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In our previous work, we proposed a novel theoretical
formulation for quantum dynamics in the single-particle
description.36 Our new approach, moment propagation theory
(MPT), describes a single-particle wave function in terms of
increasing orders of moments. We analytically derived the
equation of motion for these moments. The proof-of-principle
simulations employed up to the fourth-order of moments and
accurately modeled the quantum dynamics of both harmonic
and anharmonic well systems. Motivated by the analytical
solution for the harmonic well, the work also proposed using
ML techniques to circumvent the expensive calculation of the
moment time-derivatives. An artificial neural network (ANN)
model accurately simulated the harmonic potential with low
computational cost.36 This is analogous to the MD-ML models
that calculate the force on the atoms through approaches like
ANN models.
In this work, we demonstrate the use of the moment

propagation theory with machine-learning techniques (MPT-
ML) for real systems through the use of RT-TDDFT
simulation. By using the moments of the spatially localized
time-dependent MLWFs, only the moments up to a low order
are needed to concisely describe the system within the MPT
framework. We demonstrate the accuracy of the MPT-ML
model approach for single molecular systems of water,
benzene, and ethene. As a test of performance, we compute
the optical absorption spectra for these molecules. We then
investigate its application to liquid water and crystalline silicon
and also examine how the principle of the nearsightedness of
electrons can be utilized.

■ THEORETICAL AND MODELING DETAILS
Brief Overview of Moment Propagation Theory. In

our earlier work,36 we showed that the single-particle quantum
dynamics can be formulated in terms of the moments of
increasing orders instead of propagating the wave function
using via a Schrodinger-like equation, as done using TDKS
equations in RT-TDDFT simulation. Let us briefly summarize
the key points of this MPT that are relevant in this work. We
express the single-particle wave function here as ψ(x, y, z, t) as
the orders of the moments are generally not the same in the
three Cartesian coordinates. The moments of the single-
particle probability density are

=x y z t x y z n x y z t dxdydz( ) ( , , , )a b c a b c
(1)

where a, b, c are non-negative integers used to denote the ath,
bth, cth moment in x, y, z directions of the Cartesian
coordinate space and n(x, y, z, t) is the single particle
(probability) density, which is the square modulus of the
single-particle wave function (i.e., n(x, y, z, t) = |ψ(x, y, z, t)|2).
The explicit equation of motion for the moments can be
derived from the TDSE where the first-order time derivative of
the moments is

= [ + · *]d x y z t
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and the second-order time derivative of the moments is
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In our earlier work,36 we showed that the numerical quantum
dynamics simulation scheme can be formulated by Taylor-
expanding the moments in time and truncating the expansion
at the second order, as done in most classical molecular
dynamics simulation. Importantly, we showed that the second-
order time derivative can be given in terms of the moments
and their first-order time derivatives albeit the explicit
expression is highly complicated for numerical evaluation,
especially for higher-order moments.

Machine Learning the Second-Order Time Deriva-
tives. In general, the second-order time derivative can be
expressed as

= { } { }d x y z t
dt

F x y z t
d x y z t

dt
( )

( ( ) ,
( )

)
a b c

d e f
d e f2

2 (4)

where F is a function, generally very complicated, of the
moments and their first-order time derivatives. F can be solved
analytically only for very limited cases such as the harmonic
oscillator as discussed in our earlier work.36 We also proposed
that the use of ML approaches including a simple ANN model
for F instead of its explicit evaluation, as often done for
potential energy in classical MD simulation.36 While it is
tempting to apply popular ML techniques like ANN and deep-
learning models, it is also possible to use more traditional ML
techniques by incorporating known physical behavior. For
example, Vulpe and co-workers developed a MD potential
using the physics-based many-body expansion of the potential
energy.37 Hauge et al. noted that ANNs struggle to extrapolate
data, such as dipole moments in time, so they had to enforce
certain restrictions to prevent overfitting and ensure stable
extrapolation.38 In this work, with the analytical expression (eq
4) in mind, we examine the linear model for the ML,

= +

+
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where the coefficients B, C, D are to be machine-learned from
RT-TDDFT simulation. For brevity, let us denote the
moments using ⟨ri⟩(t)  ⟨xaybzc⟩(t). For multielectron
systems in the TD-KS scheme, interactions between electrons
must be incorporated as well

= + +
d
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where ⟨ri⟩j is the ith moment of the jth electronic state.
Time-Dependent Kohn−Sham Equations in Wannier

Gauge. In extended periodic systems, the Bloch states satisfy
ψn(r + R, k) = eik · R ψn(r, k) where n is the band index and R is
the lattice-periodic cell vector. Correspondingly, Wannier
functions are given by

= ·w dr R k r k( , )
(2 )

e ( , )n
BZ

i
n

k R
3 (7)
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where Ω is the volume of the real-space periodic cell.28
Wannier functions are translationally invariant such that wn(r,
R) = wn(r − R, 0), and it can be denoted simply as wn(r).
These Wannier functions possess a gauge freedom, and it has
become popular to make these Wannier functions unique by
minimizing the total spread given as

= | | | |S w w w wr r( )
l

l l l l
2 2

(8)

where the position operator r ̂ is defined according to Resta’s
formula in extended systems,39

= ·er L
2

Im ln i L r2

(9)

where L is the lattice vector of the periodic cell. This can be
extended to second order of moments as well40
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where r is one of the Cartesian coordinates x, y, or z and
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where r is one of the Cartesian coordinates x, y, or z and r′ is
another Cartesian coordinate.
As discussed in ref 28, TD-KS equations can be propagated

using the MLWFs,

= { + }i
w t

t
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l

ML 2
KS (12)

where UML is the operator for ensuring the maximally
localization of the Wannier functions, and VKS is the KS
potential. This scheme has been successfully used for various
applications and also for reducing the computational cost of
evaluating the exact exchange.30
Computational Method. Instead of using the Taylor

series expansion as often done in classical MD simulation (see
Supporting Information), we propose an alternative scheme.
By applying the MPT to the quantum dynamics described by
TD-MLWFs, solutions to the linear model (LM) (eq 6) can be
obtained analytically. Equation 6 is written in terms of matrices
as

= + +t t tX CX DX B( ) ( ) ( ) (13)
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and D are specified in eq 6. It is convenient to rewrite this
equation as
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The matrices 0 and I are zero and identity matrices
respectively with the same size as other matrices. The general
solution to this linear ordinary differential equation (ODE) can
be expressed as

=t eY V A E( ) tA 1 (18)

where V is defined by

+V Y A E(0) 1 (19)

The initial value problem (IVP) here is

=t eY P P V A E( ) tQ 1 1 (20)

where Q is the diagonal matrix such that A = P Q P−1. Y(t)
contains time-dependent information about the moments.
When the Fourier transform of the first-order moments in Y(t)
are used to calculate the optical absorption spectrum as
discussed in the following, the eigenvalues (Q) can be
identified as the frequencies of the absorption spectrum and
the eigenvectors (P) provide the magnitude of the transition
dipoles.
In few cases, the matrix Q has diagonal elements with ReQii

> 0 such that the solution diverges in the form of eRe Qiit. These
eigenvalues tend to be close to zero, but having such real-
valued nonzero elements lead to an nonphysical solution for
MPT in numerical simulations. We correct this numerical
artifact by setting the real part of these eigenvalues to zero to
eliminate the diverging solution. Generally speaking, the cause
of having positive real eigenvalues stems from fitting the linear
model to a data set produced by RT-TDDFT simulation with a
finite simulation time T. Indeed, we observe that as T
increases, the need for this correction decreases. In numerically
performing some of these matrix operations, we may use other
standard corrections. In evaluating A−1 = PQ−1P−1, we set any
eigenvalues with their absolute value below a certain threshold
|Qii| < c (we use c = 0.005) as =Q 0ii

1 . Likewise, we set
=Q ii Q

1 1

ii
when |Qii|≥ c. Additionally, we employ a high

eigenvalue cutoff h such that (P−1V)i = 0 if |Im (Qii)| > h (we
typically use h = 2 or 54.4 eV), removing nonphysical high
frequency noises.

Ridge Regression. Regularization refers to a statistical
technique to minimize errors from overfitting with training
data, and so-called ridge regression is one of the most
commonly employed regularization technique for linear
regression models. With a large number of variables as for
condensed matter systems, the overfitting becomes a practical
issue because of the multicollinearity within the dynamics of
MLWFs. Thus, we also examined the effectiveness of the ridge
regression technique, which minimizes the loss function

= +L M y x( LM( ))
i

i
j

j j
2 2

(21)

where LM is the linear model as described above in eq 13. The
Mi is the ith learnable parameter in matrix A. The variables xj
and yj are the Y(tj) inputs and the Ẍ(tj) outputs, respectively
where j is for the time index. The hyperparameter, α, is an
additional adjustable parameter that is used to reproduce the
training data closely.
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Nearsightedness of Electrons. With increasingly large
numbers of the moments for modeling condensed matter
systems, numerical noises from fitting the first-principles data
could degrade the accuracy. The nearsightedness principle of
electrons41,42 can be invoked to reduce the number of
parameters necessary in the above proposed model based on
the moment propagation theory. According to the nearsighted-
ness principle, local electronic properties like the probability
density depend on the effective external potential of only
nearby points. Changes in that potential beyond a certain
distance have limited effects on the local properties. This
allows us to introduce a cutoff distance beyond which the
electrons (represented by MLWFs) are not impacted by the
dynamics of other electrons. Then, the equation of the motion
for the moments (eq 6) can be written in terms of the subset of
the MLWFs as

= +

+
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where rc is the cutoff distance beyond which the MLWFs do
not impact their dynamics. In addition to allowing us to
develop an effective computational method, this procedure also
enable us to study the extent to which the nearsightedness
principle applies in real systems. Studying the necessary cutoff
distance for fully reproducing the RT-TDDFT result informs
us about the effective distance for the such nearsightedness of
electrons in condensed matter systems.
The workflow of this work is summarized in Figure 1. First,

the RT-TDDFT simulation is performed using the Qb@ll
code.28 In the RT-TDDFT simulation with the MLWF gauge,
all the moments are computed at each time step. The machine-
learning model is then developed by fitting the equation-of-
motion from the moment propagation theory (MPT-ML) to
this first-principles training data. The resulting MPT-ML

model is examined against the RT-TDDFT simulation by
computing the optical absorption spectra, which contain the
electronic excitation at all frequencies.

■ RESULTS AND DISCUSSION
Calculation of Dielectric Function. To demonstrate the

above-described approach based on the moment propagation
theory in the context of RT-TDDFT, optical absorption
spectra are calculated. For extended systems, the optical
absorption spectrum can be obtained from the imaginary part
of the dielectric function,28

= + [ ]( ) 1 4
3

Tr ( )
(23)

where σμν(ω) is the complex frequency-dependent polar-
izability tensor. It can be obtained by Fourier transforming the
time-dependent polarization

= dte r t( ) 1 ( )i t

j
j

(24)

where ⟨rμ⟩j (t) is the first-order moment that is propagated as
vector elements of X(t) (eq 20). Here δν is the strength of the
abrupt homogeneous electric field applied to the system in ν
direction using the length gauge.28 The imaginary part of the
dielectric function is directly related to the optical absorbance
while the real part is related to the dispersion. For isolated
systems such as gas-phase molecules the macroscopic dielectric
function is not well-defined, and the optical absorption is
typically described in terms of the dipole strength function,
which is also expressed in terms of the polarizability tensor as

= [ ]S
c

( ) 4
3

Tr Im ( )
(25)

where c is the speed of light. In practice, we add a damping
term in the form of e t/ in eq 24 where τ is chosen to be ∼100
a.u. This damping term reduces the noise from having the
finite amount of dynamics in taking the Fourier transform.

Figure 1. Workflow diagram for the MPT-ML model. First, the RT-TDDFT simulation is performed, and the moments and their time derivatives
are computed for the time-dependent MLWFs. Then, the machine-learning model is developed by training the equation-of-motion of the moment
propagation theory (MPT) using this first-principles data. Finally, the resulting MPT-ML model is used to simulate electron dynamics to compute
physical properties such as optical absorption spectrum.

Figure 2. Isosurfaces of a single O−H bond-centered TD-MLWF (top panels) and an oxygen lone pair TD-MLWF (bottom panels) for an isolated
water molecule. Each snapshot captures the TD-MLWFs at different instances of time during an RT-TDDFT simulation, following perturbation by
an impulsive electric field.
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Optical Absorption Spectrum of Gas Phase Mole-
cules. To investigate the applicability of the above-described
approach of using the machine learning linear model for the
moment propagation theory (MPT-ML) approach in practice,
we consider several isolated molecules of water, benzene, and
ethene. For RT-TDDFT simulation, the PBE XC functional43
was used with 40 Ry cutoff for planewave expansion and PBE
Optimized Norm-Conserving Vanderbilt (ONCV) pseudopo-
tentials.44 A single molecule was placed in a 70 a.u. cubic
simulation cell. A delta kick strength of 0.01 a.u. was used in
the applied electric field, and 0.2 a.u. was used for the time step
in the enforced time reversal symmetry (ETRS)45 integrator
for a total of 200 a.u. simulation time. As discussed above, RT-
TDDFT simulation was performed in the Wannier gauge and
the individual moments are obtained for each MLWF. A key
point of this study here is whether the electron dynamics
necessary for calculating physical properties like optical
absorption spectra can be adequately described using only
low orders of the moments. While MPT is exact in principle,
its practical advantage is limited by the orders of the moments
necessary for describing electron dynamics in real systems.
Figure 2 shows the dynamics of a MLWF on a single water

molecule in RT-TDDFT. The MPT-ML approach seeks to
capture the dynamics of this single MLWF using increasing
orders of moments. As Figure 2 shows, the MLWF is highly
localized and amenable to using a concise description using
low orders of moments. This remains the case as the MLWF
changes over time allowing the use of ML methods to learn the
dynamics of moments in the MPT framework.
Figure 3 shows that the results from the MPT-ML approach

and the reference RT-TDDFT result, which also serves as the

training data set. The MPT-ML approach uses up to the
second-order moments and their time derivatives in eq 20. The
optical absorption spectrum show three prominent sharp peaks
of 6.2, 8.3, and 12.4 eV below the broad peak centered at 20
eV. With the first-order moments only, the MPT-ML model
captures the first two peaks at 6.2 and 8.3 eV well but it fails to
reproduce the third peak at 12.4 eV. By including up to the
second-order moments, the MPT-MP model is able to
correctly capture also the third peak in addition to the rest

of the spectrum features. By using a more complete description
of the MLWFs of the single water system with higher orders of
moments the result is expected to match the RT-TDDFT
result. We also notice that since the size of matrix Q from the
IVP is larger for the second order moments, there are more
frequencies that could exist in Q. This is seen as the increasing
roughness of the second order result over the first order.
We apply the MPT-ML approach here on an ethene

molecule to examine its applicability for molecules with double
bonds. The optical absorption spectrum show a single sharp
peak at 7.5 eV below the broad peak centered at 20 eV as seen
in Figure 4. In this case, the MPT-ML model well reproduces

the spectrum even with the first-order moments only, and
including up to the second-order moments only further make
the spectrum better as in the case of RT-TDDFT result.
A benzene molecule was studied here particularly because of

the delocalized nature of electrons as manifested in
conjugation around the carbon atoms. The same computa-
tional parameters were used for RT-TDDFT simulation as in
the case of water molecule, except for using a longer simulation
time of 400 a.u. Figure 5 shows the optical absorption
spectrum of a single benzene molecule. A notable feature is the
prominent absorption peak at 6.8 eV, and this key feature is
accurately reproduced by the MPT-ML model. While the
MPT-ML model with only the first-order moments is able to
capture this absorption peak correctly, it gives an erroneous
broad peak at 40 eV. By including up to the second-order
moments, the MPT-ML is able to correctly eliminate this
behavior, yielding an accurate absorption spectrum.

Optical Absorption Spectrum of Condensed Matter
Systems. We examine here the MPT-ML approach for more
complex systems of condensed matter. In particular, we
consider the case of liquid water and crystalline silicon.

Liquid Water. For liquid water a cubic simulation cell
(30.6683 a.u.) containing 162 water molecules (1296
electrons) with periodic boundaries was used. The structure
of liquid water was generated by taking a snapshot of the
equilibrated system following a 20 ps classical molecular
dynamics simulation at 300 K using the single point charge
with polarization correction (SPC/E) model.46 All atoms are
held fixed for the RT-TDDFT simulation, and a delta kick

Figure 3. Optical absorption spectra of a single water molecule,
obtained using the RT-TDDFT simulation and MPT-ML model.
MPT-ML model was performed with up to the second-order
moments. Contours of the electron density for the O−H bond and
oxygen lone pair MLWFs are shown. See Figure S2 in Supporting
Information for a close-up figure focused on the energy range below
the broad peak.

Figure 4. Optical absorbance spectra of an ethene molecule, obtained
using the RT-TDDFT simulation and MPT-ML model. MPT-ML
model was performed with up to the second-order moments.
Contours of the electron density for the C−H bond and CC
bond MLWFs are shown. See Figure S3 in Supporting Information for
a close-up figure focused on the energy range below the broad peak.
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strength of 0.01 a.u. with a 0.1 a.u. time step was used by
employing the enforced time reversal symmetry (ETRS)45
integrator for a total of 250 a.u. simulation time. The PBE
approximation was used for the XC functional, and Hamann-
Schluter-Chiang-Vanderbilt (HSCV) pseudopotentials47 were
used with a 40 Ry cutoff for the planewave kinetic energy
cutoff for the KS orbitals. Previous work has shown that this
liquid water simulation cell is fully converged with respect to
cell size48,49 and that PBE gives an accurate description of the
optical absorption spectra.49
In Figure 6, we compare the MPT-ML model with the RT-

TDDFT simulation. As can be seen, by including only the first-

order moments in the MPT-ML model already performs quite
well in reproducing the RT-TDDFT spectrum. At the same
time, the tail end of the spectrum above 30 eV starts to deviate
from the first-principles calculation unless the second-order
moments are also included. For condensed matter systems

with a large number of variables for the MPT model, we also
examined the use of the ridge regression technique as discussed
in the Computational Method section. For this particular case
of water, the ridge regression does not have much impact
unlike the crystalline silicon case discussed in the following
section.
For linear response properties like the optical absorption

spectrum, it is instructive to examine the nearsightedness
principle of electrons by Kohn42 in condensed matter systems.
A particular question in the context of the MPT is to what
extent the quantum dynamics of individual Wannier functions
can be described by accounting for the dynamics of nearby
Wannier functions. We examine here such an effective radius of
influence for the dynamics of individual Wannier functions,
studying the nonlocal nature of the many-body quantum
dynamics for this electronic system. We do so by introducing
the cutoff radius for individual MLWFs in constructing the
MPT-ML model as described in the Computational Method
section. Figure 7 shows how the optical absorption spectrum

changes with the cutoff radius, Rcut, of 2 and 7 a.u. The
distance of 2 a.u. corresponds to having only the intra-
molecular interactions among MLWFs on individual water
molecules. With the cutoff radius of 7 a.u., the model includes
the intermolecular interactions among MLWFs of their
neighboring water molecules. This essentially take into account
the dynamical effect within the first solvation shell around
individual water molecules. The Rcut = 7 a.u. spectrum captures
all the key features as seen in Figure 7 while the Rcut = 2 a.u.
spectrum shows that it is too short to capture the
“nearsightedness” as perhaps expected. This analysis not only
provides valuable insight into the short-range nature of
quantum dynamics responsible for the optical absorption in
water but also offers an effective scheme to reduce the
computational cost of simulating electron dynamics in large
complex systems.
Importantly in the context of MPT-ML approach, this

approach also allows us to significantly reduce the number of

Figure 5. Optical absorption spectra of a benzene molecule obtained
using the RT-TDDFT simulation and MPT-ML model. MPT-ML
model was performed with up to the second-order moments.
Contours of the electron density for the C−H bond and CC
bond MLWFs are shown. See Figure S4 in Supporting Information for
a close-up figure focused on the energy range below the broad peak.

Figure 6. Optical absorption spectra for the 162-molecule liquid
water cell using RT-TDDFT simulation and the MPT-ML model.
Inset shows the 162 water structure used. MPT-ML model was
employed with the ridge regression, with the hyperparameter value of
10−8.

Figure 7. Optical absorption spectra for the 162 molecule liquid water
cell using RT-TDDFT simulation and the MPT-ML model. Effect of
having the varying cutoff radii (Rcut) on the MPT-ML model is
shown. MPT-ML models use the ridge regression, including the first
and second order of moments. Inset shows the 162-molecule liquid
water structure, indicating the size of 7 a.u. radius with the blue shade.
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parameters to machine-learn. Table 1 shows the number of
moments and the corresponding parameters needed for

different systems and settings. Letting n be the number of
moments, the number of parameters to be learned is +n n

2

2
. In

condensed matter systems like water, over 68 million
parameters need to be machine-learned even when we need
only up to the second-order moments. Using Rcut = 7 a.u., only
4.98% of these parameters are necessary, significantly reducing
the computational complexity of the machine-learning.
Crystalline Silicon. For modeling the optical absorption

spectrum of crystalline silicon, we use an elongated supercell
that consists of 128 silicon atoms, following our previous
work.30 The PBE approximation was used for the XC
functional, and ONCV pseudopotentials were used with a 15
Ry cutoff for the planewave kinetic energy cutoff for the KS
orbitals. The enforced time reversal symmetry (ETRS)45
integrator was used to perform RT-TDDFT simulation for a
total of 600 a.u. simulation time with a 0.2 a.u. time step. A
delta kick was applied to excite the system in the direction of
the elongation with the field strength of 0.001 a.u. Figure 8
shows the spectrum obtained using the MPT-ML model along
with the RT-TDDFT result. Unlike for the water case
discussed above, including also the second-order moments

does not straightforwardly improve the linear model spectrum.
While the overall shape is improved especially the high energy
region (above 5 eV), the inclusion of the second-order
moments introduced an artificial peak around 1.5 eV. Here, the
use of ridge regression technique for reducing the overfitting
problem helps significantly, eliminating the unphysical peak
below 2 eV. Figure 9 shows how the use of the cutoff radius

affect the spectrum. While the prominent peak at 2.8 eV is
largely absent with Rcut = 7 a.u., the cutoff radius of Rcut = 14
a.u. is already large enough to capture the essential features of
the optical absorption spectrum here. As summarized in Table
1, using the cutoff radius significantly reduces the number of
required parameters for the machine-learning by an order of
magnitude.

■ CROSS-VALIDATION AND CPU TIME
REQUIREMENT

We comment on the cross-validation and CPU time require-
ment of the MPT-ML model discussed above in this section.
In this proof-of-principle work for the new MPT-ML model
approach, our aim here was to demonstrate its efficacy by
reproducing the RT-TDDFT simulation result (also the
training set) using the moment propagation theory (MPT).
We trained the equation-of-motion of the MPT using the
machine-learning approach. A natural question is whether the
MPT-ML model would have been able to predict the RT-
TDDFT simulation result with a smaller training data set. We
focus here on the single water molecule system for simplicity to
answer this question, and we consider the model that includes
both the first-order and second-order moments. Figure 10
shows how the optical absorption spectrum from the MPT-ML
model changes when the training data set was obtained from
RT-TDDFT simulations performed for the duration of 200,
150, 100, and 50 a.u. The reference RT-TDDFT simulation
result is from the 200 a.u. RT-TDDFT simulation. As can be
seen in Figure 10, the optical absorption spectrum including

Table 1. Number of Parameters in the MPT-ML Models

system number of moments number of parameters
water 72 2628
benzene 270 36,585
ethene 108 5886
162 waters 11,664 68,030,280
162 waters (Rcut = 7 a.u.) 11,664 3,385,476
162 waters (Rcut = 2 a.u.) 11,664 425,736
silicon 4608 10,619,136
silicon (Rcut = 14 a.u.) 4608 1,661,184
silicon (Rcut = 7 a.u.) 4608 624,384

Figure 8. Optical absorption spectra of crystalline silicon, calculated
with the 512-electron (128-atom) simulation cell using RT-TDDFT
simulation and the MPT-ML model. MPT-ML model was employed
also with the ridge regression, with the hyperparameter value of 10−12.
Inset shows the 128-atom simulation cell used and the direction of the
external electric field applied.

Figure 9. Optical absorption spectra of crystalline silicon, calculated
with the 512-electron (128-atom) simulation cell using RT-TDDFT
simulation and the MPT-ML model. Effect of having the varying
cutoff radii (Rcut) on the MPT-ML model is shown. MPT-ML models
use the ridge regression, including the first and second order of
moments. Inset shows the simulation cell used, indicating the size of 7
a.u. radius with the blue shade.
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the prominent peaks is well reproduced already with the
training data set from the shorter 100 a.u. RT-TDDFT
simulation. As expected, with increasingly larger data sets, the
spectrum approaches closer to that of the 200 a.u. RT-TDDFT
simulation (i.e., “RT-TDDFT” in Figure 10).
Table 2 shows the CPU time used for each part in the

workflow (see Figure 1) for selected systems (a water

molecule, condensed matter system consisting of 162 waters,
and crystalline silicon). As can be seen, even with the
additional CPU time required for training the MPT-ML
model, the computational cost saving gained by using the
MPT-ML model is significant; the computational time is
reduced by several orders of magnitude. For instance, in the
case of the simulation with 162 waters (Rcut = 7 a.u.), the CPU
time required by the MPT-ML simulation is 1.41 × 104 times
lower than that of the RT-TDDFT simulation. The computa-
tional scaling of matrix operations (such as diagonalization)
required for the MPT-ML model scales with O(n3) where n is
the number of moments. This scaling can be further improved
if the diagonalization (and other matrix operations) can be
approximated by m block diagonal matrices of equal size; this

would reduce the computational scaling to ( )O
n

m

3

2 .

■ CONCLUSIONS
While TDDFT provides a particularly convenient theoretical
formalism for simulating the quantum dynamics of electrons
from first-principles, RT-TDDFT simulation remains computa-
tionally intensive for studying many complex chemical
systems.1 At the same time, data-driven modeling has become
increasingly popular in many fields, especially for molecular
dynamics simulation of atoms in recent years.50 On the other
hand, the electron dynamics remains as one of the challenging
cases for applying data-driven approaches like ML.35 In this
work, we showed how the recently formulated MPT36 offers a
powerful framework for machine-learning the quantum
dynamics of electrons when it is combined with the RT-
TDDFT simulation in the Wannier gauge.28 MPT derives the
equations of motion for all orders of moments. Due to the
highly localized nature of individual MLWFs, we can anticipate
that only low-order moments might be necessary for an
accurate description. However, even for the low-order
moments, their second-order time derivatives are highly
complicated to calculate in practice. As done in the case of
classical MD simulation, we applied the ML technique for
approximating the second-order time derivatives by training
them against the first-principles simulation.51 We showed how
this MPT-ML approach can be used to accurately calculate the
optical absorption spectra of various systems from small gas-
phase molecules to condensed phased systems even with a
simple machine-learning method (i.e., linear model). For
condensed matter systems, we also examined the nearsighted-
ness principle of electrons to exploit the short-range nature of
their influence to significantly reduce the number of
parameters to be trained.
This work thus far remains a proof-of-principle demon-

stration for real systems using first-principles calculation. At the
same time, one can already realize how this MPT-ML
approach can significantly benefit the field especially when
using advanced XC functionals like hybrids, which are an order
of magnitude computationally more expensive than standard
XC functionals even with recent advancements.30,52 While this
work focused on the use of the MPT-ML approach for optical
absorption spectrum, linear-response property, we envision it
extended for studying more complicated nonequilibrium
electron dynamics phenomena in future work.
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