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Abstract Inspired by the ancient Japanese art of
kirigami, slitted plastic sheets, termed kirigami springs,

were designed, fabricated, and characterized, utilizing
the quasi-mechanism behavior of various slit patterns.
Quasi-static tension tests determined the spring stiff-

ness, and experimental transient responses were ana-
lyzed to infer system damping. A system of two parallel-
connected kirigami springs, attached to a mass oscil-
lating on a smooth track, was modeled as a 1 DOF

Helmholtz-Duffing oscillator with nonlinear damping.
The system’s free and forced responses were compared
to experimental and numerical results using asymptoti-

cally valid solutions derived via the Method of Multiple
Time Scales. This approach provides an unprecedented
degree of programmability in the constitutive relations

for nonlinear oscillators and is straightforward to im-
plement.

This project was financially supported through the Purdue
Research Foundation and the NSF CAREER Award: CMMI
2145803.

F. Danzi
E-mail: fdanzi@ucmerced.edu

H. Tao
E-mail: taoh@purdue.edu

C.E. Silva
E-mail: cesilva@purdue.edu

J. M. Gibert (Corresponding Author)
E-mail: jgibert@purdue.edu

1 Department of Mechanical Engineering, University of
California, Merced
2 School of Mechanical Engineering, Purdue University
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1 Introduction

Originally developed for decorative purposes, Origami
and Kirigami are ancient Japanese arts that exploit

folding and cutting to create a 3D complex geometry
from a 2D flat sheet of paper. These art forms have
evolved into valuable tools in the scientific and engi-

neering fields, providing creative solutions to complex
problems through the principles of folding and cutting.
However, while Origami has been widely used to in-
spire the design of new engineering structures and ma-
terials [1–3], Kirigami has only recently been exploited
by the engineering community for applications ranging
from grasping robots [4, 5], programmable shapes [6–

8], crawling robots [9], morphable structures [10, 11],
solar trackers [12], actuators and sensors [13, 14], and
metamaterials [15–20]. To the authors’ knowledge, the
use of Kirigami in vibration applications is largely unex-
plored and is currently prominent; examples are studies
characterizing the modal properties of Kirigami struc-
tures [21, 22], flexural wave control [23], and pressure

sensing via a resonant circuit [24].

The purpose of this study is to characterize the

properties of slitted membranes, henceforth dubbed
kirigami springs, through the use of static and dynamic
tests. The proposed springs provide a straightforward
method for tuning the stiffness of a system and may be
used to design novel nonlinear oscillators. Herein we did
not attempt to derive an analytical model that relates
the topology of the cuts to the apparent mechanical
response; we rather focused on the observed global me-
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chanical response arising from quasi-static tests. The
reader interested in the former aspect is directed to
the scientific literature that aims to address these nu-
ances [25–30].

The remainder of the paper is organized as follows.
In Section 2, we provide a simple yet compelling mo-
tivation for the exploitation of Kirigami patterns as a
means to tune nonlinear constitutive relations. We fur-
ther discuss the pattern selected in Section 2.1. The
method we used to fabricate the springs is detailed in
Section 3.1. Section 3.2 details the quasi-static tests
performed to determine the stiffness coefficients. In Sec-
tion 3.3, we describe the transient tests and elucidate
the procedure used to extrapolate the damping coef-
ficients. In Section 4, we analyze the forced response
of the system and compare the experimental time re-
sponses against the asymptotically valid solutions ob-
tained via the Method of Multiple Time Scales.

2 Motivation

To illustrate the rationale behind the utilization of slit
sheets to create fit-for-purpose nonlinear springs, we be-
gin by neglecting the viscoelastic component of the stiff-
ness and the material nonlinearities. The resistive force

of the kirigami spring then originates solely from geo-
metric nonlinearities that emerge from the topological
modifications introduced by the cutting patterns. The

concept is best illustrated by considering a stretched
membrane of length L and using a one-dimensional ap-
proximation. A kirigami spring that is stretched in its

elastic region and subject to a static force F will experi-
ence a transverse displacement. The force-displacement
relation can be expressed as

F = k

(

1−
Lo

√

(∆L+ Lo)2 + x2

)

x, (1)

where k is the characteristic stiffness of the string, ∆L

is the stretch in the spring due to the application of the
force F , and L0 is the unstretched length. Considering
small displacements about x = 0, and using a Taylor’s
series expansion, the denominator in Eqn. (1) can be
written as

1
√

(∆L+ Lo)2 + x2
≈

1

∆L+ Lo

−
x2

2(∆L+ Lo)3

+
3x4

8(∆L+ Lo)3
+O(x6). (2)

Substituting the expression in (2) into the equation in
(1), the force-displacement relationship can then be ap-

proximated as

F ≈ k

((

∆L

∆L+ Lo

)

x+

(

Lo

2(∆L+ Lo)3

)

x3

)

+O(x5),

(3)

where k = EA/Leff , EA is the extensional stiffness
and Leff is the effective length. Note that nominally
Leff = ∆L + Lo. Examining Eqn. (3) reveals two
paths to change the force-displacement relation given a
fixed geometric configuration. The first is to change the
stretch ∆L in the spring and the second is to modify
the effective stiffness of the material (EA/Leff). Assum-
ing that EA is held constant, the concept introduced
in this work is to modify k by having changes in Leff

through the introduction of cuts in the membrane.

79.2000

1

1

2

2

3

Fig. 1: An example of the proposed kirigami spring with
annotated segments and dimensions. Sections in grey
indicate the programmable region. Inset shows the dis-
tinctive characteristic lengths of each pattern (lc, lx, ly).
The specimens in this work share the following lengths
lm1 = 30.0 mm, lm2 = 40.0 mm, lp = 80.0 mm, and

w = 48.0 mm.
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2.1 Pattern Selection

To fully exploit the observations in the previous section,
we performed a characterization of the force-displacement
relationship of eight distinct kirigami patterns first in-
troduced by Yang et al.[31]. Following [31], the cuts’
length is designated with lc, the horizontal spacing is
lx, while the vertical spacing is denoted as ly (see Fig-
ure 1). It should be noted however that, due to the
different loading mechanisms adopted herein, the multi-
stable behavior of the structures observed by [31] are
not retained. Nonetheless, the designation introduced
in [31] provides an efficient labeling methodology to re-
fer to the various patterns and track its influence on
the force-displacement relationship.
We deliberately fixed the cut length (lc) to 12 mm.
This allowed us to reduce the number of free parame-
ters for the design of the springs to two, i.e. the cuts’
spacing lx and ly. Following [31], the patterns are des-
ignated by the nomenclature lc/ly - lc/lx. In this work,

we considered the following patterns: 1-5, 3-2, 3-3, 3-
6, 4-3, 5-1, and 5-5. We fabricated four specimens per
pattern, labeled in alphabetic order from A to D. We

further introduced the number of effective cuts, Neff , in
the tuning region (gray areas in Figure 1). This allowed
us to correlate the density of the cuts with the type of

constitutive equation observed. The number of effective
cuts is calculated as the sum of complete and incom-
plete (smaller) cuts; the latter are added and rounded
to a complete cut. In Figure 2 are illustrated all the pat-

terns considered herein along with their nomenclature
and the corresponding number of effective cuts.

3 Materials and methods

3.1 Fabrication

A Silhouette Cameo cutter is used to cut 260 mm long
by 48 mm wide Grafix sheets (0.1778 mm nominal thick-
ness). With reference to Fig. 1, the springs are com-

posed of three segments: 1 a mounting segment of 30

mm to ground the spring, 2 an active section of 80
mm that is the programmable (or tuning) region, and

3 a 40 mm segment to attach the spring to a proof
mass or directly apply a load. Sections 1 and 2 are mir-
rored about the center of the spring. Segments 1 and 3
contain mounting holes to secure the spring to ground
or a mass.

3.2 Characterization of the kirigami springs stiffnesses:
Quasi-Static Testing

We used a Mark-10 ESM 1500 motorized test stand
to perform quasi-static, displacement-controlled tension
testing. The springs were mounted on 3D-printed test
stands and subjected to a 5 mm axial pre-stretch before
applying the load in the transverse direction. An exem-
plification of the test apparatus is depicted in Figure
3a-3b. We performed five loading/unloading cycles per
spring, with a displacement rate of 50 mm/min and
with a maximum displacement of 30 mm. Regardless
of the pattern selected, a minimal amount of hystere-
sis was observed between the loading and unloading
curves. We, however, neglected the hysteretic behavior
since the area enclosed by the hysteresis loop is consid-
erably small.
For each spring, the constitutive relations obtained
through the quasi-static test were averaged over the five
loading/unloading cycles and used to calculate the stiff-
ness coefficients. We used a curve-fitting algorithm to

minimize the residual between the experimental and nu-
merical constitutive relations (force-displacement curves).
In particular, we utilized the Iteratively Reweighted

Least-Squares (IRLS) method [32], which is a modi-
fied version of MATLAB polyfit that enables forcing
a zero intercept and selectively choosing which terms

of the polynomial expansions are zero (see the polyfit
documentation for further details 1). Motivated by the
discussion that led to the equation in (3), the geometric
nonlinearity is assumed elastic, and the resistive force

exerted by the spring is assumed to be a cubic polyno-
mial of the form

F (x) = k1x+ k3x
3, (4)

where k1 and k3 are respectively the linear and cu-
bic stiffness. To derive the stiffness coefficients, we fit-
ted the experimental data with the polynomial form
of equation 4. To further verify our speculation, we

performed a second fit with a complete cubic polyno-
mial with zero intercepts and noted that the coefficient
of the quadratic term was found to be considerably
smaller than those of the linear and cubic terms for all
patterns considered. This supports the hypothesis that
the expression can be accurately represented by Equa-
tion (4). Finally, the loss mechanism is not captured in
these tests and the next section presents a mechanism
to quantify the structural damping.

1 The ”polyfitn” documentation is accessible through
MATLAB file Exchange, full citation: John D’Errico
(2024). polyfitn (https://www.mathworks.com/matlabcentral/

fileexchange/34765-polyfitn), MATLAB Central File Ex-
change.
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(a) Pattern 1-2,
Neff = 28

(b) Pattern 1-5,
Neff = 68

(c) Pattern 3-2,
Neff = 42

(d) Pattern 3-3,
Neff = 60

(e) Pattern 3-6,
Neff = 120

(f) Pattern 4-3,
Neff = 60

(g) Pattern 5-1,
Neff = 24

(h) Pattern 5-5,
Neff = 102

Fig. 2: Kirigami springs adopted in this work. The figure illustrates the various kirigami springs along with the

pattern designation and the number of effective cuts.

3.3 Characterization of the kirigami springs stiffnesses:
Transient responses

We performed modal testing to deduce the damping of
the system. Differently from the quasi-static test, where
each spring was tested separately, for the modal tests we

arranged two springs with the same pattern in parallel
and connected those to a cart that was free to oscil-
late on a linear air track apparatus. Equivalently to the
quasi-static testing, the springs were attached to a pre-
stretch mechanism (rigid bars in Figure 4) to increase
the transverse stiffness of the system. A schematic rep-
resentation of the test rig along with a 3D rendering of
the system are depicted in Figure 4. To calculate the
modal damping we speculated that the motion of the
system can be described with the following nondimen-

sional equation

χ̈+ ĉ1χ̇+ ĉ2χ̇|χ̇|+ ĉ3χ̇
3 + k̂1χ+ k̂2χ

2 + k̂3χ
3 = 0, (5)

Using the cut’s length lc as the length scale and the
period of the linear system as the time scale, the nondi-
mensional terms are defined as

χ =
x

lc
, τ = ωnt, Ω =

ω

ωn

, ĉ1 =
c1

mωn

,

ĉ2 =
c2lc
m

, ĉ3 =
c3ωnl

2
c

m
, k̂2 =

k̄2lc
k̄1

, k̂3 =
k̄3l

2
c

k̄1
.

where x, ẋ, ẍ are respectively the displacement, veloc-
ity and acceleration of the mass, ĉ1, ĉ2, and ĉ3 are the
linear, quadratic and cubic damping coefficients and fi-
nally, k̂1, k̂2 and k̂3 are the linear, quadratic and cu-
bic stiffness respectively. It should be noted that the
coefficients k̄i are the equivalent spring stiffnesses ob-
tained as in Radomirovic et al. [33], calculated con-
sidering that two nonlinear springs were attached in

parallel and should not be confused with the k̂i which
are instead the nondimensional equivalent stiffnesses.
We introduced the quadratic stiffness k̄2 (or k̂2 for the
nondimensional case) since the quadratic term best ap-
proximates asymmetries due to misalignment of the two
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Test Stand

Transverse

Displacement

Load Cell

Kirigami Spring

Mounting

Supports

(a) (b)

Experimental

Theoretical

(c)

Regression

Residual

(d)

1-2 Pattern

1-5 Pattern

3-2 Pattern

3-3 Pattern

3-6 Pattern

4-3 Pattern

5-1 Pattern

5-5 Pattern

(e)

Fig. 3: Quasi-static characterization of kirigami springs: (a) Schematic and (b) image of force versus displacement
test. (c) Theoretical and experimental force versus displacement for 1-2 pattern. (d) Theoretical fit and residual for
force versus displacement for 1-2 pattern. (e) Force versus displacement relationship for all the patterns considered.

springs ([34]).
The equations of motion are in the form of a Helmholtz-
Duffing oscillator with nonlinear damping [35]. While
we do not anticipate that a Kirigami spring has built-

in quadratic damping, we found it useful to introduce

it into the equation of motion to have a meaningful
physical representation of the system on the air track.
Indeed, the air coming out from the air track exerts a
resistive force (aerodynamic drag) onto the cart which

must be considered when modeling the system.
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Fig. 4: Schematic of the dynamic test apparatus. The
two kirigami springs (in green) are attached to the slid-
ing mass through the 3D printed support (blue) and
to the pre-stretch system (vertical bar). The velocity
of the system was measured with the Polytec OFV-534
Laser vibrometer; the Data Physics Abacus DP 901-
6C DSP acquisition system, not depicted in the figure,
completed the experimental set-up.

A cursory inspection of the equation (5) unveils the

presence of four unknowns that must be determined
to fully characterize the system. To calculate the un-
known coefficients Ci = {k̂2, ĉ1, ĉ2, ĉ3}, we cast the

system identification problem into a minimization prob-
lem, stated as follows:

min
Ci

∑

t∈[0,10]

(

χ̇(t)− ẋ(t)

)2

max

(

|χ̇(t)− ẋ(t)|

)

,

subject to:

k̂3 ≤ k̂2 ≤ k̂1, 0 ≤ ĉ1 ≤ η ĉcr,

0 ≤ ĉ2 ≤ η ĉcr, 0 ≤ ĉ3 ≤ η ĉcr.

(6)

where ẋ(t) is the experimental time history while χ̇(t) is
the numerical time history, k̂2 is the quadratic stiffness
coefficient, ĉ1, ĉ2, ĉ3 are the damping coefficients and

η ≪ 1 is a small parameter that ensures that the damp-
ing coefficients are smaller than the critical value. Due
to non-dimensionalization, k̂1 = 1 for all the springs.
While the first term of the functional to be minimized
is to ensure that the experimental and numerical re-
sponse have the same waveform, the second term sim-
ply forces the peaks of the numerical response to be
in-phase with that of the experimental response. For
the optimization, we used only the first 10 seconds of
the experimental time-history. We solved the nonlin-
ear constrained optimization problem using the MAT-
LAB built-in function fmincon, notably by adopting the
interior-point algorithm. The results of the optimiza-
tion are detailed in Section 5. We further compared the

amplitude of vibrations obtained experimentally and

numerically with those calculated with the Method of
Multiple Time Scales. The details of the derivation are
reported in Appendix C. The comparison extends to a
time history of 25 seconds; this is to demonstrate that
the parameters identified characterize the systems be-
yond the 10 seconds used for the optimization.

4 Forced vibrations

In this section, we calculate uniformly valid solutions
for the equation in (7) using the Method of Multiple
Time Scales. We begin by reorganizing the equation
of motion by introducing a bookkeeping parameter ε
and collecting terms of the same order. The equation of
motion can be written as follows

χ̈+ χ+ εk̂2χ
2+ε2

(

k̂3χ
3 + ĉ1χ̇+ ĉ2χ̇|χ̇|+ ĉ3χ̇

3
)

= ε2ab cos(Ωt).
(7)

Note that the damping coefficients and the cubic stiff-
ness are scaled at order ϵ2 and the quadratic stiffness

term is scaled on the order of ϵ. This implies that the
following inequality must hold k̂3 < k̂2 < k̂1 for the
asymptotic solution presented below to be valid.

The time dependence is expanded into multiple scales
Tn = ϵnτ, and the time derivatives can be written as

∂
∂t

=D0 + εD1 + ε2D2 +O(ε3), (8a)

∂2

∂t2
=D2

0 + 2εD0D1 + ε2
(

D2
1 + 2D0D2

)

+O(ε3), (8b)

where Dn = ∂/∂Tn. Furthermore, the time-dependent

non-dimensional displacement χ can be expressed as

χ(t; ε) =
2

∑

i=0

εiχi(T0, T1, T2) +O(ε3). (9)

Substituting Eqns.(8) and (9) in the Eqn.(7) and gath-
ering terms with the same power of ε yields

O(ε0) : D2
0χ0 + χ0 = 0, (10a)

O(ε1) : D2
0χ1 + χ1 = −2D0D1χ0 − k̂2χ

2
0, (10b)

O(ε2) : D2
0χ2 + χ2 = −2D0D1χ1 −D2

1χ0 (10c)

− 2D0D2χ0

− 2k̂2χ0χ1 − k̂3χ
3
0 − ĉ1D0χ0 − ĉ3(D0χ0)

3

− ĉ2

(

g1 exp(iT0) dT0 +
∞
∑

−∞
n̸=1

gn exp(inT0)

)

+ aB cos(ω0T0 + σT2).

We let the excitation interact at the same order of
the nonlinear damping and the cubic stiffness and, for
consistency, assumed

ω0 = ωn + ε2σ (11)
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where σ is the detuning parameter. Solutions to the
O(ε0) expansion in Eqn. (10a) can be written as

χ0 = A(T1, T2) exp (iT0) + Ā(T1, T2) exp (−iT0), (12)

where Ā is the complex conjugate of A. Substituting
into Eqn. (10b) yields

D2
0χ1 + χ1 =− 2iD1A exp(iT0)− k̂2A

2 exp(2iT0)

− k̂2AĀ+ cc,
(13)

where cc denotes complex conjugate. To derive a uni-
formly valid expansion, we must eliminate secular terms
from Eqn. (13) hence, D1A = 0; therefore, A = A(T2).
The solution to Eqn. (13) can be written as

χ1 = k̂2

(

A2

3
exp(2iT0)−AĀ

)

+ cc. (14)

Substituting the latter in the equation in (10c), one has

D2
0χ2 + χ2 =

(

2iD2A+ iĉ1A+
iĉ2A

2

2π

∫ 2π

0

sin2(ϕ)
∣

∣sin(ϕ)
∣

∣dϕ

+ 3iĉ3A
2Ā+ 3k3A

2Ā+ 10
3 k̂22A

2Ā+

aB

2 exp(σT2)

)

exp(iT0)

−

(

2k̂22A
2
(

A
3 + 2Ā

)

− k̂3A
3 − iĉ1A

3

− iĉ3A
3

)

exp(3iT0)− ĉ2

∞
∑

−∞
n̸=1

gn exp(inT0).

(15)

Secular terms can be eliminated if
(

2iD2A+ iĉ1A+
iĉ2A

2

2π

∫ 2π

0

sin2(ϕ)
∣

∣sin(ϕ)
∣

∣dϕ

+ 3iĉ3A
2Ā+ 3k3A

2Ā+ 10
3 k̂22A

2Ā+ aB

2 exp(σT2)

)

.

(16)

Letting A = a exp(iβ) and separating real and imagi-
nary parts yields

ȧ = −
ĉ1
2
a−

4ĉ2
3π

a2 −
3ĉ3
8

a3 +
aB
2

sin
(

σT2 − β
)

,

(17a)

aβ̇ =
10k22 − 9k3

24
a3 −

aB
2

cos
(

σT2 − β
)

. (17b)

Defining γ = σT2 − β, differentiating with respect to
T2 and substituting into the modulation equations 17b
one has

ȧ = −
ĉ1
2
a−

4ĉ2
3π

a2 −
3ĉ3
8

a3 +
aB
2

sin
(

γ
)

, (18a)

aγ̇ = aσ −
10k22 − 9k3

24
a3 +

aB
2

cos
(

γ
)

. (18b)

Fig. 5: Schematic of the dynamic test apparatus uti-
lized for the forced responses. The two kirigami springs
(in green) are attached to the sliding mass through
the 3D printed supports which include also the pre-
stretch mechanism for the springs. The base acceler-
ations were provided by the Labworks Inc. DB 139 -
DuoBase shaker table, and were measured utilizing a
PCB accelerometer. The velocity of the system was

measured using the Polytec OFV-534 Laser vibrome-
ter.

Steady-state motion occurs when α̇, γ̇ = 0. We found
it convenient to define the following term

µNL = −
ĉ1
2
a−

4ĉ2
3π

a2 −
3ĉ3
8

a3. (19)

Next, squaring and adding the two equations in (18)
one has

σ =
10k22 − 9k3

24
a2 ±

√

aB
4a2

− µ2
NL. (20)

The test apparatus used to test the kirigami springs
subjected to harmonic excitation is illustrated in Fig-

ure 5.

5 Results and Discussion

We begin by reporting the results concerning the quasi-
static characterization of the spring, i.e. the 3-point
bending tests performed to deduce k1 and k3 (see Fig-
ure 3). In the interest of brevity, in this section, we
report only the results pertaining the average and stan-
dard deviation for the various patterns considered. The
results per specimens are detailed in the Appendix B
(see Table B.1). The values of the quadratic coefficients

when the experimental data are fitted with a polyno-
mial of the type: F = k1x + k2x

2 + k3x
3, are reported

in the Appendix B. Here quadratic nonlinearities are
imputable to asymmetries due to imprecise manufac-
turing of the slits; however, a cursory inspection of the
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MMS

Experimental

(a) Pattern 1-2

MMS

Experimental

(b) Pattern 3-2

MMS

Experimental

(c) Pattern 3-3

MMS

Experimental

(d) Pattern 3-6

MMS

Experimental

(e) Pattern 1-5

MMS

Experimental

(f) Pattern 5-1

MMS

Experimental

(g) Pattern 4-3

MMS

Experimental

(h) Pattern 5-5

Fig. 6: Comparison of the experimental time responses against the amplitude of vibrations as predicted using the
Method of Multiple Time Scales for all the springs of the BC series. The experimental time responses are in red,

amplitudes of vibrations obtained by the method of multiple time scales are in black (see Appendix C for a more
detailed explanation).

Table reveals that the quadratic terms are negligible
compared to the linear and cubic stiffness coefficients.

This verifies our hypothesis that a cubic polynomial
with odd powers and zero intercept best represents the
physics of the deformation for the quasi-static test.
Table 1 reports the averaged linear and cubic stiffness

and the corresponding standard deviation in their val-
ues obtained from the quasi-static tests. The results in
Table 1 are the averaged stiffness per cycle and speci-
men. It is worth noting that, the standard deviation for
each of the specimens tested is two orders of magnitude
lower than the average value, implying that the springs’
responses are consistent among the various specimens.
Hence, it could be concluded that there is a good corre-
lation between the slit pattern selected and the consti-
tutive equation determined. In general, patterns with
larger cut densities, for instance, 5-5 and 3-6, are more
compliant than other patterns. One could compare the
stiffnesses obtained for the spring 5-5 and 3-2 and no-

tice that both the linear and the cubic stiffnesses differ
of an order of magnitude. This is due to the higher cut
density of the spring 5-5 compared to the spring 3-2.

In Table 1, we only reported the values for the lin-
ear and cubic springs. To fully characterize the system
and, in particular, its transient behavior, we cast a sys-
tem identification problem into a constrained optimiza-

Table 1: Mean and standard deviation of the experi-
mental linear and cubic stiffness for each spring pat-
tern. The results are averaged per loading cycle and
per specimen.

Pattern k1 (N/mm) k3 (N/mm3)

Average Standard Average Standard
Deviation Deviation

1-2 0.1912 7.978E-3 8.878E-4 1.371E-5
1-5 0.2061 9.597E-3 7.213E-4 1.463E-5
3-2 0.2877 8.847E-3 2.472E-4 3.537E-5
3-3 0.1913 4.917E-3 6.818E-5 6.887E-6
3-6 0.0597 4.949E-3 1.750E-5 7.666E-7
4-3 0.1620 1.047E-2 5.353E-5 4.902E-6
5-1 0.1172 4.096E-3 8.770E-4 1.120E-5
5-5 0.0663 2.295E-3 1.559E-5 1.444E-6

tion problem, as detailed in section 3.3. For all the sys-
tems analyzed, the optimum values for the quadratic
spring term and the damping coefficients resulting from
the nonlinear constrained minimization problem are re-

ported in Table 2. The reason for re-introducing the
quadratic stiffness in the dynamical model was already
discussed in Section 3.3. While for the quasi-static test-
ing the quadratic term was only imputable to asymme-
tries in the single spring, here the significance of k2 is
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to model the misalignments when the two springs are
mounted in parallel. Since there is not a closed form ex-
pression that can capture the springs’ misalignment, k2
is adjoined to the set of optimization parameters. For
completeness, we report in Table 2 also the non-dimen-
sional cubic stiffness; note that, the non-dimensional
linear stiffnesses k̂1 = 1 for all the systems considered
and thus are not included in Table 2. A cursory inspec-
tion of the quadratic stiffness terms for the various sys-
tems unveils that they are inversely proportional to k3.
The random nature of the quadratic stiffness terms and
their limited variability compared to k̂1 and k̂3 allow us
to conclude that the quadratic term is unrelated to the
kirigami pattern and is mainly due to misalignment of
the two springs, as speculated above.

Table 2: Non-dimensional parameters for the various
systems considered in the present study. The results
pertain to the BC series. The non-dimensional linear

spring stiffness is k̂1 = 1 for all the systems considered.

Pattern k̂2 k̂3 ĉ1 ĉ2 ĉ3

1-2 3.4609E-1 3.8998E-2 2.7999E-3 3.5159E-3 6.1803E-4
1-5 3.8948E-2 4.2529E-2 5.6999E-3 1.5304E-3 1.1713E-3
3-2 4.3608E-2 1.4387E-2 3.5599E-3 2.8928E-3 3.3471E-4
3-3 2.2639E-1 7.1657E-3 2.5999E-3 2.4246E-3 2.3515E-4
3-6 3.3564E-1 3.8560E-3 1.9993E-4 2.3226E-2 1.7980E-3
4-3 2.0242E-1 6.7939E-3 4.8043E-3 1.2186E-3 7.2505E-5
5-1 4.1282E-2 5.4289E-2 3.3999E-3 5.0544E-3 7.5140E-5
5-5 1.8475E-1 2.7833E-3 3.2011E-3 2.9852E-3 2.3884E-4

Next, we compare the amplitude of vibrations calcu-

lated with the method of multiple scales (as detailed in
the appendix C) against the experimental results. Al-
though we used only the first order approximation, i.e
χ0, and regardless of the pattern considered, we found

that the predicted and measured amplitude are in good
agreement (see Figure 6). The various shapes of the
amplitude-time response highlight how the various pat-
terns offer remarkably different dynamical responses,
therefore emphasizing the degree of programmability
achievable through kirigami slits.

The experimental results concerning the forced vi-
brations for the springs 3-6 and 4-3 are reported in Fig-
ure 7. Without loss in generality, we tested the pair BC.
The experimental responses were obtained using the
setup depicted in Figure 5. We performed a frequency
sweep (0.002 Hz/sec) in the neighborhood of the pri-
mary resonance and excited the system with harmonic

motion of the base with acceleration ab= 0.05 g, 0.1 g,
and 0.2 g respectively. We believe that the discrepancy
between the amplitude predicted by the Method of Mul-
tiple Time Scales and the experimental results can be
attributed to nonlinear damping, specifically quadratic

damping due to aerodynamic drag. This quadratic damp-
ing is likely influenced by two primary factors: asym-
metries in the system and the velocity at which the
system vibrates. The velocity dependence is analogous
to what is observed in airfoils, where the drag coeffi-
cient varies with the Reynolds number. In contrast, the
impact of asymmetries is expected to be only weakly
dependent on velocity. Given that the system’s velocity
during the transient response is much lower than dur-
ing forced vibrations, we contend that the quadratic
damping measured in the transient response provides a
more accurate estimate of the system’s intrinsic damp-
ing. Therefore, fitting the damping again to match the
experimental response under forced vibrations falls be-
yond the scope of this study. Nonetheless, our approach
successfully captures the shape of the backbone curve,
the frequency at which the jump occurs, and, within
an acceptable margin, the amplitude of the system’s
vibrations.

The current analysis reveals that the density of the
cuts is the leading parameter that influences the re-

sponse of the springs. Notably, the cuts density influ-
ences the rigidity of the kirigami springs, the higher
the density, the more compliant the spring. Moreover,

springs with higher cuts density exhibit a quasi-linear
behavior in the static test. This can be seen from Fig-
ure 3e, particularly for the patterns 5-5, 3-6, and 4-
3. As the density decreases the nonlinear behavior is

more pronounced; this is likely due to post-buckling
experienced by the single slit. Interestingly, the tran-
sient responses of the springs with patterns 3-6, 4-3,

and 5-5 exhibit significant deviations from the standard
exponential decay. Specifically, these springs demon-
strate a more complex decay behavior characterized
by non-exponential damping effects. The observed re-
sponses suggest the presence of higher-order damping
terms that dominate the transient decay behavior, lead-
ing to a more gradual attenuation of oscillations over

time for patterns 4-3 and 5-5, or a more pronounced
attenuation for pattern 3-6. These observations are cor-
roborated by the current model.
The possibility of controlling the constitutive response
and designing system whose stiffness and damping prop-
erties can be tuned, may find application in the design
of wearable electronics, adaptive aerospace structures,

soft-robotics, vibration-isolation for precision devices,
to name but a few. Moreover, the relatively inexpen-
sive set up, and its simplicity renders the system ideal
for educational purposes.
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Fig. 7: Comparison of the experimental time responses against the amplitude of vibrations as predicted using the
Method of Multiple Time Scales for the spring pattern 3-6 and 4-3 respectively. Unstable solutions not shown in

the figure. Figure (a), (c) and (e) are the response for the 3-6 pattern with excitation level of respectively 0.05 g,
0.1 g, and 0.2 g. Likewise, figure (b), (d) and (f) are for the 4-3 pattern with excitation level of respectively 0.05 g,
0.1 g, and 0.2 g.
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5.1 Limitations and concluding remarks

The following limitations are noteworthy

– In the model, the viscoelastic behavior of the con-
stitutive material and the effect of fatigue in the
plastic hinges were neglected.

– The approximation for the constitutive relationship
was truncated to the third order. This decision is
motivated by the excellent agreement between the
experimental data and the curve fitting achieved by
retaining only the linear and cubic terms. Springs
more compliant than those considered here may re-
quire a different polynomial form.

– The effect of quadratic nonlinearities was included
to account for the misalignment of the two springs
when assembled to form the single-degree-of-freedom
system. Quadratic nonlinearities may also emerge in
the presence of manufacturing imperfections. To ad-
dress this, experimental data would need to be fitted

with a complete third-order polynomial instead of
a polynomial with only odd powers. Our approach
implicitly assumes that the springs are manufac-
tured without imperfections or asymmetries, and

that misalignment of the spring pairs is the sole
source of imperfection. This explains why, in this
case, quadratic terms appear only when the system

is assembled to form the single DOF oscillator.
– It is hypothesized that the kirigami springs exhibit

nonlinear damping that can be represented in poly-

nomial form. This choice is deliberate, based on the
assumption that the damping behavior mirrors that
of stiffness.

– The quadratic damping is considered to arise solely
from the resistive aerodynamic force exerted on the
oscillator by the airflow from the air truck. Errors
may arise from the almost inevitable torques ex-

erted on the oscillator cart due to any misalign-
ment among the parallel kirigami springs and the air
track, especially under large-amplitude vibrations.
The torques may lead to pitch or yaw of the cart
body, both of which can potentially reshape or even
close the air channels to complicate the damping
mechanism.
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Appendix A List of Symbols

Symbol Definition
F Force applied to the kirigami spring.
k Characteristic stiffness of the spring.
L0 Unstretched length of the spring.
∆L Stretch in the spring due to the applied force.
x Transverse displacement of the spring.
E Extensional stiffness of the material.
A Cross-sectional area of the spring.
Leff Effective length of the spring.
Neff Number of effective cuts in the kirigami spring.
c1 Linear damping coefficient.
c2 Quadratic damping coefficient.
c3 Cubic damping coefficient.
k1 Linear stiffness coefficient.
k2 Quadratic stiffness coefficient.
k3 Cubic stiffness coefficient.
χ Nondimensional displacement.
τ Nondimensional time.
ωn Natural frequency of the linear system.

Ω Nondimensional frequency.
σ Detuning parameter.
ϵ Bookkeeping parameter used in the perturbation analysis.
Tn Multiple time scales for perturbation analysis.

γ Phase difference in the modulation equations.
a Amplitude of oscillation.
aB Base acceleration.

β Phase of oscillation.
µNL Nonlinear damping term.

k̂1, k̂2, k̂3 Nondimensional stiffness coefficients for linear, quadratic, and cubic stiffness respectively.
ĉ1, ĉ2, ĉ3 Nondimensional damping coefficients for linear, quadratic, and cubic damping respectively.
gn Fourier coefficients used in approximating the function ẋ|ẋ|.
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Appendix B Quasi-static characterization

Here we report the results of the curve-fitting method utilized to calculate the linear k1, and cubic k3 stiffnesses.
The results are detailed for any of the four specimens manufactured per pattern. For each specimen, the values
reported in the third and fourth columns are averaged among the five loading cycles. The values reported in the
column from fifth to eighth are averaged for all the specimens.

Table B.1: Experimental results of the quasi-static characterization.

Pattern Specimen
k1 k3 Average k1 St. dev. k1 Average k3 St. dev. K3

N/mm N/mm N/mm N/mm N/mm N/mm

1,2

a - -

0.1912 7.978E-3 8.8781E-04 1.3710E-05
b 0.1844 8.7460E-04
c 0.2000 8.8685E-04
d 0.1893 9.0197E-04

1,5

a 0.2079 7.2962E-04

0.2061 9.597E-3 7.2126E-04 1.4629E-05
b 0.2114 7.3012E-04
c 0.2131 7.2580E-04
d 0.1921 6.9951E-04

3,2

a 0.2962 2.5598E-04

0.2877 8.847E-3 2.4723E-04 3.537E-05
b 0.2806 2.1328E-04
c 0.2795 2.2660E-04
d 0.2944 2.9304E-04

3,3

a 0.1968 2.5598E-04

0.1913 4.917E-3 6.8183E-05 6.8874E-06
b 0.0664 8.7567E-05
c 0.1874 6.6353E-05
d 0.1896 7.5801E-05

3,6

a 0.0576 1.8281E-05

0.0597 4.949E-3 1.7500E-05 7.6658E-07
b 0.0538 1.6562E-05
c 0.0629 1.7218E-05
d 0.0646 1.7940E-05

4,3

a 0.1705 5.4099E-05

0.1620 1.047E-2 5.3534E-05 4.9023E-06
b 0.1602 5.0331E-05
c 0.1694 6.0240E-05
d 0.1479 4.9466E-05

5,1

a 0.1175 8.7188E-04

0.1172 4.096E-3 8.7702E-04 1.1205E-05
b 0.1216 8.6413E-04
c 0.1180 8.8931E-04
d 0.1117 8.8277E-04

5,5

a 0.0629 1.6941E-05

0.0663 2.295E-3 1.5588E-05 1.4443E-06
b 0.0680 1.5810E-05
c 0.0673 1.6053E-05
d 0.0669 1.3548E-05
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Appendix C Transient Response: Method of Multiple Time Scales

It is convenient to reorganize the equation of motion by introducing a bookkeeping parameter ε and collecting
terms with the same order. The equation of motion can be cast as follows

χ̈+ χ+ εk̂2χ
2 + ε2

(

k̂3χ
3 + ĉ1χ̇+ ĉ2χ̇|χ̇|+ ĉ3χ̇

3
)

= 0. (C.1)

Note that the equation above is equivalent to the equation in (7) except for the forcing component. In this case we
considered the free response of the system subjected to initial conditions. The damping coefficients and the cubic
stiffness are scaled at order ϵ2 and the quadratic stiffness term is scaled on the order of ϵ. This implies that the
following inequality must hold k̂3 < k̂2 < k̂1 = 1 for the asymptotic solution presented below to be valid.

The initial conditions can be written in their non-dimensional form as χ(0) = x(0)/Lc and χ̇(0) = ẋ(0)/(Lcωn).
The time dependence is expanded into multiple scales Tn = ϵnτ, and the time derivatives can be written as

∂
∂t

=D0 + εD1 + ε2D2 +O(ε3), (C.2a)

∂2

∂t2
=D2

0 + 2εD0D1 + ε2
(

D2
1 + 2D0D2

)

+O(ε3), (C.2b)

where Dn = ∂/∂Tn. Furthermore, the time-dependent non-dimensional displacement χ can be expressed as

χ(t; ε) =
2

∑

i=0

εiχi(T0, T1, T2) +O(ε3). (C.3)

Substituting Eqns.(C.2) and (C.3) in the Eqn.(C.1) and gathering terms with the same power of ε yields

O(ε0) : D2
0χ0 + χ0 =0, (C.4a)

O(ε1) : D2
0χ1 + χ1 =− 2D0D1χ0 − k̂2χ

2
0, (C.4b)

O(ε2) : D2
0χ2 + χ2 =− 2D0D1χ1 −D2

1χ0 − 2D0D2χ0 − 2k̂2χ0χ1 − k̂3χ
3
0 − ĉ1D0χ0 − ĉ3(D0χ0)

3+

− ĉ2

(

g1 exp(iT0)dT0 +
∞
∑

−∞
n̸=1

gn exp(inT0)

)

, (C.4c)

where g’s are the Fourier’s coefficients used to approximate the function ẋ|ẋ|, gn = gn(A, Ā).
Solutions to the O(ε0) expansion in Eqn. (C.4a) can be written as

χ0 = A(T1, T2) exp (iT0) + Ā(T1, T2) exp (−iT0), (C.5)

where Ā is the complex conjugate of A. Substituting into Eqn. (C.4b) yields

D2
0χ1 + χ1 =− 2iD1A exp(iT0)− k̂2

(

A2 exp(2iT0) +AĀ
)

+ cc, (C.6)

where cc denotes complex conjugate. To derive uniformly valid expansion, we must eliminate secular terms from

the Eqn. (C.6) hence, D1A = 0; therefore, A = A(T2). The solution Eqn. (C.6) can be written as

χ1 = k̂2

(

A2

3
exp(2iT0)−AĀ

)

+ cc. (C.7)

In view of the Eqns. (C.5) and (C.7), the O(ε2) expansion in (C.4c) writes

D2
0χ2 + χ2 =

(

2iD2A+ iĉ1A+
iĉ2A

2

2π

∫ 2π

0

sin2(ϕ)
∣

∣sin(ϕ)
∣

∣dϕ+ 3iĉ3A
2Ā+ 3k3A

2Ā+ 10
3 k̂22A

2Ā

)

exp(iT0)

−

(

2k̂22A
2
(

A
3 + 2Ā

)

− k̂3A
3 − iĉ1A

3 − iĉ3A
3

)

exp(3iT0)− ĉ2

∞
∑

−∞
n̸=1

gn exp(inT0).
(C.8)

Secular terms can be eliminated from the expression of χ2 if

i

(

2D2A+ ĉ1A+
ĉ2A

2

2π

∫ 2π

0

sin2(ϕ)
∣

∣sin(ϕ)
∣

∣dϕ+ 3ĉ3A
2Ā

)

+ 3k3A
2Ā+ 10

3 k̂22A
2Ā = 0, (C.9)
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where ϕ = T0 + β. It is then convenient to express A in polar form, i.e.

A = 1
2a exp (iβ), (C.10)

where a and β are real functions of the time scale T2. By substituting Eqn.(C.10) into Eqn.(C.9) and separating
the real and imaginary parts, the following set of equations is obtained.

ȧ = −
ĉ1
2
a−

4ĉ2
3π

a2 −
3ĉ3
8

a3, and (C.11a)

aβ̇ =
10k̂22 − 9k̂3

24
a3. (C.11b)

Finally, a0 and β0 are evaluated imposing the initial conditions as follows

a0 cos(β0) = 0 and a0 sin(β0) = −χ̇(0), (C.12)

which yields

a0 = −χ̇(0), and β0 = π
2 + 2mπ, where m ∈ Z. (C.13)

The modulation equations (C.11) were solved via numerical integration. Once the numerical solutions for the
equations in (C.11) is obtained, the zeroth-order time response can be reconstituted as

χ = a(τ) cos(τ + β(τ)). (C.14)

In Figure 6, we compared the experimental time responses against the amplitude obtained with the method of

multiple time scales.


