Shasta, California, Grove *et al.*, 2003). The crystallization path for CMV dacites projects toward high- SiO_2 andesitic primary mantle melt composition. Modified after Grove *et al.* (2012).

81x146mm (600 x 600 DPI)