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A B S T R A C T

This paper examines the effect of viscoelasticity on the periodic response of a lumped parameter viscoelastic
von Mises truss. The viscoelastic system is described by a second-order equation that governs the mechanical
motion coupled to a first-order equation that governs the time evolution of the viscoelastic forces. The
viscoelastic force evolves at a much slower rate than the elastic oscillations in the system. This adds additional
time scales and degrees of freedom to the system compared to its viscous counterparts. The focus of this study
is on the system’s behavior under harmonic loading, which is expected to show both regular and chaotic
dynamics for certain combinations of forcing frequency and amplitude. While the presence of chaos in this
system has already been demonstrated, we shall concentrate only on the periodic solutions. The presence of the
intrawell and interwell periodic oscillations is revealed using the Harmonic Balance method. The study also
looks at the influence of parameter changes on the system’s behavior through bifurcation diagrams, which
enable us to identify optimal system parameters for maximum energy dissipation. Lastly, we formulate an
equivalent viscous system using an energy-based approach. We observe that a naive viscous model fails to
capture the behavior accurately depending on the system and excitation parameters, as well as the type of
excitation. This underscores the necessity to study the full-scale viscoelastic system.
1. Introduction

The study of multistable systems has been an area of active research
for the past few decades [1]. The interest in these types of systems stems
from their inherent capability to exist in multiple states without re-
quiring a constant application of an external force. These systems have
been exploited for applications ranging from motion of robotic systems,
programmable material, energy absorption, to energy harvesting [2]. In
this paper, we focus on bistable systems, i.e. systems with two stable
states. Specifically, we will examine the dynamics of a harmonically
excited, bistable viscoelastic truss with two states: a natural state and
an inverted state.

This representation as a truss is of particular interest to the engi-
neering community, as it captures the dynamics of bistable viscoelastic
dome-shaped structures and bistable arches [3,4]. Typically, these
systems have been studied either experimentally or through finite
element simulations because they give a more concrete picture of the
system’s dynamics. Besides having nonlinear deflections, the existence
of multiple equilibria, these caps/domes also exhibit pseudo-bistability
(‘temporary bistability’ that involves a slow creeping motion followed
by a rapid snap-through [5–10] due to a slowly changing stiffness when

∗ Corresponding author at: Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
E-mail address: jgibert@purdue.edu (J.M. Gibert).

the structure is held just beyond a snap-through threshold and released)
have been studied previously in [11–13]. These behaviors have inspired
many studies. Montalvo et al. [14] studied the effect of geometry on
the periodic buckling patterns of elastic shells. Taffetani et al. [15]
determined the threshold between bistability and monostability of
shells with different solid angles. Sobota and Seffen [16] studied the
effects of boundary conditions on the stability of axisymmetric shells.
They showed that restrictions to boundary movements in the plane
enhance bistability, while restrictions to the rotation decrease bistabil-
ity. Seffen and Vidoli [17] showed that non-axisymmetric inversion of
shells is inevitable in the presence of very small initial imperfections.
Brinkmeyer et al. [18] showed the effects of material and geometric
parameters on the pseudo-bistability of a viscoelastic spherical dome.
Despite vast research on shell theory, a full-scale analytical treatment
of these systems becomes complicated. As a result, researchers tend to
use various low-dimensional, usually single-degree-of-freedom models
that are representative of this complex system.

In contrast to a continuous model, a lumped-parameter single
degree-of-freedom system can be used to approximate the dynamics
of the dome. The simplest model analogous to these dome-shaped
https://doi.org/10.1016/j.ijnonlinmec.2024.104858
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structures is a von Mises truss, capable of exhibiting bistable behavior.
The influence of boundary conditions on the bistability of the truss
was studied in [19]. Gomez et al. [3] use both lumped parameter
and continuous models to investigate snap-through in the presence of
viscoelasticity. The lumped parameter analysis was used as a foun-
dation for analyzing the continuous model and to obtain analytical
expression for the occurrence of snap-through in time. Instabilities
in viscoelastic structures have been studied in [20]. The interaction
between nonlinearities and viscoelasticity was studied in [21].

While the autonomous behavior of the viscoelastic von Mises truss
has garnered much interest, the dynamics of the system becomes sig-
nificantly more complicated when subjected to harmonic excitation. A
brief account of viscoelasticity and harmonic excitation can be found
in [22]. In this case, depending on the forcing amplitude or the forc-
ing frequency, there may be escapes from a potential well or even
chaotic motions [23]. Loukaides [24] studied the transition shapes of
a bistable spherical cap subjected to magnetic actuation. Suire and
Cederbaum [25,26] studied the dynamics of viscoelastic bars subjected
o harmonic forcing using numerical techniques and demonstrated the
resence of chaos. Pourtakdoust and Fazelzadeh [27] studied viscoelas-
ic panel flutter in a supersonic flow. [28] gives a complete review of
iscoelastic materials, its characterization and response under different
oading.
Perturbation methods, including harmonic balance and the method

f multiple scales, have been instrumental in studying these nonlin-
ar systems. Leadenham and Erturk [29] used a multi-term harmonic
alance to investigate the enhancement of bandwidth for energy har-
esting in a ‘M-shaped’ asymmetric non-linear oscillator. Alhussein and
aqaq [30] used the harmonic balance and multiple scales method to
stimate the galloping speed and escape speed for a twin-well oscillator.
iang et al. [31] used the harmonic balance method to study the dynam-
cs of a Helmholtz-Duffing oscillator coupled to a nonlinear capacitance
nd the influence of asymmetry in potential wells. A comprehensive
eview of the harmonic balance method, including shooting algorithms
nd numerical continuation methods for various nonlinear problems,
an be found in [32].
This work focuses on the effect of viscoelasticity on the periodic

esponse of a harmonically forced von Mises truss. Viscoelasticity in
utonomous systems introduces an additional degree of freedom that
ffects the stability of the system [33]. This gives rise to the possi-
ility of several interesting dynamical behaviors. The viscous damper
n [23] is replaced by a viscoelastic element, thereby leading to further
omplexity in the system, due to the additional degree of freedom.
lthough chaotic solutions and their boundaries have been studied in
previous work [23], this is not simply a trivial extension. Multi-
table systems such as these can have multiple coexisting motions.
his leads to design challenges, especially if one tries to realize the
arge-amplitude periodic solutions alone. Hence, it is imperative to
o a full-scale parametric study. We quantify the effect of parameter
ariations through numerical and analytical techniques. This enables
s to identify the optimal system parameters for maximum energy
issipation. Finally, we propose an equivalent viscous model using an
nergy-based approach. We demonstrate how this simplistic model fails
nder certain scenarios, thus necessitating a study of the complete
iscoelastic system.

. Viscoelastic model

The undeformed configuration of the system under consideration is
hown in Fig. 1(a). At this instant, both tilted springs are unstretched.
he tilted springs have a stiffness of 𝑘 and are inclined at an angle 𝛼0 to
he horizontal in the undeformed configuration. The width of the truss
s 2𝑤0. A viscoelastic standard linear solid element is attached to the
ass. It consists of a damper with viscosity 𝑐 and two springs, one in

parallel and the other in series with the damper, of stiffness 𝑘1 and 𝑘2
respectively. The mass is acted on by a harmonic force 𝑓 cos𝜔𝑡.
0

2 
2.1. Model description

Let the mass be indented downward by an amount 𝑥. Assuming
he small-angle approximations, the change in length of the tilted
prings and the instantaneous angle made by the tilted springs with
he horizontal are given as

𝑙 ≈
𝑥2 − 2𝑤0𝛼0𝑥

2𝑤0
, 𝛼 ≈ 1

𝑤0
(𝛼0𝑤0 − 𝑥). (1)

Thus the governing equation for the mass is given as [3]

𝑚𝑑2𝑥
𝑑𝑡2

= 𝑘𝑥
𝑤2

0

(𝑥 − 2𝛼0𝑤0)(𝛼0𝑤0 − 𝑥) − 𝑓𝑣 + 𝑓0 cos𝜔𝑡, (2)

where 𝑓𝑣 is the force induced in the viscoelastic element. The constitu-
tive relation for the viscoelastic unit is given as [34]
𝑘1 + 𝑘2

𝑘2
𝑑𝑥
𝑑𝑡

+
𝑘1
𝑐
𝑥 = 1

𝑘2

𝑑𝑓𝑣
𝑑𝑡

+ 1
𝑐
𝑓𝑣. (3)

2.2. Non-dimensionalization

For the viscoelastic system, there exist two time scales, one is the
slow time scale of stress relaxation of (𝑐∕𝑘2), and the other is the
faster time scale of elastic oscillations of (𝛼−10

√

𝑚∕𝑘). We first re-
scale time with respect to the slow time. Thus, we have 𝑡 = 𝑐

𝑘2
𝑇 .

The displacements are scaled with respect to the initial height of the
truss in the undeformed configuration. Thus, we have 𝑥 = 𝛼0𝑤0𝑋. In
addition, we introduce the following non-dimensional parameters into
the problem.

𝐷𝑒 = 𝛼0
𝑐∕𝑘2
√

𝑚∕𝑘
, 𝛽 =

𝑘2
𝑘1 + 𝑘2

, 𝜆 =
𝑘1
𝑘𝛼20

. (4)

Here 𝐷𝑒 is the Deborah number, which is the ratio of the timescale of
stress relaxation to the timescale of elastic oscillations. 𝛽 is called the
relaxation parameter and is the ratio of stiffnesses in the viscoelastic
unit. It controls the viscoelastic behavior of the material and ranges
from zero to one (𝛽 = 0 corresponding to the elastic material). 𝜆 is a
eometric/relative stiffness parameter. 𝜆 also acts as a static bifurcation
arameter and governs the monostability/bistability of the truss. More
etails on these nondimensional parameters can be found in [3,20].
dditionally, we have

0 =
𝑓0

𝑘𝛼30𝑤0
, 𝛴 =

𝑓𝑣
𝑘1𝛼0𝑤0

, 𝛺 = 𝜔 𝑐
𝑘2

. (5)

The governing equations are given by

𝐷−2
𝑒

𝑑2𝑋
𝑑𝑇 2

= 𝑋(𝑋 − 2)(1 −𝑋) − 𝜆𝛴 + 𝐹0 cos𝛺𝑇 , (6)

and
1

1 − 𝛽
𝑑𝑋
𝑑𝑇

+𝑋 = 𝑑𝛴
𝑑𝑇

+ 𝛴. (7)

3. Dynamic response

The total energy of the autonomous system (unforced and elastic)
is given by

𝛱 = 1
2
𝐷−2

𝑒 𝑋̇2 +𝑋2 + 𝜆𝑋
2

2
−𝑋3 + 𝑋4

4
, (8)

and is shown in Fig. 1(b) for 𝐷𝑒 = 1. It is immediately evident that
for a given velocity 𝑋̇ and 𝜆 ≠ 0, the system will have an asymmetric
potential well about the unstable saddle point. The figure also shows
the trajectories corresponding to different system parameters. It is
evident that while viscosity only affects the rate of decay of trajectories,
viscoelasticity affects both the energy landscape (due to the elastic com-
ponent) as well as the decay rate (due to the viscous component) [23].
The potential energy of the system [33] can be written as

𝑉 = 𝑋2 + 𝜆𝑋
2
−𝑋3 + 𝑋4

. (9)

2 4
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Fig. 1. Schematic and energy in the system: (a) von Mises truss with viscoelastic element subjected to harmonic forcing. Inset shows the stable and unstable equilibrium
configuration for 𝜆 = 0 and 𝜆 ≠ 0 (where 𝜆 is defined in Eq. (4)) (b) Total energy surface for the autonomous system for 𝜆 = 0.1. The red line represents a total energy curve for
a given velocity 𝑋̇, which is asymmetric about the saddle point. The black line represents a high-amplitude trajectory with 𝛽 = 0. The blue line represents a decaying trajectory
with 𝛽 = 0.1. [23]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
i
a

𝑋

l
a
t
t
0

t
F
s
𝑋
t
b
a
h
s
f
o
m

m
t
s
i

The equilibrium positions must satisfy 𝑑𝑉
𝑑𝑋 = 0 and can be written as

𝑋 = 0, 𝑋 =
3 ±

√

1 − 4𝜆
2

. (10)

ere 𝑋 = 0 corresponds to the natural equilibrium configuration
which is always stable). The roots with the ± sign indicate the inverted
table configuration and the unstable configuration respectively as
hown in Fig. 1(a). As noted by Gomez et al. [3] the presence of the
equilibrium depends on 𝜆. Note that 𝜆 is a static bifurcation parameter
which dictates whether the truss is bistable or monostable. A shallow
truss (low value of 𝛼0 or high 𝜆) will be monostable. On the other
hand, a deeper truss (higher value of 𝛼0 or lower 𝜆) will be bistable.
Specifically, the following can be noted:

1. When 𝜆 = 0, the system is bistable and the potential function is
symmetric and has two potential wells separated by a potential
barrier.

2. When 0 < 𝜆 ≤ 1
4 , the system is bistable; however, the poten-

tial function is asymmetric with two potential wells separated
by a potential barrier. In this configuration the inverted state
becomes the higher energy state.

3. When 𝜆 > 1
4 , the system is monostable with a potential having a

single potential well. Additionally, the nonlinear restoring force
increases monotonically from the initial equilibrium position.

e consider that the truss is initially indented by applying an instan-
aneous displacement of 𝑋ind and held in that particular position for a
uration 𝑇ind, thus allowing for stress relaxation to occur. The inden-
ation force is then removed and immediately replaced by a harmonic
orce, and our external clock is started, i.e., we define 𝑇 = 0 at the
ime the indenter is released, and the harmonic loading is applied. To
uantify the behavior of the truss during the indentation period, that
s for 𝑇 < 0, we approximate the indentation as

= 𝑋𝑖𝑛𝑑H(𝑇 + 𝑇𝑖𝑛𝑑 ) (11)

here H(.) is the Heaviside function. Substituting this into the consti-
utive relation for the viscoelastic element, and solving for the nondi-
ensional force 𝛴 (noting that the derivative of the Heaviside function
 H

3 
s the Dirac-Delta function), we obtain the initial conditions at 𝑇 = 0
s

(0+) = 𝑋ind, 𝑋̇(0+) = 0, 𝛴(0+) = 𝑋ind

[

1 +
𝛽

1 − 𝛽
𝑒−𝑇ind

]

. (12)

In this paper, we take 𝜆 = 0.1, 𝛽 = 0.5, 𝐷𝑒 = 10, 𝑋ind = 1.5 and
𝑇ind = 5, unless otherwise specified. The choice of these parameters is
based on experimental observations. This study was inspired by dome-
shaped structures made from rubbery polymers such as silicon-based
elastomers. For these systems, stress relaxation occurs on a much slower
time scale than elastic oscillations [18,20,35]. Hence 𝐷𝑒 has to be at
east 𝑂(1). Now, since the Deborah number governs the slow dynamics,
very high value would make it computationally intensive to resolve
he fast elastic oscillations when solving for motion on the slower
imescale. Hence, we choose 𝐷𝑒 as 10. Second, 𝜆 has been chosen as
.1 so that our system lies in the bistable zone. Fig. 2 shows the steady-
state time domain response for 𝐹0 = 0.5 and 𝐹0 = 0.8 corresponding to
periodic and chaotic oscillations. More details can be found in [23].

Since the system has a double potential well, it is very likely that,
for some combination of forcing amplitude and forcing frequency, the
system escapes from a potential well, exhibiting either intrawell or
cross-well motion. This can be better visualized through some time-
domain simulations. We start with an initial condition of 𝑋ind = 1.5 in
he right potential well. We consider a forcing frequency of 𝛺 = 10.
ig. 3(a) shows the time response for 𝐹0 = 0.01. In this case, the
ystem remains confined to the right potential well (centered around
= 1.8873). Fig. 3(b) shows the time response for 𝐹0 = 0.1. In this case,

he system initially shows large amplitude transients where it traverses
oth wells before finally settling into the left potential well (centered
bout the stable natural configuration). This indicates that the system
as escaped from the potential well it started from, but it still exhibits
mall-amplitude intrawell motion. Fig. 3(c) shows the time response
or 𝐹0 = 0.5. In this case, the system keeps on transitioning from
ne potential well to the other and signifies large-amplitude interwell
otion.
Although the system is capable of exhibiting large-amplitude chaotic
otion [23], large-amplitude periodic motions are of particular in-
erest, especially in the context of energy harvesting or vibration
uppression. In the next section, we aim to find the parameter regimes
n which these large-amplitude solutions may be obtained through the

armonic Balance Method.
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Fig. 2. Steady state time response for 𝛺 = 10, 𝐷𝑒 = 10, 𝜆 = 0.1, 𝛽 = 0.5 (a) Large amplitude periodic motion (b) Large amplitude chaotic motion.
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. Harmonic balance method

In this section, we aim to study the parameter space of forcing
requency and forcing amplitude where either large-amplitude cross-
ell oscillations or small-amplitude intra-well oscillations take place.
revious studies of similar systems have shown that the response
onsists of a dominant frequency equal to the frequency of excitation
36–38]. However, because of the presence of quadratic and cubic non-
inearities we note that for some combinations of forcing parameters,
he subharmonic or superharmonic responses are excited. In such cases,
higher-order truncation of the Fourier series is needed.

.1. 1-term approximation

Here we start with the single-term approximation by considering
he dominant response at the excitation frequency. Thus we have,

(𝑇 ) = 𝐴(𝑇 ) + 𝐵(𝑇 ) cos𝛺𝑇 + 𝐶(𝑇 ) sin𝛺𝑇 , (13)

nd

(𝑇 ) = 𝑄(𝑇 ) +𝑀(𝑇 ) cos𝛺𝑇 +𝑁(𝑇 ) sin𝛺𝑇 , (14)

here the terms 𝐴(𝑇 ) and 𝑄(𝑇 ) are needed for intra-well and inter-well
scillations with nonzero displacement bias. Here, the coefficients are
unctions of the slow time 𝑇 . The corresponding derivatives are given
s
̇ = 𝐴̇ + (𝐵̇ + 𝐶𝛺) cos𝛺𝑇 + (𝐶̇ − 𝐵𝛺) sin𝛺𝑇 , (15)

̇ = 𝑄̇ + (𝑀̇ +𝑁𝛺) cos𝛺𝑇 + (𝑁̇ −𝑀𝛺) sin𝛺𝑇 , (16)

̈ = (2𝐶̇𝛺 − 𝐵𝛺2) cos𝛺𝑇 − (2𝐵̇𝛺 + 𝐶𝛺2) sin𝛺𝑇 . (17)

e consider trajectories close to periodic solutions, so that the ampli-
ude functions vary slowly with time. This enables us to neglect the
econd order derivatives. This has been done somewhat in the spirit of
irst-order averaging [39,40]. Substituting Eqs. (15)–(17) in Eq. (6), and
balancing the coefficients of the constant terms and sin𝛺𝑇 and cos𝛺𝑇
we obtain

2𝐴3 − 6𝐴2 + (3𝑅2 + 4)𝐴 + 2𝜆𝑄 − 3𝑅2 = 0, (18)

−8 𝛺
𝐷2

𝑒
𝐵̇ + 8𝐶 − 4𝛺

2

𝐷2
𝑒
𝐶 + 3𝑅2𝐶 − 24𝐴𝐶 + 12𝐴2𝐶 + 4𝜆𝑁 = 0, (19)

nd
𝛺
𝐷2

𝑒
𝐶̇ + 8𝐵 − 4𝛺

2

𝐷2
𝑒
𝐵 + 3𝑅2𝐵 − 24𝐴𝐵 + 12𝐴2𝐵 + 4𝜆𝑀 = 4𝐹0. (20)

ere 𝑅2 = 𝐵2 +𝐶2 is the amplitude of oscillation corresponding to the
xcitation frequency. Similarly substituting in Eq. (7) and balancing the
orresponding terms gives
1 𝐴̇ + 𝐴 = 𝑄 + 𝑄̇, (21)
1 − 𝛽

4 
1
1 − 𝛽

𝛺𝐵 − 𝐶 + 𝑁̇ −𝛺𝑀 +𝑁 − 1
1 − 𝛽

𝐶̇ = 0, (22)

and

𝑀 − 𝐵 − 1
1 − 𝛽

𝛺𝐶 +𝛺𝑁 + 𝑀̇ − 1
1 − 𝛽

𝐵̇ = 0. (23)

t steady state, all time derivatives become zero, so that we can
e-write our equations as

𝐴3 − 6𝐴2 + (3𝑅2 + 4)𝐴 + 2𝜆𝑄 − 3𝑅2 = 0, (24)

𝐷2
𝑒𝐶 − 4𝛺2𝐶 + 3𝐷2

𝑒𝑅
2𝐶 − 24𝐷2

𝑒𝐴𝐶 + 12𝐷2
𝑒𝐴

2𝐶 + 4𝐷2
𝑒𝜆𝑁 = 0, (25)

𝐷2
𝑒𝐵−4𝛺2𝐵+3𝐷2

𝑒𝑅
2𝐵−24𝐷2

𝑒𝐴𝐵+12𝐷2
𝑒𝐴

2𝐵+4𝐷2
𝑒𝜆𝑀 = 4𝐷2

𝑒𝐹0, (26)

= 𝑄, (27)

1
1 − 𝛽

𝛺𝐵 − 𝐶 −𝛺𝑀 +𝑁 = 0, (28)

nd

− 𝐵 − 1
1 − 𝛽

𝛺𝐶 +𝛺𝑁 = 0. (29)

t can be seen that if 𝑅 = 0, from Eqs. (24) and (27), we obtain the
equilibrium points for the unforced system as

𝐴 = 0 and 𝐴 = 3
2
±

√

1 − 4𝜆
2

. (30)

Since Eqs. (28) and (29) are linear equations, we can directly solve
hem for the coefficients 𝑀 and 𝑁 . Thus we have

=
𝐵𝛺2 +𝛺𝛽𝐶 − 𝐵𝛽 + 𝐵

(1 − 𝛽)(1 +𝛺2)
, (31)

and

𝑁 =
𝐶𝛺2 −𝛺𝛽𝐵 + 𝐶 − 𝛽𝐶

(1 − 𝛽)(1 +𝛺2)
. (32)

Substituting Eqs. (31) and (32) in Eqs. (25) and (26) we get equations
of the form

𝜁𝐵 + 𝜉𝐶 = 0, (33)

and

𝜉𝐵 − 𝜁𝐶 = 4𝐷2
𝑒𝐹0, (34)

where

𝜁 = −
4𝐷2

𝑒𝜆𝛺𝛽
(1 − 𝛽)(1 +𝛺2)

and

𝜉 = 12𝐷2
𝑒𝐴

2 + 3𝐷2
𝑒𝑅

2 − 24𝐷2
𝑒𝐴 +

4𝐷2
𝑒𝜆(𝛽 − 1 −𝛺2)

(𝛽 − 1)(1 +𝛺2)
+ 8𝐷2

𝑒 − 4𝛺2.
(35)
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Fig. 3. Time domain simulations for 𝛺 = 10, 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1 (a) small amplitude intrawell motion; the motion stays confined to the potential well it started from. (b)
ermanent escape from potential well; after some initial cross-well transients, the motion settles in a different potential well than the one it started from. (c) Well hopping motion;
he system transitions between the two potential wells. The red dashed line and the red stars indicate the equilibrium positions.
quaring and adding Eqs. (33) and (34), we get

𝑅2(𝜁2 + 𝜉2) = 16𝐷4
𝑒𝐹

2
0 . (36)

Eq. (24) together with Eq. (36) are used to find the mean (𝐴)
and amplitude (𝑅) of the steady-state solutions (note that 𝑄 has been
eliminated from Eq. (24)). Solving this system of equations leads to
multiple coexisting solutions for some parameter values. Hence, the
question of their stability naturally arises. To determine the stability
of the solutions, the equations are cast in the form of

𝑈̇ = 𝑓 (𝑈 ), (37)
5 
where 𝑈 = [𝐴,𝐵, 𝐶,𝑀,𝑁]𝑇 . The eigenvalues of the Jacobian of 𝑓 (𝑈 )
evaluated at the steady-state solutions determine the stability of the
solutions. If the real part of all the eigenvalues is negative, then the
solution is stable. If at least one of the eigenvalues has a positive real
part, then the solution is unstable.

The amplitude of steady-state solutions (𝑅) for a forcing amplitude
of 𝐹0 = 1 is shown in Fig. 4(a). The stable solutions are indicated by
the solid blue lines while the unstable solutions are indicated by the red
dashed lines. It can be seen that in the low frequency regime, the large-
amplitude cross-well motion is the only stable periodic solution. As
the frequency increases, this periodic orbit becomes unstable through
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Fig. 4. Amplitude of steady state solutions for the first order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate unstable solutions. Saddle
node bifurcation points are indicated by 𝑆𝑁 and Hopf bifurcation points are indicated by 𝐻 . The subscript represents the order in which they occur as the forcing parameter is
increased. System parameter values are 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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a Hopf bifurcation (𝐻1) and once again stabilizes through a Hopf
ifurcation (𝐻5). An unstable branch of solution arises around 𝛺 ≈ 12.1,
hich forms a loop that stabilizes through two Hopf bifurcations 𝐻3
nd 𝐻4. This branch corresponds to oscillations about the inverted
onfiguration.
The response curve corresponding to the forcing amplitude is shown

n Fig. 4(b). It can be seen that there are multiple coexisting stable
olutions, and the initial conditions determine which periodic attractor
he system gets attracted to. For low forcing amplitudes and small
nitial indentations, intrawell oscillations are the only stable motion for
wide range of initial conditions. For large initial conditions, one can
xpect to reach the upper stable branch of solutions in the low forcing
mplitude range. The saddle node and Hopf bifurcations are marked in
he figure.

.2. 2-term approximation

As stated earlier, a bistable system such as ours, coupled to a
iscoelastic equation, may diffuse energy into the fractional and in-
eger order harmonics of the forcing frequency due to the presence
f quadratic and cubic nonlinearities, especially in the presence of
ard forcing. Hence, it is highly likely that the dynamics will be a
ollective contribution of several harmonics. Numerical simulations
eveal that, in the low frequency range, the response will have a
ominant component at the excitation frequency and three times the
xcitation frequency.
With this motivation, we now extend the previous one-term approx-

mation to a two-term approximation by considering the third-order
uperharmonic response.
Thus we have,

(𝑇 ) = 𝐴(𝑇 ) + 𝐵1(𝑇 ) cos𝛺𝑇 + 𝐶1(𝑇 ) sin𝛺𝑇

+ 𝐵3(𝑇 ) cos 3𝛺𝑇 + 𝐶3(𝑇 ) sin 3𝛺𝑇 , (38)

nd

(𝑇 ) = 𝑄(𝑇 ) +𝑀1(𝑇 ) cos𝛺𝑇 +𝑁1(𝑇 ) sin𝛺𝑇

+ 𝑀3(𝑇 ) cos 3𝛺𝑇 +𝑁3(𝑇 ) sin 3𝛺𝑇 . (39)

In addition, we introduce two amplitudes, 𝑅1 =
√

𝐵2
1 + 𝐶2

1 and 𝑅3 =
√

𝐵2
3 + 𝐶2

3 corresponding to the respective frequency of oscillation.
Following a similar procedure as outlined in the previous section, we
obtain the amplitude and frequency response as shown in Fig. 5.
6 
The response (𝑅1) corresponding to the excitation frequency is
shown in Fig. 5(a) and the corresponding mean of the oscillations is
hown in Fig. 5(b). It can be seen that around 𝛺 = 𝛺𝑛∕3 (here 𝛺𝑛 is the
inearized natural frequency about the naturally stable equilibrium; for
ore details on the calculation of the natural frequency, one may refer
o Appendix.), the two-term Fourier series predicts an unstable branch
f solutions that were not obtained from the single-term approximation,
hich is shown as the blue region in Figs. 5(a) and 5(b). Thus, the
ingle-term approximation is unable to capture the full dynamics of
he system. Nevertheless, the 2 term approximation still predicts the
arge-amplitude motions that are stable in the low frequency range
lthough they lose their stability through a Hopf bifurcation at a much
ower frequency. It can be seen that these kinds of bistable systems
ffer a distinct advantage in terms of having a large amplitude periodic
ttractor over a broad range of frequencies, which in this case is shown
or 𝛺 < 4 and over 𝛺 = 12.1 to 𝛺 = 30. Although these large-
mplitude solutions may coexist with other intra-well solutions, there
s a range of frequencies where the large-amplitude solution is the only
table solution and hence guarantees vigorous motion. In parameter
egimes where interwell solutions coexist with intrawell solutions, the
rimary design hurdle lies in extracting the large-amplitude motion,
iven the sensitivity to initial conditions and the complexities of basin
f attractions, some of which may not be readily accessible or could
nvolve interwell chaotic oscillations. The sensitivity of the system to
nitial conditions in the multi-solution regime has been shown in Fig. 7.
t can be seen that even for a very small change in the initial condition,
he system might jump from a low orbit attractor to a high orbit
ttractor.
The amplitude response (response of the system to the forcing

mplitude 𝐹0) is shown in Fig. 6(a) and the corresponding mean of
he response in Fig. 6(b). The overall configuration of the amplitude
esponse diagram remains the same as the single-term approximation,
xcept for a slight shift in the upper branch of the solution. Once again
e see that the intra-well and the inter-well oscillations coexist with
ach other. To determine the nature of the Hopf bifurcations, one has
o go beoynd the linear stability analysis and rely on softwares like
ATCONT. For example, it can be seen that beyond the Hopf bifurca-
ion 𝐻4, there are no stable perioidic orbits. Numerical continuation
n MATCONT suggests that there are stable limit cycles to the left of
4, but none just to its right. This indicates that the Hopf bifurcation
s a subcritical one, which is further confirmed by the postive first
yapunov coefficient. Beyond 𝐻 , the system simply gets attracted to
4



P. Ghoshal et al.

i
a

t
c

u
a

International Journal of Non-Linear Mechanics 166 (2024) 104858 
Fig. 5. Amplitude and mean of steady state solutions for the second order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate
unstable solutions. Black dashed lines indicate the equilibrium positions of the system. Green circles denote amplitudes and means obtained from time-domain simulations.
The Hopf bifurcation points are indicated by 𝐻 . The subscript represents the order in which they occur as the forcing parameter is increased. System parameter values are
𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Amplitude and mean of steady state solutions for the second order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate unstable
solutions. Black dashed lines indicate the equilibrium positions of the system. Green circles denote amplitude and means obtained from time-domain simulations. The saddle node
bifurcation points are indicated by 𝑆𝑁 and the Hopf bifurcation points are indicated by 𝐻 . The subscript represents the order in which they occur as the forcing parameter is
ncreased. System parameter values are 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
he nearest attractor, which may be a periodic attractor (that is not
aptured by the two-term approximation) or a chaotic attractor.
The frequency and amplitude responses have also been verified

sing numerical simulations as shown by the green circles in Figs. 5
nd 6 . The numerical simulations reveal that for regions where multi-
ple stable solutions exist, the system is highly sensitive to the initial
conditions (see Fig. 7), which dictate which basin of attraction the
system is attracted to. Also some of the basins of attraction are not
easily accessible, hence a very small change in initial conditions is
needed to get on the steady-state curves. It can also be seen that in the
low frequency range, the match between the numerical and analytical
results are not that great. This is because of the interaction between
the slow and fast time scales in this parameter regime that leads to
several sub- and superharmonic frequencies getting excited. Thus, a
higher-order truncation of the Fourier series is needed to accurately
capture the dynamics in this range.

The variation of the frequency response curves with the geometric
parameter 𝜆 for different Deborah numbers is shown in Fig. 8. Four
7 
ranges of Deborah numbers have been considered, namely (i) 𝐷𝑒 ≫ 1,
(ii) 𝐷𝑒 > 1, (iii) 𝐷𝑒 = 1, and (iv) 𝐷𝑒 ≪ 1. 𝜆 also denotes the
strength of the coupling between the elastic von Mises truss and the
viscoelastic element. As 𝜆 increases, the linear stiffness of the system
grows, and hence the system shows hardening behavior. Thus, the
natural frequency of the system increases (see Appendix). As the ge-
ometric parameter increases beyond the transition point from bistable
to monostable behavior, the lower branch of solutions corresponding to
oscillations about the inverted configuration vanishes. We observe the
same behavior across different ranges of Deborah numbers. However,
the behavior near one-third of the natural frequency is different in each
case. We observe that for high Deborah numbers (𝐷𝑒 = 100), the curve
bends toward the right, thus indicating a hardening behavior in this
range, before turning back on itself. For lower 𝐷𝑒’s, the bend to the
right is not observed, although the curve still loops back on itself before
merging with the stable large-amplitude branch.

The variation in frequency response with the relaxation parameter 𝛽
for different Deborah numbers is shown in Fig. 9. It can be seen that for
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Fig. 7. Variation of the mean and amplitude of the steady state solutions with the indentation depth. The system is sensitive to the initial conditions where there are multiple
coexisting solutions. System parameter values are 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1, 𝐹0 = 1.

Fig. 8. Variation of frequency response with 𝜆 in different ranges of Deborah number for 𝐹0 = 1, 𝛽 = 0.5. Solid lines indicate stable solutions. Dashed lines indicate unstable
solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Variation of frequency response with 𝛽 in different ranges of Deborah number for 𝐹0 = 1, 𝜆 = 0.1. Solid lines indicate stable solutions. Dashed lines indicate unstable
solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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lower ranges of 𝐷𝑒, the effect of 𝛽 on the frequency response, especially
n the high frequency range, is not significant. As 𝐷𝑒 increases, the
effect on frequency response becomes more prominent. For higher
Deborah numbers, it is apparent that when 𝛽 is small (𝛽 ≲ 0.5), there
is minimal change in the frequency response with respect to 𝛽. This
phenomenon arises due to the hyperbolic dependence (∼ 𝛽

1−𝛽 ) of the
esponse on 𝛽, which results in notable distinctions primarily when
→ 1. As 𝛽 increases, the frequency response shifts towards higher

requencies, indicating a trend towards hardening behavior.
The interest in these types of bistable systems is due to their

pplications in vibration attenuation [41,42]. Hence, it is worthwhile
o study the energy dissipated by the system when subjected to external
armonic excitation. The average energy dissipated at steady state over
period of 𝑇 = 2𝜋∕𝛺 can be calculated as

𝑠𝑡 =
1
𝑇 ∫

𝑇=2𝜋∕𝛺

0
𝛴𝑋̇𝑑𝑇 , (40)

or

𝐸𝑠𝑡 =
𝛺2𝛽

2(1 +𝛺2)(1 − 𝛽)
𝑅2
1 +

9𝛺2𝛽
2(1 − 𝛽)(1 + 9𝛺2)

𝑅2
3. (41)

Note that 𝑀1, 𝑁1,𝑀3, 𝑁3 have been eliminated from the linear steady
state equations. The average energy dissipated per cycle is shown in
Fig. 10 and has also been verified numerically as shown by the green
circles. It can be seen from Eq. (41), that with increase in 𝛽 the quantity
𝛽 increases monotonically. However, it must be noted that 𝛽 also
1−𝛽 o

9 
determines the amount of damping in the system. An increase in 𝛽
ncreases the amount of damping and hence restricts the amplitude of
scillations 𝑅1 and 𝑅3. Thus there exists an optimum value of 𝛽 that
llows for maximum energy dissipation.

The average energy dissipated per cycle is shown in Fig. 11(a) as
function of 𝛽 for 𝐹0 = 1, 𝛺 = 10. It can be seen that in the purely
lastic limit at 𝛽 = 0, there is no energy dissipation. As 𝛽 increases, the
issipation energy also increases. There exists a particular value of 𝛽
𝛽𝑜𝑝𝑡) at which the dissipated energy reaches its peak (𝐸𝑠𝑡𝑚𝑎𝑥 ) for a given
et of excitation parameters. Beyond this value, the dissipated energy
tarts decreasing because in this regime, the amplitude of oscillations
re highly restricted by the damping in the system. The variation of
he optimum value of 𝛽 against the forcing parameters is shown in
ig. 11(b). It can be seen that 𝛽𝑜𝑝𝑡 increases monotonically with 𝐹0 and
ubsequently settles to a constant value. For very low values of 𝛺 (≦ 3),

𝑜𝑝𝑡 decreases until it reaches a minimum, beyond which it increases
onotonically (this variation is, however, in a very narrow range, in
he high 𝛽 regime). Hence, the analytical approach to the problem
hrough the harmonic balance method allows us to design an optimum
ystem for maximum vibrational energy dissipation for a given set of
perating parameters.
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Fig. 10. Average energy dissipated in a cycle for 𝜆 = 0.1, 𝐷𝑒 = 10, 𝐹0 = 1 and 𝛽 = [0.2, 0.5, 0.8]. Solid blue lines correspond to stable solutions. Red dashed lines correspond to
unstable solutions. Green circles denote average energy dissipated obtained from numerical simulations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 11. (a) Average energy dissipated per cycle as a function of 𝛽 for 𝐷𝑒 = 10, 𝜆 = 0.1, 𝐹0 = 1, 𝛺 = 10. Solid blue lines correspond to stable solutions. Red dashed lines correspond
to unstable solutions. (b) Variation of the optimum value of 𝛽 with the forcing amplitude and the forcing frequency as obtained from the single-term harmonic balance. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
. Equivalent viscous systems

Now that we have an understanding of the viscoelastic system, we
erform a thought experiment. Is it possible to formulate an equiva-
ent viscous system that can faithfully reproduce the dynamics of the
iscoelastic system without introducing any additional complexities in
he equations? In other words, we aim to show the need to include
iscoelasticity in the model, without which some important features in
he dynamics may not be captured accurately. Note that eliminating
iscoelasticity will not lead to analytical results or reduce computa-
ional times. It simply enables us to do a lower-order parametric study
o understand the behavior of the system. The key consideration here is
hether such a basic simplification suffices to adequately capture the
ynamics of the system. With this motivation, we follow an energy-
ased approach to derive an equivalent linear damped system (see
ig. 12).
We start with the dimensional form of the equation for the viscoelas-

ic element in Eq. (3). Taking a Laplace transform of the equation, we
10 
have
𝑘1 + 𝑘2

𝑘2
[𝑠𝑋̄ − 𝑥(0)] +

𝑘1
𝑐
𝑋̄ = 1

𝑘2
[𝑠𝐹𝑣 − 𝑓𝑣(0)] +

1
𝑐
𝐹𝑣, (42)

where 𝑋̄ and 𝐹𝑣 are the Laplace transform of 𝑥 and 𝑓𝑣. Assuming that
at 𝑡 = 0, the initial displacement and the viscoelastic reaction force are
zero, we have

𝐹𝑣 =
[

(𝑘1 + 𝑘2)𝑠𝑐 + 𝑘1𝑘2
𝑘2 + 𝑠𝑐

]

𝑋̄. (43)

Now, assuming that the mass exhibits a sinusoidal displacement of
𝑥 = 𝑋0 sin𝜔𝑡 (in line with the assumption that the initial displacement
is zero), we have

𝐹𝑣 =
[

(𝑘1 + 𝑘2)𝑠𝑐 + 𝑘1𝑘2
𝑘2 + 𝑠𝑐

]

𝑋0𝜔
𝜔2 + 𝑠2

. (44)

Now, taking the inverse Laplace transform, we obtain

𝑓𝑣 = 𝑋0𝑘1 sin𝜔𝑡 +
𝑋0𝜔2𝑐2𝑘2
2 2 2

sin𝜔𝑡 +
𝑋0𝜔𝑐𝑘22
2 2 2

cos𝜔𝑡 −
𝑋0𝜔𝑐𝑘22
2 2 2

𝑒−
𝑘2 𝑡
𝑐 .
𝜔 𝑐 + 𝑘2 𝜔 𝑐 + 𝑘2 𝜔 𝑐 + 𝑘2
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Fig. 12. Equivalent viscous model obtained from the viscoelastic system by an energy based approach.
(45)

Note that the last term in the above expression goes to zero, as 𝑡 → ∞.
Thus, at steady state, the reactive viscoelastic force will be harmonic
as well (although out of phase).

The energy dissipated by the viscous damper in the standard linear
solid element in a single cycle at steady state (by neglecting the
exponentially decaying term) can be found as

𝑈𝑑 = ∫

2𝜋∕𝜔

0
𝑓𝑣𝑥̇𝑑𝑡 =

𝑋2
0𝜋𝑐𝑘

2
2𝜔

𝜔2𝑐2 + 𝑘22
. (46)

The energy dissipated in a single cycle as a result of viscous damping
alone in the presence of a harmonic excitation is given by

𝑈𝑑 = 𝜋𝑐𝑒𝑞𝑋
2
0𝜔. (47)

Thus, equivalent viscous damping can be found by equating the en-
ergies dissipated in a single cycle by the viscous and the viscoelastic
system as

𝑐𝑒𝑞 =
𝑘22𝑐

𝑘22 + 𝜔2𝑐2
. (48)

Note that the equivalent damping coefficient depends on the frequency
of oscillation. Hence, the modified equations of motion are now given
by

𝑚𝑥̈ − 𝑘𝑥
𝑤2

0

(𝑥 − 2𝛼0𝑤0)(𝛼0𝑤0 − 𝑥) +
𝑘22𝑐

𝜔2𝑐2 + 𝑘22
𝑥̇ = 𝑓 cos𝜔𝑡. (49)

Eq. (49) is now non-dimensionalized using the same scheme that was
used for the viscoelastic system. Thus, we have

1
𝐷2

𝑒

𝑑2𝑋
𝑑𝑇 2

− 3𝑋2 +𝑋3 + 2𝑋 +
𝛽𝜆

(1 − 𝛽)(1 +𝛺2)
𝑑𝑋
𝑑𝑇

= 𝐹0 cos𝛺𝑇 . (50)

It can be seen that for low oscillation frequencies, the frequency
ependence of the damping no longer exists, and it is possible to
btain an constant equivalent damping coefficient. Conversely, for
igh excitation frequencies, the frequency dependence of the damping
ecomes significant and cannot be neglected. It is crucial to recognize
hat though the equivalent viscous system might seem straightforward,
t carries potential pitfalls. We note that the validity of this approach is
ased on the premise that the response itself is harmonic. Hence, this
ethod is unable to replicate the quasiperiodic or chaotic motions of
he system exactly. This is evident from Fig. 13(a) in which a large-
mplitude harmonic response of the original system matches perfectly
ith that of the equivalent system. If the response is not harmonic as
n Fig. 13(b), the equivalent system may or may not track the original
esponse depending on the forcing and system parameters. Although
he two curves in Fig. 13(b) are slightly out of phase (as was alluded
to in the derivation), the amplitudes are still slightly off but give a
11 
reasonable match. Hence, an important criterion for this method to
yield reliable approximations is that of the harmonic response.

Fig. 14 shows the steady-state root mean square errors between the
time response of the viscoelastic system and the equivalent system.
The validity of the approximate model depends both on the forcing
parameters as well as the intrinsic system parameters. It can be seen
that in the low 𝐷𝑒 range, the match between the two systems is
almost exact for both the resonant and non-resonant frequencies. As
𝐷𝑒 increases, a band of large errors (as shown by the red dashed
lines) is obtained for all ranges of 𝛽. Beyond this band, the error in
the high 𝛽 range is significantly lower compared to the low 𝛽 range
for the range of 𝐷𝑒 considered. Thus, while the approximate viscous
model might have high fidelity in some parameter regimes, its accuracy
decreases in other parameter regimes. The response characteristics of
the system and the system parameters in the operating range may
not be known a priori. Hence, relying solely on a simplistic viscous
model may produce misleading results, thus emphasizing the need for
a full-scale viscoelastic model.

6. Discussion and conclusion

In this paper, we studied the effects of viscoelasticity on the periodic
response of a harmonically forced bistable von Mises truss. Despite
its apparent simplicity, the viscoelastic von Mises truss allows us to
address critical questions in nonlinear dynamics, capturing the inter-
play between geometric and material parameters within the system.
Moreover, it represents a broad class of dynamical systems, including
shells and arches, and facilitates lumped parameter analysis when a
continuum approach becomes tedious.

We showed that viscoelasticity introduces an additional degree of
freedom into the system, resulting in even more complex dynamics than
is typical in the viscous counterpart. While the chaotic motion of this
system has been extensively studied, our work diverges by concentrat-
ing on regular solutions, specifically large amplitude periodic solutions,
for which there is limited analytical treatment in existing literature.
Understanding these periodic motions is crucial due to their appli-
cations in energy harvesting and vibration suppression. For systems
with multiple potential wells, several co-existing periodic solutions can
arise, necessitating a systematic study of the system. These coexisting
solutions make the system sensitive to initial conditions that determine
which basin of attraction the system gravitates towards. Some basins
of attraction are more accessible than others, making it essential to
quantify the parameter regimes where this behavior is likely. In this
paper, we use the harmonic balance method to predict the onset of
large amplitude motions and the transition from intrawell to crosswell
motion. The effects of parameter variation have been shown for dif-

ferent parameter regimes through bifurcation diagrams. The harmonic
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Fig. 13. Comparison of steady state time responses of viscoelastic system and equivalent viscous system for (a) 𝐹0 = 1, 𝛺 = 13, 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1 (b) 𝐹0 = 1, 𝛺 = 2, 𝐷𝑒 =
10, 𝛽 = 0.5, 𝜆 = 0.1. The blue line corresponds to the viscoelastic system, and the red line corresponds to the viscous system. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Fig. 14. Steady state root mean square errors between time domain simulations of viscoelastic system and equivalent viscous system for (a) 𝐹0 = 1, 𝛺 = 14 (at resonant frequency),
𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1 (b) 𝐹0 = 1, 𝛺 = 10 (away from resonant frequency), 𝐷𝑒 = 10, 𝛽 = 0.5, 𝜆 = 0.1. The first 50000 periods have been removed to eliminate transients. Cooler colors
epresent lower error, while hotter colors represent higher errors. The red dashed lines show the Deborah number band with high error. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
d
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alance method allowed us to find optimum system parameters for
aximum energy dissipation for a given operating condition.
Finally, we formulated an equivalent viscous system using an energy-

ased approach. We demonstrated that a naive viscous approximation
as potential pitfalls in the high-frequency regime as well as for some
ombination of system parameters, thus having high fidelity in some
arameter regimes and low fidelity in others. Hence, to faithfully recre-
te the dynamics of the system, analysis of the full-scale viscoelastic
ystem is essential.
This work lays a significant foundation for future research. The

armonic balance method shows that the system can exhibit two types
f motion: small amplitude oscillations about the stable equilibria and
arge amplitude oscillations about the unstable equilibrium. Regardless
f the system or excitation parameters, it is impossible to extract small
mplitude oscillations about the saddle node under external harmonic
xcitation. However, alternative forms of excitation might enable the
xtraction of such oscillations for specific parameter combinations. This
apability allows for temporarily parking the system in the unstable
tate and subsequently biasing it towards one of the stable states
12 
epending on the external perturbation. This concept has wide appli-
ations in mechanical logic gates, mechanically actuated sensors, and
rogrammable metamaterials.
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Appendix. Linearized equations and natural frequencies

To find the linearized equations and the corresponding natural
frequencies, we first write the governing equations of the unforced
system as a set of first order differential equations. Thus we have

𝑥̇1 = 𝑥2,

𝑥̇2 = 𝐷2
𝑒𝑥1(𝑥1 − 2)(1 − 𝑥1) − 𝜆𝐷2

𝑒𝑥3,

𝑥̇3 =
1

1 − 𝛽
𝑥2 + 𝑥1 − 𝑥3.

(A.1)

For oscillations about the natural configuration, we consider 𝑥1 = 𝑥2 =
𝑥3 = 0 and impose a small perturbation to the system. Thus we have
𝑥1 = 𝜉1, 𝑥2 = 𝜉2 and 𝑥3 = 𝜉3, where 𝜉1, 𝜉2 and 𝜉3 are small quantities.
Substituting and linearizing the equations we have

⎡

⎢

⎢

⎣

̇𝜉1
̇𝜉2
̇𝜉3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0
−2𝐷2

𝑒 0 −𝜆𝐷2
𝑒

1 1
1−𝛽 −1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜉1
𝜉2
𝜉3

⎤

⎥

⎥

⎦

. (A.2)

The eigenvalues of this matrix gives the natural frequency. On the con-
trary, if the equations are linearized about the inverted configuration
(𝑥1 = 𝑥3 =

3
2 +

√

1−4𝜆
2 , 𝑥2 = 0), then the equations take the form

̇𝜉1
̇𝜉2
̇𝜉3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0

−𝐷2
𝑒 (1+3

√

1−4𝜆−6𝜆)
2 0 −𝜆𝐷2

𝑒
1 1

1−𝛽 −1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜉1
𝜉2
𝜉3

⎤

⎥

⎥

⎦

. (A.3)

When 𝜆 = 0, the natural frequency of oscillation about either of the
two stable equilibrium positions turns out to be the same (since we
have a symmetric potential well) and is equal to

√

2𝐷𝑒. Recalling the
dimensional form, this turns out to be

√

2𝛼0
√

𝑘∕𝑚. Thus, the natural
frequency depends on the point mass, the stiffness of the tilted springs,
and the initial inclination angle of the truss.)
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