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ABSTRACT
We present a novel theoretical formulation for performing quantum dynamics in terms of moments within the single-particle description.
By expressing the quantum dynamics in terms of increasing orders of moments, instead of single-particle wave functions as generally done
in time-dependent density functional theory, we describe an approach for reducing the high computational cost of simulating the quantum
dynamics. The equation of motion is given for the moments by deriving analytical expressions for the first-order and second-order time
derivatives of the moments, and a numerical scheme is developed for performing quantum dynamics by expanding the moments in the
Taylor series as done in classical molecular dynamics simulations. We propose a few numerical approaches using this theoretical formalism
on a simple one-dimensional model system, for which an analytically exact solution can be derived. The application of the approaches to an
anharmonic system is also discussed to illustrate their generality. We also discuss the use of an artificial neural network model to circumvent
the numerical evaluation of the second-order time derivatives of the moments, as analogously done in the context of classical molecular
dynamics simulations.
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I. INTRODUCTION

Over the past few decades, explicit time-dependent simu-
lations have become increasingly popular for investigating non-
equilibrium quantum dynamics of electrons in chemistry, mate-
rials science, and condensed matter physics.1–3 In particular,
the real-time propagation approach4–6 to time-dependent den-
sity functional theory7 (RT-TDDFT) has significantly advanced
over the past decade8,9 for investigating various physical phe-
nomena, including optical excitation,10–12 electronic stopping,13–15

charge transfer dynamics,16–18 laser-induced water splitting,19–21

electronic circular dichroism,22–25 and many other electronic exci-
tation phenomena.1,26,27 Within the Kohn–Sham (KS) ansatz, the
quantum dynamics of electrons are simulated by propagating a set
of single-particle orbitals using time-dependent KS (TD-KS) equa-
tions.8 The quantum dynamics is invariant with respect to the
unitary transformation of the single-particle orbitals, and this gauge
freedom has been exploited for achieving numerical efficiency of
computationally expensive simulations28 as well as for gaining phys-
ical insights from simulations of complex heterogeneous matter.13

In particular, the gauge transformation into spatially localized maxi-
mally localized Wannier functions (MLWFs)29–31 has proved quite
useful in RT-TDDFT simulations not only for efficiently imple-
menting advanced hybrid exchange–correlation approximations8

but also in studying topological phase in the context of Floquet
engineering.32,33

In parallel, the emerging field of machine learning has spurred
great interest in employing artificial neural networks (ANNs)
for devising efficient schemes for performing quantum dynamics
simulations,34–41 as ANN models have effectively been utilized in
the context of classical molecular dynamics (MD) simulations.42–45

Recent developments have focused on simulating electron dynamics
by separating the real and imaginary parts of the wave function.46–49

Secor et al., for example, introduced a numerical method to prop-
agate wavepackets using ANNs, and proof-of-principle demonstra-
tions were presented in their recent work.46

These recent developments in the fields motivated us to exam-
ine how quantum dynamics based on single-particle wave functions
like those of the TD-KS equation can be reformulated as the dynam-
ics of the moments with increasing orders. Some earlier studies
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have considered the Heisenberg equation of motion in terms of the
position and momentum operators in a related context.49–51 In this
work, the equation of motion for moment propagation is derived,
and numerical demonstrations are provided for simple proof-of-
principle systems, where analytical solutions can be derived. We
also use an anharmonic potential example to show the generality
of the numerical methods based on the new theoretical formula-
tion. We further propose how machine-learning approaches, such
as ANN, can be conveniently used to perform efficient quantum
dynamics simulations with the newly developed moment prop-
agation theory, analogously to the classical molecular dynamics
simulations.

II. THEORETICAL FORMULATION
Here, we develop the theory of moment propagation. We

express single-particle wave functions in terms of moments of
increasing orders, and we derive the equation of motion such
that the Taylor series expansion can be used for propagating the
moments in time. This formalism allows us to devise a numerically
convenient method for performing quantum dynamics simulation
using the single-particle description, such as the TD-KS equation in
RT-TDDFT.

A. Equation of motion for moments
We consider the situation in which quantum dynamics of a

many-particle system is described by the propagation of single-
particle wave functions via a Schrödinger-like equation, as done

through formulating the TD-KS equation. In order to keep the dis-
cussion centered on the theoretical formulation, lengthy mathemat-
ical derivations are given in Appendices A–I. Instead of expressing
a single-particle wave function as ψ(r, t), we explicitly write it as
ψ(x, y, z, t), since the orders of moments are generally not the same
in the three Cartesian coordinates. The central quantity for our the-
oretical formulation is the moments of single-particle probability
density, given by

�xaybzc�(t) =� xaybzcn(x, y, z, t)dxdydz, (1)

where a, b, and c are the non-negative integers used to denote
the a-th, b-th, and c-th moments in the x, y, and z directions,
respectively, of the Cartesian coordinate space and n(x, y, z, t) is
the particle (probability) density, which is the square modulus of
the single-particle wave function [i.e., n(x, y, z, t) = �ψ(x, y, z, t)�2].
Moments are widely used as a statistical quantity to charac-
terize features of probability functions. In order to propagate
moments, the time derivatives of the moments need to be
derived from the time-dependent Schrödinger equation (TD-SE) or
alike,

i
@ψ(x, y, z, t)

@t
= −1

2
∇2ψ(x, y, z, t) +V(x, y, z, t)ψ(x, y, z, t), (2)

where ψ is the time-dependent wave function and V specifies the
time-dependent potential. The first-order time derivative of the
moments is given by (see Appendix B)

d�xaybzc�(t)
dt

=� xaybzcṅ(x, y, z, t)dxdydz

= − i
2 � �∇2�xaybzc�n + 2∇�xaybzc� ⋅ ∇ψψ∗�d3r

= −i� �axa−1ybzc@xψψ∗ + byb−1xazc@yψψ∗ + czc−1xayb@zψψ∗ + a(a − 1)
2

xa−2ybzcn(x, y, z, t)
+ b(b − 1)

2
yb−2xazcn(x, y, z, t) + c(c − 1)

2
zc−2xaybn(x, y, z, t)�dxdydz. (3)

Here, we used the simplified notation such that @g ≡ @
@g for brevity. Similarly, the second-order time derivative of the moments (see

Appendix C) is

d2�xaybzc�(t)
dt2 = � Re�−∇(xaybzc) ⋅ ∇Vn + 1

4
∇4�xaybzc�n − (∇⊗∇�xaybzc� ⋅ (∇⊗∇ψ))ψ∗�d3r

= Re�−� �axa−1ybzc@xV(x, y, z, t)n(x, y, z, t) + bxayb−1zc@yV(x, y, z, t)n(x, y, z, t)
+ cxaybzc−1@zV(x, y, z, t)n(x, y, z, t)�dxdydz −� �a(a − 1)xa−2ybzc@2

x ψψ∗ + 2baxa−1yb−1zc@x@yψψ∗

+ 2caxa−1ybzc−1@x@zψψ∗ + b(b − 1)yb−2xazc@2
y ψψ∗ + 2cbyb−1xazc−1@y@zψψ∗ + c(c − 1)zc−2xayb@2

z ψψ∗�dxdydz

+ a(a − 1)�(a − 2)(a − 3)
4

�xa−4ybzc� + b(b − 1)
2

�yb−2xa−2zc� + c(c − 1)
2
�zc−2xa−2yb��

+ b(b − 1)�(b − 2)(b − 3)
4

�yb−4xazc� + c(c − 1)
2
�zc−2xayb−2�� + c(c − 1)(c − 2)(c − 3)

4
�zc−4xayb��, (4)

J. Chem. Phys. 160, 064113 (2024); doi: 10.1063/5.0174669 160, 064113-2

Published under an exclusive license by AIP Publishing

 13 February 2024 14:25:45

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where the shorthand notation @g@r ≡ @2

@g@r is used for brevity.
Higher-order derivatives can be obtained in principle, but their util-
ity in practice is limited because of the mathematical complexity of
the resulting expressions. In order to remove explicit reference to
the single-particle wave function in Eqs. (3) and (4), we still need
to express the wave function and its derivatives in terms of the
moments.

B. Single-particle wave function and moments
The expressions for the first-order and second-order time

derivatives of the moments [Eqs. (3) and (4)] contain an explicit
dependence on the wave function. We show here that the explicit
dependence can be removed by expressing the wave function in the
polar form as

ψ(x, y, z, t) =�n(x, y, z, t)eiθ(x,y,z,t), (5)

where n(x, y, z, t) is the particle density and θ(x, y, z, t) represents
the phase.

1. Particle density using cumulants
via Edgeworth series

Instead of using the moments directly, it is convenient to trans-
form them into a cumulant representation so that the Edgeworth
series52 can be employed for easily evaluating properties such as the
particle density. While the following formalism is applicable in three
dimensions, we focus here on a one-dimensional case, x, for clarity.
The cumulants are given in terms of the moments as53

κa = �xa� − a−1�
i=1
�a − 1

i − 1
�κi�xa−i�, (6)

where κa is the a-th cumulant and �xa� is the a-th moment. We
express the particle density using cumulants via the Edgeworth
series by expanding in the basis of Cartesian Gaussian functions.54,55

We do so by first generating the n-th order probability density
function,

pd f n(x) = z(x)��1 + n−2�
j=1

�
�
{Pj}�{Pjm}
�
�
∞�
i=1

1
ki!
� λi+2(i + 2)!�

ki�
�Hes(x)��

�
�,

(7)

where {Pj} is the set of all positive integer partitions of j. Integer
partitions of an integer j are all possible ways to add positive integers
to j. For example, if j = 3, then the integer partitions include 1 + 1 + 1= 3 and 1 + 2 = 3. For each Pj, these combinations are denoted by
P jm , where m is the index of the partition in the set. For each m,
Eq. (7) contains several terms. First, λn is given by

λn = κn(√κ2)n , (8)

where κn is the n-th order cumulant. Second, integer ki in Eq. (7)
is the count of i within each integer partition such that j = ∑i iki.
For instance, for the case of the integer partition P j=3m=1 :1 + 1 + 1,
we have k1 = 3 and k≥2 = 0. For the integer partition P j=3m=2 :1 + 2,
we have k1 = 1, k2 = 1, and k≥3 = 0. Based on the integer value ki, we
obtain another integer value s as

s = j + 2
∞�
i=1

ki. (9)

For example, for the integer partition, P j=3m=1 :1 + 1 + 1(i = 1), we
have s = 9. The Hermite polynomial Hes(x) in Eq. (7) is then
given by

Hes(x) = s!
� s

2 ��
j=0

(−1)jxn−2j

2j(n − 2j)!j! , (10)

where �s�2� denotes the floor function of s�2.56 We use Gaus-
sian functions, z(x) = 1√

2π
exp (− x2

2 ), as the basis in Eq. (7). The
Edgeworth expansion then gives the particle density as

n(x) = pdf � x−κ1√κ2
�√

κ2
, (11)

where the probability density function pdf (x) is given by a n-
th order probability density function pdfn(x) using Eq. (7). This
procedure effectively expresses the particle density, n(x), from the
moments �xa�.
2. Phase from the moments

In addition to the particle density n(x, y, z, t) as discussed
above, the phase θ(x, y, z, t) (which is uniquely determined up to
a constant) in Eq. (5) or rather its spatial derivatives need to be
related to the moments.57 The derivative of the phase with respect
to a particular coordinate u can be written (see Appendix D) as

@θ(x, y, z, t)
@u

= −n(x, y, z, t)−1� u

−∞ αu(r′, t)du′, (12)

where αu ≡ i
2(@2ψ

@u2 ψ∗ − @2ψ∗
@u2 ψ) is used. Here, the integration vari-

able u′ corresponds to the same coordinate as u, and we used r′ to
indicate that the function depends on all three coordinates {x, y, z}.
The phase can be obtained as

θ(x, y, z, t) = ϕ +� x

0

@θ(u, 0, 0, t)
@x

du +� y

0

@θ(x, u, 0, t)
@y

du

+� z

0

@θ(x, y, u, t)
@z

du, (13)

where ϕ is an arbitrary constant. It is also useful to note that the
time derivative of the particle density can be expressed in terms of
these functions as ṅ = αx + αy + αz (see Appendix E). Instead of the
wave function, αu can be written alternatively using the moment
time derivatives (see Appendix E) as

αu(x, y, z, t) =�
a,b,c

cabc
u (t)d�xaybzc�

dt
@n

@�xaybzc� , (14)

where cabc
u (t) are the coefficients for the moment �xaybzc�(t), and

these coefficients satisfy cabc
x (t) + cabc

y (t) + cabc
z (t) = 1 by construc-

tion. The product of cabc
u (t) and the time derivative of the moments

in Eq. (14) are propagated together. For example, one has (see
Appendix G)
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d
dt
�cabc

x (t)d�xaybzc�(t)
dt

� = −��� (axa−1ybzc@xV(x, y, z, t)n(x, y, z, t))dxdydz

+��� �a(a − 1)xa−2ybzc�@xn(x, y, z, t)2

4n(x, y, z, t) + Lx(x, y, z, t)2

n(x, y, z, t) �

+ baxa−1yb−1zc�@xn(x, y, z, t)@yn(x, y, z, t)
4n(x, y, z, t) + Lx(x, y, z, t)Ly(x, y, z, t)

n(x, y, z, t) �

+ caxa−1ybzc−1�@xn(x, y, z, t)@zn(x, y, z, t)
4n(x, y, z, t) + Lx(x, y, z, t)Lz(x, y, z, t)

n(x, y, z, t) ��dxdydz

− a(a − 1)�(a − 2)(a − 3)
4

�xa−4ybzc� + b(b − 1)
4

�yb−2xa−2zc� + c(c − 1)
4
�zc−2xa−2yb��, (15)

where we define Lx(x, y, z, t) as

Lx(x, y, z, t) ≡ −� x

−∞ αx(r′, t)dx′. (16)

Note that the time derivative of the coefficients cabc
u (t) themselves

are not needed as long as the product of the coefficient and the time
derivative of moments are propagated together as can be done using
Eq. (15) since they enter together in Eq. (14) for obtaining αu(t).

The key point of this section is that the single-particle wave
function, expressed as in Eq. (5), can be given in terms of the
moments and their first-order time derivatives.

C. Time derivatives of moments
Combining the results of Subsections II B 1 and II B 2, we can

now write the first-order and second-order time derivatives of the
moments [Eqs. (3) and (4)] without referring to the single-particle
wave function. The first-order time derivative of the moments is

d�xaybzc�(t)
dt

=� xaybzc(αx(x, y, z, t) + αy(x, y, z, t)
+ αz(x, y, z, t))dxdydz. (17)

The second-order time derivative of the moments is (see
Appendix F)

d2�xaybzc�(t)
dt2 = −��� �axa−1ybzc@xV(x, y, z, t)n(x, y, z, t) + bxayb−1zc@yV(x, y, z, t)n(x, y, z, t)

+ cxaybzc−1@zV(x, y, z, t)n(x, y, z, t)�dxdydz +��� �a(a − 1)xa−2ybzc�@xn(x, y, z, t)2

4n(x, y, z, t) + Lx(x, y, z, t)2

n(x, y, z, t) �

+ 2baxa−1yb−1zc�@xn(x, y, z, t)@yn(x, y, z, t)
4n(x, y, z, t) + Lx(x, y, z, t)Ly(x, y, z, t)

n(x, y, z, t) � + 2caxa−1ybzc−1

× �@xn(x, y, z, t)@zn(x, y, z, t)
4n(x, y, z, t) + Lx(x, y, z, t)Lz(x, y, z, t)

n(x, y, z, t) � + b(b − 1)yb−2xazc�@yn(x, y, z, t)2

4n(x, y, z, t) + Ly(x, y, z, t)2

n(x, y, z, t) �

+ 2cbyb−1xazc−1�@zn(x, y, z, t)@yn(x, y, z, t)
4n(x, y, z, t) + Lz(x, y, z, t)Ly(x, y, z, t)

n(x, y, z, t) � + c(c − 1)zc−2xayb�@zn(x, y, z, t)2

4n(x, y, z, t)
+ Lz(x, y, z, t)2

n(x, y, z, t) ��dxdydz − a(a − 1)�(a − 2)(a − 3)
4

�xa−4ybzc� + b(b − 1)
2

�yb−2xa−2zc� + c(c − 1)
2
�zc−2xa−2yb��

− b(b − 1)�(b − 2)(b − 3)
4

�yb−4xazc� + c(c − 1)
2
�zc−2xayb−2�� − c(c − 1)(c − 2)(c − 3)

4
�zc−4xayb�. (18)
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In practical calculations, many terms in the above-mentioned equa-
tion vanish for the moments of low orders. These analytical expres-
sions will be used later for a numerical demonstration of this
moment propagation theory in Secs. III A and III B.

D. Method of electron potential energy surface
The above theoretical formulation for quantum dynamics in

terms of the moments is exact in principle, but the numerical evalu-
ation of the time derivatives of the moments is highly complicated.
When/if the principle of the energy conservation holds for individ-
ual single-particle wave functions (which is generally not the case
for TD-KS orbitals in the RT-TDDFT simulation), one can derive an
alternative simpler expression. Although it is not universally appli-
cable, such an idea of designing an effective potential energy for
quantum-mechanical particles (in a many-particle system) has been
explored in the literature.58,59 The energy of a quantum mechanical
particle, � = �Ĥ�, can be generally expressed in terms of the moments
such that

�(x, ẋ) = �({xi, ẋi}), (19)

where we used the short-hand notation xi ≡ �xi� and the integer
index i refers to the order of the moment. In principle, the inte-
ger i goes from 1 to ∞, but the dimension of x would be finite in
practice. Equation (19) generally holds despite its unknown analyt-
ical form because the single-particle wave function can be obtained
from the moments and their first-order time derivatives as shown in
Sec. II B. Assuming that this single-particle energy is conserved [i.e.,
�̇(x, ẋ) = 0], we here examine how the second-order time derivative
of the moments can be derived, using a one-dimensional case for
simplicity. Using the chain rule on the variables in � yields

�
k
�@�(x, ẋ)

@xk
ẋk + @�(x, ẋ)

@ẋk
ẍk� = 0. (20)

In certain cases, like the harmonic oscillator model we will discuss
later, the second-order time derivative for a particular order k, ẍk,
depends only on the terms for which the energy derivative is taken
with respect to xk and ẋk. Then, the second-order time derivative can
be solved for each order k using

@�(x, ẋ)
@xk

ẋk + @�(x, ẋ)
@ẋk

ẍk = 0. (21)

Thus, the expression for the second-order time derivative is

ẍk ≡ d2�xk�
dt2 = −@�(x, ẋ)

@xk
�@�(x, ẋ)

@ẋ k
�−1

ẋk. (22)

According to this Electron Potential Energy Surface (EPES) expres-
sion, the second-order time derivatives can also be evaluated from
the energy � by expressing it in terms of the moments and their first-
order time derivatives. When the single-particle energy does not
change in time, this EPES approach [Eq. (22)] is numerically more
convenient compared to the more complicated expression, given by
Eq. (18). Equation (22) shows some similarities to the expression in

classical mechanics, where the second-order time derivative of the
position (i.e., acceleration) is proportional to the spatial derivative of
the potential energy. However, here, quantum effects are accounted
for by an extra term, which would be unity in the classical mechanics
analog.

E. Numerical propagation of moments
Formulating quantum dynamics as the time propagation of the

moments offers a convenient molecular dynamics (MD)-like scheme
without explicitly integrating the TD-SE. The moment propaga-
tion becomes particularly attractive when the single-particle wave
functions are spatially localized, as for those in the MLWF or
simply the Wannier gauge in RT-TDDFT.8,29 In principle, infinite
orders of the moments are necessary if one wishes to reproduce
the exact quantum dynamics by propagating the moments. In prac-
tice, however, essential aspects of quantum dynamics relevant to
calculating many physical properties can be reproduced with the
moments of low orders. For example, the frequency-dependent
dielectric function can be obtained from the dynamics of the first-
order moment of single-particle wave functions in RT-TDDFT,8 and
we anticipate that only a few orders of the moments need to be
propagated for accurately modeling the dynamics of the first-order
moment.

Here, we propose a practical method for performing a numer-
ical simulation using the moment propagation theory developed
above. We restrict our discussion here to a one-dimensional case,
for simplicity. As done in classical MD simulations, the moments
at a future time (i.e., +�t) are Taylor-expanded to the second
order,

�xa�(t + �t) = �xa�(t) + �t
d�xa�(t)

dt
+ 1

2
�t2 d2�xa�(t)

dt2 +O(�t3),
(23)

where the time step �t can be taken arbitrarily small so that O(�t3)
is negligible. In order to employ a numerical integrator for using
Eq. (23), the time derivatives of the moments need to be evaluated.
For many numerical integrators, such as Verlet algorithm for classi-
cal MD simulations, an analytical expression is necessary only for the
second-order time derivatives. When the first-order time derivatives
are also needed as in the velocity Verlet algorithm, they can be cal-
culated numerically from the second-order time derivatives, etc. In
classical mechanics, the second-order time derivative is proportional
to the gradient of the potential energy via Newton’s second law and
it is a function of the position of atoms. For the quantum dynamics,
the moment propagation theory gives the necessary expression for
the second-order time derivatives of the moments in terms of the
moments and their first-order time derivatives. The second-order
time derivatives are evaluated using Eq. (18). Alternatively, the EPES
expression [Eq. (22)] can be used if the single-particle energy is
conserved in the dynamics.

F. Analytical solution for simple harmonic system
In order to demonstrate the moment propagation theory and

examine its feasibility using numerical methods in Sec. III, we use a
simple one-dimensional harmonic potential, V(x) = x2, for which
we can derive the exact analytical solution. We consider a time-
dependent Hamiltonian such that a simple homogeneous electric
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field is applied to the system. While this might be considered a
oversimplified model, note that the dynamics of individual single-
particle wave functions, localized on chemical bonds, are often
confined in such a localized potential well in the MLWF gauge.29

We restrict ourselves to the situation in which the quantum parti-
cle is initially in the equilibrium ground state, and thus, only the
second-order Edgeworth (E2) expansion [i.e., n = 2 for Eq. (11)]
is needed for deriving the analytical equation of motion.54,55,60 The
particle density is given by

n(x, t) = 1�
2π(�x2�(t) − (�x�(t))2) exp�−1

2
(x − �x�(t))2

�x2�(t) − (�x�(t))2 �.
(24)

As a commonly encountered situation in which the light is treated
as a classical electromagnetic field, a spatially homogeneous electric
field is used as the time-dependent external potential that perturbs
the quantum system such that V(x, t) = x2 + c(t)x in the length
gauge. One can find an exact analytical solution for the second-
order time derivatives using the above described theory of moment
propagation, and the second-order time derivative of the first-order
moment (see Appendix I) is

d2�x�(t)
dt2 = −2�x�(t) − c(t), (25)

and, for the second-order moment, we have

d2�x2�(t)
dt2 = −4�x2�(t) − 2c(t)�x�(t)

+ 2
����

d�x�(t)
dt

�2 + 1 + � dS(t)
dt �2

4S(t)
���, (26)

where S(t) = �x2�(t) − (�x�(t))2 is essentially the spread or the vari-
ance of the corresponding single-particle wave function. For the
harmonic oscillator with a homogeneous external electric field, only
the two lowest orders of the moments are necessary to describe the
quantum dynamics exactly. The energy of the quantum particle,
which is equivalent to � for this one-particle system, can be written
(see Appendix I) as

E(t) = �(t) = �x2�(t) + c(t)�x�(t)
+ 1

2

����
d�x�(t)

dt
�2 + 1 + � dS(t)

dt �2

4S(t)
���. (27)

In the context of EPES method discussed in Sec. II D, one could
alternatively use this analytical energy expression [Eq. (27)] to derive
the second-order time derivatives of the moments as shown in
Appendix I. As expected, the EPES method gives the exact same
analytical solutions for the second-order time derivatives of the
moments [i.e., Eqs. (25) and (26)].

III. NUMERICAL DEMONSTRATION
A. Harmonic oscillator potential

A simple one-dimensional system is used here to demon-
strate the numerical methods using the moment propagation theory

described in Sec. II. As a proof-of-principle demonstration, we
consider V(x, t) = x2 + c(t)x. This represents a simple harmonic
oscillator with a time-dependent external electric field applied to the
system using the length gauge in Hamiltonian. We employ a spatially
homogeneous electric field such that

c(t) = �������
0.3 a.u., 0 a.u. < t < 0.45 a.u.,
0 a.u., else.

(28)

The electric field is applied initially to perturb the system for the first
449 time steps (0.45 a.u.), and the system is propagated for a total
of 12 001 time steps (12 a.u.). For this harmonic potential with the
time-dependent electric field, the analytical solution can be derived
as discussed in Subsection II F as the reference for examining the
numerical methods.

For the moment propagation theory (MPT)-based methods, 32
real-space grid points are used as the basis over the spatial range of
7 a.u., and Eq. (23) is used for the explicit time integration with a
time step of �t = 0.001 a.u. using the Newmark-beta method, with
parameters γ = 1

2 and β = 1
8 .61 For the MPT methods, we show the

simulation results using the second-order Edgeworth approximation
(MPT-E2) and the fourth-order Edgeworth approximation (MPT-
E4). Here, the order, n = 2, 4, in the Edgeworth approximation (i.e.,
E2 and E4), corresponds to n in Eq. (7). The second-order time
derivatives are calculated explicitly using Eq. (18). In addition, we
performed the MPT simulation by employing the EPES approach,
in which the second-order time derivatives are calculated from the
energy according to Eq. (22). The energy here is expressed as (see
Appendix H)

E = � V(x)n(x)dx + 1
2 �
���
�@n(x)

@x �2

4n(x) + L(x)2

n(x)
���dx, (29)

where L(x) is given by Eq. (16). In order to evaluate the particle den-
sity here, the second-order Edgeworth approximation is employed,
and we refer to this approach as MPT-EPES-E2. For comparison,
we also perform the standard propagation of the wave function
by directly integrating the time-dependent Schrödinger equation,
which we refer to as wave function theory (WFT). For the WFT
method, the wave function is represented using the real space grids
with 100 evenly spaced points over the same 7 a.u. range as for the
MPT methods. The Crank–Nicholson method was used to numeri-
cally integrate the wave function with a time step of �t = 0.001 a.u.62

In the limit of infinitely dense grid points and an infinitely small time
step, all the methods converge to the exact analytical result for this
particular harmonic potential case.

Figure 1 shows the total energy, E, as a function of time, and
the energy is expected to remain constant after the perturbing elec-
tric field is turned off. Having the exact analytical solution for this
system, we know that the energy change must be �E = 8.771 × 10−3

a.u. in principle if all numerical parameters are fully converged and
computations are performed exactly. With the real-space basis of
32 grid points, the MPT methods (MPT-E2 and MPT-E4) yield �E
values of 8.772 × 10−3 and 8.770 × 10−3 a.u., respectively. The MPT
method with the EPES approach (MPT-EPES-E2) gives a slightly
smaller value of �E of 8.766 × 10−3 a.u. Compared to the MPT-E2
method, the MPT-EPES-E2 method gives a larger error because
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FIG. 1. (a) Total energy as a function of time for the exactly solvable one-dimensional (1D) harmonic potential model, V(x, t) = x2 + c(t)x. The homogeneous electric field
is applied for t = 0–0.45 a.u., and the reference energy (E = 0.0 a.u.) is set to that of the initial ground state at t = 0 a.u. The three MPT methods and the standard wave
function theory (WFT) method are compared to the exact analytical solution. (b) The error on the total energy with respect to the exact analytical solution. See the main text
for more details.

of the numerical evaluation of the second-order time derivative in
Eq. (22) through the partial derivative of the energy with respect
to the moments and their time derivatives. With a larger real-space
basis of 100 grid points, the standard approach of propagating the
wave function (WFT) gives a similar value of �E = 8.756 × 10−3 a.u.
While the WFT method gives the largest error for this particular
harmonic oscillator potential, all the numerical methods show suffi-
cient accuracy in terms of the relative error on the energy. Table I
also summarizes the energy conservation for all methods, and all
numerical methods show that the energy drift/deviation is at least
several orders of magnitude smaller than the energy change due to
the external electric field.

The first-order moments are of particular importance in quan-
tum dynamics because they can be directly related to physical
properties, such as frequency-dependent polarizability/conductivity,
from which, for instance, the optical absorption spectrum can be
calculated in electronic structure theory.63,64 As expected, the first-
order moment of this quantum particle oscillates similarly to clas-
sical particle for this simple harmonic potential. Figure 2 shows
the comparison for the time evolution of the first-order moment
among the newly developed MPT methods and the standard WFT
approach. Although the basis set size necessary for convergence is
system-dependent in general, the MPT methods exhibit a smaller
numerical error with only 32 grid points, while the WFT simula-
tion here used 100 grid points. Note that the differences among the
numerical methods are rather negligible [see Fig. 2(a)], and they all

show only small errors with respect to the exact analytical result,
as shown in Fig. 2(b). The oscillation frequency of the first-order
moment, which would be related to the polarizability/conductivity
in electronic structure calculations, does not deviate appreciatively
from the exact analytical value of

√
2 for any of the numerical

methods as shown in Table I.
Figure 3 shows the time evolution of the second-order moment

according to the different numerical methods, along with the errors
with respect to the exact analytical solution. The second-order
moment is related to the spatial variance (i.e., the spread) of the
quantum particle. In this particular case, all the MPT methods show
much smaller errors than the WFT method although all the errors
are sufficiently small [see Fig. 3(b)]. Compared to the exact analytical
solution, these results numerically confirm the validity of the newly
developed MPT approach and the practical feasibility of employing
numerical methods based on this new theoretical formulation. As
demonstrated here, the MPT numerical methods perform as well as
the WFT method, if not better, for this simple case with the analytical
solution available.

B. Anharmonic Morse potential
Although an exact analytical solution is not available for this

anharmonic potential, we also examined the performance of the
numerical MPT method for the Morse potential,

TABLE I. Energy change, energy drift per 1 a.u. time, and the oscillation frequency of the first-order moment for the simulation
shown in Fig. 1. The exact analytical value of �E is 8.771 × 10−3 a.u., and the exact analytical value for the oscillation
frequency is

√
2 = 1.414 21.

Method WFT MPT-E2 MPT-E4 MPT-EPES-E2

Energy change, �E (a.u.) 8.756 × 10−3 8.772 × 10−3 8.770 × 10−3 8.766 × 10−3

Energy drift (a.u.) per 1 a.u. time 1.150 × 10−12 1.240 × 10−7 2.073 × 10−8 8.955 × 10−8

Oscillation frequency (a.u.) 1.412 96 1.414 21 1.414 20 1.414 09
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FIG. 2. Comparison of the three MPT methods and the standard wave function theory (WFT) method to the analytical solution for (a) the first-order moment as a function of
time and (b) its error with respect to the exact analytical solution. See also Fig. 1 for additional details.

V(x, t) = a�1 − e−
�

1
a x�2 + c(t)x, (30)

where a determines the anharmonicity of this Morse potential, and
we set a = 10 a.u. (see Fig. 4). The same external electric field, given
by Eq. (28), is applied to the system through the c(t)x term in the
length gauge. All computational parameters are kept the same as the
harmonic oscillator potential case discussed above, except for the
grid size of 6 a.u. Figure 4 shows the total energy as a function of time
for the MPT method with increasingly higher orders of moments,
along with the standard WFT method for comparison. Although an
exact analytical solution is not available for this model, the energy
must be conserved in a numerically exact propagation. Figure 4(a)
shows better energy conservation during the dynamics with less
fluctuations for the MPT method with increasingly higher orders
of the moments. In this particular case, the WFT method shows a
slightly better energy conservation than the MPT method even when
up to the fourth-order moments are included (i.e., MPT-E4). The

convergence of the MPT method and the standard WFT method
can be seen in Fig. 4(b), as the Edgeworth expansion becomes more
complete by including higher orders of the moments.

Figure 5 shows the time evolution of the first-order and second-
order moments in the quantum dynamics. The MPT dynamics
becomes increasingly closer to the conventional WFT method as the
higher orders of the moments are included in the MPT method. This
is particularly apparent for the second-order moment [see Fig. 5(b)]
as the MPT-E4 result closely resembles the WFT method result,
while significant deviations can be seen for the MPT-E2 result.

Although the moment propagation theory (MPT) is an exact
reformulation of quantum dynamics in terms of the moments
instead of the single-particle wave function, its usefulness might not
be obvious in the above proof-of-principle demonstrations. A key
advantage of this novel MPT is that machine-learning techniques
can be readily used for modeling the second-order time derivatives
of the moments instead of explicitly calculating them. For classical
MD simulations, machine-learning techniques, particularly modern

FIG. 3. Comparison of the three MPT methods and the standard wave function theory (WFT) method to the analytical solution for (a) the second-order moment as a function
of time and (b) its error with respect to the exact analytical solution. See also Fig. 1 for additional details.
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FIG. 4. (a) Total energy as a function of time for the anharmonic 1D model with Morse potential [Eq. (30)]. The inset shows the Morse potential energy function V(x). The
homogeneous electric field is applied for t = 0–0.45 a.u. The MPT method with an increasing order of the moments is compared with the standard wave function theory
(WFT) method. (b) The differences with respect to the WFT method result are shown.

FIG. 5. (a) First-order moment and (b) second-order moment as a function of time for the anharmonic 1D model [Eq. (30)]. The MPT method with an increasing order of the
moments is compared with the standard wave function theory (WFT) method. See also Fig. 4 for additional details.

neural network models, are widely used for the evaluation of the
potential energy and the atomic forces, and a similar approach can
be conveniently adapted for quantum dynamics simulations using
the MPT. This idea is briefly demonstrated in Sec. IV.

IV. MACHINE-LEARNING TIME DERIVATIVES
WITH ARTIFICIAL NEURAL NETWORK

Simulating quantum dynamics is highly nontrivial and com-
putationally expensive, and this often limits our ability to study
long-time dynamics of quantum systems and/or statistical proper-
ties that derive from an ensemble of quantum dynamics trajectories.
There have been a number of studies to employ modern machine-
learning approaches, such as artificial neural network (ANN) mod-
els, for efficiently performing such quantum dynamics simulations
instead of numerically integrating the time-dependent Schrödinger
equation.35,46,48,65 In this section, we demonstrate how the newly
developed MPT offers a convenient avenue for developing an ANN

model for the quantum dynamics simulation. For classical MD
simulations, the use of ANN has become widespread in recent
years.66–68 In particular, machine-learning techniques are used to
construct an accurate potential energy function (i.e., force field) as
an ANN through training with first-principles quantum-mechanical
calculations.68–73 This allows for an efficient computation of the
accurate force on atoms, which is proportional to the second-order
time derivative of the classical particle positions. We here demon-
strate a machine-learning of the second-order time derivative of the
moments as an ANN model for performing the quantum dynamics
simulation within the MPT framework. In particular, we examine
the construction of ANN models for the second-order time deriva-
tives of the moments using �x�, �x2�, (@�x�@t )2, and (@S

@t )2 as the
input descriptors for the harmonic potential model. The choice of
these descriptors is motivated by the analytical solution. A simple
ANN model was used here, consisting of two hidden layers with
eight Scaled Exponential Linear Unit (SELU) activation nodes.74

The input descriptors are multiplied by weights, and they acquire
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FIG. 6. Use of ANN model for the calculation of the second-order time derivative of the moments in the MPT method. Comparison of (a) the first-order moment and (b)
the second-order moment in the MPT simulation based on the ANN model and explicit WFT simulation. Based on the analytical solution for this exactly solvable harmonic
potential model, the input descriptors for the ANN model consist of �x�, �x2�, (@�x�

@ t )2, and (@S
@ t )2. The WFT simulation was used also to provide the training data for the

ANN model.

an added bias when moving to the next layer. The activation func-
tion, SELU, acts on each input for each node, and its output is
fed into the next layer. There are many different approaches for
developing ANNs, but we chose this simple proof-of-concept archi-
tecture.66 The mean squared error (MSE) was used for the loss
function, and the ANN training used the Adam optimizer.74 Each
ANN model was trained for at least a thousand epochs until the
MSE reaches a minimum. The training data were generated from
propagating the wave function according to the TD-SE with a time
step of �t = 0.01 a.u. For training each ANN model, a total of 9498
data points were used. The ANN model then replaces the numeri-
cal evaluation of the second-order time derivative of the moments
using Eq. (18) in the quantum dynamics simulation based on the
MPT. Figure 6 shows the first-order and second-order moments
from the MPT simulation using the ANN model (MPT-ANN) for
the harmonic potential, compared against its own training data
as a proof-of-principle demonstration. The MPT-ANN simulation
successfully reproduces the time evolution of the moments to a
great accuracy. For the second-order moment, a slight deviation is
observed for longer times, while the oscillation frequency remains
accurately reproduced. Improving the machine-learning techniques
for quantum dynamics simulation with the MPT will be a topic of

a separate study in the future. The computational procedure/cost is
numerically comparable to that of performing classical MD simula-
tions using the ANN model for the force evaluation.

We envision that machine-learning techniques, such as ANN
models, can be used to construct an accurate model of the second-
order time derivative of the moments in general. For the harmonic
potential model, the exact analytical expression can be derived,
and thus, it was possible to deduce what physically meaningful
input descriptors were in terms of the moments for the ANN con-
struction. However, in realistic first-principles electronic structure
theory descriptions, such as when electrons are represented by time-
dependent maximally localized Wannier functions in RT-TDDFT
simulations,29 the potential that individual electrons are subjected
to has no analytical solutions in general although confining in many
cases. We briefly examine here how the quantum dynamics might
be sensitive to the input descriptors in the ANN model using this
exactly solvable harmonic potential. Table II shows the oscillation
frequency and the root-mean-square error (RMSE) of the first-order
moment as well as the RMSE of the second-order moment using dif-
ferent input descriptors. Even with only �x� and �x2� as the input
descriptors for the ANN model, the RMSE remains quite small for
both the first-order and second-order moments in the dynamics

TABLE II. Root-mean-square error (RMSE) for the first-order and second-order moments, together with the oscillation
frequency of the first-order moment in the MPT simulations with different input descriptors in the ANN model.

Inputs �x� Frequency �x� RMSE �x2� RMSE

�x�, �x2�, (@�x�@t )2, and (@S
@t )2 1.402 43 3.414 83 × 10−4 1.872 18 × 10−4

�x�, �x2�, and (@S
@t )2 1.402 60 2.860 96 × 10−4 2.670 96 × 10−4

�x�, �x2�, and (@�x�@t )2 1.402 66 1.549 22 × 10−4 3.394 35 × 10−4

�x� and �x2� 1.402 49 2.367 22 × 10−4 3.675 58 × 10−4
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FIG. 7. Use of ANN model for the calculation of the second-order time derivative of the moments in the MPT method. Additional details are the same as in Fig. 6, but only�x� and �x2� are used as the input descriptors for the ANN model. Comparison of (a) the first-order moment and (b) the second-order moment in the MPT simulation based
on the ANN model and explicit WFT simulation.

as shown in Fig. 7. In addition, the oscillation frequencies from
the MPT simulation using the ANN models with different input
descriptors are essentially the same as the frequency obtained from
the reference WFT simulation as seen in Table II. In summary, we
showed here how the newly developed MPT provides a convenient
theoretical framework for accelerating the quantum dynamics simu-
lation through machine-learning the second-order time derivatives
using a simple ANN model.

V. CONCLUSION
We presented a novel theoretical formulation of the quan-

tum dynamics in terms of the moments within the single-particle
description. The aim of propagating the moments instead of single-
particle wave functions is to reduce the high computational cost
by expressing the quantum dynamics in terms of increasing orders
of moments. By doing so, the equation of motion for the quan-
tum dynamics resembles that of classical molecular dynamics, and
therefore, modern machine-learning techniques might be employed
more effectively. We derived analytical expressions for the first-
order and second-order time derivatives of the moments, and they
are used to develop a numerical method for performing the quan-
tum dynamics by expanding the moments in the Taylor series as
done similarly for atom positions in classical molecular dynamics
simulations. We demonstrated a few numerical schemes using the
newly developed moment propagation theory (MPT) on the har-
monic oscillator potential, for which an exact analytical solution
can be derived. We also applied the MPT method to an anhar-
monic Morse potential and compared it to the standard approach
of propagating the wave function according to the time-dependent
Schrödinger equation.

The new moment propagation theory (MPT) offers a par-
ticularly compact representation suitable for developing machine-
learned models for performing efficient quantum dynamics sim-
ulations. We demonstrated the use of a simple artificial neural
network (ANN) model for machine-learning the second-order time

derivatives of the moments so that their explicit evaluation can
be circumvented in numerical simulations. The quantum dynamics
simulation of electrons in molecules and condensed matter systems
is where this new approach can find its immediate application. The
new MPT framework is particularly powerful in practice when only
low orders of moments are necessary. In the context of electronic
structure theory, a real-time time-dependent density functional the-
ory (RT-TDDFT) simulation can be cast in the Wannier gauge for
simulating electron dynamics.8,29 The maximally localized Wannier
functions (MLWFs) are spatially localized single-particle orbitals,
and the MPT is likely to offer a convenient theoretical framework
for developing machine-learning models for RT-TDDFT simula-
tions performed in the Wannier gauge. As for the scaling of the MPT
method with respect to the order of moments, the computational
cost per each MLWF scales as 1

6 n3 + n2 + 11
6 n, where n is the highest

order of moments included. The computational cost scales linearly
with the number of MLWFs in a system. Having the formal theo-
retical formulation established in this work, future work will explore
the use of this new MPT in the context of first-principles electronic
structure theory for studying real chemical systems. In particular,
the use of ANNs and other related machine-learning methods for
simulating electron dynamics will be examined in the context of
RT-TDDFT simulations.
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APPENDIX A: NOTATIONS

We used the following notations to define several gradient
operations in the Appendix:

∇ = (@x,@y,@z), (A1)

where @x ≡ @
@x . Accordingly,

∇2 = ∇ ⋅ ∇,

∇3 = ∇∇ ⋅ ∇,

∇4 = (∇ ⋅ ∇)(∇ ⋅ ∇).
(A2)

∇2 is the Laplacian operator, and therefore, we have

∇2(∇A ⋅ ∇B) = ∇3A ⋅ ∇B + 2(∇⊗∇A) ⋅ (∇⊗∇B) +∇A ⋅ ∇3B,
(A3)

where the tensor product of∇ is

∇⊗∇ = (@xx,@xy,@xz ,@yx,@yy,@yz ,@zx,@zy,@zz). (A4)

APPENDIX B: DERIVATION OF EQ. (3)

For a single-particle system in three dimensions, the derivative
with respect to time for the moment is defined as

d�xaybzc�
dt

≡ � xaybzc dn(x, y, z, t)
dt

d3r. (B1)

Here, we used ∫ d3r to indicate the spatial integral ∫∫∫ dxdydz for
brevity. Using n(x, y, z, t) = ψ∗(x, y, z, t)ψ(x, y, z, t) = �ψ(x, y, z, t)�2
and the TD-SE [Eq. (2)], one has

d�xaybzc�
dt

= � xaybzc�� i
2
∇2ψ − iVψ�ψ∗

+ ψ�− i
2
∇2ψ∗ + iVψ∗��d3r

= i
2 � xaybzc�∇2ψψ∗ − ψ∇2ψ∗�d3r

= − i
2 � ∇�xaybzc� ⋅ �∇ψψ∗ − ψ∇ψ∗�d3r

= − i
2 � �∇2�xaybzc�n + 2∇�xaybzc� ⋅ ∇ψψ∗�d3r, (B2)

where the explicit spatial and time dependences of the wave func-
tion ψ(x, y, z, t), time-dependent potential V(x, y, z, t), and density
n(x, y, z, t) are omitted for brevity. The explicit expression is

d�xaybzc�
dt

= −i� �axa−1ybzc@xψψ∗ + byb−1xazc@yψψ∗

+ czc−1xayb@zψψ∗ + a(a − 1)
2

xa−2ybzcn(x, y, z, t)
+ b(b − 1)

2
yb−2xazcn(x, y, z, t)

+ c(c − 1)
2

zc−2xaybn(x, y, z, t)�dxdydz. (B3)

Using ∇ψψ∗ − ψ∇ψ∗ = 2i Im(∇ψψ∗), Eq. (B2) can also be written
concisely as

d�xaybzc�
dt

= Re�−i� ∇�xaybzc� ⋅ ∇ψψ∗d3r�. (B4)

APPENDIX C: DERIVATION OF EQ. (4)

Given Eq. (B4), the second-order time derivative of the moment
is

d2�xaybzc�
dt2 = Re�−i

d
dt � ∇�xaybzc� ⋅ ∇ψψ∗d3r�. (C1)

For the rest of the derivations in this section, the real part is
implied. Analogously to Appendix B, n(x, y, z, t) = �ψ(x, y, z, t)�2 and
TD-SE [Eq. (2)] gives

d2�xaybzc�
dt2 = −i� ∇�xaybzc� ⋅ �∇@ψ

@t
ψ∗ +∇ψ

@ψ∗
@t
�d3r

= −i� ∇�xaybzc� ⋅ �∇� i
2
∇2ψ − iVψ�ψ∗

+∇ψ�− i
2
∇2ψ∗ + iVψ∗��d3r

= � ∇�xaybzc� ⋅ � − (∇V)n
+ 1

2
�∇3ψψ∗ −∇ψ∇2ψ∗��d3r. (C2)

Expanding Eq. (C2), we have
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d2�xaybzc�
dt2 = −� ∇(xaybzc) ⋅ ∇Vnd3r +� ∇�xaybzc�

⋅ 1
2
(∇3ψψ∗ −∇ψ∇2ψ∗)d3r. (C3)

We now expand the right-hand side and apply the integration by
parts,

d2�xaybzc�
dt2 = −� ∇(xaybzc) ⋅ ∇Vnd3r +� ∇�xaybzc�

⋅ 1
2
(∇3ψψ∗)d3r − 1

2 � ∇2(∇�xaybzc� ⋅ ∇ψ)ψ∗d3r

= −� ∇(xaybzc) ⋅ ∇Vnd3r − 1
2 � �∇3�xaybzc� ⋅ ∇ψ

+ 2∇⊗∇�xaybzc� ⋅ (∇⊗∇ψ)�ψ∗d3r. (C4)

To make further progress on this equation to the working form, we
used the real part of Eq. (B2),

Re�� ∇�xaybzc� ⋅ ∇ψψ∗d3r� = −1
2 � ∇2�xaybzc�nd3r. (C5)

Then, Eq. (C4) is expressed as

d2�xaybzc�
dt2 = � Re�−∇(xaybzc) ⋅ ∇Vn + 1

4
∇4�xaybzc�n

− (∇⊗∇�xaybzc� ⋅ (∇⊗∇ψ))ψ∗�d3r (C6)

or completely expanded as

d2�xaybzc�
dt2 = Re�−� �axa−1ybzc@xV(x, y, z, t)n(x, y, z, t) + bxayb−1zc@yV(x, y, z, t)n(x, y, z, t)

+ cxaybzc−1@zV(x, y, z, t)n(x, y, z, t)�d3r −� �a(a − 1)xa−2ybzc@2
x ψψ∗ + 2baxa−1yb−1zc@x@yψψ∗

+ 2caxa−1ybzc−1@x@zψψ∗ + b(b − 1)yb−2xazc@2
y ψψ∗ + 2cbyb−1xazc−1@y@zψψ∗ + c(c − 1)zc−2xayb@2

z ψψ∗�d3r

+ 1
4
�a(a − 1)�(a − 2)(a − 3)�xa−4ybzc� + 2b(b − 1)�yb−2xa−2zc� + 2c(c − 1)�zc−2xa−2yb��

+ b(b − 1)((b − 2)(b − 3)�yb−4xazc� + 2c(c − 1)�zc−2xayb−2�) + c(c − 1)(c − 2)(c − 3)�zc−4xayb���. (C7)

APPENDIX D: DERIVATION OF EQ. (12)

The phase of the wave function in the polar form can
be expressed as θ = a tan 2(Im ψ, Re ψ), and the real and imag-
inary parts of the wave function are Reψ =√n cos θ and Im ψ=√n sin θ, respectively. Using the definition (from the main text)
αu ≡ i

2(@2
uψψ∗ − ψ@2

uψ∗), let us write

Lu(x, y, z, t) = −� u

−∞ αu(r′, t)du′ = −i
2
�@ψ
@u

ψ∗ − @ψ∗
@u

ψ�, (D1)

where u can be x, y, or z, while r′ denotes the dependence of the
function on all three coordinates for brevity. We can rearrange this
expression by writing out the real and imaginary parts of the right-
hand side,

Lu = −i
2
�@ψ
@u

ψ∗ − @ψ∗
@u

ψ�
= −i

2
�i Im�@ψ

@u
ψ∗� + Re�@ψ

@u
ψ∗�

− i Im�@ψ∗
@u

ψ�� − Re�@ψ∗
@u

ψ���
= −i

2
�2i Im�@ψ

@u
ψ∗��

= @ Im ψ
@u

Re ψ − @ Re ψ
@u

Im ψ. (D2)

The derivative of the phase can be expressed as

@θ
@u
= − Im ψ @Re ψ

@u(Im ψ)2 + (Re ψ)2 + Re ψ @Im ψ
@u(Im ψ)2 + (Re ψ)2 . (D3)

Using n = (Im ψ)2 + (Re ψ)2 and Eq. (D2), we have @θ
@u = Lu

n , and
thus,

@θ(x, y, z, t)
@u

= Lu(x, y, z, t)
n(x, y, z, t) = −(n(x, y, z, t))−1� u

−∞ αu(r′, t)du′,
(D4)

where αu ≡ i
2(@2ψ

@u2 ψ∗ − @2ψ∗
@u2 ψ). For each coordinate variable u, we

have

@θ(x, y, z, t)
@x

= Lx(x, y, z, t)
n(x, y, z, t) = −(n(x, y, z, t))−1� x

−∞αx(x′, y, z, t)dx′,
@θ(x, y, z, t)

@y
= Ly(x, y, z, t)

n(x, y, z, t) = −(n(x, y, z, t))−1� y

−∞αy(x, y′, z, t)dy′,
@θ(x, y, z, t)

@z
= Lz(x, y, z, t)

n(x, y, z, t) = −(n(x, y, z, t))−1� z

−∞αz(x, y, z′, t)dz′.
(D5)
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APPENDIX E: DERIVATION OF EQ. (14)

We start by expressing the wave function in the polar form
as ψ(x, y, z, t) =�n(x, y, z, t)eiθ(x,y,z,t). While n(x, y, z, t) can be
obtained from the Edgeworth series of the moments straightfor-
wardly, the expression for the phase in terms of the moments is
required. Using the TD-SE, the first-order time derivative of the
particle density n can be expressed as

dn
dt
= � i

2
∇2ψ − iVψ�ψ∗ + ψ�− i

2
∇2ψ∗ + iVψ∗�

= i
2
(@2

x ψψ∗ − ψ@2
x ψ∗ + @2

y ψψ∗ − ψ@2
y ψ∗ + @2

z ψψ∗ − ψ@2
z ψ∗)

= αx + αy + αz ,
(E1)

where αu ≡ i
2(@2

uψψ∗ − ψ@2
uψ∗). Inserting this expression into

Eq. (B1), we obtain

d�xaybzc�
dt

= � xaybzc(αx + αy + αz)d3r. (E2)

By defining

cabc
u (t) ≡ �d�xaybzc�

dt
�−1

� xaybzc(αu(x, y, z, t))d3r, (E3)

Eq. (E2) can be expressed as

d�xaybzc�
dt

= cabc
x (t)d�xaybzc�

dt
+ cabc

y (t)d�xaybzc�
dt

+ cabc
z (t)d�xaybzc�

dt
. (E4)

The time derivative of the particle density can also be rearranged to
read

dn
dt
=�

a,b,c

@n
@�xaybzc�

d�xaybzc�
dt

. (E5)

By substituting the left-hand side of this equation with Eq. (E1) and
the time derivative on the right-hand side with Eq. (E4), Eq. (E5)
reads

αx + αy + αz =�
a,b,c

@n
@�xaybzc��cabc

x (t)d�xaybzc�
dt

+ cabc
y (t)d�xaybzc�

dt
+ cabc

z (t)d�xaybzc�
dt

�. (E6)

Thus, for the spatial derivative in each Cartesian direction, we
have Eq. (14),

αu =�
a,b,c

cabc
u (t) @n

@�xaybzc�
d�xaybzc�

dt
. (E7)

APPENDIX F: DERIVATION OF EQ. (18)

For brevity, let us derive the equation for the one-dimensional
case (using x) in detail. The first step in the derivation is to
show

Re�ψ∗(x, t)@2ψ(x, t)
@x2 � = 1

2
@2n(x, t)

@x2 − �
@n(x,t)

@x �2

4n(x, t) − L(x, t)2

n(x, t)
(F1)

where the right-hand side is expressed in terms of the parti-
cle density and the moments without an explicit dependence
on the wave function. Let us first write the left-hand side of
Eq. (F1) as

LHS = Re�Re ψ(x, t)@2Re ψ(x, t)
@x2 + Im ψ(x, t)@2 Im ψ(x, t)

@x2

+ i Re ψ(x, t)@2 Im ψ(x, t)
@x2 − i Im ψ(x, t)@2 Re ψ(x, t)

@x2 �

= Re ψ(x, t)@2 Re ψ(x, t)
@x2 + Im ψ(x, t)@2 Im ψ(x, t)

@x2 . (F2)

To prove Eq. (F1), we also relate the first- and second-order
derivatives of n(x, t) to the wave function,

@n(x)
@x

= 2 Re ψ(x)@ Re ψ(x)
@x

+ 2 Im ψ(x)@ Im ψ(x)
@x

, (F3)

@2n(x)
@x2 = 2 Re ψ(x)@2 Re ψ(x)

@x2 + 2�@ Re ψ(x)
@x

�2

+ 2 Im ψ(x)@2 Im ψ(x)
@x2 + 2�@ Im ψ(x)

@x
�2

. (F4)

Using Eq. (D3) as well as Eqs. (F3)/(F4), the right-hand side of
Eq. (F1) is
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RHS = Re ψ(x)@2 Re ψ(x)
@x2 + �@ Re ψ(x)

@x
�2 + Im ψ(x)@2 Im ψ(x)

@x2 + �@ Im ψ(x)
@x

�2

− �Re ψ(x)@ Re ψ(x)
@x �2 + 2�Re ψ(x)@ Re ψ(x)

@x ��Im ψ(x)@ Im ψ(x)
@x � + �Im ψ(x)@ Im ψ(x)

@x �2

n(x)
− �Re ψ(x)@ Im ψ(x)

@x �2 − 2�Re ψ(x)@ Re ψ(x)
@x ��Im ψ(x)@ Im ψ(x)

@x � + �Im ψ(x)@ Re ψ(x)
@x �2

n(x)
= Re ψ(x)@2 Re ψ(x)

@x2 + �@ Re ψ(x)
@x

�2 + Im ψ(x)@2 Im ψ(x)
@x2 + �@ Im ψ(x)

@x
�2

− �Re ψ(x)@ Re ψ(x)
@x �2 + �Im ψ(x)@ Im ψ(x)

@x �2 + �Re ψ(x)@ Im ψ(x)
@x �2 + �Im ψ(x)@ Re ψ(x)

@x �2

n(x)
= Re ψ(x)@2 Re ψ(x)

@x2 + �@ Re ψ(x)
@x

�2 + Im ψ(x)@2 Im ψ(x)
@x2 + �@ Im ψ(x)

@x
�2 − n(x)��@ Re ψ(x)

@x �2 + �@ Im ψ(x)
@x �2�

n(x)
= Re ψ(x)@2 Re ψ(x)

@x2 + Im ψ(x)@2 Im ψ(x)
@x2 . (F5)

This is, indeed, the left-hand side of Eq. (F1) [see Eq. (F2)], and thus,
Eq. (F1) is proved.

From Eq. (C7), the second-order time derivative of the
moments in a one-dimensional system can be written as

d2�xa�
dt2 = −� (axa−1@xV(x, t)n(x, t))d3r

−� a(a − 1)xa−2 Re(@2
x ψψ∗)d3r

+ 1
4

a(a − 1)((a − 2)(a − 3)�xa−4�. (F6)

By substituting the integrand in the second term with Eq. (F1),
Eq. (F6) can be expressed without an explicit reference to the wave
function as

d2�xa�
dt2 = −a� @xV(x, t)n(x, t)xa−1dx + a(a − 1)

×� ���
�@n(x,t)

@x �2

4n(x, t) + L(x, t)2

n(x, t)
���xa−2dx

− a(a − 1)(a − 2)(a − 3)
4

�xa−4�. (F7)

Extending this expression to the general case (three-dimensional system) is tedious but straightforward,

d2�xaybzc�(t)
dt2 = −��� �axa−1ybzc@xV(x, y, z, t)n(x, y, z, t) + bxayb−1zc@yV(x, y, z, t)n(x, y, z, t) + cxaybzc−1@zV(x, y, z, t)n(x, y, z, t)�d3r

+���
����a(a − 1)xa−2ybzc

����
�@n(x,y,z,t)

@x
2�

4n(x, y, z, t) + Lx(x, y, z, t)2

n(x, y, z, t)
���� + 2baxa−1yb−1zc

���
�@n(x,y,z,t)

@x
@n(x,y,z,t)

@y �
4n(x, y, z, t)

+ Lx(x, y, z, t)Ly(x, y, z, t)
n(x, y, z, t)

��� + 2caxa−1ybzc−1
���
�@n(x,y,z,t)

@x
@n(x,y,z,t)

@z �
4n(x, y, z, t) + Lx(x, y, z, t)Lz(x, y, z, t)

n(x, y, z, t)
��� + b(b − 1)yb−2xazc

× ����
�@n(x,y,z,t)

@y
2�

4n(x, y, z, t) + Ly(x, y, z, t)2

n(x, y, z, t)
���� + 2cbyb−1xazc−1

���
�@n(x,y,z,t)

@z
@n(x,y,z,t)

@y �
4n(x, y, z, t) + Lz(x, y, z, t)Ly(x, y, z, t)

n(x, y, z, t)
���

+ c(c − 1)zc−2xayb
����
�@n(x,y,z,t)

@z
2�

4n(x, y, z, t) + Lz(x, y, z, t)2

n(x, y, z, t)
����
����d3r − a(a − 1)�(a − 2)(a − 3)

4
�xa−4ybzc� + b(b − 1)

2
�yb−2xa−2zc�

+ c(c − 1)
2
�zc−2xa−2yb�� − b(b − 1)�(b − 2)(b − 3)

4
�yb−4xazc� + c(c − 1)

2
�zc−2xayb−2�� − c(c − 1)(c − 2)(c − 3)

4
�zc−4xayb�,

(F8)

which is Eq. (18).
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APPENDIX G: DERIVATION OF EQ. (15)

Equation (15) gives the equation of motion for the product term cabc
u (t)@�xaybzc�(t)

@t expressed in terms of the particle density and the
moments without an explicit dependence on the wave function. We start by writing Eq. (E3) as

cabc
u (t)d�xaybzc�

dt
=� xaybzc(αu(x, y, z, t))d3r,

=� xaybzc� i
2
(@2

uψψ∗ − ψ@2
uψ∗)�d3r

= Re�−i� @u(xaybzc)@uψψ∗d3r�. (G1)

For the rest of the derivations here in this subsection, the real part is implied. Analogously to Appendixes A–C, using n(r, t) = �ψ(r, t)�2 and

TD-SE [Eq. (2)] yields the time derivative as

d
dt
�cabc

u (t)d�xaybzc�(t)
dt

� = −i� @u�xaybzc��@u
@ψ
@t

ψ∗ + @uψ
@ψ∗
@t
�d3r

= −i� @u�xaybzc��@u� i
2
∇2ψ − iVψ�ψ∗ + @uψ�− i

2
∇2ψ∗ + iVψ∗��d3r

= � @u�xaybzc��−(@uV)n + 1
2
�∇2@uψψ∗ − @uψ∇2ψ∗��d3r

= −� @u(xaybzc)@uVnd3r +� @u�xaybzc�1
2
(∇2@uψψ∗ − @uψ∇2ψ∗)d3r. (G2)

Applying the integration by parts to the right-hand side, we have

d
dt
�cabc

u (t)d�xaybzc�(t)
dt

� = −� @u(xaybzc)@uVnd3r +� @u�xaybzc�1
2
(∇2@uψψ∗)d3r − 1

2 � ∇2(@u�xaybzc�@uψ)ψ∗d3r

= −� @u(xaybzc)@uVnd3r − 1
2 � �∇2@u�xaybzc�@uψ + 2∇@u�xaybzc� ⋅ (∇@uψ)�ψ∗d3r. (G3)

To make further progress on this equation to the working form, let us write the following with the integration by parts:

� ∇2@u�xaybzc�@uψψ∗d3r = −� ∇2@2
u�xaybzc�nd3r −� ∇2@u�xaybzc�ψ@uψ∗d3r,

� ∇2@u�xaybzc�(@uψψ∗ + ψ@uψ∗)d3r = −� ∇2@2
u�xaybzc�nd3r,

� ∇2@u�xaybzc�2Re(@uψψ∗)d3r = −� ∇2@2
u�xaybzc�nd3r,

Re�� ∇2@u�xaybzc�(@uψψ∗)d3r� = −1
2 � ∇2@2

u�xaybzc�nd3r,

(G4)

where we used (@uψψ∗ + ψ@uψ∗) = 2 Re(@uψψ∗). Using the final expression Eq. (G4) for the second term of the RHS in Eq. (G3), Eq. (G3)
is expressed as

d
dt
�cabc

u (t)d�xaybzc�(t)
dt

� = � Re� − @u(xaybzc)@uVn + 1
4
∇2@2

u(xaybzc)n − (∇@u(xaybzc) ⋅ (∇@uψ))ψ∗�d3r. (G5)
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Using the same approach used to derive Eq. (F1) in Appendix F, Eq. (G3) in terms of the density and moments is

d
dt
�cabc

u (t)d�xaybzc�(t)
dt

� = −��� �@u(xaybzc)@V(x, y, z, t)
@u

n(x, y, z, t)�d3r

+��� ���@u@x(xaybzc)���
�@n(x,y,z,t)

@u
@n(x,y,z,t)

@x �
4n(x, y, z, t) + Lu(x, y, z, t)Lx(x, y, z, t)

n(x, y, z, t)
���

+ @u@y(xaybzc)���
�@n(x,y,z,t)

@u
@n(x,y,z,t)

@y �
4n(x, y, z, t) + Lu(x, y, z, t)Ly(x, y, z, t)

n(x, y, z, t)
���

+ @u@z(xaybzc)���
�@n(x,y,z,t)

@u
@n(x,y,z,t)

@z �
4n(x, y, z, t) + Lu(x, y, z, t)Lz(x, y, z, t)

n(x, y, z, t)
���
���d3r − 1

4
�∇2@2

u�xaybzc��. (G6)

APPENDIX H: DERIVATION OF EQ. (29)

For the one-dimensional system, we have

� = �ψ�Ĥ�ψ� = � −1
2

ψ∗(x)@2ψ(x)
@x2 + ψ∗(x)V(x)ψ(x)dx. (H1)

Using Eq. (F1), the wave function dependence can be recast in terms
of the probability density and moments as

� = � V(x)n(x)dx + 1
2 �
���
�@n(x)

@x �2

4n(x) + L(x)2

n(x)
���dx. (H2)

APPENDIX I: ANALYTICAL SOLUTION FOR SIMPLE
HARMONIC POTENTIAL [EQs. (25)–(27)]

The harmonic potential case, V(x, t) = x2 + c(t)x, can be
solved analytically within the framework of the moment propaga-
tion theory (MPT). For this system, the second-order Edgeworth
basis (E2) is sufficient,60 and it requires only the first-order and
second-order moments to be propagated.

1. Analytical solution
The MPT equation of motion for a 1D system is

d2�xa�
dt2 = −a� @xV(x, t)n(x, t)xa−1dx + a(a − 1)

×� ���
�@n(x,t)

@x �2

4n(x, t) + L(x, t)2

n(x, t)
���xa−2dx

− a(a − 1)(a − 2)(a − 3)
4

�xa−4�. (I1)

For the first- (a = 1) and second-order (a = 2) moments, the second-
order time derivative can be simplified as

d2�x�
dt2 = −� @xV(x, t)n(x, t)dx, (I2)

d2�x2�
dt2 = −2� @xV(x, t)n(x, t)xdx

+ 2� ���
�@n(x,t)

@x �2

4n(x, t) + L(x, t)2

n(x, t)
���dx. (I3)

With the second-order Edgeworth (E2) basis, the particle density has
a Gaussian form

n(x, t) = 1�
2π(�x2�(t) − (�x�(t))2) exp�−1

2
(x − �x�(t))2

�x2�(t) − (�x�(t))2 �.
(I4)

The spatial derivative is

@n(x, t)
@x

= −n(x, t)� (x − �x�(t))
�x2�(t) − (�x�(t))2 �, (I5)

and the time derivative is

@n(x, t)
@t

= −@�x2�(t)
@t + 2�x�(t)@�x�(t)@t

2
�

2π(�x2�(t) − (�x�(t))2)3

× exp�−1
2

(x − �x�(t))2

�x2�(t) − (�x�(t))2 �

− 1
2

n(x, t)���
2(x − �x�(t))�−@�x�(t)

@t ��x2�(t) − (�x�(t))2

− �
@�x2�(t)

@t − 2�x�(t)@�x�(t)@t �(x − �x�(t))2

(�x2�(t) − (�x�(t))2)2

���. (I6)

Rewriting the time derivative as a polynomial, we have
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@n(x, t)
@t

= k1n(x, t) + k2xn(x, t) + k3x2n(x, t), (I7)

where {ki} are given by

k1 = −@�x2�(t)
@t + 2�x�(t)@�x�(t)@t

2�x2�(t) − (�x�(t))2 + �x�(t)�−
@�x�(t)

@t ��x2�(t) − (�x�(t))2

+ 1
2
�@�x2�(t)

@t − 2�x�(t)@�x�(t)@t �(�x�(t))2

(�x2�(t) − (�x�(t))2)2 ,

k2x = x�@�x�(t)@t ��x2�(t) − (�x�(t))2

+ 1
2
�@�x2�(t)

@t − 2�x�(t)@�x�(t)@t �(−2x�x�(t))
(�x2�(t) − (�x�(t))2)2 ,

k3x2 = 1
2
�@�x2�(t)

@t − 2�x�(t)@�x�(t)@t �(x2)
(�x2�(t) − (�x�(t))2)2 . (I8)

Let us define S as the variance (spread) as

S ≡ �x2� − �x�2. (I9)

In order to simplify the time derivative using the variance, we use �x�= 0 for this harmonic potential case without loss of generality due to
the translational invariance. Equation (I7) is then

@n(x, t)
@t

= k1n(x, t) + k2xn(x, t) + k3x2n(x, t),
k1 = −Ṡ

2S
, k2 = @�x�(t)

@t
S

, k3 = Ṡ
2S2 .

(I10)

Integrating the time derivative over the position x using the
definition L(x, t) ≡ −∫ x−∞ αx(x′, t)dx′, we obtain

L(x, t) = −(k1 + Sk3)Φ(x, t) + Sk2n(x, t) + Sxk3n(x, t), (I11)

where Φ(x, t) ≡ ∫ x−∞ n(x′, t)dx′. Because (k1 + Sk3) = −Ṡ
2S + Ṡ

2S = 0,
we have

L(x, t) = a1n(x, t) + a2xn(x, t),
a1 = @�x�(t)

@t
, a2 = Ṡ

2S
.

(I12)

Substituting Eqs. (I5) and (I12) into the equation of motion (EOM)
for the first-order and second-order moments [Eqs. (I2) and (I3)],
we have

d2�x�
dt2 = −� @(x2 + c(t)x)

@x
n(x, t)dx = −2�x�(t) − c(t), (I13)

d2�x2�
dt2 = −2� @(x2 + c(t)x)

@x
n(x, t)xdx + 2� � 1

4S2 n(x, t)x2

+ a2
1n(x, t) + 2a1a2xn(x, t) + a2

2x2n(x, t)�dx

= −2� (2x + c(t))n(x, t)x + 2��@�x�(t)
@t

�2
n(x, t)

+ 2
@�x�(t)

@t
Ṡ

2S
xn(x, t) + ���

Ṡ
2S
�2

x2 + 1
4S2
�
�n(x, t)��dx.

= − 4�x2�(t) − 2c(t)�x�(t) + 2��@�x�(t)
@t

�2 + Ṡ 2

4S
+ 1

4S
��.

(I14)

Succinctly put, the second-order time derivatives of the moments
read

d2�x�
dt2 = −2�x� − c, (I15)

d2�x2�
dt2 = −4�x2� − 2c�x� + 2

�
�
�
�
�@S
@t �2

4S
�
� +

1
4S
+ �@�x�(t)

@t
�2�
�.

(I16)
The single-particle energy is � = �Ĥ�, and it is equivalent to the
system’s total energy for this one-dimensional harmonic oscillator
model. The expression for the energy is obtained by using Eqs. (I5)
and (I12) in Eq. (H2), resulting in

E = � = �x2� + c�x� + 1
2
�
�
�
�
�@S
@t �2

4S
�
� +

1
4S
+ �@�x�(t)

@t
�2�
�. (I17)

2. Analytical solution via EPES approach
The EPES expression [Eq. (22)] holds if/when the Hamiltonian

expectation value is a constant of motion in the quantum dynam-
ics given by a suitable single-particle Hamiltonian. Then, the EPES
approach is easier to work with by deriving the second-order time
derivatives of the cumulants rather than the moments directly. Note
that the first cumulant is equivalent to the first-order moment. We
first relate the second cumulant (which is the variance) and their
time derivatives to the moments by expressing them as

S ≡ �x2� − �x�2,

Ṡ = ˙�x2� − 2�x� ˙�x�,
S̈ = ¨�x2� − 2 ˙�x� 2 − 2�x� ¨�x�.

(I18)

Using Eq. (I18) and Eq. (I17), the EPES equation of motion
[Eq. (22)] for the first-order moment/cumulant can be written as

¨�x� = −@�(xi, ẋi)
@�x� �@�(xi, ẋ i)

@ ˙�x� �−1
˙�x�

= −2�x� − c. (I19)
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Rewriting Eq. (22) in terms of the cumulant via Eq. (I18), the
second-order time derivative of the second cumulant can be
rearranged as

S̈ = −@�(xi, ẋi)
@S

�@�(xi, ẋi )
@Ṡ

�−1
Ṡ. (I20)

Then, substituting Eq. (I17) in this expression yields

S̈ = −�1 − 1
2
�1 + Ṡ 2

4S2 ��4S
Ṡ

Ṡ

= −4S + 1
2
�1 + Ṡ 2

S
�. (I21)

Converting this expression given in cumulants back to the one in
moments by using Eq. (I18), we have

¨�x2� = −4�x2� − 2c�x� + 2�1 + Ṡ 2

4S
+ ˙�x� 2�, (I22)

which is the same as the one derived using the MPT without relying
on the EPES expression (see Appendix I 1).
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