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ARTICLE INFO ABSTRACT

Keywords: This paper examines the effect of viscoelasticity on the periodic response of a lumped parameter viscoelastic
Bifurcation von Mises truss. The viscoelastic system is described by a second-order equation that governs the mechanical
Bistabili'ty motion coupled to a first-order equation that governs the time evolution of the viscoelastic forces. The
s;;f;zlscﬁtc’?lance viscoelastic force evolves at a much slower rate than the elastic oscillations in the system. This adds additional
Viscosity o4 time scales and degrees of freedom to the system compared to its viscous counterparts. The focus of this study

is on the system’s behavior under harmonic loading, which is expected to show both regular and chaotic
dynamics for certain combinations of forcing frequency and amplitude. While the presence of chaos in this
system has already been demonstrated, we shall concentrate only on the periodic solutions. The presence of the
intrawell and interwell periodic oscillations is revealed using the Harmonic Balance method. The study also
looks at the influence of parameter changes on the system’s behavior through bifurcation diagrams, which
enable us to identify optimal system parameters for maximum energy dissipation. Lastly, we formulate an
equivalent viscous system using an energy-based approach. We observe that a naive viscous model fails to
capture the behavior accurately depending on the system and excitation parameters, as well as the type of
excitation. This underscores the necessity to study the full-scale viscoelastic system.

von Mises truss

1. Introduction the structure is held just beyond a snap-through threshold and released)
have been studied previously in [11-13]. These behaviors have inspired

The study of multistable systems has been an area of active research many studies. Montalvo et al. [14] studied the effect of geometry on
for the past few decades [1]. The interest in these types of systems stems the periodic buckling patterns of elastic shells. Taffetani et al. [15]
from their inherent capability to exist in multiple states without re- determined the threshold between bistability and monostability of
quiring a constant application of an external force. These systems have shells with different solid angles. Sobota and Seffen [16] studied the
been exploited for applications ranging from motion of robotic systems, effects of boundary conditions on the stability of axisymmetric shells.

programmable material, energy absorption, to energy harvesting [2]. In
this paper, we focus on bistable systems, i.e. systems with two stable
states. Specifically, we will examine the dynamics of a harmonically
excited, bistable viscoelastic truss with two states: a natural state and
an inverted state.

This representation as a truss is of particular interest to the engi-
neering community, as it captures the dynamics of bistable viscoelastic
dome-shaped structures and bistable arches [3,4]. Typically, these
systems have been studied either experimentally or through finite
element simulations because they give a more concrete picture of the
system’s dynamics. Besides having nonlinear deflections, the existence
of multiple equilibria, these caps/domes also exhibit pseudo-bistability
(‘temporary bistability’ that involves a slow creeping motion followed degree-of-freedom system can be used to approximate the dynamics
by a rapid snap-through [5-10] due to a slowly changing stiffness when of the dome. The simplest model analogous to these dome-shaped

They showed that restrictions to boundary movements in the plane
enhance bistability, while restrictions to the rotation decrease bistabil-
ity. Seffen and Vidoli [17] showed that non-axisymmetric inversion of
shells is inevitable in the presence of very small initial imperfections.
Brinkmeyer et al. [18] showed the effects of material and geometric
parameters on the pseudo-bistability of a viscoelastic spherical dome.
Despite vast research on shell theory, a full-scale analytical treatment
of these systems becomes complicated. As a result, researchers tend to
use various low-dimensional, usually single-degree-of-freedom models
that are representative of this complex system.

In contrast to a continuous model, a lumped-parameter single
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structures is a von Mises truss, capable of exhibiting bistable behavior.
The influence of boundary conditions on the bistability of the truss
was studied in [19]. Gomez et al. [3] use both lumped parameter
and continuous models to investigate snap-through in the presence of
viscoelasticity. The lumped parameter analysis was used as a foun-
dation for analyzing the continuous model and to obtain analytical
expression for the occurrence of snap-through in time. Instabilities
in viscoelastic structures have been studied in [20]. The interaction
between nonlinearities and viscoelasticity was studied in [21].

While the autonomous behavior of the viscoelastic von Mises truss
has garnered much interest, the dynamics of the system becomes sig-
nificantly more complicated when subjected to harmonic excitation. A
brief account of viscoelasticity and harmonic excitation can be found
in [22]. In this case, depending on the forcing amplitude or the forc-
ing frequency, there may be escapes from a potential well or even
chaotic motions [23]. Loukaides [24] studied the transition shapes of
a bistable spherical cap subjected to magnetic actuation. Suire and
Cederbaum [25,26] studied the dynamics of viscoelastic bars subjected
to harmonic forcing using numerical techniques and demonstrated the
presence of chaos. Pourtakdoust and Fazelzadeh [27] studied viscoelas-
tic panel flutter in a supersonic flow. [28] gives a complete review of
viscoelastic materials, its characterization and response under different
loading.

Perturbation methods, including harmonic balance and the method
of multiple scales, have been instrumental in studying these nonlin-
ear systems. Leadenham and Erturk [29] used a multi-term harmonic
balance to investigate the enhancement of bandwidth for energy har-
vesting in a ‘M-shaped’ asymmetric non-linear oscillator. Alhussein and
Daqaq [30] used the harmonic balance and multiple scales method to
estimate the galloping speed and escape speed for a twin-well oscillator.
Jiang et al. [31] used the harmonic balance method to study the dynam-
ics of a Helmholtz-Duffing oscillator coupled to a nonlinear capacitance
and the influence of asymmetry in potential wells. A comprehensive
review of the harmonic balance method, including shooting algorithms
and numerical continuation methods for various nonlinear problems,
can be found in [32].

This work focuses on the effect of viscoelasticity on the periodic
response of a harmonically forced von Mises truss. Viscoelasticity in
autonomous systems introduces an additional degree of freedom that
affects the stability of the system [33]. This gives rise to the possi-
bility of several interesting dynamical behaviors. The viscous damper
in [23] is replaced by a viscoelastic element, thereby leading to further
complexity in the system, due to the additional degree of freedom.
Although chaotic solutions and their boundaries have been studied in
a previous work [23], this is not simply a trivial extension. Multi-
stable systems such as these can have multiple coexisting motions.
This leads to design challenges, especially if one tries to realize the
large-amplitude periodic solutions alone. Hence, it is imperative to
do a full-scale parametric study. We quantify the effect of parameter
variations through numerical and analytical techniques. This enables
us to identify the optimal system parameters for maximum energy
dissipation. Finally, we propose an equivalent viscous model using an
energy-based approach. We demonstrate how this simplistic model fails
under certain scenarios, thus necessitating a study of the complete
viscoelastic system.

2. Viscoelastic model

The undeformed configuration of the system under consideration is
shown in Fig. 1(a). At this instant, both tilted springs are unstretched.
The tilted springs have a stiffness of k and are inclined at an angle «; to
the horizontal in the undeformed configuration. The width of the truss
is 2w,. A viscoelastic standard linear solid element is attached to the
mass. It consists of a damper with viscosity ¢ and two springs, one in
parallel and the other in series with the damper, of stiffness k; and &,
respectively. The mass is acted on by a harmonic force f, cos wr.
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2.1. Model description

Let the mass be indented downward by an amount x. Assuming
the small-angle approximations, the change in length of the tilted
springs and the instantaneous angle made by the tilted springs with
the horizontal are given as

x? = 2wyapx

1
dl ~ s N — - X). 1
a 0 (agwy — x) (€8]

2wy
Thus the governing equation for the mass is given as [3]
d*x

mﬁ = k—);(x — 2aqwy)(agwy — x) — f,, + focoswt, (2)

0
where f, is the force induced in the viscoelastic element. The constitu-
tive relation for the viscoelastic unit is given as [34]

bithidx kb 1df,

1
= +=f. 3
o at T T Tl 3)

2.2. Non-dimensionalization

For the viscoelastic system, there exist two time scales, one is the
slow time scale of stress relaxation of O(c/k,), and the other is the
faster time scale of elastic oscillations of O(ag 1\/m_/k). We first re-
scale time with respect to the slow time. Thus, we have ¢ = éT.
The displacements are scaled with respect to the initial height of the
truss in the undeformed configuration. Thus, we have x = aywyX. In
addition, we introduce the following non-dimensional parameters into
the problem.

c/k, ok K
mjk ki+ky

kaé
Here D, is the Deborah number, which is the ratio of the timescale of
stress relaxation to the timescale of elastic oscillations. f# is called the
relaxation parameter and is the ratio of stiffnesses in the viscoelastic
unit. It controls the viscoelastic behavior of the material and ranges
from zero to one (f = 0 corresponding to the elastic material). 1 is a
geometric/relative stiffness parameter. A also acts as a static bifurcation
parameter and governs the monostability/bistability of the truss. More
details on these nondimensional parameters can be found in [3,20].
Additionally, we have
fO fu c

Fy= s 2= —, Q=w—. 5)
*7 kedw, ke agwy ky

C)

D, =«

The governing equations are given by

o d’X
De’“m =X(X =2)(1 = X)— AZ + Fycos 2T, (6)
and

1 dX dx
— L i X="=4 7
T—par * ar * 7

3. Dynamic response

The total energy of the autonomous system (unforced and elastic)
is given by

1o 4o XP 3, X*
H_EDeX+X +/17—X +T, (8)
and is shown in Fig. 1(b) for D, = 1. It is immediately evident that
for a given velocity X and A # 0, the system will have an asymmetric
potential well about the unstable saddle point. The figure also shows
the trajectories corresponding to different system parameters. It is
evident that while viscosity only affects the rate of decay of trajectories,
viscoelasticity affects both the energy landscape (due to the elastic com-
ponent) as well as the decay rate (due to the viscous component) [23].
The potential energy of the system [33] can be written as

X? X4

V=X>+12— - X+ =, 9
+ 5 +4 )
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Fig. 1. Schematic and energy in the system: (a) von Mises truss with viscoelastic element subjected to harmonic forcing. Inset shows the stable and unstable equilibrium
configuration for A1 =0 and A # 0 (where 1 is defined in Eq. (4)) (b) Total energy surface for the autonomous system for 4 =0.1. The red line represents a total energy curve for
a given velocity X, which is asymmetric about the saddle point. The black line represents a high-amplitude trajectory with § = 0. The blue line represents a decaying trajectory
with g =0.1. [23]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The equilibrium positions must satisfy % =0 and can be written as

3+41-42
—
Here X = 0 corresponds to the natural equilibrium configuration
(which is always stable). The roots with the + sign indicate the inverted
stable configuration and the unstable configuration respectively as
shown in Fig. 1(a). As noted by Gomez et al. [3] the presence of the
equilibrium depends on 4. Note that 4 is a static bifurcation parameter
which dictates whether the truss is bistable or monostable. A shallow
truss (low value of a, or high 4) will be monostable. On the other
hand, a deeper truss (higher value of «, or lower 1) will be bistable.
Specifically, the following can be noted:

X=0, X= (10)

1. When 1 = 0, the system is bistable and the potential function is
symmetric and has two potential wells separated by a potential
barrier.

2. When 0 < 4 < le’ the system is bistable; however, the poten-
tial function is asymmetric with two potential wells separated
by a potential barrier. In this configuration the inverted state
becomes the higher energy state.

3. When 4> 1, the system is monostable with a potential having a
single potential well. Additionally, the nonlinear restoring force
increases monotonically from the initial equilibrium position.

We consider that the truss is initially indented by applying an instan-
taneous displacement of X; 4 and held in that particular position for a
duration Tj,q, thus allowing for stress relaxation to occur. The inden-
tation force is then removed and immediately replaced by a harmonic
force, and our external clock is started, i.e., we define T = 0 at the
time the indenter is released, and the harmonic loading is applied. To
quantify the behavior of the truss during the indentation period, that
is for T < 0, we approximate the indentation as

X=XindH(T+Tind) (11)

where H(.) is the Heaviside function. Substituting this into the consti-
tutive relation for the viscoelastic element, and solving for the nondi-
mensional force X (noting that the derivative of the Heaviside function

is the Dirac-Delta function), we obtain the initial conditions at T = 0
as

X(O0%) = Xjpg, X(ON) =0, Z(0F) = Xjpq [1 +q s e ind] . 12)
In this paper, we take A = 0.1, p = 0.5, D, = 10, X;pq = 1.5 and
Tinqa = 5, unless otherwise specified. The choice of these parameters is
based on experimental observations. This study was inspired by dome-
shaped structures made from rubbery polymers such as silicon-based
elastomers. For these systems, stress relaxation occurs on a much slower
time scale than elastic oscillations [18,20,35]. Hence D, has to be at
least O(1). Now, since the Deborah number governs the slow dynamics,
a very high value would make it computationally intensive to resolve
the fast elastic oscillations when solving for motion on the slower
timescale. Hence, we choose D, as 10. Second, 4 has been chosen as
0.1 so that our system lies in the bistable zone. Fig. 2 shows the steady-
state time domain response for F, = 0.5 and F, = 0.8 corresponding to
periodic and chaotic oscillations. More details can be found in [23].

Since the system has a double potential well, it is very likely that,
for some combination of forcing amplitude and forcing frequency, the
system escapes from a potential well, exhibiting either intrawell or
cross-well motion. This can be better visualized through some time-
domain simulations. We start with an initial condition of X;,4 = 1.5 in
the right potential well. We consider a forcing frequency of 2 = 10.
Fig. 3(a) shows the time response for F, = 0.01. In this case, the
system remains confined to the right potential well (centered around
X = 1.8873). Fig. 3(b) shows the time response for F, = 0.1. In this case,
the system initially shows large amplitude transients where it traverses
both wells before finally settling into the left potential well (centered
about the stable natural configuration). This indicates that the system
has escaped from the potential well it started from, but it still exhibits
small-amplitude intrawell motion. Fig. 3(c) shows the time response
for F, = 0.5. In this case, the system keeps on transitioning from
one potential well to the other and signifies large-amplitude interwell
motion.

Although the system is capable of exhibiting large-amplitude chaotic
motion [23], large-amplitude periodic motions are of particular in-
terest, especially in the context of energy harvesting or vibration
suppression. In the next section, we aim to find the parameter regimes
in which these large-amplitude solutions may be obtained through the
Harmonic Balance Method.
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Fig. 2. Steady state time response for 2 = 10, D, = 10, 4= 0.1, = 0.5 (a) Large amplitude periodic motion (b) Large amplitude chaotic motion.

4. Harmonic balance method

In this section, we aim to study the parameter space of forcing
frequency and forcing amplitude where either large-amplitude cross-
well oscillations or small-amplitude intra-well oscillations take place.
Previous studies of similar systems have shown that the response
consists of a dominant frequency equal to the frequency of excitation
[36-38]. However, because of the presence of quadratic and cubic non-
linearities we note that for some combinations of forcing parameters,
the subharmonic or superharmonic responses are excited. In such cases,
a higher-order truncation of the Fourier series is needed.

4.1. 1-term approximation

Here we start with the single-term approximation by considering
the dominant response at the excitation frequency. Thus we have,

X(T) = A(T) + B(T) cos QT + C(T) sin QT, 13)
and
X(T)= Q(T) + M(T)cos QT + N(T) sin QT, (14)

where the terms A(T') and Q(T) are needed for intra-well and inter-well
oscillations with nonzero displacement bias. Here, the coefficients are
functions of the slow time 7. The corresponding derivatives are given
as

X =A+(B+CR)cos QT + (C — BR) sin 2T, (15)
=0+ (M+NR)cos QT + (N — MQ)sin QT, (16)
X = (2CQ - BQ?) cos QT — 2BQ + C2%)sin QT. a7

We consider trajectories close to periodic solutions, so that the ampli-
tude functions vary slowly with time. This enables us to neglect the
second order derivatives. This has been done somewhat in the spirit of
first-order averaging [39,40]. Substituting Egs. (15)—(17) in Eq. (6), and
balancing the coefficients of the constant terms and sin 27 and cos QT
we obtain

243 —6A2 + BR® +4)A+240 -3R* =0, 18)
Q o 2 2
—SEB+8C—4EC+3R C = 24AC + 12A%C + 44N =0, (19)
e e
and
Q . Q2 2 2
8——C+8B—4-—B+3R*B—24AB + 12A’B + 4AM = 4F,. (20)
D2 D2
e e

Here R? = B2 + C? is the amplitude of oscillation corresponding to the
excitation frequency. Similarly substituting in Eq. (7) and balancing the
corresponding terms gives

ll—ﬂA+A=Q+Q', @D

1 . 1 .
——QB-C+N-QM+N-—C=0, 22
5 + + =5 (22)
and
M—B—LQC+9N+M—LB=O. (23)

1-p 1-p
At steady state, all time derivatives become zero, so that we can
re-write our equations as

24% —6A* + BR* + H)A+ 210 - 3R* =0, (24)
8D2C - 4Q°C + 3D, R*C - 24D?AC + 12DZA>C +4D2AN =0,  (25)

8D.B—4Q2°B+3D.R*B—-24D.AB+12D.A*B+4D?iM = 4D.F,, (26)

A=0, (27)
ﬁ.QB—C—QM+N=O, (28)
and

It can be seen that if R = 0, from Egs. (24) and (27), we obtain the
equilibrium points for the unforced system as

3 1-44
A==+ ———. 30

¥ (30)
Since Egs. (28) and (29) are linear equations, we can directly solve
them for the coefficients M and N. Thus we have
M= BQ?>+QpC-Bf+B

A =P+ 22

A=0 and

(31)

and

2 _ —
N = CQ--QpB+C ﬂC. (32)
A-p+2%
Substituting Eqgs. (31) and (32) in Egs. (25) and (26) we get equations
of the form

(B+EC =0, (33)
and
EB—(C =4D’F, (€D)]
where
4D?1Qp
(= — and

(- A1+ Q)
4D2Ap-1-2%)

= 12D?A% +3D*R®> = 24D*A +
¢ ¢ ¢ ¢ B-DA+ 2%

+8D% — 402,

(35)
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Fig. 3. Time domain simulations for 2 = 10, D, = 10, # = 0.5, 2 = 0.1 (a) small amplitude intrawell motion; the motion stays confined to the potential well it started from. (b)
Permanent escape from potential well; after some initial cross-well transients, the motion settles in a different potential well than the one it started from. (c) Well hopping motion;
the system transitions between the two potential wells. The red dashed line and the red stars indicate the equilibrium positions.

Squaring and adding Egs. (33) and (34), we get

R*(*+&%) = 16D F;. (36)

Eq. (24) together with Eq. (36) are used to find the mean (A)
and amplitude (R) of the steady-state solutions (note that Q has been
eliminated from Eq. (24)). Solving this system of equations leads to
multiple coexisting solutions for some parameter values. Hence, the
question of their stability naturally arises. To determine the stability
of the solutions, the equations are cast in the form of

U=fQU, 37)

where U = [A, B,C, M, N]". The eigenvalues of the Jacobian of f(U)
evaluated at the steady-state solutions determine the stability of the
solutions. If the real part of all the eigenvalues is negative, then the
solution is stable. If at least one of the eigenvalues has a positive real
part, then the solution is unstable.

The amplitude of steady-state solutions (R) for a forcing amplitude
of F, = 1 is shown in Fig. 4(a). The stable solutions are indicated by
the solid blue lines while the unstable solutions are indicated by the red
dashed lines. It can be seen that in the low frequency regime, the large-
amplitude cross-well motion is the only stable periodic solution. As
the frequency increases, this periodic orbit becomes unstable through
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Fig. 4. Amplitude of steady state solutions for the first order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate unstable solutions. Saddle
node bifurcation points are indicated by SN and Hopf bifurcation points are indicated by H. The subscript represents the order in which they occur as the forcing parameter is
increased. System parameter values are D, = 10, = 0.5,4 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

a Hopf bifurcation (H;) and once again stabilizes through a Hopf
bifurcation (Hs). An unstable branch of solution arises around 2 ~ 12.1,
which forms a loop that stabilizes through two Hopf bifurcations H,
and H,. This branch corresponds to oscillations about the inverted
configuration.

The response curve corresponding to the forcing amplitude is shown
in Fig. 4(b). It can be seen that there are multiple coexisting stable
solutions, and the initial conditions determine which periodic attractor
the system gets attracted to. For low forcing amplitudes and small
initial indentations, intrawell oscillations are the only stable motion for
a wide range of initial conditions. For large initial conditions, one can
expect to reach the upper stable branch of solutions in the low forcing
amplitude range. The saddle node and Hopf bifurcations are marked in
the figure.

4.2. 2-term approximation

As stated earlier, a bistable system such as ours, coupled to a
viscoelastic equation, may diffuse energy into the fractional and in-
teger order harmonics of the forcing frequency due to the presence
of quadratic and cubic nonlinearities, especially in the presence of
hard forcing. Hence, it is highly likely that the dynamics will be a
collective contribution of several harmonics. Numerical simulations
reveal that, in the low frequency range, the response will have a
dominant component at the excitation frequency and three times the
excitation frequency.

With this motivation, we now extend the previous one-term approx-
imation to a two-term approximation by considering the third-order
superharmonic response.

Thus we have,

X(T)= A(T)+ B;(T)cos QT + C{(T)sin QT

+ B3(T)cos3Q2T + C5(T)sin3QT, (38)
and
2(T)=0(T)+ M |(T)cos QT + N{(T)sin QT

+ M;(T)cos3QT + N5(T)sin3QT. (39)

In addition, we introduce two amplitudes, R, = /B2 + C? and R; =

\/ Bg +C32 corresponding to the respective frequency of oscillation.
Following a similar procedure as outlined in the previous section, we
obtain the amplitude and frequency response as shown in Fig. 5.

The response (R;) corresponding to the excitation frequency is
shown in Fig. 5(a) and the corresponding mean of the oscillations is
shown in Fig. 5(b). It can be seen that around 2 = 2, /3 (here Q, is the
linearized natural frequency about the naturally stable equilibrium; for
more details on the calculation of the natural frequency, one may refer
to Appendix.), the two-term Fourier series predicts an unstable branch
of solutions that were not obtained from the single-term approximation,
which is shown as the blue region in Figs. 5(a) and 5(b). Thus, the
single-term approximation is unable to capture the full dynamics of
the system. Nevertheless, the 2 term approximation still predicts the
large-amplitude motions that are stable in the low frequency range
although they lose their stability through a Hopf bifurcation at a much
lower frequency. It can be seen that these kinds of bistable systems
offer a distinct advantage in terms of having a large amplitude periodic
attractor over a broad range of frequencies, which in this case is shown
for @ < 4 and over @ = 12.1 to £ = 30. Although these large-
amplitude solutions may coexist with other intra-well solutions, there
is a range of frequencies where the large-amplitude solution is the only
stable solution and hence guarantees vigorous motion. In parameter
regimes where interwell solutions coexist with intrawell solutions, the
primary design hurdle lies in extracting the large-amplitude motion,
given the sensitivity to initial conditions and the complexities of basin
of attractions, some of which may not be readily accessible or could
involve interwell chaotic oscillations. The sensitivity of the system to
initial conditions in the multi-solution regime has been shown in Fig. 7.
It can be seen that even for a very small change in the initial condition,
the system might jump from a low orbit attractor to a high orbit
attractor.

The amplitude response (response of the system to the forcing
amplitude F,) is shown in Fig. 6(a) and the corresponding mean of
the response in Fig. 6(b). The overall configuration of the amplitude
response diagram remains the same as the single-term approximation,
except for a slight shift in the upper branch of the solution. Once again
we see that the intra-well and the inter-well oscillations coexist with
each other. To determine the nature of the Hopf bifurcations, one has
to go beoynd the linear stability analysis and rely on softwares like
MATCONT. For example, it can be seen that beyond the Hopf bifurca-
tion H,, there are no stable perioidic orbits. Numerical continuation
in MATCONT suggests that there are stable limit cycles to the left of
H,, but none just to its right. This indicates that the Hopf bifurcation
is a subcritical one, which is further confirmed by the postive first
Lyapunov coefficient. Beyond H,, the system simply gets attracted to
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Fig. 5. Amplitude and mean of steady state solutions for the second order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate
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Fig. 6. Amplitude and mean of steady state solutions for the second order truncated Fourier series. Solid blue lines indicate stable solutions. Red dashed lines indicate unstable
solutions. Black dashed lines indicate the equilibrium positions of the system. Green circles denote amplitude and means obtained from time-domain simulations. The saddle node
bifurcation points are indicated by SN and the Hopf bifurcation points are indicated by H. The subscript represents the order in which they occur as the forcing parameter is
increased. System parameter values are D, = 10, = 0.5, 4 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

the nearest attractor, which may be a periodic attractor (that is not
captured by the two-term approximation) or a chaotic attractor.

The frequency and amplitude responses have also been verified
using numerical simulations as shown by the green circles in Figs. 5
and 6 . The numerical simulations reveal that for regions where multi-
ple stable solutions exist, the system is highly sensitive to the initial
conditions (see Fig. 7), which dictate which basin of attraction the
system is attracted to. Also some of the basins of attraction are not
easily accessible, hence a very small change in initial conditions is
needed to get on the steady-state curves. It can also be seen that in the
low frequency range, the match between the numerical and analytical
results are not that great. This is because of the interaction between
the slow and fast time scales in this parameter regime that leads to
several sub- and superharmonic frequencies getting excited. Thus, a
higher-order truncation of the Fourier series is needed to accurately
capture the dynamics in this range.

The variation of the frequency response curves with the geometric
parameter A for different Deborah numbers is shown in Fig. 8. Four

ranges of Deborah numbers have been considered, namely (i) D, > 1,
@i b, > 1, (i) D, = 1, and (iv) D, < 1. A also denotes the
strength of the coupling between the elastic von Mises truss and the
viscoelastic element. As 4 increases, the linear stiffness of the system
grows, and hence the system shows hardening behavior. Thus, the
natural frequency of the system increases (see Appendix). As the ge-
ometric parameter increases beyond the transition point from bistable
to monostable behavior, the lower branch of solutions corresponding to
oscillations about the inverted configuration vanishes. We observe the
same behavior across different ranges of Deborah numbers. However,
the behavior near one-third of the natural frequency is different in each
case. We observe that for high Deborah numbers (D, = 100), the curve
bends toward the right, thus indicating a hardening behavior in this
range, before turning back on itself. For lower D,’s, the bend to the
right is not observed, although the curve still loops back on itself before
merging with the stable large-amplitude branch.

The variation in frequency response with the relaxation parameter
for different Deborah numbers is shown in Fig. 9. It can be seen that for
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lower ranges of D,, the effect of # on the frequency response, especially
in the high frequency range, is not significant. As D, increases, the
effect on frequency response becomes more prominent. For higher
Deborah numbers, it is apparent that when g is small (§ < 0.5), there
is minimal change in the frequency response with respect to g. This
phenomenon arises due to the hyperbolic dependence (~ %) of the
response on f#, which results in notable distinctions primarily when
p — 1. As p increases, the frequency response shifts towards higher
frequencies, indicating a trend towards hardening behavior.

The interest in these types of bistable systems is due to their
applications in vibration attenuation [41,42]. Hence, it is worthwhile
to study the energy dissipated by the system when subjected to external
harmonic excitation. The average energy dissipated at steady state over
a period of T =27/ can be calculated as

1

T=21/Q
Ey = /0 >XdT, (40)

or

Q%p 2 902p )
E, = e R —R3.

20+ 251 -p) 2(1 = p)(14+9827)

Note that M, N|, M3, N; have been eliminated from the linear steady
state equations. The average energy dissipated per cycle is shown in
Fig. 10 and has also been verified numerically as shown by the green
circles. It can be seen from Eq. (41), that with increase in § the quantity

L increases monotonically. However, it must be noted that g also

1-5

(41)

determines the amount of damping in the system. An increase in f
increases the amount of damping and hence restricts the amplitude of
oscillations R, and R;. Thus there exists an optimum value of g that
allows for maximum energy dissipation.

The average energy dissipated per cycle is shown in Fig. 11(a) as
a function of g for F, = 1,£2 = 10. It can be seen that in the purely
elastic limit at § = 0, there is no energy dissipation. As g increases, the
dissipation energy also increases. There exists a particular value of p
() at which the dissipated energy reaches its peak (Eg,,.) for a given
set of excitation parameters. Beyond this value, the dissii)ated energy
starts decreasing because in this regime, the amplitude of oscillations
are highly restricted by the damping in the system. The variation of
the optimum value of # against the forcing parameters is shown in
Fig. 11(b). It can be seen that f,, increases monotonically with F, and
subsequently settles to a constant value. For very low values of € (£ 3),
B, decreases until it reaches a minimum, beyond which it increases
monotonically (this variation is, however, in a very narrow range, in
the high p regime). Hence, the analytical approach to the problem
through the harmonic balance method allows us to design an optimum
system for maximum vibrational energy dissipation for a given set of

operating parameters.
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Fig. 10. Average energy dissipated in a cycle for A =0.1,D, = 10,Fy =1 and p =
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5. Equivalent viscous systems

Now that we have an understanding of the viscoelastic system, we
perform a thought experiment. Is it possible to formulate an equiva-
lent viscous system that can faithfully reproduce the dynamics of the
viscoelastic system without introducing any additional complexities in
the equations? In other words, we aim to show the need to include
viscoelasticity in the model, without which some important features in
the dynamics may not be captured accurately. Note that eliminating
viscoelasticity will not lead to analytical results or reduce computa-
tional times. It simply enables us to do a lower-order parametric study
to understand the behavior of the system. The key consideration here is
whether such a basic simplification suffices to adequately capture the
dynamics of the system. With this motivation, we follow an energy-
based approach to derive an equivalent linear damped system (see
Fig. 12).

We start with the dimensional form of the equation for the viscoelas-
tic element in Eq. (3). Taking a Laplace transform of the equation, we

10

(For
have
k +k ky . _ _
L 25X —x(0)] + L X = i[sF,, — 7,0+ lFU, (42)
ko c k, c

where X and F, are the Laplace transform of x and f,. Assuming that
at ¢ = 0, the initial displacement and the viscoelastic reaction force are
zero, we have
(kl +ky)sc + kik, %
k2 + sc
Now, assuming that the mass exhibits a sinusoidal displacement of
x = X, sinwt (in line with the assumption that the initial displacement
is zero), we have

(43)

_ (ky + ky)sc+kjky | Xy
)= [ . 44
ky + sc 0’ +s
Now, taking the inverse Laplace transform, we obtain
X0w2c2k2 Xowck% Xowckg kot
fo = Xk sinwt + ——— sinwt + cos wt — e
w?c? + k2 w?c? + k2 w?c? + k2
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Fig. 12. Equivalent viscous model obtained from the viscoelastic system by an energy based approach.

(45)

Note that the last term in the above expression goes to zero, as t — .
Thus, at steady state, the reactive viscoelastic force will be harmonic
as well (although out of phase).

The energy dissipated by the viscous damper in the standard linear
solid element in a single cycle at steady state (by neglecting the
exponentially decaying term) can be found as

2r/w
U, = / fpxdt =
0

The energy dissipated in a single cycle as a result of viscous damping
alone in the presence of a harmonic excitation is given by

ngrckgca
w?c? + k% ’ “6)

X’o.

eg 1 (47)

U, = rc

Thus, equivalent viscous damping can be found by equating the en-
ergies dissipated in a single cycle by the viscous and the viscoelastic
system as

2
kzc

Cpp = ————. (48)
“ k% + w?c?

Note that the equivalent damping coefficient depends on the frequency
of oscillation. Hence, the modified equations of motion are now given
by

2
k2

@ + k3

c

mi — k—z(x = 2apwp)(agwy — x) + X = fcoswt. (49)
w

0

Eq. (49) is now non-dimensionalized using the same scheme that was
used for the viscoelastic system. Thus, we have
1 d*X B ax

— = 3xX? 4 XP2X + =

I ——— = Fycos QT.
D2 dT? (1= p)1+02)dT ~ "

(50)

It can be seen that for low oscillation frequencies, the frequency
dependence of the damping no longer exists, and it is possible to
obtain an constant equivalent damping coefficient. Conversely, for
high excitation frequencies, the frequency dependence of the damping
becomes significant and cannot be neglected. It is crucial to recognize
that though the equivalent viscous system might seem straightforward,
it carries potential pitfalls. We note that the validity of this approach is
based on the premise that the response itself is harmonic. Hence, this
method is unable to replicate the quasiperiodic or chaotic motions of
the system exactly. This is evident from Fig. 13(a) in which a large-
amplitude harmonic response of the original system matches perfectly
with that of the equivalent system. If the response is not harmonic as
in Fig. 13(b), the equivalent system may or may not track the original
response depending on the forcing and system parameters. Although
the two curves in Fig. 13(b) are slightly out of phase (as was alluded
to in the derivation), the amplitudes are still slightly off but give a
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reasonable match. Hence, an important criterion for this method to
yield reliable approximations is that of the harmonic response.

Fig. 14 shows the steady-state root mean square errors between the
time response of the viscoelastic system and the equivalent system.
The validity of the approximate model depends both on the forcing
parameters as well as the intrinsic system parameters. It can be seen
that in the low D, range, the match between the two systems is
almost exact for both the resonant and non-resonant frequencies. As
D, increases, a band of large errors (as shown by the red dashed
lines) is obtained for all ranges of f. Beyond this band, the error in
the high g range is significantly lower compared to the low g range
for the range of D, considered. Thus, while the approximate viscous
model might have high fidelity in some parameter regimes, its accuracy
decreases in other parameter regimes. The response characteristics of
the system and the system parameters in the operating range may
not be known a priori. Hence, relying solely on a simplistic viscous
model may produce misleading results, thus emphasizing the need for
a full-scale viscoelastic model.

6. Discussion and conclusion

In this paper, we studied the effects of viscoelasticity on the periodic
response of a harmonically forced bistable von Mises truss. Despite
its apparent simplicity, the viscoelastic von Mises truss allows us to
address critical questions in nonlinear dynamics, capturing the inter-
play between geometric and material parameters within the system.
Moreover, it represents a broad class of dynamical systems, including
shells and arches, and facilitates lumped parameter analysis when a
continuum approach becomes tedious.

We showed that viscoelasticity introduces an additional degree of
freedom into the system, resulting in even more complex dynamics than
is typical in the viscous counterpart. While the chaotic motion of this
system has been extensively studied, our work diverges by concentrat-
ing on regular solutions, specifically large amplitude periodic solutions,
for which there is limited analytical treatment in existing literature.
Understanding these periodic motions is crucial due to their appli-
cations in energy harvesting and vibration suppression. For systems
with multiple potential wells, several co-existing periodic solutions can
arise, necessitating a systematic study of the system. These coexisting
solutions make the system sensitive to initial conditions that determine
which basin of attraction the system gravitates towards. Some basins
of attraction are more accessible than others, making it essential to
quantify the parameter regimes where this behavior is likely. In this
paper, we use the harmonic balance method to predict the onset of
large amplitude motions and the transition from intrawell to crosswell
motion. The effects of parameter variation have been shown for dif-
ferent parameter regimes through bifurcation diagrams. The harmonic
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color in this figure legend, the reader is referred to the web version of this article.)

balance method allowed us to find optimum system parameters for
maximum energy dissipation for a given operating condition.

Finally, we formulated an equivalent viscous system using an energy-
based approach. We demonstrated that a naive viscous approximation
has potential pitfalls in the high-frequency regime as well as for some
combination of system parameters, thus having high fidelity in some
parameter regimes and low fidelity in others. Hence, to faithfully recre-
ate the dynamics of the system, analysis of the full-scale viscoelastic
system is essential.

This work lays a significant foundation for future research. The
harmonic balance method shows that the system can exhibit two types
of motion: small amplitude oscillations about the stable equilibria and
large amplitude oscillations about the unstable equilibrium. Regardless
of the system or excitation parameters, it is impossible to extract small
amplitude oscillations about the saddle node under external harmonic
excitation. However, alternative forms of excitation might enable the
extraction of such oscillations for specific parameter combinations. This
capability allows for temporarily parking the system in the unstable
state and subsequently biasing it towards one of the stable states
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depending on the external perturbation. This concept has wide appli-
cations in mechanical logic gates, mechanically actuated sensors, and
programmable metamaterials.
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Appendix. Linearized equations and natural frequencies

To find the linearized equations and the corresponding natural
frequencies, we first write the governing equations of the unforced
system as a set of first order differential equations. Thus we have
X| = Xy,

D?x;(x; = 2)(1 — x;) — AD?x3,

Xy (A1)

1
= ——X, + X — Xx3.
T—ptn=%
For oscillations about the natural configuration, we consider x; = x, =
x3 = 0 and impose a small perturbation to the system. Thus we have
x| =&, x, =& and x5 = &, where ¢,&, and & are small quantities.
Substituting and linearizing the equations we have

X3

4 o 10 g
&= _2De (1) _}“De & (A.2)
& 1 R | £

The eigenvalues of this matrix gives the natural frequency. On the con-
trary, if the equations are linearized about the inverted configuration

(x;=x3= % + < 12_ “,xz = 0), then the equations take the form
: 0 1 0
& 5 &
5'2 _D;(+3vi-44-64) "21_4’1_6’1) 0 _ADE & (A.3)
: 1
53 1 m -1 53

When 4 = 0, the natural frequency of oscillation about either of the
two stable equilibrium positions turns out to be the same (since we
have a symmetric potential well) and is equal to \/EDe. Recalling the
dimensional form, this turns out to be \/ans/k/m. Thus, the natural
frequency depends on the point mass, the stiffness of the tilted springs,
and the initial inclination angle of the truss.)
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