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ABSTRACT
A digitally encoded mechanical metamaterial utilizing se-

lective insertion of rigid elements into an elastomeric matrix
achieves programmable stiffness based on geometric patterns.
Beyond the linear behavior, interests are developed towards the
nonlinear stiffness region to extend the application of such meta-
materials from vibration isolation to shock mitigation. A 12-
unit-cell prototype is constructed and experimentally character-
ized under compression and drop tests, yielding the stress-strain
curves and energy absorption capabilities of all independent geo-
metric patterns identified, respectively, with validation by finite-
element analysis. The versatility of the metamaterial is illustrated
via a categorization of its pattern-dependent responses.

1 INTRODUCTION
Mechanical metamaterials are engineered materials whose

architecture is carefully crafted to produce unconventional prop-
erties. Examples of these properties include negative Poisson’s
ratio [1, 2, 3, 4, 5, 6], negative thermal expansion [7, 8, 9, 10, 11],
quasi-zero [12, 13, 14, 15] and negative stiffness [16, 17, 18, 19],
negative effective mass [20,21], acoustic bandgaps [22,23], pro-
grammable mechanical behavior [24, 25, 26, 27, 28], chiral elas-
ticity [5,29,30], and reciprocity breaking [31,32,33,34]. In many
of these applications the material may be tuned prior to achieve
a given constitutive relationship or desired engineering property.

∗Address all correspondence to this author.

This work builds upon a digitally encoded metamaterial [25]
which modifies the behavior of an elastomer by inserting an elas-
tic member with a higher modulus than the host material (Fig.1a)
or an inclusion with a higher density than the host material. Such
insertions permit a spectrum of material behavior from the host
structure. Fundamentally, this insert also introduces heterogene-
ity in the elastomer matrix and allows the material to reach a
comprehensive range of tunable stiffness values. Choe et. al [35]
investigated in a similar concept of metamaterial with shape-
memory function achieved by pixelated pattern, which is actu-
ated with an embedded low-melting-point-alloy layer. In these
designs, patterns with more proportion of pixelated activation
exhibit steeper stress-strain response, implying more energy ab-
sorbed. However, the energy absorption ability of such kind of
programmable stiffness metamaterial towards higher strain re-
mains to be explored, while its potential is expected to rise as ap-
proaching the nonlinear stiffness region. This work builds upon
previous research by not only investigating the tunable linear
stiffness that can be achieved, but also taking into consideration
the full force-displacement relationship.

2 MANUFACTURING AND ENCODING SCHEME
The metamateiral prototype consists of a 2-dimensional col-

lapsible elastomer matrix with 12 tessellated diamond shaped
holes, which is cast with degassed Smooth-On Mold Star 15
silicone rubber in a 3D-printed mold (Fig. 1a). Its mechanical
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FIGURE 1: Heterogeneous programmable mechanical metamaterial: a) Dimensions of the prototype filled with longitudinal inserts
enhancing compressive stiffness, where integers indicate the corresponding digit of each unit cell for pattern encoding, b) Specimen
with load cell, and c) compressed metamaterial with 1 insert.

properties are programmed with semi-rigid inserts 3D-printed in
PLA. Threaded implants are utilized as connectors to fixtures so
that creep of unit model in tangential direction is restricted dur-
ing cyclic loading test. The material may be encoded as a 12
digit binary number by using 1 and 0 to represent the presence
and absence of an insert, respectively. It implies 212 possible
force-displacement relations however by admitting only symmet-
ric patterns the number of relationships reduces to 72.

3 EXPERIMENTAL RESULTS
To obtain empirical results, tests have been conducted on a

motorized test stand (Mark-10 ESM1500) for the 72 Encoding
configurations. For the test setup, elastomer matrix is screwed
onto fixtures at both ends, with same reinforcement implemented
between fixtures and test plates (Figure 1). After double semi-
rigid inserts are assembled, experiments can be initiated at con-
stant loading speed of 15 mm/min. While each configuration can
be compressed to various limit, before the semi-rigid inserts are
bent or flipped, due to its unique stiffness curve. These 72 config-

urations are initially classified into 6 different ranks from 0 to 5,
which correspond to certain compression limits (Table 1), based
on the overall vertical space occupied by double semi-rigid in-
serts. In addition, some configurations exhibit higher endurance
limit during the tests due to their special assembly layout, and
thus are reranked into the Encoding Scheme. On the other hand,
certain assembly configurations may twist the elastomer matrix
in a way that causes semi-rigid inserts more likely to flip, es-
pecially when they arrive at the nonlinear stiffness region, and
hence not able to reach desired compression limits with respect
to their ranks. Those exceptions are also summarized in Table 1
with compress limits determined.

Due to implementation of elastomer matrix, hysteresis ef-
fect exists as shown in Figure 4, and 10 continuous cycles at 15
mm/min are applied to evaluate it. Throughout the cycles, it is
found that the hysteresis is consistent, as indicated in the plot,
and remains similar consistency for all configurations. Mean-
while, there is noticeable Mullin’s effect within the first cycle,
but it quickly becomes negligible as approaching nonlinear stiff-
ness region, or Region III in the figure, for all configurations.
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FIGURE 2: Finite element compression of 110100000000.

Therefore, the cyclic compression test is always run for at least 3
cycles for each configuration with the last loading stage to be an-
alyzed for energy absorption ability. For the configuration (En-
coding: 000001101000) illustrated as an example, it has a 3-
stage stiffness response with zero and negative stiffness regions
involved, and the overall response is divided into 3 regions at
locations where new stage of stiffness initiated.

4 MODELING
In addition, finite element models have been established to

predict the behaviors of 72 configurations identified and compare
with corresponding experimental results. The models are devel-
oped in ABAQUS using Static Riks analysis with CPS3 element
to deal with nonlinearity. Although they are 2D-planar models,
plane stress thickness is assigned in sections, respectively, to sim-
ulate the tests and reduce computational costs significantly. For
material properties of semi-rigid inserts and threaded implants,
Young’s Modulus of 3.1 GPa, Poisson’s ratio of 0.3 and den-
sity of 1.24 g/cm3 are implemented. And previous research by

Joodaky [36] is referred to determine the material properties of
elastomer matrix in finite element model, with Young’s Mod-
ulus of 0.4324 MPa, Poisson’s Ratio of 0.49 and density of 1.1
g/cm3. The prototype is placed between two rigid wires with sur-
face contact, which simulate the test plates during cyclic loading
test. With bottom wire to be fixed, the top wire is allowed to
compress down to certain displacement limit based on the rank
of configuration identified, which also serves as stopping criteria
of Static Riks analysis. In addition, the whole elastomer matrix
is assigned with self contact while surface contacts are set be-
tween it and semi-rigid inserts as well as threaded implants. Nor-
mal and tangential behaviors are defined for surface contact as
hard contact and penalty, respectively, with friction coefficients
of 0.4 between elastomer matrix and simi-rigid inserts, but 1 be-
tween elastomer matrix and wire, as well as 1 between elastomer
matrix and threaded implants to prevent slipping. While self
contact is accounted in tangential direction as penalty with fric-
tion coefficient of 0.6. To mimic experiments accomplished by
Mark-10 ESM1500 test stand, force-displacement relationships
are tracked from the top surface of finite element model through-
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FIGURE 3: Enumeration of force displacement curve for all programmable patterns. The color coding represent the rank of the material,
i.e., the row containing inserts. Rank 0, Rank 1, Rank 2, Rank 3, Rank 4, and Rank 5.
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FIGURE 4: Hysterisis in specimens

Rank Compression
Limit (mm) Encoding

Test
Limit
(mm)

0 28 No Failure No Failure

1 22 No Failure No Failure

2 20 No Failure No Failure

3 16

001110011100
111010011111
000001100011
000001101011

15
15
15
15

4 12
001110001011
000100001011
000100011111

10.5
11
11

5 7 110001111111 6.5

TABLE 1: Configurations that fail to reach corresponding com-
pression limits due to special assembly layouts.

out the simulation. It should be noted that initial arc length in-
crement may need to be adjusted for certain configurations to
properly initiate simulations.

5 RESULTS
Table 2 indicates the maximum strain, plateau stress, tough-

ness, nonlinear region toughness and its percentage of configu-
rations in each rank. As expected, larger maximum strain can
be achieved with configurations at lower ranks. Meanwhile, al-
though plateau stress also generally rises as rank elevates, its
presence primarily depends on the configuration. For example,
the one that is filled with inserts (Encoding: 111111111111) and
the one without any inserts (Encoding: 000000000000) do not

Rank Max.
Strain

Plateau
Stress
(Pa)

Toughness
(J/m3)

Nonlinear
Region
Toughness
(J/m3)

Nonlinear
Region
Toughness
Propor-
tion (%)

0 0.4301 - 3283.2 515.9 15.71

1 0.3379 6923.6 2713.9 855.5 31.52

2 0.3072 8993.6 3353.2 1434.3 42.77

3 0.2458 10278.4 3399.0 2244.9 66.05

4 0.1843 15845.8 3488.0 2422.7 69.46

5 0.1075 - 2291.8 - -

TABLE 2: Comparison on energy absorption ability of random
configuration in each rank. Encoding of compared configura-
tions from rank 0 to rank 5: 000000000000, 000000000011,
000000011111, 000001111111, 001111111111, 111111111111.

have plateau region and therefore no plateau stress. As for tough-
ness, higher rank implies higher energy absorption ability except
rank 0 and 5, where rank 0 has no inserts and thus can be com-
pressed for about 27% more than rank 1 to absorb more energy.
And rank 5 configurations are generally filled with too many in-
serts for them to be compressed at a similar level to previous
ranks, or even initiate another stage of stiffness region before in-
serts are bent or flipped. However, nonlinear region toughness in-
sistently increases with its proportion rises from 15.71% at rank
0 to 69.49% at rank 4, which implies that the nonlinear stiffness
region can contribute significantly for energy absorption. The
loading process of each configuration has also been simulated in
Abaqus, which exhibits a similar stress-strain relationship with
corresponding multiple-stage stiffness regions, and the collapse
of elastomer matrix matches experimental observation.

Drop tests are performed to investigate the deformation
of prototype upon impact using a high-speed camera. As in-
dicated in the figures, a 2-inch Chrome Steel ball weighing
534.46g is dropped on two different configurations (Encoding:
000001100000, 000001101000) from 0.1m, 0.2m and 0.3m, re-
spectively. And the markers on the prototype are tracked using
ImageJ and TrackMate while the resolution of high-speed cam-
era is set at maximum (1920x1280) with 1000 frame per second.
Upon impact, the marker tracked, which is right below the point
of contact, quickly reaches the free drop velocity of the ball with
respect to its drop height and stays at similar level of speed for
around 0.01 second before the sample is collapsed into nonlinear
stiffness region. Overall, the finite element models properly sim-
ulate drop tests and further indicate the energy absorption ability
of nonlinear stiffness region.
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FIGURE 5: Comparison on deformation from 0.1m impact between physical test and finite element simulation (Encoding:
000001100000)

FIGURE 6: Comparison on deformation from 0.1m impact between physical test and finite element simulation (Encoding:
000001101000)
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FIGURE 7: Displacement tracking of top surface (Encoding: 000001100000) upon impact from 0.1m, 0.2m and 0.3m.

FIGURE 8: Comparison of velocities on top surface of protorype (Encoding: 000001100000) upon impact from different heights, as
well as the ideal drop velocities of striker from these altitudes
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FIGURE 9: Excitation at 0.1g as frequency increasing (left) and decreasing (right). The loadings are identified to be the ones near the
peak on load-displacement plot, implying a change from positive stiffness to negative stiffness region. (Encoding: 001110000011)

FIGURE 10: Excitation at 0.2g as frequency increasing (left) and decreasing (right). The loadings are identified to be the ones near the
peak on load-displacement plot, and the sudden jump indicates that matrices are buckled to another bistable state at higher excitation
acceleration. (Encoding: 001110000011)
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In addition, shaker tests are also implemented to ex-
plore low frequency impact. The chosen model (Encoding:
001110000011) has negative stiffness region, which implies that
a same compression displacement can be reached at different
forces applied. Therefore, the shaker tests are initiated at bistable
states with weight of 10.3N and 11.28N, as well as a third weight
of 11.08N to investigate the transition from positive stiffness to
negative stiffness. As can be observed, the sample with heav-
ier weight applied tends to have lower natural frequency when
excited at 0.1g. In other words, the natural frequency of the pro-
gramming stiffness model is “softened” by extra weight applied.
Besides, sudden jump can be observed when it is excited at 0.2g,
which is simply too drastic for this model at current size and
causes the elastomer matrix to be buckled into another bistable
state.

6 CONCLUSIONS
As both experiments and simulations indicated, there is huge

potential at nonlinear stiffness region of the digital mechanical
metamaterial for energy absorption. And as the rank rises, al-
though the maximum strain that can be reached drops notice-
ably, the energy absorption ability can still be improved with
major contribution from the nonlinear stiffness region. And such
nonlinear region toughness contribution at rank 4 is more than 4
times than that of rank 0, which is from a solely elastomeric ma-
trix without any enhancing elements. Furthermore, such a pro-
gramming stiffness elastomer matrix can be easily expanded to
a variety of sizes and the corresponding nonlinear region tough-
ness contribution is expected to dominate its energy absorption
ability for any higher ranks.
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