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Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant 

exoplanets on wide orbits, as the governing physical and chemical processes within 

them are nearly identical1,2. Understanding the formation of gas-giant planets is 

challenging, often involving the endeavour to link atmospheric abundance ratios, 

such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the 

complexity of planet formation requires further tracers, as the unambiguous 

interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, 

such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further 

insight into this formation process, mirroring their use within the Solar System5–7.  

For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion 

of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the 

mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a 

cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the 

Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value 

consistent with star-like formation by gravitational collapse, demonstrating that this 

ratio can be accurately constrained. Because young stars and their planets should be 

more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in 

several cold, wide-separation exoplanets.

The coldest class of brown dwarfs, so-called Y dwarfs, span tempera-

tures from 250 to 500 K (ref. 11). Their atmospheres are dominated 

by the absorption of water, methane and ammonia, whereas water 

clouds probably become important for the colder Y dwarfs12. Because 

their emission peaks in the mid-infrared beyond 4 μm, Y-dwarf spec-

troscopic characterization is challenging and the number of studies 

has been limited12–14. The JWST is transforming the study of Y dwarfs 

by allowing access to their full luminous range15. We analysed JWST/

MIRI Medium Resolution Spectrometer (MRS)16 observations of the 

Y-dwarf archetype WISEP J182831.08 + 265037.8 (hereafter WISE J1828), 

with an effective temperature of about 380 K (ref. 11). We obtain a 

mid-infrared spectrum at R ≈ 3,000 to 1,500, between 4.9 and 27.9 μm. 

The data reduction is described in Methods. Our observations are pre-

sented in Fig. 1, together with an exemplary best-fit model from our 

analysis, and reveal a spectrum rich in molecular features, namely, 

a broad water-absorption band at 5–7 μm, methane at 7.6 μm and 

ammonia at 9–13 μm. The ammonia band is also shown in more detail 

in the lower panels of Fig. 1. We analysed the atmospheric properties 

of WISE J1828 using several retrieval codes17–19 and self-consistent 

atmosphere models in radiative-convective equilibrium (refs. 20,21 
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and F.A.M. et al., manuscript in preparation). The best-fit spectra and 

residuals are shown in Extended Data Fig. 1. As the MIRI observations 

mostly explore high altitudes in the atmosphere (with the contribu-

tion function peaking at approximately 1 bar), we also added archival  

near-infrared data14, which examines deeper layers, at pressures of 

about 10 bar (Extended Data Fig. 2). Owing to its high luminosity, 

given its spectral type, WISE J1828 is suggested to be a binary system 

(However, numerous studies, including recent JWST measurements, 

all failed at resolving its binarity, putting an upper limit of 0.5 au on 

the separation of its components11,22). We thus modelled WISE J1828 

as an equal-mass binary system, emitting with identical atmospheres.

By combining the results of different retrieval approaches (see  

Methods), we constrain the log10(volume mixing ratios) (VMRs) of the 

conspicuous absorbers H2O, CH4 and 14NH3 to be −3.03−0.21
+0.18, −3.65−0.21

+0.21 

and −4.79−0.25
+0.15 , respectively. The surface gravity of WISE J1828 is con-

strained to be glog( ) = 4.34−0.88
+0.42, the effective temperature is 378 K−18

+13  

and the radius is constrained to R1.37−0.13
+0.26

Jup. The uncertainties for 

these values are dominated by the dispersion between the various 

fitting approaches and are thus larger than the actual uncertainties 

derived from any single analysis. A posterior plot of the various retriev-

als is shown in the Extended Data Fig. 3, whereas all retrieval results are 

summarized in Extended Data Table 1. The self-consistent models con-

strain the atmospheric properties to be log(g) = 4.5 ± 1.0, R = 1.27 ± 

0.21 RJup and Teff = 450 ± 101 K. Again, the reported uncertainties are 

dominated by differences between the two models. Our best-fit values 

of log(g), R and Teff, after applying a binary correction to the inferred 

radii (dividing by 2), indicate an age of roughly 5 Gyr for an approxi-

mately 15-MJup equal-mass binary system23, which is consistent with our 

mass constraints (see Extended Data Table 2).

The metallicity we derive for WISE J1828, combining the results of 

all approaches that included it as a free parameter (retrievals and 

self-consistent), is consistent with solar: [M/H] = 0.02−0.31
+0.12. For C/O, we 

find 0.22−0.03
+0.37 (solar is 0.55 ± 0.10 (ref. 24)), whereas N/O is constrained 

to 0.014−0.002
+0.021  (solar is 0.138 ± 0.023 (ref. 24)). These uncertainties are 

again dominated by the dispersion between different approaches. The 

resulting posteriors for the metallicity, C/O and N/O are shown in 

Extended Data Fig. 3. Our findings thus indicate an atmosphere with a 

solar bulk metallicity, but depleted in C and N. A probable cause for 

this is a departure from chemical equilibrium, in which gas poor in both 

NH3 and CH4 is mixed up from the deep interior of the object25. The 

resulting gas would be enriched in N2 and CO, to which our observations 

are not sensitive. N2 is not spectrally active, and our shortest wave-

lengths are longer than the location of the fundamental band of CO at 

roughly 4.5 μm. However, it is questionable whether enough CO can 

be mixed up from the deep atmosphere to palpably change the inferred 

C/O ratio26.

Also, we detect 15NH3 with a significance ranging from 4σ to 6σ, with 

several lines of ammonia clearly visible in the data (see Fig. 1). We derive 

a VMR of −7.68−0.34
+0.24 for 15NH3 and N/ N=67014 15

−211
+390, averaging over the 

results of various models. In Fig. 2, we summarize 14N/15N for a range of 
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Fig. 1 | MIRI/MRS spectrum and exemplary best-fit model (here, pRT-free) 

of the Y dwarf WISE J1828. a, Full MIRI wavelength range considered in our 

models at retrieval resolution (λ/Δλ = 1,000). All other panels show the data at 

the original, higher MRS resolution; models have been post-processed to the 

same resolution. b, As in a but zoomed in to show the NH3 absorption band at 

10 μm in more detail. c–f, Individual 15NH3 lines in the data, including a best-fit 

retrieval model with and without accounting for the opacity of 15NH3. The error 

bars shown for the observations correspond to 1σ confidence levels. Panel f 

contains two overlapping MIRI MRS subchannels. Coloured bands denote the 

theoretical positions of the absorption lines of H2O, CH4, NH3 and 15NH3.
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astrophysical objects7. Our value for WISE J1828 is consistent with solar 

at the 1–2σ level. Both the Sun and WISE J1828, which we derive to have 

similar ages, have 14N/15N values above those observed in the interstel-

lar medium (ISM), which has been enriched in 15N by galactic stellar 

evolution since their formation10. Our measurement thus shows that 

WISE J1828 most probably formed like a star, as expected27. A strong 

ice enrichment is unlikely and we correspondingly rule out cometary 

values 14N/15N < 200 by more than 3σ.
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Fig. 2 | Comparison of the 14N/15N ratio in the solar neighbourhood. The values 

are based on either ammonia isotopologues (red circles) or other molecules 

(black symbols), in different environments, subdivided by classes7. Our estimate 

for WISE J1828 appears as the brown dwarf class and is consistent with solar 
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Constraints on 14N/15N can serve as a formation tracer. For example, 

comets in the Solar System, fundamental planetary building blocks, 

are enriched in 15N by a factor of 2–3 when compared with solar, owing 

to 15N-rich NH3 and HCN ice. By contrast, N2 gas in the solar accretion 

disk is thought to have been depleted in 15N (ref. 7). In the Solar System, 

both Jupiter and Saturn are enriched in bulk nitrogen but show 14N/15N 

values consistent with the Sun. This may mean that they accreted ice 

cold enough to contain even the volatile N2 ice, which requires tempera-

tures lower than 30 K, and corresponds to orbital distances greater than 

25 au (refs. 28,29). An enriched nitrogen content through accretion of 

ice, but at solar 14N/15N, may therefore require accretion close to where 

even the highly volatile N2 can condense.

The understanding of how nitrogen fractionation actually occurs is 

incomplete7, but we summarize some processes during different stages 

of the stellar and planetary evolution in Fig. 3. In the denser parts of the 

clouds, an increase of 15N in NH3 is inferred, with a candidate for this frac-

tionation being isotope-selective photodissociation30. Subsequently, 

NH3 and HCN ices condense in the colder clumps, potentially produc-

ing 15N-rich ice. Once a protostar is formed, there is some evidence that 
14N/15N decreases further31,32. The final consequence is thought to be a 
15N increase in the less volatile nitrogen carriers, leading to the observed 

increase in 15N in HCN for protoplanetary disks and in NH3 and HCN for 

Solar System comets. We note that models predict 15N-poor NH3 gas in 

protoplanetary disks32.

To further assess 14N/15N as a formation tracer, we used a simplified 

planet-formation model4. We tracked 14N/15N as a function of the mass 

accreted as icy and rocky material, for a planet located between the N2 

iceline of the disk, at about 20–80 au, and the NH3 iceline, ten times closer 

in29,33. The ices were therefore probably enriched in 15N. We find that, 

for Saturn-like metal enrichment (about six times solar34), the 14N/15N 

decreases by 30–40% when compared with solar (see Extended Data 

Fig. 4), indicating that 14N/15N can vary substantially when compared with 

the stellar value for a planet forming between the N2 and NH3 icelines.

With the JWST MIRI, the formation-sensitive isotopologues 14NH3 

and 15NH3 become accessible for objects with low effective tem-

peratures. In the mid-infrared, NH3 is a dominating absorber from 

Teff = 1,000 K (ref. 35) down to at least 380 K, the effective tempera-

ture of WISE J1828. As demonstrated above, 14N/15N can constrain  

formation locations with respect to the NH3 and N2 icelines of the disk. 

This is as well as constraints on N/O, that the detection of H2O and 

NH3 enables, which has been suggested as another useful formation 

tracer36,37, but which needs careful interpretation owing to chemical 

disequilibrium processes25. Simultaneous constraints on C/O, N/O and 
14N/15N, based on CH4, CO, H2O and NH3, can thus be obtained for cold 

directly imaged exoplanets, further explaining their formation history. 

These planets are found in orbits ranging from tens to hundreds of 

astronomical units, challenging the core-accretion model for planetary 

formation38. They either formed at their detected locations by means 

of a star-like gravitational instability or originated closer to their star 

by means of core accretion and subsequent outward migration39.
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Methods

JWST MIRI observations and data processing

The MIRI/MRS targeted WISE J1828 on 28 July 2022 without the use of 

target acquisition as part of JWST Guaranteed Time Observing pro-

gramme with PID 1189. All three dichroic/grating settings (SHORT, 

MEDIUM, LONG) were obtained to cover the full wavelength range, 

from 4.9 to 27.9 μm (ref. 16). The observations were executed with the 

point-source-optimized two-point dither (negative direction) and the 

detector set up with 180 frames per integration. No dedicated back-

ground observations were obtained.

The JWST pipeline was used (pipeline version: 1.9, CRDS version: 

11.16.20, CRDS context: jwst_1045.pmap) to process the data. The 

raw (level 1B) files were processed with the detector-level pipeline 

(CALWEBB_DETECTOR1) to produce calibrated rate files. This pipeline 

applies corrections for the nonlinearity of the ramps, dark current, 

detects jumps in the ramp resulting from cosmic rays and, finally, fits 

the ramp signal to obtain slope values (rate.fits). The detector images 

were inspected and no sign of cosmic-ray showers were found16. Because 

the WISE J1828 detector images were clean, we could use the fact that 

the point source itself is faint to perform a nod subtraction between 

the two dither points. First, we had to make sure that, for every pair of 

detector images, the flux levels were on the same level before subtract-

ing them. A small time-dependent difference between the individual 

integrations has been seen in MRS observations, with the first integra-

tion of the visit having a brighter flux level originating from the detector 

idling before the start of the exposures16. We used the region between 

the MRS channels on the detectors that do not contain any astrophysical 

signal to estimate a single value using the median and subtract it from 

the whole detector. Next, the two dithers were subtracted from each 

other to remove the thermal background contribution. For Channel 1 

of the MRS, a detector artefact that manifests as vertical stripes was 

still present after the nod subtraction. These stripes were around 10% 

of the science signal and, because the dispersion direction also closely 

follows the detector columns16, the stripes affect the continuum of the 

extracted spectrum. We chose a region of the detector in which the 

source signal was almost zero and estimated the stripe contribution 

as the median of ten rows, which was then subtracted from every row 

of the detector.

With the detector images clean from detector artefacts and the ther-

mal background, the spectroscopy pipeline (CALWEBB_SPEC2) was run 

to obtain calibrated detector images (cal.fits), assigning the astrometric 

and wavelength information, correcting for the scattered light and 

detector fringing, and applying the photometric calibration. Finally, 

with CALWEBB_SPEC3, we built the dither combined cubes40, with out-

lier rejection enabled. With background-subtracted cubes, the spectral 

extraction from the cube is done by performing aperture photometry 

for each wavelength slice of the cube. We first determined the centre of 

the point source by fitting a 2D Gaussian in the wavelength-collapsed 

cube, then placed an aperture of one full width at half maximum centred 

on the source, applying an aperture correction for each wavelength 

to account for the missing flux of the point-spread function outside 

the aperture. Some outliers remain in the extracted spectrum, which 

were removed for plotting the spectrum in Fig. 1 but not while fitting it.  

We traced back these outliers to the detector, at which a few cosmic 

rays overlap with the spectral trace but are not bright enough for the 

outlier algorithm to detect. We therefore clip these values manually 

for each spectral band by setting a threshold for the flux. The outliers 

affected in total 0.4% of the spectrum.

Retrieval analysis

We carried out independent analyses of the MIRI/MRS spectra using a 

diversity of models, namely, with the radiative-convective equilibrium 

codes ATMO and ARCiS+ML, and with the retrieval codes ARCiS, Brew-

ster and petitRADTRANS (refs. 17–21 and F.A.M. et al., manuscript in 

preparation). For computational feasibility, the retrievals with ARCiS, 

Brewster and petitRADTRANS were run at a resolution of λ/Δλ = 1,000; 

the MRS data were binned down correspondingly. For the retrievals, 

we decided on a setup that assumed vertically constant absorber abun-

dances that were retrieved freely and a flexible parameterization of the 

pressure–temperature (P–T) structure, which varied slightly between 

the setups; see below. For the retrievals presented here, we assumed 

WISE J1828 to be a single object but allowed for a radius prior wide 

enough to account for an equal-brightness binary scenario. Clouds 

were neglected, which seems to be justified from a population-wide 

Y-dwarf retrieval analysis on Hubble Space Telescope (HST) data41. 

We note, however, that the impact of clouds should increase towards 

longer wavelengths and for colder Y dwarfs12,42. As shown in Extended 

Data Fig. 2, our inferred P–T profiles cross the water saturation vapour 

pressure curve at the top of the photosphere examined by the HST and 

the MIRI, so a cloud could have some moderate impact on our results 

and the effect of its inclusion should be assessed in future studies.

We also observed that the reported uncertainties of the JWST reduc-

tion can be much smaller than the differences observed in the overlap-

ping regions of MRS subchannels. Also, all best-fit models had a χ2 

considerably larger than the number of wavelength channels. We thus 

opted for retrieving the magnitude of the uncertainties through the 

10b treatment43, in which the error bars σ considered during the retrieval 

are calculated from the uncertainties reported from the reduction σred 

as follows: σ σ= + 10
b

red

2 . Separate bs were retrieved for MIRI and HST 

data. The retrieved P–T structures of the retrievals would also exhibit 

kinks sometimes, which are challenging to reconcile with radiative- 

convective equilibrium models. In this case, we implemented a regu-

larization of the P–T structure43. With this modification, the ARCiS and 

petitRADTRANS retrievals optionally put a penalty on d2logT/dlogP2, 

which strives towards a constant power-law dependence between pres-

sure and temperature, as dlogT/dlogP = constant implies T ∝ Pα, with 

α being the constant power-law coefficient. This setup may therefore 

also reproduce the relation between pressure and temperature in the 

deep atmosphere, which is expected to be convective. The individual 

models we used for the analysis are described below.

The results of all model inferences for WISE J1828 are found in 

Extended Data Table 1 and the combined result of all retrievals is pre-

sented in Extended Data Table 2. Elemental abundance ratios (C/O, N/O, 
14N/15N) were computed from the VMR constraints of the retrievals for 

the atmospheric absorbers. They may thus miss further atoms locked 

up in clouds (in the case of oxygen) or affected by quenching in species 

that are spectrally inactive (N2 in the case of N) or have features outside 

the HST and MIRI wavelength range (CO in the case of C and O). The 

one-dimensional projection of the posteriors, for key forward model 

parameters, is shown in Extended Data Fig. 3 for all individual models. In 

Extended Data Fig. 2, we show the associated P–T uncertainties derived 

from all model analyses.

ATMO. We briefly describe the main properties of the ATMO20 models 

and the grids that have been used in our study. These grids are publicly 

available at https://opendata.erc-atmo.eu. The ATMO models assume  

that clouds are not needed to reproduce the shape of the spectral  

energy distribution of brown dwarfs (apart from the 10-μm silicate  

feature). The authors have proposed that diabatic convective processes44  

induced by out-of-equilibrium chemistry of CO/CH4 and N2/NH3 can 

reduce the temperature gradient in the atmosphere and reproduce the 

reddening previously thought to occur by clouds. The grids assume a 

modification of the temperature gradient with an effective adiabatic 

index. The levels modified are between 2 and 200 bar at log(g) = 5.0 

and are scaled by 10log(g)−5 at other surface gravities. Out-of-equilibrium 

chemistry is used with Kzz = 105 cm2 s−1 at log(g) = 5.0 and is scaled by 

102[5−log(g)] at other surface gravities. The mixing length is assumed to 

be two scale heights at 20 bar and higher pressures at log(g) = 5.0, 

and is scaled down by the ratio between the local pressure and the 

https://opendata.erc-atmo.eu
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pressure at 20 bar for lower pressures. The 20-bar limit is scaled by 

10log(g)−5 at other surface gravities. The chemistry includes 277 spe-

cies and out-of-equilibrium chemistry has been performed using a 

relaxation model45. Rainout is assumed to occur for species that are 

not included in the out-of-equilibrium model. Opacity sources include 

H2–H2, H2–He, H2O, CO2, CO, CH4, NH3, Na, K, Li, Rb, Cs, TiO, VO, FeH, 

PH3, H2S, HCN, C2H2, SO2, Fe, H– and the Rayleigh scattering opacities 

for H2, He, CO, N2, CH4, NH3, H2O, CO2, H2S and SO2. The grids explore 

the following parameters: effective temperatures between 250 and 

1,200 K; log(g) between 2.5 and 5.5 (step 0.5); effective adiabatic index 

(reddening) at a value of 1.25. A standard χ2-minimization procedure 

was used to find the best-fitting model.

petitRADTRANS. petitRADTRANS, or pRT (ref. 18, available from 

https://petitradtrans.readthedocs.io), is a Python package for the spec-

tral synthesis of exoplanets and allows users to calculate transmission, 

emission or reflectance spectra. It offers a wide selection of opacities 

(gas line and continuum, and cloud opacities). Spectra can be calcu-

lated at any resolution, up to a wavelength spacing of λ/Δλ = 106.  

Coupled to a Bayesian inference method such as PyMultiNest46,47, which 

petitRADTRANS provides as a pre-implemented retrieval package, 

posterior distributions for atmospheric parameters can be derived, 

given an observation. For WISE J1828, we assumed a forward model 

setup as described for the retrievals above, with the priors and forward 

model details set up as described in the following. The prior on log(g) 

was uniform from 2.5 to 6.0, whereas the radius prior ranged from 0.5 

to 3.0 Jupiter radii. Also, the P–T profile was parameterized by retriev-

ing temperature values at ten locations, equidistantly spaced in 

log-space between 10−6 and 1,000 bar, and then quadratically interpo-

lating the temperature between these nodes in log(pressure). The 

priors were set up such that the temperature at 1,000 bar was uniformly 

sampled between 100 and 9,000 K, and the temperatures at lower- 

pressure nodes was allowed to be between 0.2 and 1.0 times the tem-

perature of the neighbouring deeper atmospheric node. Because kinks 

in the P–T profiles could be observed in the standard setup, the P–T 

regularization described above was optionally turned on when deriv-

ing the atmospheric model posteriors, fitting both MIRI/MRS and the 

archival HST WFC3 data. Our constraints on 14N/15N are not affected by 

the regularization. However, we observed a trend that a regularized 

P–T leads to a higher atmospheric metal enrichment, higher gravity 

log(g), smaller radii and higher effective temperatures (see Extended 

Data Fig. 2). For the detection of 15NH3, we only used the MRS data.  

We also turned the regularization off to allow for maximum model 

flexibility. This leads to a conservative estimate of the detection sig-

nificance. The following opacity species were included in the retrievals: 

H2O (ref. 48), CH4 (ref. 49), CO (ref. 50), CO2 (ref. 51), 15NH3 (ref. 52), H2S 

(ref. 53), NH3 (ref. 54) and PH3 (ref. 55). The abundances of said mole-

cules were retrieved using log-uniform priors from 10−10 to 1 on their 

mass fractions. For the 15NH3 detection, we used PyMultiNest, with 

2,000 live points, constant_sampling_efficiency set to false and a sam-

pling efficiency of 0.3. The detection significance of 15NH3 was deter-

mined using a standard method56. We report a detection significance 

of 4.2σ for 15NH3. For the retrievals constraining the properties of 

WISE J1828, which included HST as well as MRS data, we ran in constant 

sampling efficiency mode, with the efficiency set to 5%. This needed 

to be done because, otherwise, retrievals ran for 108 models but did 

not finish. The partially filled weighted posterior files of the 108 model 

retrievals were consistent with the results using the constant sampling 

efficiency mode. With petitRADTRANS, we found N/ N= 56014 15
−115
+165  for 

the flexible P–T model and N/ N=64214 15
−192
+365  for the regularized P–T 

model.

ARCiS. The ARtfull Modeling Code for exoplanet Science (ARCiS) is a 

forward modelling and retrieval code that can be used to analyse and 

simulate exoplanet atmosphere spectra. It contains many physical and 

chemical processes, including cloud formation57 and disequilibrium 

chemistry58. The free P–T structure used in this work is parameterized 

by the slope at several pressure points in the atmosphere. We param-

eterize dlogT/dlogP with a prior range between −4/7 and +4/7. The 

adiabatic gradient expected for a diatomic gas is d2logT/dlogP2 = 2/7, 

so this prior range gives a very generous range. We fix the absolute 

value of the temperature structure at a pressure of P = 0.1 bar. We  

retrieve the value of the slope at 12 pressure points distributed equally 

over the atmosphere in log(−P) space. For the detection of 15NH3, we 

follow this procedure, allowing full flexibility and thereby constructing 

a conservative detection significance. For the final fits deriving the 

isotopic ratio and the planet parameters presented, we restrict the 

gradient of the P–T structure to be positive, as expected for a 

non-irradiated atmosphere. Following a standard approach56, we find 

evidence that 15NH3 is present in the atmosphere of WISE J1828 at 6.3σ. 

We observe the same trend between metal enrichment, log(g), radii 

and effective temperature as petitRADTRANS when regularizing the 

P–T structure (see Fig. 2). However, our derived 14N/15N values are less 

stable when turning on regularization. Our regularized values are con-

sistent with petitRADTRANS (regularized and flexible P–T), namely, 

N/ N= 59114 15
−190
+432. The value derived for the flexible P–T setup is higher 

( N/ N=94914 15
−208
+322). More information on ARCiS can be found at http://

www.exoclouds.com.

ARCiS+ML. For the self-consistent retrieval with ARCiS, we assume a 

one-dimensional atmosphere in radiative-convective equilibrium. The 

retrievals were run on the MIRI MRS data only (that is, not including 

the HST data). The atmospheric composition is parameterized using  

[M/H], C/O and N/O and we account for disequilibrium chemistry 

of CH4–H2O–CO and NH3–N2 owing to vertical mixing58, in which the 

vertical eddy diffusion coefficient Kzz is another free parameter. For 

WISE J1828, we observed that, although NH3–N2 quenching was active 

in our models, it quenched from the lowest layer in the atmosphere, 

in which NH3 was still the dominating absorber. Probably quenching 

actually occurs outside our simulated pressure domain, deeper inside 

the atmosphere. Therefore, the ARCiS+ML constraints may be too 

low for N/O, similar to the constraints from the retrievals, which are 

insensitive to the spectrally inactive N2. The radiative transfer mod-

ule was benchmarked21. Owing to the high computational load of the 

self-consistent models, we cannot run nested sampling retrievals, 

which require millions of model evaluations to converge. Instead, we 

use a machine-learning method based on sequential neural posterior 

estimation (SNPE)59 that allows us to perform the retrieval using on 

the order of 104 models. The details of this retrieval method will be 

presented in an upcoming publication (F.A.M. et al., manuscript in  

preparation).

Brewster. Brewster17,60 is a retrieval code that has mainly been used in 

the context of exploring clouds in brown dwarfs. However, here, we 

used a simple, cloud-free retrieval recipe. Brewster uses the two-stream 

radiative-transfer architecture61. We use the default 64-layer atmos-

phere with intervals of 0.1 dex across the pressures range logP(bar) of 

−4 to 2.3. The temperature is set using P–T parameterization62 linked 

to three atmospheric zones by means of exponential gradients. We 

included the molecules H2O, CH4, NH3, CO, PH3 and H2S, which originate 

from a compendium63,64 and updated opacities17. The abundances of 

these molecules are modelled assuming vertically constant mixing ra-

tios, which are retrieved as free parameters. The opacities are ingested 

at a resolution of R = 10,000, putting the native model resolution an 

order of magnitude above the data being fit. Continuum opacities for 

H2–H2 and H2–He collisionally induced absorption, Rayleigh scattering 

owing to H2, He and CH4, and continuum opacities owing to bound-free 

and free-free absorption by H– and free-free absorption by H2 are also 

included. We apply an error inflation ‘tolerance’ framework43 and used 

in all subsequent published works using Brewster. Only the JWST/MIRI 

https://petitradtrans.readthedocs.io
http://www.exoclouds.com
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MRS observations were retrieved with Brewster, so the HST data were 

not included. Here we used the emcee65 as our sampling algorithm. As 

we used the standard retrieval recipe for this code, an extensive list of 

parameter sampling priors has been used60.

Combining model results

Whenever we report values for the properties of WISE J1828 in the main 

body of the text, these have been obtained from combining the poste-

riors of the retrievals at equal weight and calculating the correspond-

ing median and 16th–84th percentile values, corresponding to the 1σ 

credible interval in the case that the resulting distribution is approxi-

mately Gaussian. The combined value of the self-consistent codes was 

obtained by taking the average of their best-fit (ATMO) and median 

(ARCiS+ML) values, whereas the uncertainty is obtained from calculat-
ing the difference d between these two values and then calculating 

d a+
2 2, in which a is the ‘1σ’ uncertainty obtained from the ARCiS+ML 

posterior.

Exploring 14N/15N as a formation tracer

To approximate the impact of volatile ice accretion between the NH3 

and N2 icelines in a protoplanetary disk, we generated a simplified 

planet-formation model for calculating 14N/15N as a function of the total 

solid mass (rock and ices) a planet incorporated during formation. 

For this, we used a specific framework4, which is available at https://

gitlab.com/mauricemolli/formation-inversion. In short, we used a 

solar disk composition (Table 2 in ref. 4). This means that the mass  

ratio between NH3 and N2 is 1:7 in the disk (combining gas and ice  

reservoirs). We then assumed, conservatively, that 14N/15N is reduced by 

a factor of 2 in NH3 when compared with the total 14N/15N value, whereas 

the total 14N/15N (summing over all species and phases) is conserved, 

which we assumed to be 300, and call the ISM value in Extended Data 

Fig. 4. This figure shows the ratio of the planetary and ISM values of 
14N/15N as a function of solids accreted by a planet between the NH3 and 

N2 icelines. Because the solids are rich in NH3 and N2 is only in the gas 

phase, a higher accreted solid mass results in a lower planetary 14N/15N. 

We note that the picture could be more complicated, as the disk gas 

could be enriched in 15N-poor N2 gas that evaporated off pebbles that 

drift in from outside the N2 iceline66.
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Data availability

The JWST MIRI data presented in this paper are part of the JWST MIRI 

GTO programme (programme identifier (PID) 1189; PI T. Roellig). The 

JWST data will be publicly available in the Barbara A. Mikulski Archive 

for Space Telescopes (MAST; https://archive.stsci.edu/) after 28 July 

2023 and can be found either using the programme identifier or using 

the https://doi.org/10.17909/as3s-x893. The HST WFC3 spectrum is 

available from https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/920/20#/

article.

Code availability

The code used in this publication to extract, reduce and analyse the 

data is as follows: the data-reduction pipeline of JWST can be found at 

https://jwst-pipeline.readthedocs.io/en/latest/; the atmospheric model 

codes used to fit the data can be found at https://www.exoclouds.com/ 

for the ARCiS code19 and at https://petitradtrans.readthedocs.io/en/

latest/ for the petitRADTRANS code18. The simplified planet-formation 

model4 used to study 14N/15N as a function of accreted ice mass can be 

found at https://gitlab.com/mauricemolli/formation-inversion. The 

detailed setups of the open-source tools for the analyses presented 

here are described in the Methods section of this paper and can be 

made available to interested parties on request.
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Extended Data Fig. 1 | The spectrum of WISE J1828 and the best-fit model. 

We show the MIRI/MRS spectrum of WISE J1828 (black solid lines) and the 

best-fit model of the regularized P–T retrieval of petitRADTRANS (red line). 

Residuals (models − observed spectrum) are shown in the bottom panel. pRT-reg 

and ARCiS-reg stand for the regularized P–T retrieval of petitRADTRANS and 

ARCiS, respectively.



Article

Extended Data Fig. 2 | Model inferences on the various P–T profiles derived 

for WISE J1828. The individual panels always highlight the constraint from  

one given model, whereas the results of the other models are shown in the 

background. pRT-reg and ARCiS-reg stand for the regularized P–T retrievals, 

whereas pRT-free and ARCiS-free stand for the unregularized P–T retrievals of 

petitRADTRANS and ARCiS, respectively. The contribution functions of the 

HST and MIRI observations, constrained from the best-fit pRT-reg model, are 

shown as dotted and dashed lines, respectively. The condensation curve for 

water (at solar metallicity) is shown as a blue dash-dotted curve, indicating 

that, although neglected in our models, water clouds could affect the spectrum 

in a modest away.



Extended Data Fig. 3 | One-dimensional projection of the posterior 

distributions of the WISE J1828 retrievals. Values correspond to key 

atmospheric quantities shown in Extended Data Table 1. pRT-reg and ARCiS-reg 

stand for the regularized P–T retrievals, whereas pRT-free and ARCiS-free stand 

for the unregularized P–T retrievals of petitRADTRANS and ARCiS, respectively.
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Extended Data Fig. 4 | Evolution of the planetary 14N/15N as a function of the mass accreted in solids (rock and ice). This computation assumes a planet that 

forms outside the NH3 iceline but inside the N2 iceline. The dotted black line denotes the value expected for pure NH3 ice.



Extended Data Table 1 | Physical constraints on WISE J1828

‘free’ in the code name means that the P–T structure was not regularized, whereas this was done for the ‘reg’ cases. Rbin model radii have been multiplied by 1/ 2 , assuming that WISE J1828 is an 

equal-property binary. Rbin was used for calculating Mbin from the inferred gravity. The units of Kzz are cm2 s−1. ‘chem’ means that absorber abundances have been determined from a chemical 

model. ‘solar’ means that the parameter was not varied and that a solar composition was assumed instead.
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Extended Data Table 2 | Physical constraints on WISE J1828, 
combining different codes

Rbin model radii have been multiplied by 1/ 2 , assuming that WISE J1828 is an equal-property 

binary. Rbin was used for calculating Mbin from the inferred gravity. The units of Kzz are cm2 s−1. 

‘chem’ means that absorber abundances have been determined from a chemical model. ‘no 

comb’ means that the respective parameter was only varied in one of the two codes; see 

Extended Data Table 1 for the inferred values. * for the inferred average mass denotes that the 

distance between the solutions of the two codes was larger than the average value, so no 

uncertainties, derived as explained in the Methods section, are given here.
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