"\ ANNUAL
f\ ¥ REVIEWS

itnews CONNECT

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

* Explore related articles

* Share via email or social media

Annu. Rev. Control Robot. Auton. Syst. 2024.
7:73-95

First published as a Review in Advance on
November 29, 2023

The Annual Review of Control, Robotics, and
Autonomous Systems is online at
control.annualreviews.org

https://doi.org/10.1146/annurev-control-071223-
105834

Copyright © 2024 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,

provided the original author and source are credited.

See credit lines of images or other third-party
material in this article for license information.
A
OPEN (oY ACCESS O]
©

Annual Review of Control, Robotics, and
Autonomous Systems

Guy Hoffman,' Tapomayukh Bhattacharjee,’

and Stefanos Nikolaidis®

!Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York,
USA; email: hoffman@cornell.edu

?Department of Computer Science, Cornell University, Ithaca, New York, USA

3Thomas Lord Department of Computer Science, University of Southern California,
Los Angeles, California, USA

Keywords

human-robot collaboration, intention inference, motion prediction,
probabilistic methods, human-robot interaction

Abstract

Researchers in human-robot collaboration have extensively studied meth-
ods for inferring human intentions and predicting their actions, as this
is an important precursor for robots to provide useful assistance. We
review contemporary methods for intention inference and human activity
prediction. Our survey finds that intentions and goals are often inferred via
Bayesian posterior estimation and Markov decision processes that model
internal human states as unobserved variables or represent both agents
in a shared probabilistic framework. An alternative approach is to use
neural networks and other supervised learning approaches to directly map
observable outcomes to intentions and to make predictions about future
human activity based on past observations. That said, due to the complexity
of human intentions, existing work usually reasons about limited domains,
makes unrealistic simplifications about intentions, and is mostly constrained
to short-term predictions. This state of the art provides opportunity for
future research that could include more nuanced models of intents, reason
over longer horizons, and account for the human tendency to adapt.
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1. INTRODUCTION

For robots to be useful collaborators in human-robot teams, they should be able to choose the
correct action at the right time. A key capability that can help with the machine’s optimal on-time
activity is to understand the human’s intentions and goals beyond their immediate physical action
and be able to predict future actions (1, 2). Take, for instance, a manufacturing scenario, where a
human places automobile parts for a robot to weld together. A collaborative robot could wait for
a human command that explicitly requests a welding action, or it could wait for the parts to be
placed and then act based on their positions and features. However, if a robot could instead reason
about the human, understanding their larger goals, such as what assembly stage the team should
currently be working on, or predicting the human’s actions, such as where the human is likely to
place the next part, the robot’s collaborative capability would be greatly improved.

For that reason, researchers studying human-robot collaboration have dedicated significant
effort to developing methods for human intention inference and action prediction. In early
work, Hoffman & Breazeal (3) proposed that anticipating human actions based on a probabilis-
tic inference method about human plans could lead to higher fluency and user satisfaction in a
collaborative robot task. This observation has been replicated by other researchers (e.g., 4-6).

In this review, we map the prevalent techniques used in the literature to understand and antici-
pate human intentions, goals, and actions. We divide the literature on this topic into three sections,
as depicted in Figure 1: inferring the human’s intentions and goals, inferring specific collaborative
features of the human, and predicting the human’s future movement in space.

Section 2, Inferring Intentions and Goals, covers work that reasons about the unobservable
human goal-oriented constructs that underlie their behavior. This includes inferring what overall
strategy the team should be using, or it could be about a more specific activity goal, like what part
of an assembly the human is trying to attach to an object at the current stage. Even more specific
intention inference occurs when the robot tries to understand what point in space or object the
human is trying to reach or wants the robot to reach.

In many cases, the focus is not on inferring intentions or goals, but rather on specific features
of the human that are important to collaboration, such as their level of fatigue or stress, their
capabilities, or their trust in the robot. Correctly inferring these features can help the robot predict
future human behavior and help it choose its own best course of action. We cover research dealing
with this inference challenge in Section 3, Inferring Collaborative Features.

Finally, Section 4, Predicting Human Motion, deals with methods that reason about the ob-
servable physical movement of the human. These works are concerned with the motion of the
human, without necessarily inferring any internal state on the human’s part. We review works that

Section 2 Section 3 Section 4
Spatial Trajectory Position
goal
(e.g., each team (e.g., next, attach (e.g., put the tool (e.g., at what level is (e.g., which (e.g., what is the
member should the red leg to in the top-left AN TG fatigue path will the next position of the
take equal turns) the table) location) capability, or trust?)’ human take?) human’s hand?)
Inferring intentions and goals Inferring features Predicting human motion

Figure 1

This review maps the recent literature on intention inference and human activity prediction across three categories. Intention and goal
inference are presented in Section 2, collaborative feature inference in Section 3, and spatial motion prediction in Section 4.
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are trying to infer or predict whole trajectories, as well as research focused on the instantaneous
modeling of the next human position.

These categories are not mutually exclusive. Intent inference can happen with or without
motion prediction, and action prediction can happen with or without higher-level models of in-
tentions and goals. We further discuss this overlap in Section 1.1 but still find it useful to separate
our presentation into the abovementioned categories for clarity.

Of course, a single article could not do justice to the full extent of the work in human-robot
collaborative intention inference and activity prediction. Our review therefore focuses on a subset
of methods and applications. It generally covers only research published in the last three years,
with references to past work where they are pertinent. We discuss mostly work where humans and
robots directly collaborate or interact on a shared task. This excludes, for example, a large literature
concerned with intention inference in exoskeleton control, as well as the excellent work on inten-
tion recognition for autonomous driving. Methodologically, we also do not discuss the subfield of
machine learning that deals with human preference learning and learning from demonstration,
even though there is a clear aspect of intention inference to these methods. Finally, we priori-
tize research that includes implementations on physical robots, omitting many excellent projects
implemented in simulated environments.

1.1. Intention Inference Versus Motion Prediction: A Blurry Boundary

Despite the categorization delineated in the previous section, the demarcation between intention
inference and motion prediction is not always distinct. On the one hand, researchers try to map
observations to intentions, often using Bayesian inference, Markov decision processes (MDPs),
and supervised learning techniques. On the other, there is motion prediction, which focuses on
forecasting the future movements or actions of humans. This involves estimating trajectories,
paths, or motion patterns to anticipate the future positions and velocities of the entities involved.
These works often use time series prediction methods or make use of neural networks.

These categories are not always exclusive, and there can be significant overlap between them.
This overlap could be in the methods used or in the combination of goal inference with motion
prediction in a single system. For example, Le et al. (7) combined inverse reinforcement learning
(IRL) and a goal-conditioned recurrent neural network (RNN) to learn both discrete goals and
continuous movements. Their method first infers the high-level goal of the user using IRL and
then passes the inferred goal as input to the goal-conditioned RNN, which outputs a low-level
trajectory. Cheng & Tomizuka (8) followed the inverse approach: Their method first estimates the
motion type (e.g., reaching or installing) using a long short-term memory (LSTM) network and
then uses the motion type to infer the intended goal. Another way to combine goal inference and
motion estimation is to compare the current human motion with an expected motion given a target
goal. This can be achieved by leveraging encoded demonstrations, such as dynamic movement
primitives (DMPs) (9), as a reference for comparison, as proposed by Qiao et al. (10). Using this
comparison, the robot can infer the intended goal behind the observed motion.

1.2. Collaborative Contexts

In the human-robot collaboration literature, intention inference and activity prediction are stud-
ied across a variety of contexts: Robots try to predict handover goal positions, reason over human
plans in collaborative workspaces, infer operator intentions, and predict human motion for shared
navigation. To provide a sense of where and how intention inference and action prediction
are used, we describe some popular application contexts below, along with specific needs and
challenges they present.
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1.2.1. Handovers. Many collaborative tasks involve robot-to-human object handovers, human-
to-robot handovers, or both (11). These can be direct object transfers, as in an IKEA coassembly
study (12), or indirect ones involving an intermediate step, such as hand-to-table and table-to-
pickup maneuvers (13). When coordinating a handover, a robot can benefit from estimating where
the handover will occur. This requires the robot to infer the goal position of the human’s move-
ment or predict which object the human would like to hand over or receive. These inference
methods usually take into account past human actions, features of the objects to be handed over,
or a combination of both (14).

1.2.2. Shared workspace collaboration. Inarelated collaborative context,a human and a robot
might work together on a shared workspace. This can include assembly tasks, where the human
and robot take turns operating on an object being assembled (3). In other scenarios, the robot
holds an object for a human to work on (15) or provides tools for the human to complete a task.
In these contexts, the robot can benefit from inferring the human’s planned sequence of actions,
in order to predict the next action and formulate the best collaborative plan. The robot might
also be required to infer what the human would want the robot to do. In some cases, the human
provides corrections to the robot’s activity, which then leaves the robot to extrapolate intention
from corrective cues (16, 17).

A particular kind of shared workspace collaboration is direct comanipulation of an object dur-
ing a collaborative task, sometimes called physical human-robot interaction. In this context, the
robot may have to infer the goal position of an object (18). Alternatively, the robot might have to
predict the human’s movement in space or the applied forces and torques based on a model of hu-
man comanipulation (19). In some cases, comanipulation features can be used to infer higher-level
states and intents (20).

1.2.3. Shared autonomy. A third context for human-robot collaboration is shared autonomy,
where the human indicates an action for the robot to perform. This can be in the context of an
assistive technology, in which case the robot performs an action based on limited control input
from the human being assisted, or in the context of hybrid teleoperation. In both cases, partial or
imperfect human input has to result in accurate robot activity.

These contexts necessitate methods for the robot to infer goal locations from human input or
make inferences about higher-level meanings of human controls. In one scenario, a robot is tasked
with the challenge of choosing one of several goal positions from partial or imperfect human
instruction (6, 21, 22). In other cases, the robot does not have a set of possible goals or intents, but
builds a probability distribution over its full operational space (10, 23).

Since the shared autonomy scenario generally assumes imperfect input, and since the human
input is usually explicitly robot directed, it rarely poses a direct motion prediction problem, and
more often is concerned with the inference of unobservable and underlying intents.

1.2.4. Social navigation. Finally, in many collaborative contexts, a human and a robot move
around a shared space. As a result, a subset of human-robot interaction research deals with the
problem of social navigation, roughly defined as the challenge of a robot navigating around hu-
mans. Robots moving in human spaces have to find ways to safely cross a human’s path, lead a
human, follow a human, or walk alongside them (e.g., 24, 25).

To avoid collisions and provide people with a sense of safety around the robot, the con-
trol algorithm often has to predict where the human will go. Researchers use a wide variety of
computational models, such as grid-based probability distributions (26), hidden Markov models
(HMMs) (27), MDPs (28), or sets of Gaussian distributions (29, 30). Kollmitz et al. (30), for ex-
ample, used Gaussian distributions to build a social cost map for the robot, whereas Bennewitz
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et al. (29) clustered human trajectories into a number of movement patterns or classes and used
these to both track and predict future human motion. These predictions and cost maps then allow
the robot to plan accordingly.

The goal of the robot performing social navigation is usually physical in nature, such as avoid-
ing humans or staying close to them. Therefore, high-level intent inference is rare in this context,
and most works are concerned with momentary probabilistic predictions of human motion.

1.3. Reasoning About Humans Is Difficult

As described in the previous section, the survey presented here covers a variety of inference chal-
lenges, across a range of application areas, using different computational methods. The common
factor to all the works surveyed in this article is that they deal with reasoning about human be-
havior. Understanding and predicting human behavior pose unique challenges for robotics and Al
research, beyond the baseline problems of handling uncertainty in the robot’s operation and its
environment.

First, humans are complex systems with rich internal representations, cultural backgrounds,
and social contexts. The full complexity of the psychological and cognitive processes that underlie
human physical behavior is beyond the reach of existing computational models and methods. As
a result, any reasoning about human intentions and goals is bound to rely on oversimplification
and therefore will only achieve partial success in its inference and prediction.

Second, humans are highly adaptive creatures. Any change in the environment or any new or
continued robot behavior is likely to affect the future cognition and behavior of the human who is
interacting with the robot. While obviously beneficial to humans, their adaptiveness makes any in-
ference expire quickly and any prediction imprecise. Robots would benefit from taking a similarly
adaptive approach to reasoning about humans, but in reality, most computational systems do not.

Finally, the very notion of intention is complicated and ill defined. In the work we survey in
this article, the word intention or goal can mean vastly different things, from strategies, to object
choices, to preferences. The fact that intentions are unobservable also adds to the vagueness of
their use in the Al and robotics literature.

When reading this survey, it is worth keeping in mind these challenges and limitations of the
human-robot intention inference literature. We offer a longer discussion of these topics, along
with some ways that researchers try to tackle them, in Section 5.

2. INFERRING INTENTIONS AND GOALS

We now turn to the challenge of inferring a human collaborator’ intention or goal. This could be
an attempt to predict a spatial goal position, i.e., where the human’s action will end up and where
the robot might meet the human’s action. It could also be in the form of trying to understand a
collaborative strategy from imperfect data, for example, whether the human wants to take strict
and equal turns or not. Alternatively, a robot might face a selection problem: choosing one of a set
of possible goals that the human is trying to achieve, or deciding which of a number of strategies
the human is currently following.

There are several key approaches that researchers have used to make these inferences, which
we survey in this section. A robot could use direct Bayesian inference to determine the posterior
probability of each possible goal or intent; this inference could be done in a one-shot manner
or could take the form of a dynamic probabilistic process, such as a Markov model or MDP. A
different route is to classify the intent using supervised learning techniques, including neural net-
work models. Supervised learning methods, including neural networks, attempt to directly map
observations to probabilities over intents using function approximations based on training data.
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Each of these families of methods has its advantages and shortcomings. Bayesian methods can
be computationally efficient, and their meaning is straightforwardly interpretable, because these
models explicitly encode the conditional probabilities between observations and the objects of
inference. This explicit statement of probabilities is also a potential issue with Bayesian inference,
as this approach is highly dependent on the modeling decisions of the researcher and is sensitive
to assumed prior distributions. Most simple Bayesian methods also make inferences only about
instantaneous constructs, a restriction overcome by sequential methods like HMMs and MDPs.
The latter are able to encode temporal relationships and the evolving dynamics of collaboration.
They also naturally integrate the robot’s reasoning about the human’s intentions and goals with its
choice of action. HMMs and MDPs, however, also suffer from the explicit modeling constraints of
Bayesian inference methods. Furthermore, in their basic forms they are less accurate than neural
network models.

Supervised learning and neural network approaches make less explicit assumptions about the
probabilistic relationships between variables and allow for the modeling of more complex and
nonlinear mapping functions. These characteristics have made this route popular over the last
few years. That said, any supervised learning method relies on the quality of the available training
data for accuracy. Traditional supervised learning approaches, like regression models, are also sen-
sitive to the choice of features, a problem overcome by the more feature-agnostic neural network
models. However, the more complex a neural network model is, the more data it needs to perform
well, and good training data are difficult to collect about humans, especially in specialized contexts
like human-robot collaboration. Large models also result in difficult- or impossible-to-interpret
models, which have negative effects for reproducibility and are linked to ethical concerns about
the fairness and controllability of the output from these models.

2.1. Bayesian Methods

Most simply stated, intent or goal inference in human-robot collaboration can be represented as
the confidence in an intended goal given a set of observations. Many systems operate by com-
puting a probability distribution over the space of possible goals within a Bayesian framework. In
general, Bayesian inference uses conditional probabilities to infer the value of unknown variables
by combining a priori probability distributions with the likelihood of observed evidence. This
likelihood is computed based on a model that relates the variable of interest to the evidence.

A common example scenario is shared autonomy in the assistive domain, where a robot tries to
assist a human who indicates their intentions through imperfect control interfaces. The robot can
use a Bayesian measure of confidence in the inferred human goal or intent to provide the assistance
that best corresponds to it. For example, Jain & Argall (21) modeled the uncertainty of a user’s
intended goal during assistive tasks using a Bayesian filtering framework. The belief #,(g) in the
intended goal g at time ¢ is represented as a posterior P(g;|0¢.,) o< P(6;|gs, 60.—1)P(g:|00.—1), where
6 is an observation source. Their approach considers multiple observation sources, such as goal
proximity and nonverbal human action, and uses the maximum a posteriori decision method (31)
to predict the most likely goal.

Iregui et al. (22) used a similar posterior maximization approach to infer the intended goal
position of an assistive robotic arm. Specifically, they used the maximal posterior probability
P(Opred|¥hmi) to choose a predicted goal object Opred given a user interface input position Xy,
derived from either eye tracking or a touchscreen. The “known” probabilities P(pmi|Opred) are
modeled as multivariate Gaussian distributions around the known object positions in the user
interface.

Jonnavittula & Losey (23) used assistive manipulation of a coffee cup as an example domain to
learn human objectives from user demonstrations by considering a user’s limitations in providing
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good demonstrations due to their disability. Using repeated user demonstrations of trajectories
D = {& ... &} from an assumed choice set E of all possible demonstrations, the robot models the
human intent via an underlying reward function 7. They used Bayes’ theorem to model the belief
b(r) o< P(r) [ 1;cp P(£ 7, B), where P(r) is the robot’s prior over human reward and P(§|r, E) is the
likelihood of observing a trajectory & given that the human has a reward 7 and choice set E. This
likelihood is commonly calculated using a Boltzmann-rational model (32, 33) that assumes humans
are noisily optimal and predicts thata human will select a trajectory with a probability proportional
to the exponentiated return on the trajectory. Other ways of modeling human behavior are also
possible (see, e.g., 34).

Researchers have also used Bayesian approaches for intent or goal inference in other human—
robot collaboration scenarios. For example, in a human-robot collaborative pick-and-place
operation, Felip et al. (6) inferred reach target locations using approximate Bayesian computa-
tion, a sampling-based inference method that originated in the field of genetics. This method
obtains samples from an unknown posterior distribution by first generating synthetic data from a
prior distribution and then using a similarity metric to reject samples that are far from the obser-
vations. In Felip et al.’s (6) method, a human upper-left body kinematics model serves to generate
the likelihood of a hand trajectory given a target goal location, which in turn is sampled from a
Gaussian centered on the gaze—table intersection. When given actual human hand trajectories as
observations, their approach uses the mean squared error as a similarity metric to determine how
close the generated synthetic data are to the observed data points.

A similar method to infer reach target locations was proposed by Zanchettin & Rocco (35), who
used a Bayesian approach in a human—robot assembly task. Their method uses a model-based tra-
jectory generator and compares it with new observations to update the probabilities associated
with each target location. The model used for trajectory generation minimizes the overall curva-
ture of the path. This model is used to generate a trajectory for a given goal location and compare
the angle between the tangent to the modeled path and the tangent to the actually observed path.
Their process results in a Gaussian distribution that represents the conditional probability of a
new observation given a goal location and the previous observation.

2.2. Markov Models and Markov Decision Processes

In addition to one-shot Bayesian inference, researchers also use sequential probabilistic decision
models to make intention inferences. Sequential models can be a good fit for collaborative assem-
bly tasks, for example, where a robot has to infer the step-by-step assembly plan that the human
intends to use. Knowing the human-intended sequence of actions can help the robot assist with
the correct action at the right time. Note that even in assemblies with a small number of parts, the
space of possible subassemblies and operation orderings scales rapidly (3).

To address these situations, researchers often use Markov models, MDPs, and partially observ-
able MDPs (POMDPs) to reason about the human’s next steps. MDPs are mathematical models
that consist of a set of states and actions, where the system moves from one state to another
based on the chosen action, according to a transition probability distribution. A key assumption
in MDPs is the Markov property, stating that the history of the system can be entirely modeled
by its current state, and subsequent states depend only on the current state and the chosen action.
POMDPs extend MDPs to situations where the agent does not directly observe the underlying
state but instead receives partial and noisy observations about the state. Both MDPs and POMDPs
are highly applicable in human-robot collaboration, as they provide a principled way to represent
the uncertainty that the robot faces regarding the human’s state and actions.

Using MDPs and POMDPs, a robot’s objective is usually to find an action policy that maxi-
mizes the expected cumulative reward over time. The success of MDP models is therefore highly
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dependent on the accuracy or usefulness of the reward function, making manually specified re-
ward functions suboptimal. To overcome this issue, reward functions are sometimes learned from
explicit human feedback or are inferred from human demonstrations, a method known as IRL.

In human-robot collaboration, the robot’s inference about the human’s sequence preferences,
strategies, or intentions using Markov models or MDPs is often coupled with the robot’s pol-
icy optimization process. Hoffman & Breazeal (3), for example, used a simple first-order Markov
process to model the state of a shared workbench, in order to anticipate the next human action
and act accordingly. More recently, Cramer et al. (36) modeled the human-desired assembly se-
quence as a path through an assembly state graph. They proposed a POMDP formulation that has
a hidden state variable representing the currently assumed human assembly path and then uses
human object selections as observations. They implemented the SARSOP (successive approxima-
tions of the reachable space under optimal policies) algorithm (37) to find a robot policy given
this formulation.

Zhao etal. (38) used a combined HMM and MDP approach to infer different high-level strate-
gies in a joint human-robot cooking scenario. Starting with data from humans collaborating on
the task, their method uses expectation—maximization to learn the parameters for an HMM repre-
senting the relationship between hidden strategy states and observed action sequences. Clustering
the hidden state sequences gives the robot a set of high-level strategies, which are used to find an
optimal policy for the two-agent MDP as follows: During collaboration, the robot samples its
actions from a weighted model of possible strategies, where each weight is determined by the
likelihood of the human’s actions under the corresponding strategy.

Nikolaidis & Shah (15) used an MDP model in a cross-training approach, where a human and
a robot switch roles in the collaboration to learn a shared model of the task. Cross-training has
two phases: a forward phase, where the human observes the learned behavior, and a rotation phase,
where the human switches roles with the robot. This allows the robot to learn both the reward
and transition functions of the MDP. In the forward phase, the robot learns a predictive model
of the human’s actions, and thus the state transitions. In the rotation phase, the robot learns the
MDP’s reward function by learning human preferences about the task from demonstrations.

Hadfield-Menell et al. (39) proposed a cooperative IRL approach. Similar to cross-training,
the human and robot switch between a learning phase, where a human demonstrates their pref-
erence to the robot, and a deployment phase, where the robot exhibits its learned behavior.
Cooperative IRL uses a game-theoretic model that allows improved learning of the reward
function through implicit active teaching behavior.

Providing demonstrations can be tedious and time-consuming. An alternative approach is to
let the robot execute a trajectory and only provide informative corrections that enable the robot
to infer the human intent. Losey et al. (40) modeled the human’s true intention about the robot’s
trajectory by employing a POMDP framework that views the human’s intention as a hidden pa-
rameter. They then solved for an approximation of the ideal policy while taking the human’s
corrections into account as observations. Li et al. (41) also modeled the robot’s behavior in an
MDP context but made use of human corrections while taking into account the temporal connec-
tion between sequential corrections, rather than just considering each correction individually. To
avoid time-consuming demonstrations on a complex task, Nemlekar et al. (42) proposed learning a
human preference model by collecting demonstrations on a short, canonical task. They then used
this preference model as a prior in the more complex task, further refining the prior via corrections
by the human.

Another way to combine the human’s intention inference with the robot’s policy is to model
them as a mixed observability MDP (MOMDP). In this approach, exemplified by Bandyopadhyay
et al. (28), the human’s behavior is modeled as optimizing an MDP with a reward structure that
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is dependent on their goal. The robot then solves for a larger MDP model, which includes unob-
servable beliefs over the human’s goal. The MOMDP can be manually specified or learned from
human demonstrations (43).

2.3. Supervised Learning and Regression Models

Going back to goal position or object inference, an alternative method is to directly learn a map-
ping between human activity data and actually selected goals, without having explicit conditional
probability models. This can be done via any number of supervised learning methods. Tsitos et al.
(44) presented such an approach, collecting 400 examples of reaching for one of four object po-
sitions while tracking the human’s wrist using the OpenPose algorithm (45). In a comparative
study, they found that linear regression and support vector machines outperform naive Bayes and
decision tree classifiers.

A more informed way to learn a mapping between observations and goals is in the form of
DMPs. DMPs represent the modeled motion as coming from a spring—damper system with basis
functions that encode the shape of the movement. These models are then used to predict the user’s
goal by assessing the agreement between the user’s input and the learned DMPs. Qiao et al. (10),
for example, have successfully utilized this approach in a range of shared control teleoperation
tasks (Figure 2), whereas Sidiropoulos et al. (46) used a similar DMP approach combined with
extended Kalman filtering to predict end positions for human trajectories in a handover task.

While DMPs capture the mean motion of the demonstrations, they may lack the expressiveness
necessary to capture the variance in the demonstrated motions. Probabilistic movement primitives
(ProMPs), on the other hand, address this limitation by representing distributions over trajecto-
ries (47). Ly et al. (48) showed how ProMPs can be learned from demonstrations in shared control
teleoperation scenarios.

Taking a different approach, researchers have also employed Gaussian process (GP) regression
to infer human intent. In a collaborative manipulation task, Haninger et al. (18) trained separate
GP models for each goal and employed Bayesian inference to compute a belief over the human’s
goal based on the applied human force. This belief was then integrated into a model predictive
controller to compute a trajectory for the robot.

Figure 2

Dynamic movement primitives can be used to predict human goals in assisted teleoperation, for example in
reaching, grasping, and pouring tasks. Figure adapted with permission from Reference 10.
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Supervised learning models have also been used to infer intent from human corrective ac-
tions. In the work by Jin et al. (16), the human only needs to give a rough directional correction
throughout the robot’s operation. The robot’s trajectory is modeled as optimizing a cost function
specified by a weight vector over features. Each directional correction defines a hyperplane con-
straining the robot’s weight vector search space, which the robot uses to adjust its cost function
for future trajectory calculations.

2.4. Neural Network Models

In recent years, many researchers have turned to varieties of neural network architectures for the
task of mapping observations to goals and intents. While neural networks can be categorized as a
form of supervised learning, the high prevalence of these models in recent years merits a section of
their own.

Neural network models can be used to predict locations, as in the work of Choi et al. (13), which
deals with human-to-robot object handover through a shared workspace. The authors trained an
RNN by taking as input the human’s arm pose and the intersection of the human’s gaze with
the workspace. The network’s output was a probabilistic map across the workspace of the object’s
placement location (Figure 3). When the uncertainty around the goal drops below a threshold,
the robot finalizes a definitive action toward the inferred handover position. Hu et al. (49) also
used neural networks to infer pointing gestures. They additionally classified different types of
hand configurations to distinguish between grasp intents for the robot.

Instead of inferring the goal from the user’s trajectory, Urkmez & Bozma (50) used pointing
gestures for goal inference. They developed a learning model that utilizes convolutional neural
networks to detect hands from RGB data and classify observations into pointing gestures. Their
method uses hand geometry information to estimate the pointing direction toward the intended
goal object, offering an intuitive means of goal inference.

In another example of using neural networks, Schrum et al. (17) interpreted intents from cor-
rective actions. They started by assuming that humans have personal idiosyncrasies that drive the

Figure 3

A recurrent neural network learns the mapping from the human’s arm pose and gaze—table intersection to
the predicted object placement position. Figure adapted with permission from Reference 13.
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form of their feedback and suggested learning the mapping between the individual feedback style
(e.g., anticipatory or delayed) and the intended corrective feedback by learning a personalized
embedding in a bidirectional LSTM model.

There are many examples of using existing neural network architectures for visual or audi-
tory recognition and transferring them into the human-robot collaboration domain. For example,
Zhuang et al. (12) used an inflated 3D convolutional network architecture (51) for human action
prediction in a collaborative IKEA assembly task. Cui et al. (52), in turn, proposed to convert nat-
ural language utterances (e.g., “pick up the book”) and corrections (e.g., “no, to the left!”) into
demonstrated trajectories in a shared autonomy domain. They developed a mapping from states,
joystick inputs, and language utterances to robot actions. To account for variations in natural
language utterances, they used a frozen bidirectional encoder representations from transformers
(BERT)-type model, which maps utterances to the nearest training examples.

In summary, there are three major approaches used for robots to infer a human’s intent or
goal. Bayesian methods calculate posterior probabilities for different intents given observations;
these methods rely on assumed prior and conditional probability distributions that tie intentions
to observations. Dynamic Bayesian processes, most commonly variations on POMDPs, model
the uncertainty about the human’s intentions as a simultaneous belief inference and policy se-
lection problem; using this approach, robots can infer human goals and strategies and use these
inferences to plan optimal actions. Finally, supervised learning methods, including conventional
parametric and nonparametric methods as well as neural network models, attempt to directly map
observations to intentions using training data. Each of these methods can also be used to interpret
corrective actions rather than directly infer a specific intent.

3. INFERRING COLLABORATIVE FEATURES

So far, we have discussed ways in which a robot can make inferences about the human collaborator’s
intention or goal. In many cases, however, researchers study how to infer or predict a specific
feature of the human’s internal state to improve the collaboration. For example, a system could
try to model a human’s trust in the robot, the human’s capabilities, or the human’s level of fatigue.
Each of these could then be used to predict future human activity or guide the robot’s actions
toward a more successful collaboration. This section discusses examples of work that deals with
inferring such collaborative features.

3.1. Trust in the Robot

The trust a human has in a collaborative robot is key to the success of the human-robot team, as
it can reduce interventions in the robot’s operation, reversals by the human, and delays. This has
led many researchers to propose ways to model human trust in robots and to use it in subsequent
robot action selection.

Early on, Lee & Moray (53) found that an autoregressive moving-average vector model can
predict almost 80% of the variance of experimentally obtained trust-in-machine ratings, using
machine failures and performance rates as predictors. In recent years, trust in the robot has usually
been estimated as a temporally evolving metric through a dynamic probabilistic model. In their
seminal work, Xu & Dudek (54) tested the relationship between the trust an operator has in an
unmanned aerial vehicle and several predictors, like human intervention events and robot errors,
leading them to propose a dynamic Bayesian network that encodes these relationships and their
evolution over time. The model’s parameters were learned via expectation—maximization. Based
on these findings, many researchers today rely on robot errors and human interventions as key
variables to track when estimating human trust in a machine.
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Once a robot has a model of trust evolution, it can use this inference to either engage in trust-
repair behavior or utilize trust in other ways to improve human-robot collaboration. We refer the
reader to Zahedi et al.’s (55) excellent review of the trust-aware planning literature.

In many cases, researchers use a POMDP formulation to integrate the evolution of human
trust with the choice of the robot’s trust-based policy. For example, Chen et al. (56) described
such a POMDP that allows the robot to maintain a belief state about the human trust based on
observable variables such as robot performance and human actions. The trust variable is mod-
eled as a probabilistic dynamic model dependent on previous trust and robot performance. Guo
et al. (§7) also used a POMDP but proposed a more nuanced model of trust evolution via a beta
distribution with parameters that change based on the robot’s performance. Azevedo-Sa et al. (58)
extended the simple scalar probabilistic models of trust to separately track trust across a set of
agent capabilities, rather than just overall trust in the robot’s performance.

While much of the trust-related human inference work is concerned with estimating the trust
the human has in the robot, Wang et al. (59) conversely described a human trustworthiness mea-
sure that is calculated from a combination of human features, including their position, velocity,
acceleration, and change in applied force.

3.2. Capabilities

Whereas trust in the robot is linked mostly to the robot’s performance, researchers have also
worked on modeling various aspects of the human’s collaborative capabilities, such as their
expertise and availability. This can help predict human behavior and aid in robot decision-making.

Recently, Carreno-Medrano et al. (60) proposed a framework where human expertise is repre-
sented by a parameter in a maximum entropy policy. This policy guides the human’s trajectory by
maximizing the likelihood of actions chosen based on the internal objective. Through Bayesian
inference and analysis of demonstrated trajectories, the researchers estimate this human expertise
parameter.

Since human capabilities can vary over time, Liu et al. (61) investigated the learning curve of
individuals as they acquire proficiency in a given task. They proposed a model that describes the
learning curve using an exponential function of the form y = ¢ + ke=#, where i is the number of
repetitions and ¢, k, and B are individual-specific parameters. These parameters are inferred online
using an extended Kalman filter, capturing the learning rate and the potential for improvement. By
tracking the learning curve, this method constructs robust schedules and optimizes task allocations
based on an individual’s proficiency level.

Some research takes a less agnostic view of human capabilities and instead relates them to
specific cognitive traits. Kolb et al. (62) pretested participants on two traits: retaining situational
awareness and modeling network structure. They demonstrated that the latter can effectively
predict performance in tasks related to multirobot network management.

However, mere capability might not be enough to be a useful collaborator. The human also has
to have a willingness to collaborate. Nanavati et al. (63) therefore attempted to infer how helpful a
bystander would be when a robot needs to ask for help. Their method looks at inherent helpfulness,
as well as the human’s instantaneous busyness and previous interactions with the human, and uses
a general linear mixed model to predict helpfulness. The robot then uses a POMDP formulation
to plan under the uncertainty of this inference.

3.3. Workload, Fatigue, and Frustration

On the converse side of human capabilities, researchers have also explored the estimation of neg-
ative features of humans collaborating with robots, including workload, fatigue, and frustration.
These phenomena can be related to physical factors, which may increase the risk of injury, or to
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cognitive factors, which may lead to lower technology acceptance. Modeling and countering these
features can help increase the effectiveness of a collaborative task.

Estimating physical workload is often done using either musculoskeletal models or ergonomic
posture models. Messeri et al. (64) used a deep neural network to learn a mapping from human
motion to muscle activation in order to predict how muscles activate during task execution. Their
method uses this mapping to estimate the physical fatigue accumulated by a worker. This model
is then used to dynamically allocate tasks between a human and a robot to minimize physical
fatigue for efficient human-robot collaboration. El Makrini et al. (19) estimated physical workload
using virtual spring systems that generate torques corresponding to the deviation of the human
skeleton kinematic chain from standard human ergonomic postures, then used hierarchical finite-
state machines for role allocation based on this physical workload estimation.

For cognitive workload estimation, researchers have generally used nonverbal communication
such as gaze, body language, and physiological signals. In an example of the latter, Lagomarsino
et al. (65) used electrocardiograms during human-robot collaboration. They monitored the
mean interval between two consecutive heartbeats over a time window along with the intervals’
variation over time to estimate the cognitive workload. This estimate was then used to adapt
the execution time and smoothness of robot trajectories. Kalatzis et al. (66) also used heart-
rate variability as an indicator of cognitive workload or fatigue. In their work, machine learning
models, including support vector machines, k-nearest neighbors, logistic regression classifiers,
AdaBoost, and random forests, map heart rate to fatigue during a human-robot collaborative
surface-polishing task.

Finally, Mohamed etal. (67) showed that incorporating thermal imaging can improve inference
about a user’s frustration over just using RGB facial images. They used a k-nearest-neighbors
approach as a supervised learning inference method.

In summary, inferring specific features about the human can be important for human-robot
collaboration. In many cases, features such as trust in the robot and human capabilities are inferred
and simultaneously used in planning via dynamic probabilistic models such as POMDPs. When
inferring negative features, such as workload or frustration, researchers tend to employ supervised
learning methods that often take into account biological models and use biometric measures as
input variables.

4. PREDICTING HUMAN MOTION

So far, we have discussed work that tries to infer something about the human’s unobservable in-
ternal state. In many cases, however, researchers in human-robot collaboration are interested in
detecting and predicting the human’s physical motion through space. While this process of infer-
ence and prediction is sometimes tied to a model of intentions or goals, in other cases it is treated
as a direct prediction problem, which does not take an intentional stance.

A variety of approaches have been proposed to tackle this prediction problem. We divide the
discussion into two categories. First, deterministic methods make specific future predictions from
past positional data, mostly using supervised learning. In recent years, these function approxi-
mation approaches have generally converged on neural network models. The second category,
probabilistic predictions, includes research that explicitly models the uncertainty inherent to
the motion prediction task. These works study methods to calculate probability distributions of
possible movement predictions for the robot to take into account.

In some cases, the methods used in this section predict momentary motions of the human. In
other works, the prediction is made over longer horizons and full trajectories.
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Figure 4

A robot traces a person’s arm in a bathing task using a neural network model that maps measurements from the capacitive sensor
mounted on the robot to the human’s pose. Figure adapted with permission from Reference 69.
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4.1. Deterministic Predictions

Predicting motion can be done using simple regression methods. Nguyen & Xie (68), for example,
predicted fingertip trajectories during human arm reaching movements using regression learning
on a five-parameter logistic model. This proved to be more effective in representing natural fin-
gertip trajectories than a commonly used minimum-jerk model. MDPs are also sometimes used to
model motion trajectories. For instance, Bandyopadhyay et al. (28) combined intention inference,
motion prediction, and planning in an MOMDP formulation.

Today, however, researchers are increasingly using neural networks to estimate the human’s
position and predict their motion. For example, Erickson et al. (69) used a fully connected neu-
ral network to infer the pose of a human limb based on a window of measurements from a
robot-mounted capacitive sensor. This method offers a noninvasive and real-time solution for
understanding human limb movements and can allow a robot to trace a person’s arm in assis-
tive tasks, such as bathing a patient (Figure 4). Ondras et al. (70) have used a multichannel deep
convolutional neural network to predict mouth-opening timing for taking a bite in robot-assisted
feeding in a social-dining scenario. They used features such as gaze, head pose, arm gestures, and
speaking status from other diners to predict the bite timing of the user being fed.

In comanipulation tasks, researchers have combined information on the human skeleton with
information on the manipulated objects. Wan et al. (71) trained a graph convolutional neural net-
work that uses features of human motion and of manipulated objects to predict human motions.
The network was trained from videos of human actors manipulating objects of different properties.
The benefit of using a graph convolutional neural network is that it can incorporate contextual
information about the human, objects, and interactions between the two, leading to more accurate
predictions. In related work, Laplaza et al. (14) used a multihead attention architecture that com-
bines the human motion, the robot end effector, and the position of obstacles to predict human
motion in a handover task.

In addition to the above methods, RINNs have also been used to predict human motion. An
example is the social LSTM approach by Alahi et al. (72), which pools together several LSTM
networks to account for multiple humans moving in the same space.

Researchers have also integrated neural networks that structure low-level human motions into
hierarchical approaches. Le et al. (7) combined low-level and high-level intention prediction by
first learning a high-level goal policy using IRL and then implementing a goal-conditioned RNN
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to generate a series of complete body trajectories that correspond to the high-level goals. This ap-
proach allowed them to predict longer-trajectory sequences that represent sequential collaborative
behavior.

4.2. Probabilistic Predictions

Whereas the above inference and prediction methods try to find a best-guess outcome of the
model, a robot can also explicitly model the uncertainty inherent in the prediction. Chang
etal. (73), for example, observed that users approached a robot’s end effector in a linear motion and
applied a first-order linear system to model the approach dynamics; a Kalman filter then provides
continuous estimates of the human pose while representing uncertainty in the estimate through
a covariance matrix of a Gaussian distribution. Thompson et al. (26) used a grid-quantized prob-
abilistic map to predict human motion in a social navigation setting, whereas Kollmitz et al. (30)
devised a Gaussian prediction model for social navigation and translated it into a social cost map
for the robot to follow.

To model more complex motion dynamics, one approach used by researchers is the utilization
of encoder—decoder architectures. Yasar & Iqbal (74) employed an encoder-decoder architec-
ture that takes into account information on the human’s position, velocity, and acceleration. The
encoder captures the input information, while the autoregressive decoder generates predictions
via the latent representation summarizing the observation history. This approach not only en-
ables the model to make longer-horizon predictions but also includes an interpretable latent
distribution.

While encoder—decoder architectures can be useful for predicting motion dynamics and rep-
resenting lower-dimensional information in a probabilistic manner, it is equally important to
consider the uncertainty associated with future predictions, especially when human safety is a
concern. GPs have emerged as a popular model for probabilistic prediction due to their capacity
to represent uncertainty and make predictions even with limited data.

Lietal. (75) proposed such a GP-based approach, assuming that human motion is smooth with
respect to a reproducing kernel in Hilbert space. By integrating motion prediction into a model
predictive controller in an assistive dressing scenario, their method ensured safety while assisting
the human. Similarly, Jin et al. (76) employed GPs to model human hand velocities in a comanip-
ulation task. Their approach integrated the predicted velocities into a controller that combines
a proactive policy, optimizing task execution using human velocities, with a conservative policy
focused on safety. The balance between these policies was achieved by incorporating uncertainty
estimates encoded as a covariance matrix from the learned GP model.

In addition to predicting hand velocities, the estimation of human posture is crucial in coma-
nipulation tasks for ergonomic considerations. Vianello et al. (77) tackled this problem by formally
defining it as the modeling of the distribution of the null space of the Jacobian of a human skeleton
with articulated joints. They utilized a GP to capture the distribution, resulting in a probabilistic
estimation of future postures that satisfy the kinematic constraints imposed by the manipulated
object operated by both the human and the robot.

In summary, in human-robot collaboration, many motion prediction approaches that do not
explicitly model the internal state, intent, or goal of the human take a supervised learning approach.
"This is in contrast to traditional motion prediction tasks that do not involve humans, which often
resort to simpler physics-based or kinematic models. Researchers in human—robot collaboration
appreciate thata human’s future trajectory is not easily captured by a physics-only approach. Today,
most of these supervised learning methods converge on neural-network models.

While many of the works mentioned above make a best-guess prediction about the human’s
future trajectory, some also acknowledge the need to model the underlying uncertainty about
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these predictions. This is most often achieved by incorporating uncertainty-capturing representa-
tions in the model, for example, via GPs, covariance matrices, or latent representations in a neural
network.

5. CHALLENGES WHEN REASONING ABOUT HUMAN INTENTIONS

In the sections above, we have focused exclusively on inferences and predictions about humans.
That said, the computational methods that were discussed build on a large literature of robot
estimation and planning methods outside the human domain, specifically those that deal with
uncertainty. In the general robotics literature, this uncertainty is related to the robot’s imperfect
sensors and actuators, as well as to the uncertainty about the environment. In this section, we
discuss how and why reasoning about humans, particularly about their intents and future actions,
adds unique challenges on top of those generally considered in robotics.

5.1. Humans Are Complex and Hard to Predict

While any attempt to infer future states and to plan for them entails uncertainty, humans
are—as the human-robot interaction adage goes—a special kind of environment. Humans are
autonomous agents, driven by a host of internal, societal, cultural, and idiosyncratic factors, all of
which are difficult to observe or model.

By and large, the human-robot collaboration community has used and extended existing proba-
bilistic inference, prediction, and planning models to work with and around humans. These models
rely on simplifications, which are less applicable to humans than to nonliving processes. To inte-
grate human-specific aspects of internal or predictive processes, researchers have often proposed
the ad hoc integration of social or psychological constructs into their computational model. For
instance, MDP models can assume that humans have idiosyncratic preferences and decide their
actions by maximizing a reward function based on those preferences (15, 39). Social constructs
such as competition, cooperation, or coercion can also be built into an MDP model (78). Tem-
poral changes in human behavior can be explained using learning curves (61), assumed cognitive
states such as trust (56), or affective states such as frustration (67).

Still, the complexity underlying human unpredictability means that inferences often can be
made only in highly limited domains, such as choosing one of a number of possible goals, and
predictions generally operate on a short time horizon. These limitations arise in part from the
inherent disparities between computational modeling frameworks and real human behavior. A no-
table example is the inability to succinctly represent human sensory experiences within a Markov
process state (79). Human perception often involves the recall of past experiences triggered by
stimuli, invalidating the Markov assumption. Additionally, the reward function mechanism often
makes assumptions about rationality, without acknowledging that rationality and expertise can be
highly subjective and contextual. Existing models also fail to account for habitual or impulsive be-
haviors that humans exhibit, further highlighting the divergence between existing computational
models and the complexity of human behavior.

5.2. Humans Are Adaptive

A further complication in the challenge of reasoning about humans is that humans tend to adapt
to a changing situation. As a result, any action on a collaborative robot’s part is likely to be taken
into account by a human counterpart. Changes in the environment that are external to humans
may also affect future human states and actions. Any model or method that does not take into
account the effect of the robot’s action or changes in the environment on the human’s internal
state is unlikely to function correctly when the human adapts.
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One approach for modeling the adaptation of human behavior in human-robot collaboration
is through models that capture how human intent changes over time. For instance, Nikolaidis
etal. (80) modeled the human as a bounded-memory agent who infers the strategy being followed
by the robot based on a window of past observations. Subsequently, the model allows for the human
to adapt and switch to another strategy with a certain probability. Similarly, a method devised by
Parekh et al. (81) learns from a history of past interactions how the human’s strategy evolves over
time. By dynamically adapting to the changing human behavior, the robot can optimize its own
actions to enhance the overall performance of the collaboration.

While these adaptive models can capture the observed changes in human states and actions,
they do not explain why such changes occur and thus have limited predictive power across different
tasks. An alternative route is to attempt to model why human actions change as a function of a
changing human internal state. For instance, we have discussed previously how Chen et al. (56)
modeled the dynamics of human trust, as the human observes the robot succeeding or failing in
actions of different risk. Liu et al. (61) modeled the human’s learning of a task using an exponential
function and leveraged this information to schedule team activities. Tian et al. (82) modeled the
human’s learning of the robot’s dynamics as a set of time-varying features. By accounting for the
evolving human perception, the robot can, in turn, influence the human’s learning process.

5.3. Intentions Are Complex and Ill Defined

An additional challenge lies in the lack of a clear definition of what intents are, especially compared
with more straightforward action or motion prediction. If a computational model can accurately
predict future spatial trajectories, one can say that it is successful in its task. The question of
inferring intents, in contrast, confronts a deeper challenge, as the very notion of intent is complex
and not well defined.

It is useful to consider the work reviewed here in light of the earlier belief-desire-intention
(BDI) models popular in the 1990s (83, 84). These models owe their formulations to philosophical
discussions on the nature of intent cognition in the 1980s (85). BDI models attempted to build
systems of computation that could model the relationships between events and internal states rea-
soning about these events—namely, beliefs, desires, and intentions. While the systems built under
this framework had clear limitations (for a discussion, see 86), they still strove for a theoretically
complex and nuanced understanding of intentionality. The models included, for example, false
beliefs, long time horizons, and conditional intents.

Today’s human-robot collaboration literature takes a decidedly more pragmatic approach, and
most of the historical lineage of intention modeling has been replaced by strictly probabilistic
models, making use of the vastly increased sensor capability and computational power available
today. At the same time, the computational notion of intent as understood in human-robot col-
laboration does not rise to the complexity that human intent encompasses. In most of the work
reviewed here, intents are reduced to a selection of one of several goals, a spatial position, or
a selection of one of a limited number of strategies. In reality, intents can span a much richer
space, including plans that can diverge into different alternatives given specific outcomes, or weak
preferences over actions and results. The research community would be well served by a more
thoughtful and nuanced definition of intents in the context of human-robot collaboration.

6. FUTURE DIRECTIONS

In light of the above, research in intent inference and action prediction in human-robot collabo-
ration can expand its boundaries in several ways. Robots could learn to reason about intents over
longer time horizons, probably necessitating more complex models and higher-level symbolic
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representations about how human intent is structured. More research is also necessary to build
models and systems that can account for the mutual adaptation of human and robot when they
collaborate. Finally, the community would benefit from better definitions of intent and broadly
agreed-upon benchmarks of success.

6.1. Longer Time Horizons

Most of the intent-related work in human-robot collaboration deals with short time horizons,
mostly reasoning about the immediate next action or activity. The BDI architectures of the 1990s
had higher ambitions, trying to model and reason about enduring intents and events further in
the future than the work we surveyed here.

Perhaps the high reliance on probabilistic models that reason over high-frequency sensor data
contributes to the short-term nature of much of the current work in intention inference. That
said, some recent work uses computational architectures that are able to reason about states across
longer timescales, such as the work by Le et al. (7) discussed in previous sections, which combines
IRL with goal-conditioned RNNs. Another example is recent work by Patel & Chernova (87)
that uses a graph representation of object relations along with a generative neural network to
predict object state configurations up to several hours into the future. These predictions can be
used by a robot to proactively assist a human in their daily tasks. The dataset used to train these
models also includes human activity patterns over days-long periods of time and could be used
for longer-horizon intention inference and action prediction in future work. Further develop-
ing inference methods based on such models that make room for longer-term predictions is a
worthwhile direction for collaborative robotics.

6.2. Modeling Mutual Adaptation

A robot cannot assume that the intents of a human are static. It is more likely that the human
will adapt to the robot’s behavior and to changes in the environment. A promising future research
direction would therefore be to develop models and systems that take the human adaptation into
account and can provide for robots to adapt their inferences, predictions, and plans accordingly.

Tabrez et al. (5) presented a survey of mental modeling techniques for human-robot teaming
in which second- and higher-order models address some of this recursive reasoning. Some re-
searchers have taken this path using multiagent MDPs, as they can explicitly model the plans and
reward functions of both agents (see Section 5.2). Others have used POMDP formulations that
include hidden state features that can change over time and be used for the robot to find optimal
strategies for adapting to humans. At least part of the solution could be in designing expressive,
legible, and explainable robot actions that would guide the human to adapt in ways that are more
predictable and productive.

At any rate, robust models for intention inference and action prediction will have to consider
the dyadic adaptive relationship unfolding during the human-robot collaboration. To do so, it may
be necessary to consider human models that go beyond the traditional assumptions of bounded
rationality and noisy rationality to represent a wider range of real-world human—robot interaction
behaviors.

6.3. Better Definitions and Benchmarks

Finally, the complex and ill-defined nature of human intentions necessitates more discussion
around what researchers mean when they presume to reason about intents. In contrast to early
work, which attempted to formalize intentions through calculus relations over events, beliefs,
goals, and actions, the current human-robot collaboration literature takes a looser view toward
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defining intentions. In many cases, intentions are synonymous with strategies, goal locations,
policies, or future trajectories. Having a clearer understanding of what kind of intention is being
modeled and inferred would clarify the discourse in this literature.

Clear definitions could also lead to benchmarks for intention inference that can help the com-
munity compare approaches and measure progress. Usually, researchers use task success or other
metrics related to collaborative outcomes as proxies for successful reasoning about intentions.
While it is difficult—and perhaps impossible—to measure a human’s internal state directly, it
would still be useful to have some robust way to assess the accuracy of intention inferences.
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