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Abstract. We study almost-minimizers of anisotropic surface energies de-
fined by a Hölder continuous matrix of coefficients acting on the unit normal

direction to the surface. In this generalization of the Plateau problem, we

prove almost-minimizers are locally Hölder continuously differentiable at reg-
ular points and give dimension estimates for the size of the singular set. We

work in the framework of sets of locally finite perimeter and our proof follows

an excess-decay type argument.

1. Introduction. The Plateau problem is a classical geometric variational prob-
lem. It consists in minimizing surface area among all surfaces with a certain pre-
scribed boundary. The analogous physical phenomenon occurs in soap films as they
seek to minimize surface tension, an equivalent to minimizing surface area. The
existence and regularity of solutions to the Plateau problem has been the subject of
study in a variety of settings and continues to be a centerpiece of much mathematical
research (to name a few, see [20, 33, 9, 34, 1, 44, 25, 12, 27]). A natural generaliza-
tion of the Plateau problem is to study minimizers of surface energies other than
surface area. Anisotropic surface energies are those which depend on the normal
direction to the surface and possibly the spatial location of the surface as well. This
means that the energy assigned to a surface depends not only on its geometry but
also on how and where the surface sits in space. Such anisotropic energies arise in
physical phenomena such as the formation of crystals and in crystalline materials.

Almgren was the first to study regularity of minimizers to anisotropic variational
problems in his paper [4]. This initial work as well as much of the subsequent
work in the area was done in the setting of varifolds and currents with many of
the results applying to surfaces of arbitrary codimension but with rather strong
regularity assumptions on the integrands of the anisotropic energies.
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In this paper we work in the setting of sets of locally finite perimeter and study
the existence and regularity of minimizers of anisotropic surface energies of the form

FA(E;U) =

ˆ
U∩∂∗E

〈A(x)νE(x), νE(x)〉1/2 dHn−1(x) (1.1)

where A = (aij(x))ni,j=1 is a uniformly elliptic, Hölder continuous matrix-valued
function, E is a set of locally finite perimeter in Rn, and U is an open set. Here ∂∗E
denotes the (n−1)-dimensional reduced boundary of E and νE denotes its outward
unit normal vector. We note that Hölder continuity is a rather weak regularity
assumption and the previously known regularity results for general integrands do
not apply (see the discussion below). Our main regularity result applies to almost-
minimizers which are sets of locally finite perimeter in Rn satisfying the minimality
condition

FA(E;B(x, r)) ≤ FA(F ;B(x, r)) + κrα+n−1 (1.2)

whenever E∆F ⊂⊂ U ∩B(x, r), x ∈ U , and r < r0 (see Section 2 for full definitions
and notation).

Theorem 1.1 (Regularity of almost-minimizers). Let n ≥ 2 and U be an open set
in Rn. Suppose FA is the anisotropic energy given by (1.1) for a uniformly elliptic,
Hölder continuous matrix-valued function A = (aij(x))ni,j=1 with Hölder exponent
α ∈ (0, 1). If E is a (κ, α)-almost-minimizer of FA in U , that is, it satisfies (1.2),
then U ∩ ∂∗E is a C1,α/4-hypersurface which is relatively open in U ∩ ∂E, while the
singular set of E in U ,

Σ(E;U) = U ∩ (∂E \ ∂∗E), (1.3)

satisfies the following:

(i) if 2 ≤ n ≤ 7, then Σ(E;U) is empty;
(ii) if n = 8, then Σ(E;U) has no accumulation points in U ;

(iii) if n ≥ 9, then Hs(Σ(E;U)) = 0 for s > n− 8.

A regularity result of the form of Theorem 1.1 was first proved by De Giorgi in
[9] for minimizers of surface area. De Giorgi worked within the framework of sets
of locally finite perimeter which he had introduced and shown to be equivalent to
the earlier notion of Caccioppoli sets. Shortly thereafter Reifenberg also proved a
similar regularity result for minimizers of surface area in [34, 35, 36]. In [42, 43],
Tamanini extended De Giorgi’s result to almost-minimizers of perimeter satisfying
the minimality condition P (E;B(x, r)) ≤ P (F ;B(x, r)) + κrα+n−1, proving C1,β-
regularity at points in the reduced boundary for each β ∈ (0, α/2). In fact, his
result applies with a more general error term.

The anisotropic surface energies treated by Almgren in [4] are given in terms
of the integral of a bounded, continuous, elliptic integrand f = f(x, ξ) over the
surface. Here x denotes the spatial variable and ξ denotes the directional variable.
Almgren proved that if f is Ck for some k ≥ 3, then minimal surfaces with respect
to f are Ck−1-regular almost everywhere. Bombieri extended this to the case k = 2
by showing in [5] that if f is C2, then minimal surfaces with respect to f are C1-
regular almost everywhere. In [37], Schoen and Simon provided an alternate proof
of this type of regularity result with weakened hypotheses. They showed that if f
is Lipschitz in the spatial variable x and C2,β in the directional variable ξ, then
minimizers are C1,α-regular almost everywhere for any α ∈ (0, 1).
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A characterization of the singular set for codimension one oriented hypersurfaces
as in Theorem 1.1 was proved in the case of the area integrand f ≡ 1 in a series
of papers by various authors. Miranda proved in [31] that Hn−1-measure of the
singular set is zero. The rest of the results deal with the Bernstein problem which
asks about the existence of global minimizers of surface area in Rn. Fleming and
Almgren proved some intermediate results of nonexistence in singular minimizing
cones in R3 and R4, respectively, in [23, 3]. The next result was by De Giorgi in [10]
where he showed that the non-existence of a singular minimal cone in Rn implies
non-existence in Rn−1. Simons showed the non-existence of singular minimal cones
in dimensions 2 ≤ n ≤ 7 in [39] and Bombieri, De Giorgi, and Giusti demonstrated
in [6] that Simons’ cone

Σ =
{
x ∈ R8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8

}
(1.4)

is a singular minimal cone in R8 with singular set {0}. Federer concluded in [22] by
proving the Hausdorff dimension of the singular set is less than or equal to n − 8.
In the anisotropic case, it was shown in [38] that Hn−3-measure of the singular set
is zero for elliptic integrands which are C3.

Surface energies of the particular form of (1.1) first appeared in the paper [45]
by Jean Taylor. This is a follow-up paper to her celebrated paper [44] in which
she proves that the structure of singularities of soap-like minimal surfaces in R3

are exactly as conjectured by the experimental physicist Joseph Plateau. In [45],
she proves that minimizers of FA in R3 are locally C1,α at regular points and
possess a singular set with the same general structure as in the case of surface
area minimizers. Taylor worked with varifolds as her notion of surface and only
with 2-dimensional surfaces in R3. This enabled her to utilize the classification
of 2-dimensional surface area minimizing cones in R3. Such a classification is not
known in higher dimensions. Note that the singularities dealt with by Jean Taylor
cannot occur within our setting of sets of locally finite perimeter as 2-dimensional
minimizing cones in R3 come from non-oriented surfaces. This is why, for instance,
we do not have singularities when 2 ≤ n ≤ 7, even though there are singularities in
lower dimensions when working with varifolds.

Allard’s work in [1] established some important results for the Plateau problem
in the setting of varifolds, some of which have been generalized to the anisotropic
setting. Allard first proved that a varifold V with bounded first-variation δV is
rectifiable. He then proved regularity by showing that if there are Lp-type bounds on
the generalized mean-curvature of V for p large enough (depending on the dimension
of V ), then V is locally C1,α for some α ∈ (0, 1) (depending on p and the dimension
of V ) outside a closed singular set of measure zero. A recent breakthrough was
made in the setting of anisotropic integrands in [14] to prove rectifiability. There,
De Philippis, De Rosa, and Ghiraldin were the first to successfully compute the
first-variation δfV with respect to an anisotropic integrand f . Using this they
showed that if f is an elliptic C1-integrand satisfying the so-called atomic condition
(equivalent to ellipticity in codimension one), then a varifold whose anisotropic first-
variation δfV is locally bounded is indeed rectifiable. Very recently, De Rosa and
Tione proved in [19] that m-dimensional Lipschitz graphs with bounded anisotropic
mean-curvature in Lp for some p > m have C1,α-regularity almost everywhere.
Other than that not much is currently known. One of the main obstructions is the
lack of a monotonicity formula. This is essential in Allard’s regularity arguments
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and does not exist for general integrands as demonstrated in [2]. Much of the related
relevant literature in contained in [11, 13, 17, 15, 18].

Another related problem of interest is volume constrained minimization. Reg-
ularity is known in the case of volume constrained perimeter minimizers [24] and
some results are known in anisotropic settings [32, 28].

Let us briefly describe the organization of this paper. We start in Section 2 by
providing the essential definitions pertaining to sets of locally finite perimeter, our
anisotropic surface energies, and almost-minimizers. In Section 3 we follow the Di-
rect Method of the Calculus of Variations to establish the existence of minimizers to
our formulation of the anisotropic Plateau problem. The rest of the paper is devoted
to the study of the regularity of almost-minimizers and to the characterization of
the singular set. In Section 4 we cover a key change of variable that allows us to
assume A(x0) = I (the identity matrix) at a given point x0, as well as prove many
important properties of almost-minimizers. These include an almost-monotonicity
formula, Theorem 4.4, volume and perimeter bounds, Proposition 4.5, and com-
pactness of the class of almost-minimizers, Proposition 4.7. Next in Section 5 we
define the excess, (5.4), an important notion in regularity theory, and recall some of
its properties. There we also state the height bound, Proposition 5.7, which allows
us to control the height of the boundary of an almost-minimizer given a small excess
assumption. Following this we show in Section 6 that a small excess assumption
together with the assumption A(x0) = I allows us to find a Lipschitz function that
well approximates ∂E and is ‘almost-harmonic’ with a controlled error, Theorem
6.1. In Section 7 we prove a reverse Poincaré inequality, Theorem 7.1, which in Sec-
tion 8 we combine with a harmonic approximation of the Lipschitz function from
Section 6 to prove a tilt-excess decay result, Theorem 8.3. Finally, in Section 9 we
use this and an iteration argument to prove our main regularity result, Theorem
9.2. We conclude the paper in Section 10 by using blow-up analysis and a Federer
reduction argument to prove the characterization of singular set, Theorem 10.1.

2. Preliminaries. We will work in Rn for a fixed n ≥ 2. The open ball centered
at x ∈ Rn of radius r > 0 is defined by

B(x, r) = {y ∈ Rn : |y − x| < r}, (2.1)

where | · | denotes the standard Euclidean norm and we write Br for B(0, r). We
denote the volume of the n-dimensional ball by ωn.

Like De Giorgi and Tamanini, we shall also work with sets of locally finite perime-
ter following much of the notation and definitions given in the insightful expository
book by Maggi [29]. Throughout this paper we will follow a scheme inspired by the
one presented there.

A Lebesgue measurable set E ⊂ Rn is said to be of locally finite perimeter if
there exists an Rn-valued Radon measure µE (called the Gauss-Green measure
of E) such that the Gauss-Green formula

ˆ
E

∇ϕ dx =

ˆ
Rn
ϕ dµE , ∀ϕ ∈ C1

c (Rn) (2.2)

holds. The induced total-variation measure |µE | is called the perimeter measure
of E and is denoted by P (E; · ). The set E is said to be of finite perimeter if



HÖLDER-COEFFICIENT SURFACE ENERGIES 3237

P (E) = P (E;Rn) <∞. The set of those |µE |-a.e. x ∈ sptµE for which

D|µE |µE(x) = lim
r→0+

µE(B(x, r))

|µE |(B(x, r))
exists and is in Sn−1 (2.3)

is called the reduced boundary of E and is denoted by ∂∗E. The measure-
theoretic outer unit normal to E is then defined to be the measurable function
νE : ∂∗E → Sn−1 given by

νE(x) = lim
r→0+

µE(B(x, r))

|µE |(B(x, r))
. (2.4)

The De Giorgi structure theorem states that ∂∗E is (n − 1)-rectifiable and that
µE = νEHn−1 ∂∗E where Hn−1 denotes the (n− 1)-dimensional Hausdorff mea-
sure. We may modify a set of locally finite perimeter on and/or up to a set of
Lebesgue measure zero without changing its perimeter measure. As a consequence,
the topological boundary ∂E of a generic set of locally finite perimeter may be quite
messy and might not be well related to ∂∗E. However, we may always modify our
set of locally finite perimeter E so that sptµE = ∂E without changing its perimeter
measure, in which case ∂∗E = ∂E (see [29, Remark 16.11, Remark 15.3]). When
discussing boundary regularity of a set of locally finite perimeter we shall always
choose this representative of E.

2.1. Anisotropic surface energies with Hölder coefficients. Now let’s pro-
vide precise definitions for the anisotropic energies and almost-minimizers we will
study. Denote by Rn ⊗ Rn the set of real n × n-matrices equipped with the oper-
ator norm || · ||. Let A = (aij(x))ni,j=1 be a bounded, measurable function on Rn
that takes values in Rn ⊗ Rn. We say that A is symmetric if A(x) = A(x)t for
all x ∈ Rn, where · t denotes the matrix transpose. We say that A is uniformly
elliptic if there exist constants 0 < λ ≤ Λ < +∞ such that

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 (2.5)

for all x, ξ ∈ Rn, where 〈 · , · 〉 denotes the standard Euclidean inner product. We
say that A is Hölder continuous with exponent α ∈ (0, 1) if

||A||Cα = sup
x 6=y

||A(x)−A(y)||
|x− y|α

<∞ (2.6)

and call ||A||Cα the Hölder seminorm of A. In particular,

||A(x)−A(y)|| ≤ ||A||Cα |x− y|α (2.7)

holds for all x, y ∈ Rn.

Definition 2.1 (FA-surface energy). Let A = (aij(x))ni,j=1 be uniformly elliptic,
and Hölder continuous. Given a set of locally finite perimeter E in Rn and a Borel
set F , we define the FA-surface energy of E in F by

FA(E;F ) =

ˆ
F∩∂∗E

〈A(x)νE(x), νE(x)〉1/2 dHn−1(x) ∈ [0,∞]. (2.8)

Note that FA(E; · ) defines a Borel measure on Rn and we will often denote
FA(E;Rn) by FA(E).

Remark 2.1 (Symmetry of A). We may assume without loss of generality that A
is symmetric which we do throughout this paper. We may make this assumption
as the equality 〈A(x)ξ, ξ〉 =

〈
1
2

(
A(x) + A(x)t

)
ξ, ξ
〉

holds for all x, ξ ∈ Rn. Hence
we can always symmetrize A without changing the values of FA.
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Remark 2.2 (Ellipticity). The integrand f(x, ξ) = 〈A(x)ξ, ξ〉1/2 is elliptic in the
sense of Almgren in [4]. In our setting this means that for every bounded set U there
is a constant c > 0 such that for every set of locally finite perimeter E, half-space
H, and x0 ∈ U ,

FA(x0)(E;B(x0, r))− FA(x0)(H;B(x0, r))

≥ c [Hn−1(∂∗E ∩B(x0, r))−Hn−1(∂H ∩B(x0, r))] (2.9)

whenever E∆H ⊂⊂ U ∩ B(x0, r), r > 0. Here FA(x0)(E; · ) denotes the energy

associated to the frozen integrand fx0
(ξ) = 〈A(x0)ξ, ξ〉1/2. As Almgren notes, this

notion is equivalent to uniform convexity in codimension one as is our case by
uniform ellipticity of A and (2.9) holds with c = λ. Ellipticity ensures that half-
spaces are the unique minimizers when compared with their compactly contained
variations.

Remark 2.3 (Hölder continuity of integrand of FA). The integrand f(x, ξ) =
〈A(x)ξ, ξ〉1/2 is Hölder continuous with respect to the spatial variable x, that is,∣∣〈A(x)ξ, ξ〉1/2 − 〈A(y)ξ, ξ〉1/2

∣∣ ≤ 1

2λ
||A||Cα |x− y|α. (2.10)

for all x, y, ξ ∈ Rn with |ξ| = 1. This follows from (2.7) combined with the useful
inequality ∣∣〈A(x)ξ, ξ〉1/2 − 〈A(y)ξ, ξ〉1/2

∣∣ =

∣∣〈A(x)ξ, ξ〉 − 〈A(y)ξ, ξ〉
∣∣

〈A(x)ξ, ξ〉1/2 + 〈A(y)ξ, ξ〉1/2

≤ 1

2λ
||A(x)−A(y)|| (2.11)

for all x, y, ξ ∈ Rn with |ξ| = 1. Note our regularity assumption is much weaker
than in [4] where he assumes the integrand f = f(x, ξ) is Ck for some k ≥ 3 and
weaker than the assumption in [37] where they assume the integrand f = f(x, ξ) is
Lipschitz in x.

Remark 2.4 (Comparability to perimeter). FA(E; · ) is comparable to P (E; · )
since it follows for all Borel sets F that

λ1/2P (E;F ) ≤ FA(E;F ) ≤ Λ1/2P (E;F ). (2.12)

by the uniformly ellipticity of A. When A equals the identity matrix I we have the
isotropic case FA(E; · ) = P (E; · ).

Remark 2.5. The complement Ec = Rn \ E of a set of locally finite perimeter is
also a set of locally finite perimeter with µEc = −νEHn−1 ∂∗E and so FA(Ec; · ) =
FA(E; · ).

2.2. Notions of almost-minimizers. We are interested in studying the boundary
regularity of those sets of locally finite perimeter which are almost-minimizers of the
FA-surface energy in an open set when compared to their local compactly contained
variations. Recent work addressing regularity of almost-minimizers for other varia-
tional problems can be found in [41, 16, 8, 26] and the notions of almost-minimizers
we consider are similar.

Fix universal constants n ≥ 2, 0 < λ ≤ Λ < +∞, κ ≥ 0, α ∈ (0, 1) and
r0 ∈ (0,+∞), and let A = (aij(x))ni,j=1 be a symmetric, uniformly elliptic, and
Hölder continuous with respect to λ, Λ, and α and fix an open set U in Rn.
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Definition 2.2 ((κ, α)-almost-minimizer of FA). We say a set of locally finite
perimeter E in Rn is a (κ, α)-(additive) almost-minimizer of FA in U at scale
r0 if sptµE = ∂E and

FA(E;B(x, r)) ≤ FA(F ;B(x, r)) + κrα+n−1 (2.13)

whenever E∆F ⊂⊂ U ∩B(x, r) where F is a set of locally finite perimeter, x ∈ U ,
and r < r0.

When (2.13) holds with κ = 0, we say that E is a local minimizer of FA in
U at scale r0, and when (2.13) holds for all scales r0 ∈ (0,+∞), we say that E
is a minimizer of FA in U . Typically we will omit the descriptor additive when
discussing almost-minimizers. However, we will include it when we wish to highlight
the difference from the following alternative notion of almost-minimality.

Definition 2.3 ((κ, α)-multiplicative almost-minimizer of FA). We say a set of
locally finite perimeter E in Rn is a (κ, α)-multiplicative almost-minimizer of
FA in U at scale r0 if sptµE = ∂E and

FA(E;B(x, r)) ≤ (1 + κrα)FA(F ;B(x, r)) (2.14)

whenever E∆F ⊂⊂ U ∩B(x, r) where F is a set of locally finite perimeter, x ∈ U ,
and r < r0.

Note that Taylor worked with this notion of multiplicative almost-minimizer in
[45] but handled a more general error term. We now show that multiplicative
almost-minimizers are also additive almost-minimizers. To prove this, we need an
upper bound for perimeter bounds of multiplicative almost-minimizers at points in
the topological boundary. Whenever we write C we mean a constant (which may
change from line to line) that depends only on the universal constants n, λ,Λ, κ, α, r0

and an upper bound for ||A||Cα , but does not depend on E or x0. If we wish to
specify dependence on fewer constants and write for example, C(n) for constants
that only depend on n.

Lemma 2.4. There exists a positive constants C = C(n, λ,Λ, κ, α, r0) with the
following property. If E is a (κ, α)-multiplicative almost-minimizer of FA in U at
scale r0, then for every x0 ∈ U ∩ ∂E with r < d = min{dist(x0, ∂U), r0} <∞,

P (E;B(x0, r))

rn−1
≤ C (2.15)

Proof. Since Hn−1 ∂∗E is Radon, Hn−1(∂∗E ∩ ∂B(x0, r)) = 0 for a.e. r ∈ (0, d).
Choose one such radius r and for s ∈ (r, d) consider the comparison set F =
E \ B(x0, r) in B(x0, s). Then E∆F ⊂ B(x0, r) ⊂⊂ B(x0, s). It follows from
comparability to perimeter (2.12) and the multiplicative almost-minimality of E
that

λ1/2P (E;B(x0, s)) ≤ FA(E;B(x0, s))

≤ (1 + κsα)FA(E \B(x0, r);B(x0, s))

≤ (1 + κrα0 )Λ1/2P (E \B(x0, r);B(x0, s)). (2.16)

Hence

P (E;B(x0, s)) ≤ C P (E \B(x0, r);B(x0, s))

= C
(
Hn−1(E(1) ∩ ∂B(x0, r)) + P (E;B(x0, s) \B(x0, r))

)
(2.17)
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since Hn−1(∂∗E ∩ ∂B(x0, r)) = 0. Sending s→ r+ and noting
Hn−1(E(1) ∩ ∂B(x0, r)) ≤ nωnrn−1 gives

P (E;B(x0, r)) ≤ CHn−1(E(1) ∩ ∂B(x0, r)) ≤ Crn−1. (2.18)

By density of these radii, this holds for all r ∈ (0, d).

Proposition 2.1. If E is a (κ, α)-multiplicative almost-minimizer of FA in U at
scale r0, then for each open set V ⊂⊂ U , there is a constant κ′ = κ′(n, λ,Λ, κ, α, r0)
such that E is a (κ′, α)-(additive) almost-minimizer of FA in V at scale r′0 =
min{(1/2)r0, (1/4)dist(V,U c)}.

Proof. Let E∆F ⊂⊂ B(x, r) ∩ V , x ∈ V , and r < r′0. Suppose E is a (κ, α)-
multiplicative almost-minimizer of FA in U at scale r0. The minimality condition
is trivially satisfied if FA(E;B(x, r)) ≤ FA(F ;B(x, r)) or P (E;B(x, r)) = 0. So
suppose FA(F ;B(x, r)) ≤ FA(E;B(x, r)) and P (E;B(x, r)) > 0. Then there is
y ∈ B(x, r) ∩ ∂E. So by Lemma 2.4, which applies since 2r < r0 and B(y, 2r) ⊂
B(x, 4r) ⊂ U , we have P (E;B(x, r)) ≤ P (E;B(y, 2r)) ≤ C(2r)n−1. Hence by
comparability to perimeter (2.12), we have
FA(F ;B(x, r)) ≤ Λ1/2P (E;B(x, r)) ≤ Crn−1. It follows that

FA(E;B(x, r)) ≤ FA(F ;B(x, r)) + κrαFA(F ;B(x, r))

≤ FA(F ;B(x, r)) + κ′rα+n−1 (2.19)

for some κ′ = κ′(n, λ,Λ, κ, α, r0).

Thus Proposition 2.1 implies that any interior regularity results for (additive)
almost-minimizers shall also apply to multiplicative almost-minimizers. We shall
focus on proving a regularity theorem for (additive) almost-minimizers and shall
henceforth only work with (additive) almost-minimizers which we simply refer to
as almost-minimizers.

3. Existence of anisotropic minimizers. Our first order of business is to estab-
lish existence of solutions to the anisotropic Plateau problem for FA. The existence
of anisotropic minimizers in the setting of varifolds and currents is known in general
in the framework of varifolds and currents (see [21, Chapter 5]) which should imply
existence of minimizers of FA in the framework of sets of locally finite perimeter.
However, for completeness, we present our own full proof of this result in our setting.
Additionally, the lower semicontinuity result of Proposition 3.1 will prove useful at
several places in the regularity portion of our paper.

Let A = (aij(x))ni,j=1 be a symmetric, uniformly elliptic, continuous function on
Rn with values in Rn ⊗Rn (we do not need Hölder continuity to show existence of
minimizers) and consider the FA-surface energy. Fix an open bounded set U and a
set of finite perimeter E0 in Rn. The anisotropic Plateau problem for FA in U
with boundary data E0 is to show that the infimum

γA(E0, U) = inf
{
FA(E) : E a set of finite perimeter in Rn, E \ U = E0 \ U

}
(3.1)

is attained (Cf. [29, (12.29)]). That is, we minimize FA in Rn among those sets of
finite perimeter which agree with E0 outside of U .

To show that (3.1) is achieved by a set of finite perimeter, we follow the Direct
Method of the Calculus of Variations. This consists of (i) taking a sequence {Eh}h∈N
of competitors such that FA(Eh)→ γA(E0, U), (ii) using a key compactness result
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in an appropriate topology to extract a subsequence {Eh(k)}k∈N converging to some
competitor E satisfying E \U = E0 \U , and (iii) applying lower semicontinuity of
FA with respect to the convergence in the chosen topology which shows that FA(E)
equals the infimum γA(E0, U) in (3.1).

3.1. Compactness of sets of locally finite perimeter. The first key ingredient
of the Direct Method is compactness of our class of admissible competitors. One of
the primary reasons that sets of locally finite perimeter provide a suitable setting
to work on geometric variational problems is that they possess compactness with
respect to local convergence of sets. Let’s recall the definition of this convergence
and a known compactness theorem for sets of locally finite perimeter.

We say that a sequence of sets of locally finite perimeter {Eh}h∈N in Rn con-

verges locally to E (and write Eh
loc→ E) if

|(Eh∆E) ∩K| → 0 as h→∞ (3.2)

for each compact K ⊂ Rn, and say {Eh}h∈N converges to E (and write Eh → E)
if

|Eh∆E| → 0 as h→∞. (3.3)

Recall that E∆F = (E \ F ) ∪ (F \ E) and that | · | denotes Lebesgue measure on
Rn.

Theorem 3.1 (Compactness from perimeter bounds, [29, Theorem 12.26]). If R >
0 and {Eh}h∈N are sets of finite perimeter in Rn, with

Eh ⊂ BR, ∀h ∈ N, and sup
h∈N

P (Eh) <∞, (3.4)

then there exist a set E of finite perimeter in Rn and indices h(k)→∞ as k →∞,
with

Eh(k) → E, µEh(k)
∗
⇀ µE , and E ⊂ BR. (3.5)

3.2. Lower semicontinuity of FA. The second key ingredient of the Direct
Method is to show lower semicontinuity of the FA-surface energy. Here we have
some work to do and start with a couple lemmas. The first lemma deals with lower
semicontinuity when A is constant, while the second one is a technical lemma we
need in the proof when A is no longer constant.

Lemma 3.2 (Lower semicontinuity for constant A). If A is a constant, uniformly el-
liptic matrix, and {Eh}h∈N and E are sets of locally finite perimeter with νEhHn−1

∂∗Eh
∗
⇀ νEHn−1 ∂∗E, then for any open set U ,

FA(E;U) ≤ lim inf
h→∞

FA(Eh;U). (3.6)

Proof. By Remark 2.1 we may assume A is symmetric and by uniform ellipticity
its eigenvalues are positive. So by the spectral theorem we can write A = V DV −1

where D is a diagonal matrix with the eigenvalues of A and where V is the matrix
of corresponding orthonormal eigenvectors. Setting A1/2 = V D1/2V −1, we have
A = A1/2A1/2 with A1/2 symmetric since V −1 = V t. So 〈Aξ, ξ〉1/2 = |A1/2ξ|.
Define Rn-valued Radon measures on Rn,

µh = A1/2νEhHn−1 ∂∗Eh and µ = A1/2νEHn−1 ∂∗E. (3.7)
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It then follows that µh
∗
⇀ µ because, given any ϕ ∈ Cc(Rn;Rn), we have A1/2ϕ ∈

Cc(Rn;Rn) and thus

lim
h→∞

ˆ
ϕ · dµh = lim

h→∞

ˆ
∂∗Eh

〈ϕ,A1/2νEh〉 dHn−1

= lim
h→∞

ˆ
∂∗Eh

〈A1/2ϕ, νEh〉 dHn−1 =

ˆ
∂∗E

〈A1/2ϕ, νE〉 dHn−1

=

ˆ
∂∗E

〈ϕ,A1/2νE〉 dHn−1 =

ˆ
ϕ · dµ. (3.8)

By lower semicontinuity of the total variation of weak-star convergent vector-valued
Radon measures ([29, Proposition 4.19]), we have

FA(E;U) =

ˆ
U∩∂∗E

|A1/2νE | dHn−1 = |µ|(U) ≤ lim inf
h→∞

|µh|(U)

= lim inf
h→∞

ˆ
U∩∂∗Eh

|A1/2νEh | dHn−1 = lim inf
h→∞

FA(Eh;U) (3.9)

which concludes the proof.

Lemma 3.3. Let {Φh}h∈N and Φ be Radon measures on Rn and ϕ ∈ Cc(Rn; [0,∞))
such that lim suph→∞ Φh({ϕ > 0}) <∞. Then the following two statements hold:

(i) If Φ(U) ≤ lim inf
h→∞

Φh(U) for any open set U , then

(ϕΦ)(U) ≤ lim inf
h→∞

(ϕΦh)(U) (3.10)

for any open set U in Rn.
(ii) If lim sup

h→∞
Φh(K) ≤ Φ(K) for any compact set K, then

lim sup
h→∞

(ϕΦh)(K) ≤ (ϕΦ)(K) (3.11)

for any compact set K in Rn.

Proof. Let ε > 0 and choose 0 = t0 < t1 < · · · < tN−1 < supϕ < tN such that
tj − tj−1 < ε and Φ({ϕ = tj}) = 0 for j = 1, . . . , N . This is possible since Φ is
Radon and so Φ({ϕ = t}) > 0 for at most countably many t. Set

Uj = {tj−1 < ϕ < tj} and Kj = U j (3.12)

and note that the Uj ’s are open and the Kj ’s are compact.
Proof of (i): Assume the hypothesis and let U be an open set. Observe that

(ϕΦ)(U) =

ˆ
U

ϕ dΦ =
N∑
j=1

ˆ
U∩Uj

ϕ dΦ +
N−1∑
j=0

tjΦ(U ∩ {ϕ = tj})

=
N∑
j=1

ˆ
U∩Uj

ϕ dΦ (3.13)
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since Φ(U ∩ {ϕ = tj}) = 0 for j = 1, . . . , N − 1. Since ϕ < tj on U ∩ Uj and
Φ(U ∩ Uj) ≤ lim infh Φh(U ∩ Uj) for j = 1, . . . , N , we have

(ϕΦ)(U) ≤
N∑
j=1

ˆ
U∩Uj

tj dΦ ≤
N∑
j=1

tj lim inf
h→∞

Φh(U ∩ Uj)

= lim inf
h→∞

N∑
j=1

tjΦh(U ∩ Uj), (3.14)

where we used the property that lim infh ah+ lim infh bh ≤ lim infh(ah+ bh) for any
sequences {ah}, {bh}. Note that tj < tj−1 + ε < ϕ+ ε on U ∩ Uj and so

(ϕΦ)(U) ≤ lim inf
h→∞

N∑
j=1

tjΦh(U ∩ Uj) ≤ lim inf
h→∞

N∑
j=1

ˆ
U∩Uj

(ϕ+ ε) dΦh

≤ lim inf
h→∞

(ϕΦh)(U) + ε lim sup
h→∞

Φh(U ∩ {ϕ > 0}) (3.15)

since U ∩ {ϕ > 0} =
⋃N
j=1 U ∩ Uj . Sending ε→ 0+ completes the proof of (i).

Proof of (ii): Assume the hypothesis and let K be a compact set. Recalling
Kj = U j , observe that

(ϕΦ)(K) =

ˆ
K

ϕ dΦ =
N∑
j=1

ˆ
K∩Kj

ϕ dΦ−
N−1∑
j=0

tjΦ(K ∩ {ϕ = tj})

=
N∑
j=1

ˆ
K∩Kj

ϕ dΦ, (3.16)

since Φ(K ∩ {ϕ = tj}) = 0 for j = 1, . . . , N − 1, and

(ϕΦh)(K) =

ˆ
K

ϕ dΦh =

N∑
j=1

ˆ
K∩Kj

ϕ dΦh −
N−1∑
j=0

tjΦh(K ∩ {ϕ = tj})

≤
N∑
j=1

ˆ
K∩Kj

ϕ dΦh. (3.17)

It follows that

lim sup
h→∞

(ϕΦh)(K) ≤ lim sup
h→∞

N∑
j=1

ˆ
K∩Kj

ϕ dΦh ≤
N∑
j=1

lim sup
h→∞

ˆ
K∩Kj

ϕ dΦh, (3.18)

where we used the property that lim suph(ah+bh) ≤ lim suph ah+lim suph bh for any
sequences {ah}, {bh}. Since ϕ < tj on K∩Kj and lim suph Φh(K∩Kj) ≤ Φ(K∩Kj),
we have

lim sup
h→∞

(ϕΦh)(K) ≤
N∑
j=1

lim sup
h→∞

ˆ
K∩Kj

ϕ dΦh ≤
N∑
j=1

tjΦ(K ∩Kj). (3.19)

Note that tj < tj−1 + ε ≤ ϕ+ ε on K ∩Kj and so

lim sup
h→∞

(ϕΦh)(K) ≤
N∑
j=1

(ϕ+ ε)Φ(K ∩Kj) = (ϕΦ)(K) + εΦ(K ∩ sptϕ) (3.20)
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where we used Φ(K∩{ϕ = tj}) = 0 for j = 1, . . . , N−1. Sending ε→ 0+ completes
the proof of (ii).

With these lemmas in hand, we are now ready to state and prove the lower
semicontinuity of FA.

Proposition 3.1 (Lower semicontinuity of FA). Let A = (aij(x))ni,j=1 be a symmet-
ric, uniformly elliptic, continuous function on Rn with values in Rn⊗Rn. Suppose
{Eh}h∈N is a sequence of sets of locally finite perimeter in Rn and E is Lebesgue
measurable, with

Eh
loc→ E, and lim sup

h→∞
P (Eh;K) <∞ (3.21)

for every compact set K in Rn. Then E is a set of locally finite perimeter in Rn
with

νEhHn−1 ∂∗Eh
∗
⇀ νEHn−1 ∂∗E, (3.22)

and for any open set U in Rn,

FA(E;U) ≤ lim inf
h→∞

FA(Eh;U). (3.23)

Proof. That E is of locally finite perimeter and

νEhHn−1 ∂∗Eh
∗
⇀ νEHn−1 ∂∗E follow from [29, Proposition 12.15]. Thus we

need only to prove the lower semicontinuity.
First assume that U is bounded. By taking a subsequence of {FA(Eh;U)}h∈N ,

we may assume up to relabeling that

lim
h→∞

FA(Eh;U) = lim inf
h→∞

FA(Eh;U) <∞. (3.24)

Note this subsequence depends on U but this is not an issue. Since
lim suph→∞ P (Eh;K) <∞ for every compact set K, there is a further subsequence

{Eh(k)}k∈N and a Radon measure Ψ such that Hn−1 ∂∗Eh(k)
∗
⇀ Ψ as k →∞ (see

[29, Remark 4.35]).
Let V ⊂⊂ U be open and fix ε > 0. Since A is uniformly continuous on U , there

exists 0 < r < dist(V , U c) such that for any x, y ∈ U , we have ||A(x) − A(y)|| < ε
whenever |x− y| < r. Thus by the inequality (2.11), for any x, y ∈ U ,

〈A(x)ξ, ξ〉1/2 ≤ 〈A(y)ξ, ξ〉1/2 +
1

2λ
ε (3.25)

whenever |x− y| < r and |ξ| = 1.
Since V is compactly contained in U and sptΦE = ∂E = ∂∗E, there exist finitely

many balls {B(xj , r)}Nj=1 each of radius r and center xj ∈ V ∩ ∂∗E which cover

V ∩ ∂E. Take a partition of unity {ϕj}Nj=1 with ϕj ∈ Cc(B(xj , r), [0, 1]) such that
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j=1 ϕj = 1 on V ∩ ∂∗E and

∑N
j=1 ϕj ≤ 1 elsewhere. It follows that

lim inf
h→∞

FA(Eh;U) = lim
k→∞

FA(Eh(k);U)

≥ lim
k→∞

N∑
j=1

ˆ
∂∗Eh(k)

ϕj〈A(x)νEh(k) , νEh(k)〉
1/2 dHn−1

≥ lim
k→∞

N∑
j=1

[ ˆ
∂∗Eh(k)

ϕj〈A(xj)νEh(k) , νEh(k)〉
1/2 dHn−1 − 1

2λ
ε

ˆ
∂∗Eh(k)

ϕj dHn−1

]

≥
N∑
j=1

lim inf
k→∞

[ ˆ
∂∗Eh(k)

ϕj〈A(xj)νEh(k) , νEh(k)〉
1/2 dHn−1 − 1

2λ
ε

ˆ
∂∗Eh(k)

ϕj dHn−1

]

≥
N∑
j=1

[ ˆ
∂∗E

ϕj〈A(xj)νE , νE〉1/2 dHn−1 − 1

2λ
ε lim sup

k→∞

ˆ
∂∗Eh(k)

ϕj dHn−1

]
, (3.26)

where in the last inequality, for each j = 1, . . . , N , we applied part (i) of Lemma 3.3
to ϕj and the measuresdΦk = 〈A(xj)νEh(k) , νEh(k)〉1/2 dHn−1 ∂∗Eh(k) and dΦ =

〈A(xj)νE , νE〉1/2 dHn−1 ∂∗E which by Lemma 3.2 satisfies the lower semicontinuity

hypothesis. By part (ii) of Lemma 3.3, applied to Hn−1 ∂∗Eh(k)
∗
⇀ Ψ,

lim sup
k→∞

ˆ
∂∗Eh(k)

ϕj dHn−1 ≤
ˆ

sptϕj

ϕj dΨ (3.27)

for each j = 1, . . . , N , and so

N∑
j=1

lim sup
k→∞

ˆ
∂∗Eh(k)

ϕj dHn−1 ≤
N∑
j=1

ˆ
sptϕj

ϕj dΨ ≤ Ψ(U) (3.28)

since
⋃N
j=1 sptϕj ⊂ U and

∑N
j=1 ϕj ≤ 1. It follows that

lim inf
h→∞

FA(Eh;U) ≥
[ N∑
j=1

ˆ
∂∗E

ϕj〈A(xj)νE , νE〉1/2 dHn−1

]
− 1

2λ
εΨ(U)

≥
N∑
j=1

[ ˆ
∂∗E

ϕj〈A(x)νE , νE〉1/2 dHn−1 − 1

2λ
ε

ˆ
∂∗E

ϕj dHn−1

]
− 1

2λ
εΨ(U)

≥ FA(E;V )− 1

2λ
ε
[
Hn−1(U ∩ ∂∗E) + Ψ(U)

]
(3.29)

since, as above,

N∑
j=1

ˆ
∂∗E

ϕj dHn−1 ≤
N∑
j=1

ˆ
sptϕj∩∂∗E

ϕj dHn−1 ≤ Hn−1(U ∩ ∂∗E) (3.30)

by
⋃N
j=1 sptϕj ⊂ U and

∑N
j=1 ϕj ≤ 1. Letting ε → 0+, we obtain FA(E;V ) ≤

lim infh FA(Eh;U). Approximating U by V from below and using monotone con-
vergence, we obtain FA(E;U) ≤ lim infh FA(Eh;U).

For the case when U is unbounded, we have

FA(E;V ) ≤ lim inf
h→∞

FA(Eh;V ) ≤ lim inf
h→∞

FA(Eh;U) (3.31)

for every bounded open set V ⊂ U . We conclude by approximating U from below
by bounded open sets V ⊂ U and using monotone convergence.
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3.3. Existence theorem of minimizers for FA. We now show the anisotropic
Plateau problem for FA given by (3.1) has a solution. We follow a similar approach
as [29, Theorem 12.29].

Theorem 3.4 (Existence of minimizers for FA). Let A = (aij(x))ni,j=1 be a uni-
formly elliptic, continuous function on Rn with values in Rn ⊗ Rn, let E0 be a set
of finite perimeter in Rn, and let U be an open bounded set. There exists a set of
finite perimeter E in Rn with E \ U = E0 \ U such that FA(E) = γA(E0, U) from
(3.1). In particular, E is a minimizer of FA in U .

Proof. Let {Eh}h∈N be a sequence of sets of finite perimeter in Rn with Eh \ U =
E0 \ U such that FA(Eh) → γA(E0;U) as h → ∞ and FA(Eh) ≤ FA(E0) < ∞.
Consider Mh = Eh∆E0 ⊂ U . Noting that by [29, Theorem 16.3], (in particular, by
[29, Exercise 16.5]),

P (Mh) ≤ P (Eh) + P (E0) ≤ 2λ−1/2FA(E0) <∞. (3.32)

Hence suph P (Mh) < ∞. Choose R > 0 with U ⊂ BR so that Mh ⊂ BR. By
Theorem 3.1, there is a set of finite perimeter M ⊂ BR and h(k) → ∞ as k → ∞
such that Mh(k) → M . Up to modifying by a set of measure zero M ⊂ U . Set
E = M∆E0. Then E \U = E0 \U and note that Eh = Mh∆E0. Hence Eh(k) → E
since |Eh(k)∆E| = |Mh(k)∆M | → 0 as k →∞. Finally, observe that

lim sup
k→∞

P (Eh(k)) ≤ λ−1/2 lim sup
k→∞

FA(Eh(k)) ≤ λ−1/2FA(E0) <∞. (3.33)

Consequently, by Proposition 3.1,

γA(E0;U) ≤ FA(E) ≤ lim inf
k→∞

FA(Eh(k)) = γA(E0;U). (3.34)

Thus FA(E) = γA(E0;U).
Suppose E∆F ⊂⊂ U ∩ B(x, r), x ∈ U , and r < r0. Then F \ U = E0 \ U

and so FA(E) ≤ FA(F ). Since E∆F ⊂⊂ B(x, r), we have FA(E;Rn \ B(x, r)) =
FA(F ;Rn \B(x, r)). Hence FA(E;B(x, r)) ≤ FA(F ;B(x, r)).

4. Basic properties of almost-minimizers. In this section we begin our jour-
ney toward proving regularity of almost-minimizers by proving some fundamen-
tal properties that almost-minimizers possess and which play a crucial role in our
excess-decay argument.

4.1. Invariance under an affine change variable. One of the key ideas that
allows us to adapt the standard excess-decay arguments for perimeter minimizers
to the setting is a certain change of variable.

If A is a constant matrix, then by symmetry we can orthogonally diagonalize A
and write A = V DV −1, where D is a diagonal matrix with the eigenvalues of A and
where V is the matrix of corresponding orthonormal eigenvectors. By ellipticity the
eigenvalues of A are bounded below and above by the positive constants λ and Λ.
Setting A1/2 = V D1/2V −1, we have A = A1/2A1/2. Note that A1/2 and A−1/2

are symmetric since V −1 = V t. In the coordinate system of V , the matrix A−1/2

is diagonal and so almost-minimizers of FA can be viewed as almost-minimizers
of perimeter when deformed by the change of variable y = T (x) = A−1/2x (see
Proposition 4.1 below). Of course this change of variable preserves any regularity of
almost-minimizers and we know by Tamanini’s work in [43] that almost-minimizers
of perimeter are Hölder continuously differentiable.
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If A = (aij(x))ni,j=1 varies Hölder continuously, then almost-minimizers of FA
cannot simply be viewed as almost-minimizers of perimeter since deformation varies
from point to point. However, philosophically it is reasonable to expect a similar
amount of regularity since the deformation varies Hölder continuously. In subse-
quent sections we will prove decay estimates for the excess at points x0 ∈ ∂E with
small excess on some ball or cylinder. In the proofs of these estimates it will be
convenient to be able to assume that A(x0) = I, allowing us to think of FA as a per-
turbation of perimeter at the point x0. In order to make this assumption, we shall
do the following change of variable which was similarly used in [8, 26] for almost-
minimizers of other types of functionals involving coefficients A = (aij(x))ni,j=1. As

in the constant case, for each fixed x0 ∈ Rn we can write A(x0) = V DV −1, where
D is a diagonal matrix with the eigenvalues of A(x0) and where V is the matrix of
corresponding orthonormal eigenvectors. Setting A1/2(x0) = V D1/2V −1, we have
that A1/2(x0) and A−1/2(x0) are symmetric since V −1 = V t and satisfy

λ1/2|ξ| ≤ |A1/2(x0)ξ| ≤ Λ1/2|ξ|, Λ−1/2|ξ| ≤ |A−1/2(x0)ξ| ≤ λ−1/2|ξ|. (4.1)

In particular, λ1/2 ≤ ||A1/2(x0)ξ|| ≤ Λ1/2 and Λ−1/2 ≤ ||A−1/2(x0)|| ≤ λ−1/2.
Define the affine change of variable Tx0

at x0 ∈ ∂E by

Tx0
(x) = A−1/2(x0)(x− x0) + x0, T−1

x0
(y) = A1/2(x0)(y − x0) + x0, (4.2)

and define

Ex0
= Tx0

(E), Ux0
= Tx0

(U), Ax0
(y) = A−1/2(x0)A(T−1

x0
(y))A−1/2(x0).

(4.3)

Note that Tx0
(x0) = x0, Ax0

(x0) = I, while Ax0
is symmetric, uniformly elliptic

with constants 0 < λ/Λ ≤ Λ/λ < +∞ and Hölder continuous with exponent α and
Hölder seminorm ||Ax0

||Cα ≤ (Λα/2/λ) ||A||Cα . The uniform ellipticity constants
follow from

(λ/Λ)|ξ|2 ≤ λ|A−1/2(x0)ξ|2 ≤ 〈A(T−1
x0

(y))A−1/2(x0)ξ, A−1/2(x0)ξ〉

≤ Λ|A−1/2(x0)ξ|2 ≤ (Λ/λ)|ξ|2 (4.4)

and the bound on the Hölder norm follows from estimate that for all x, y ∈ Rn there
holds

||Ax0
(x)−Ax0

(y)|| = ||A−1/2(x0)
[
A(T−1

x0
(x))−A(T−1

x0
(y))

]
A−1/2(x0))||

≤ λ−1/2||A(T−1
x0

(x))−A(T−1
x0

(y))||λ−1/2

≤ λ−1||A||Cα |T−1
x0

(x)− T−1
x0

(y)|α

≤ λ−1||A||CαΛα/2|x− y|α. (4.5)

Thus constants for Ax0
depend on the same universal constants as A.

The ellipsoid at x0 ∈ Rn of radius r > 0 is defined by

W x0(x0, r) = T−1
x0

(B(x0, r)). (4.6)

We use W x0 for our notation as this is the Wulff shape, introduced in [46], for the
integrand f(x0, ξ) = 〈A(x0)ξ, ξ)1/2. The ellipsoid W x0

(x0, r) has axial directions
corresponding to the eigenvectors of A1/2(x0) and axial lengths corresponding to the
eigenvalues scaled by a factor of r. Since the eigenvalues of A1/2(x0) are bounded
between λ1/2 and Λ1/2, we have

B(x0, λ
1/2r) ⊂W x0(x0, r) ⊂ B(x0,Λ

1/2r). (4.7)
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We now prove the invariance of almost-minimizers under the change of variable
Tx0 and refer readers to the change of variable formula given in Proposition A.1 in
Appendix A.

Proposition 4.1 (Invariance of almost-minimizers under the change of variable
Tx0). If E is a (κ, α)-almost-minimizer of FA in U at scale r0, then Ex0 is a
(Λ(α+n−1)/2λ−n/2κ, α)-almost-minimizer of FAx0 in Ux0

at scale r0/Λ
1/2.

Proof. Suppose Ex0
∆Fx0

⊂⊂ B(z, r)∩Ux0
for some z ∈ Ux0

and r < r0/Λ
1/2 (here

we write Fx0
as an arbitrary competitor for Ex0

whose image F under T−1
x0

will
be a competitor for E). Applying Proposition A.1 with y = Tx0

(x), noting that
Jf = JTx0

= detA−1/2(x0) and (∇g ◦ f)t = A1/2(x0) since A1/2(x0) is symmetric,
we have

FAx0 (Ex0
;B(z, r)) =

ˆ
B(z,r)∩∂∗Ex0

〈Ax0
(y)νEx0 , νEx0 〉

1/2 dHn−1(y) =

ˆ
T−1
x0

(B(z,r))∩∂∗E
〈Ax0

(Tx0
(x))A1/2(x0)νE , A

1/2(x0)νE〉1/2 detA−1/2(x0) dHn−1(x)

=ˆ
T−1
x0

(B(z,r))∩∂∗E
〈A1/2(x0)Ax0(Tx0(x))A1/2(x0)νE , νE〉1/2 detA−1/2(x0) dHn−1(x).

(4.8)

Note that Ax0
(Tx0

(x)) = A−1/2(x0)A(x)A−1/2(x0) and so
A1/2(x0)Ax0(Tx0(x))A1/2(x0) = A(x). Hence

FAx0 (Ex0 ;B(z, r)) = detA−1/2(x0)FA(E;T−1
x0

(B(z, r))). (4.9)

Likewise, FAx0 (Fx0 ;B(z, r)) = detA−1/2(x0)FA(F ;T−1
x0

(B(z, r))). Note that

E∆F ⊂⊂ T−1
x0

(B(z, r)) ∩ U ⊂ B(T−1
x0

(z),Λ1/2r) ∩ U, T−1
x0

(z) ∈ U,

and Λ1/2r < r0. (4.10)

Thus FA(E;B(T−1
x0

(z),Λ1/2r)) ≤ FA(E;B(T−1
x0

(z),Λ1/2r)) + Λ(α+n−1)/2κ rα+n−1

by the minimality condition. This simplifies to
FA(E;T−1

x0
(B(z, r)) ≤ FA(E;T−1

x0
(B(z, r)) + Λ(α+n−1)/2κ rα+n−1. It then follows

that

FAx0 (Ex0 ;B(z, r)) = detA−1/2(x0)FA(E;T−1
x0

(B(z, r)))

≤ detA−1/2(x0)FA(F ;T−1
x0

(B(z, r))) + detA−1/2(x0)Λ(α+n−1)/2κ rα+n−1

≤ FAx0 (Fx0
;B(z, r)) + Λ(α+n−1)/2λ−n/2κ rα+n−1 (4.11)

as desired.

Hence any of the properties or estimates we prove for (κ, α)-almost-minimizers
also hold for the set Ex0 (with any bounds or estimates having modified constants
but which depend only on the same universal constants). Working with Ex0

will
allow us to assume A(x0) = I in the proof of many of our estimates and will in
turn allow us to prove additional properties and estimates for general (κ, α)-almost-
minimizers.

As previously mentioned, whenever we write C we mean a constant (which may
change from line to line) that depends only on the universal constants n, λ,Λ, κ, α, r0,
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and upper bounds for ||A||Cα , but does not depend on the set E or the point x0.
In cases where we wish to emphasize that a constant depends on fewer constants
such as, for example, on the dimension n only, we write C(n).

4.2. Scaling of the energy FA. In Section 7 we will use the scaling of the energy
FA to simplify and work at scale 1 instead of of scale r and in Section 10 we will
utilize blow-up analysis to study the singular set almost-minimizers. The blow-ups
Ex0,r of a set E at a point x0 ∈ Rn and scale r > 0 are defined by

Ex0,r =
E − x0

r
= Φx0,r(E) (4.12)

where Φx0,r : Rn → Rn is the map defined by

Φx0,r(x) =
x− x0

r
. (4.13)

We denote the inverse of Φx0,r by Ψx0,r, that is, Ψx0,r(y) = ry + x0. Given a
matrix-valued function A = (aij(x))ni,j=1, we denote by Ax0,r the matrix-valued
function

Ax0,r(y) = A(ry + x0) = A ◦Ψx0,r(y) (4.14)

(this is not to be confused with Ax0 from the previous subsection). Note that
||Ax0,r||Cα = rα||A||Cα .

Proposition 4.2 (Scaling of FA). If E is a set of locally finite perimeter in Rn,
x0 ∈ Rn, r > 0, then

FAx0,r (Ex,r;Fx0,r) =
FA(E;F )

rn−1
. (4.15)

for Borel sets F . In particular, if E is a (κ, α)-almost-minimizer of FA in U at
scale r0, then Ex0,r is a (κrα, α)-almost-minimizer of FAx0,r in Ux0,r at scale r0/r.

Proof. We apply Proposition A.1 with the change of variable y = f(x) = Φx0,r(x) =

(x−x0)/r and integrand (x, ξ) 7→ 〈Ax0,r(x)ξ, ξ〉1/2. Then g(y) = Ψx0,r(y) = ry+x0,
∇g = rI, and Jf = r−n. So |(∇g ◦ f)tνE | = r and it follows that

FAx0,r (Ex0,r;Fx0,r) =

ˆ
Fx0,r∩∂∗Ex0,r

〈A(ry + x0)νEx0,r , νEx0,r 〉
1/2 dHn−1(y)

=

ˆ
F∩∂∗E

〈A(x)νE , νE〉1/2 r−nr dHn−1(x)

=
FA(E;F )

rn−1
(4.16)

Now, let F be a set of locally finite perimeter in Rn with Ex0,r∆Fx0,r ⊂⊂ B(x, s)∩
Ux0,r for x ∈ Ux0,r and s < r0/r. Then E∆F ⊂⊂ Ψx0,r(B(x, s)) ∩ U . Note
Ψx0,r(B(x, s)) = B(rx+ x0, rs) with rx+ x0 ∈ U and rs < r0. Applying (4.16) to
B(x, s) and using the almost-minimality of E in U at scale r0, we have

FAx0,r (Ex0,r;B(x, s)) =
FA(E;B(rx+ x0, rs))

rn−1

≤ FA(F ;B(rx+ x0, rs)) + κ(rs)α+n−1

rn−1

= FAx0,r (Fx0,r;B(x, s)) + κrαsα+n−1, (4.17)

that is, Ex0,r is an (κrα, α)-almost-minimizer of FAx0,r in Ux0,r at scale r0/r > 0.
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4.3. Comparison sets. To utilize the almost-minimality condition we will often
construct competitors by modifying E inside an open set. The following proposition
allows us to do this.

Proposition 4.3 (Comparison sets by replacements). If E and F are sets of locally
finite perimeter in Rn and G is an open set of finite perimeter in Rn such that

Hn−1(∂∗G ∩ ∂∗E) = Hn−1(∂∗G ∩ ∂∗F ) = 0, (4.18)

then the set defined by

F0 =
(
F ∩G

)
∪
(
E \G

)
(4.19)

is a set of locally finite perimeter in Rn. Moreover, if G ⊂⊂ U and U is open, then

FA(F0;U) = FA(F ;G) + FA(E;U \G) + FA(G;E(1)∆F (1)). (4.20)

Proof. In the proof of [29, Theorem 16.16] the decomposition, see (16.35),

µF0
= µF G+ µG(F (1) ∩ E(0)) + µE (Rn \G)− µG (E(1) ∩ F (0)) (4.21)

is proved. Since all of the measures on the right-hand side are concentrated on
disjoint sets and since the measures FA(Gc; · ) and FA(G; · ) are equal and µGc =
−µG, we have

FA(F0;U) = FA(F ;G) + FA(E;U \G) + FA(G; (F (1) ∩ E(0)) ∪ (E(1) ∩ F (0)))
(4.22)

by additivity of FA. ByHn−1(∂∗G∩∂∗E) = 0 andHn−1(Rn\(E(0)∪E(1)∪∂∗E)) = 0,

FA(G;F (1) ∩ E(0)) = FA(G;F (1) \ E(1)). (4.23)

Likewise, Hn−1(∂∗G ∩ ∂∗F ) = 0 and Hn−1(Rn \ (F (0) ∪ F (1) ∪ ∂∗F )) = 0 and so

FA(G;E(1) ∩ F (0)) = FA(G;E(1) \ F (1)). (4.24)

These along with (4.22) prove (4.20).

4.4. Volume/perimeter bounds and the almost-monotonicity formula. One
important property which almost-minimizers of FA possess is bounds on both the
volume and the perimeter of E on balls centered at points in their topological
boundary. Recall that we require sptµE = ∂E for almost-minimizers. The full set
of estimates is given in Proposition 4.5 but we have some work to do to prove this.
The first step is showing the upper bound on perimeter.

Define the perimeter density ratio of E at x0 by

θ(E, x0, r) =
P (E;B(x0, r))

rn−1
. (4.25)

and perimeter density of E at x0 by

θ(E, x0) = lim
r→0+

θ(E, x0, r) (4.26)

whenever the limit exists.

Lemma 4.1 (Upper perimeter bound). There exists a positive constant C =
C(n, λ,Λ, κ, α, r0) with the following property. If E is a (κ, α)-almost-minimizer of
FA in U at scale r0, then for every x0 ∈ U∩∂E with r < d = min{dist(x0, ∂U), r0} <
∞,

P (E;B(x0, r))

rn−1
≤ C. (4.27)
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Proof. Consider the function m : (0, d)→ R defined by m(r) = |E∩B(x0, r)|. Note
that m is increasing, m′(r) = Hn−1(E(1) ∩ ∂B(x0, r)) for a.e. r by the coarea
formula, and Hn−1(∂∗E ∩ ∂B(x0, r)) = 0 for a.e. r because Hn−1 ∂∗E is a
Radon measure. Let r ∈ (0, d) be one of the a.e. radii that satisfies both m′(r) =
Hn−1(E(1)∩∂B(x0, r)) and Hn−1(∂∗E∩∂B(x0, r)) = 0. For s ∈ (r, d) consider the
comparison set F = E \B(x0, r) in B(x0, s). Then E∆F ⊂ B(x0, r) ⊂⊂ B(x0, s).
It follows from comparability to perimeter and the almost-minimality that

λ1/2P (E;B(x0, s)) ≤ FA(E;B(x0, s))

≤ FA(E \B(x0, r);B(x0, s)) + κsα+n−1

≤ Λ1/2P (E \B(x0, r);B(x0, s)) + κsα+n−1 (4.28)

and so

P (E;B(x0, s)) ≤ C
(
P (E \B(x0, r);B(x0, s)) + sα+n−1

)
= C

(
Hn−1(E(1) ∩ ∂B(x0, r)) + P (E;B(x0, s) \B(x0, r)) + sα+n−1

)
(4.29)

since Hn−1(∂∗E ∩ ∂B(x0, r)) = 0. Sending s→ r+ yields the inequality

P (E;B(x0, r)) ≤ C
(
Hn−1(E(1) ∩ ∂B(x0, r)) + rα+n−1

)
. (4.30)

This, together with Hn−1(E(1) ∩ ∂B(x0, r)) ≤ nωnrn−1 and r < r0, gives
P (E;B(x0, r)) ≤ Crn−1.

To obtain the lower perimeter bound for almost-minimizers of FA, we shall adapt
an argument given by Tamanini for almost-minimizers of perimeter in [42, 43] which
makes use of an almost-monotonicity formula. Monotonicity formulas are often
times a valuable tool in regularity theory. For example, the monotonicity of density
ratios for minimizers of surface area is heavily relied upon in [1, 44] as well as in
many other papers. By this we mean the fact that if E is a perimeter minimizer in
U , x0 ∈ U , then the density ratio

θ(E;x0, r) =
P (E;B(x0, r))

rn−1
. (4.31)

is monotonically increasing in r (see, for example, [29, Theorem 17.16]). In [2],
Allard demonstrated for integrands depending solely on the direction variable νE
(and not on the spatial variable x) that monotonicity formulas exist if and only if the
integrand is a linear change of variable from the area integrand. Under the change
of variable Tx0

we have A(x0) = I so that our sets satisfy the condition for almost-
minimality of perimeter when making comparisons on balls centered at x0 as shown
in Lemma 4.2 below. A key observation is that we only need these comparisons
to apply the standard cone-competitor argument to obtain an almost-monotonicity
formula as we do in Lemma 4.3.

Lemma 4.2. There exists a positive constant C = C(n, λ,Λ, κ, α, r0) with the fol-
lowing property. If E is a (κ, α)-almost-minimizer of FA in U at scale r0 > 0,
x0 ∈ U ∩ ∂E, and A(x0) = I, then

P (E;B(x0, r)) ≤ P (F ;B(x0, r)) + C(κ+ ||A||Cα)rα+n−1 (4.32)

whenever E∆F ⊂⊂ B(x0, r) and r < d = min{r0, dist(x0, ∂U)}.

Proof. Let E∆F ⊂⊂ B(x0, r) ⊂ U and r < r0. If P (E;B(x0, r)) ≤ P (F ;B(x0, r)),
then (4.32) trivially holds true. So consider the case when P (F ;B(x0, r)) ≤
P (E;B(x0, r)).
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By inequality (2.11) and A(x0) = I, we have

|νE | ≤ 〈A(x)νE , νE〉1/2 +
1

2λ
||A(x0)−A(x)||

≤ 〈A(x)νE , νE〉1/2 +
1

2λ
||A||Cα |x− x0|α (4.33)

and so |νE | ≤ 〈A(x)νE , νE〉1/2 + (1/2λ)||A||Cαrα for x ∈ B(x0, r). Integrating with
respect to Hn−1 ∂∗E gives

P (E;B(x0, r)) ≤ FA(E;B(x0, r)) +
1

2λ
||A||CαrαP (E;B(x0, r)) (4.34)

Similarly, 〈A(x)νF , νF 〉1/2 ≤ |νF |+ (1/2λ)||A||Cαrα for x ∈ B(x0, r) and so

FA(F ;B(x0, r)) ≤ P (F ;B(x0, r)) +
1

2λ
||A||CαrαP (F ;B(x0, r)) (4.35)

Combining the almost-minimizer inequality with (4.34), (4.35), and
P (F ;B(x0, r)) ≤ P (E;B(x0, r)) gives

P (E;B(x0, r)) ≤ P (F ;B(x0, r)) + κrα+n−1 + (1/2λ)||A||CαrαP (E;B(x0, r)).
(4.36)

The upper perimeter bound P (E;B(x0, r)) ≤ Crn−1 gives

P (E;B(x0, r)) ≤ P (F ;B(x0, r)) + C(κ+ ||A||Cα)rα+n−1 (4.37)

as desired.

Lemma 4.3. There exists a positive constant C = C(n, λ,Λ, κ, α, r0, ||A||Cα) such
that the following holds. If E is a (κ, α)-almost-minimizer of FA in U at scale
r0 > 0 with x0 ∈ U ∩ ∂E and A(x0) = I, then the function

r 7→ P (E;B(x0, r))

rn−1
+ Crα (4.38)

is monotonically increasing on (0, d) where d = min{r0, dist(x0, ∂U)} > 0.

Proof. Without loss of generality assume x0 = 0 and write Br = B(x0, r). Define
the function Φ: (0, d) → (0,∞) by Φ(r) = P (E;Br). Φ is increasing and hence
differentiable for a.e. r ∈ (0, d). Thus it suffices to prove

d

dr

(Φ(r)

rn−1
+ Crα

)
≥ 0 for a.e. r ∈ (0, d), (4.39)

which can be rewritten as

Φ(r) ≤ r

n− 1
Φ′(r) + Crα+n−1 for a.e. r ∈ (0, d). (4.40)

The idea of the proof of (4.40) is to construct cone competitors over E ∩ ∂Br

with vertex at 0 for each r > 0 to use in the comparison inequality (4.32). To do this
we will need to approximate E by open sets with smooth boundary and construct
the cone competitors for the approximating sets.

By [29, Theorem 13.8], there is a sequence {Eh}h∈N of open sets with smooth

boundary in Rn such that Eh
loc→ E and |µEh |

∗
⇀ |µE |. For now hold h ∈ N fixed.

The set Eh ∩ ∂Br is relatively open in ∂Br for every r > 0. By Sard’s lemma,

∂Eh ∩ ∂Br is a smooth (n− 2)-dimensional surface for a.e. r > 0. (4.41)

Consider the cones with vertex 0 over Eh ∩ ∂Br,

Kh(r) =
{
λx ∈ Rn : λ > 0, x ∈ Eh ∩ ∂Br

}
. (4.42)
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For the a.e. r > 0 such that (4.41) holds we have that Kh(r) is a set of locally finite
perimeter in Rn with

µKh(r) = νKh(r)Hn−1 ∂Kh(r), and νKh(r)(x) · x = 0, ∀x ∈ Kh(r) \ {0}. (4.43)

For r > 0 such that (4.41) holds, the coarea formula for (n− 1)-dimensional recti-
fiable sets (see [29, Theorem 18.8]) on ∂Kh(r) with u(x) = |x| yields

P (Kh(r);Br) =

ˆ r

0

Hn−2(∂Kh(r) ∩ ∂B t) dt (4.44)

since |∇∂Kh(r)u| = |∇u| = 1. Note that for t < r we have

∂Kh(r) ∩ ∂B t =
( t
r

)(
∂Kh(r) ∩ ∂Br

)
=
( t
r

)(
∂Eh ∩ ∂Br

)
(4.45)

and hence for r such that (4.41) holds we have

P (Kh(r);Br) =

ˆ r

0

(
t

r

)n−2

Hn−2(∂Eh ∩ ∂Br) dt =
r

n− 1
Hn−2(∂Eh ∩ ∂Br)

(4.46)

Consider a radius r > 0 such that for all h ∈ N both (4.41) and
Hn−1(∂∗E ∩ ∂Br) = Hn−1(∂Eh ∩ ∂Br) = 0 hold (and consequently (4.46) as well).
This true for a.e. r ∈ (0, d) since Hn−1 ∂∗E and Hn−1 ∂Eh are Radon measures
and by Sard’s lemma. Consider the comparison sets Fh = (Kh(r)∩Br)∪ (E \Br).
Let s be such that r < s < d. By (16.32) of [29] we have

P (Fh;Bs) = P (Kh(r);Br) + P (E;Bs \Br) +Hn−1
((
E(1)∆Kh(r)) ∩ ∂Br

)
.

(4.47)

Since E∆Fh ⊂ Br ⊂⊂ Bs, applying Lemma 4.2 gives

P (E;Bs) ≤P (Kh(r);Br) + P (E;Bs \Br)

+Hn−1
((
E(1)∆Kh(r)) ∩ ∂Br

)
+ Csα+n−1 (4.48)

which by subtracting P (E;Bs \Br) from each side together with (4.46) simplifies
to

P (E;Br) ≤
r

n− 1
Hn−2(∂Eh ∩ ∂Br) +Hn−1

((
E(1)∆Eh) ∩ ∂Br

)
+ Csα+n−1.

(4.49)

Sending s→ r+ gives

P (E;Br) ≤
r

n− 1
Hn−2(∂Eh ∩ ∂Br) +Hn−1

((
E(1)∆Eh) ∩ ∂Br

)
+ Crα+n−1.

(4.50)

This inequality holds for a.e. r ∈ (0, d) and integrating over the interval (s, t) ⊂
(0, d) yieldsˆ t

s

P (E;Br) dr ≤
1

n− 1

ˆ t

s

rHn−2(∂Eh ∩ ∂Br) dr

+Hn−1
((
E(1)∆Eh) ∩Bd

)
+ C(tα+n − sα+n). (4.51)

Applying the coarea formula for (n− 1)-dimensional rectifiable sets ([29, Theorem
18.8]) on ∂Eh with u(x) = |x|, and g = |x|, givesˆ t

s

rHn−2(∂Eh ∩ ∂Br) dr =

ˆ
∂Eh∩(Bt\Bs)

|x||∇∂Ehu| ≤ t P (Eh;B t \Bs) (4.52)
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since |∇∂Ehu| ≤ |∇u| = 1. Thus combining (4.51) and (4.52) gives
ˆ t

s

P (E;Br) dr ≤
t

n− 1
P (Eh;B t \Bs) +Hn−1

((
E(1)∆Eh) ∩Bd

)
+ C(tα+n − sα+n). (4.53)

By Eh
loc→ E and |µEh |

∗
⇀ |µE |, sending h→∞ gives

ˆ t

s

P (E;Br) dr ≤
t

n− 1
P (E;B t \Bs) + C(tα+n − sα+n). (4.54)

Dividing by t− s and sending t→ s+ at points of differentiability of Φ yields (4.40)
as desired.

Now we are able to use a perturbation argument and the change of variable Tx0

to obtain an almost-monotonicity formula when A(x0) is not assumed to equal I.

Theorem 4.4 (Almost-monotonicity formula). There exists a positive constant
C = C(n, λ,Λ, κ, α, r0, ||A||Cα) with the following property. If E is a (κ, α)-almost-
minimizer of FA in U at scale r0, then for every x0 ∈ U ∩ ∂E, we have

FA(E;Wx0(x0, s))

sn−1
≤ FA(E;Wx0

(x0, r))

rn−1
+ Crα (4.55)

whenever 0 < s ≤ r < d where d = Λ−1/2 min{r0, dist(x0, ∂U)}.

Proof. Applying Lemma 4.3 to Ex0
and FAx0 gives that

r 7→ r−(n−1)P (Ex0
;B(x0, r)) +Crα is monotone increasing on (0, dx0

) where dx0
=

min{Λ−1/2r0, dist(x0, ∂Ux0)}. The change of variable y = Tx0(x) applied to E gives
P (Ex0

;B(x0, r)) = detA−1/2(x0)FA(x0)(E;W x0
(x0, r)). This and the bound

(detA−1/2(x0))−1 ≤ Λn/2 imply that

r 7→
FA(x0)(E;W x0(x0, r))

rn−1
+ Crα (4.56)

is monotone increasing on (0, dx0
). Note U = T−1

x0
(Ux0

) and Lip T−1
x0

= ||A1/2(x0)||
≤ Λ1/2. Given x ∈ ∂U , setting y = Tx0(x) ∈ ∂Ux0 , it follows that

|x− x0| = |T−1
x0

(y)− T−1
x0
| ≤ Lip T−1

x0
|y − x0| ≤ Λ1/2dist(x0, ∂Ux0). (4.57)

Hence dist(x0, ∂U) ≤ Λ1/2dist(x0, ∂Ux0
) and so d = Λ−1/2 min{r0, dist(x0, ∂U} ≤

dx0 . Thus (4.56) is monotone increasing on (0, d). By (2.11) we have

〈A(x)νE , νE〉1/2 ≤ 〈A(x0)νE , νE〉1/2 + 〈(A(x)−A(x0))νE , νE〉1/2

≤ 〈A(x0)νE , νE〉1/2 +
1

2λ
||A||Cα |x− x0|α (4.58)

and so 〈A(x)νE , νE〉1/2 ≤ 〈A(x0)νE , νE〉1/2 + C||A||Cαsα for x ∈ W x0
(x0, s) by

(4.7). It follows that

FA(E;W x0
(x0, s))

sn−1
≤

FA(x0)(E;W x0(x0, s))

sn−1
+ Csα

P (E;W x0
(x0, s))

sn−1

≤
FA(x0)(E;W x0

(x0, s))

sn−1
+ Csα (4.59)
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where we used that P (E;W x0(x0, s)) ≤ P (E;B(x0,Λ
1/2s)) ≤ Csn−1 by the upper

perimeter bound (4.27). Similarly, we have

FA(x0)(E;W x0
(x0, r))

rn−1
≤ FA(E;W x0

(x0, r))

rn−1
+ Crα (4.60)

Combining this last inequality and (4.59) with (4.56) and s ≤ r yields

FA(E;W x0(x0, s))

sn−1
≤ FA(E;W x0(x0, r))

rn−1
+ Crα (4.61)

as desired.

For x0 ∈ ∂E, define the FA-density ratio of E at x0 by

θA(E, x0, r) =
FA(E;W x0

(x0, r))

rn−1
. (4.62)

and the FA-density of E at x0 by

θA(E, x0) = lim
r→0+

θA(E, x0, r) (4.63)

when the limit exists.

Corollary 1 (Existence of densities). If E is a (κ, α)-almost-minimizer of FA in
U at scale r0, then for every x0 ∈ U ∩ ∂E the density

θA(E, x0) = lim
r→0+

θA(E, x0, r) (4.64)

exists.

Proof. For every 0 < s ≤ r < d we have by almost-monotonicity that θA(E, x0, s) ≤
θA(E, x0, r) +Crα. Taking the lim sup as s→ 0+ followed by the lim inf as r → 0+

yields

lim sup
s→0+

θA(E, x0, s) ≤ lim inf
r→0+

θA(E, x0, r) + lim sup
r→0+

Crα = lim inf
r→0+

θA(E, x0, r)

(4.65)

Hence θA(E, x0) = limr→0+ θA(E, x0, r) exists.

Using the almost-monotonicity formula, we are now able to control the perimeter
density ratios from below.

Proposition 4.4. There exists a positive constant C = C(n, λ,Λ, κ, α, r0, ||A||Cα)
with the following property. If E is a (κ, α)-almost-minimizer of FA in U at scale
r0, then for every x0 ∈ U ∩ ∂E, we have

ωn−1(λ/Λ)n/2 − Crα ≤ P (E;B(x0, r))

rn−1
(4.66)

for r < min{r0, dist(x0, ∂U)}.

Proof. Let r < min{r0, dist(x0, ∂U)}. First consider the case x0 ∈ ∂∗E. The limit
of perimeter density rations at a point in the reduced boundary converge to ωn−1

as r → 0+ [29, Corollary 15.8]. Note that Λ−1/2r < Λ−1/2 min{r0, dist(x0, ∂U)}
and so for s < r we can apply Theorem 4.4 with Λ−1/2s ≤ Λ−1/2r to obtain

FA(E;W x0(x0,Λ
−1/2s))

(Λ−1/2s)n−1
≤ FA(E;W x0(x0,Λ

−1/2r))

(Λ−1/2r)n−1
+ Crα (4.67)
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By comparability to perimeter and (4.7), we have

ωn−1 = lim
s→0+

P (E;B(x0, (λ/Λ)1/2s))

((λ/Λ)1/2s)n−1
≤ lim
s→0+

1

λn/2
FA(E;W x0

(x0,Λ
−1/2s))

(Λ−1/2s)n−1

≤ 1

λn/2
FA(E;W x0(x0,Λ

−1/2r))

(Λ−1/2r)n−1
+ Crα ≤ Λ(n−1)/2

λn/2
FA(E;B(x0, r))

rn−1
+ Crα

≤
(Λ

λ

)n/2P (E;B(x0, r))

rn−1
+ Crα. (4.68)

Hence (4.66) holds for x0 ∈ ∂∗E.
Now consider the general case x0 ∈ ∂E (but perhaps not in ∂∗E). Given 0 <

s < r, there is y0 ∈ ∂∗E with B(y0, s) ⊂ B(x0, r) by sptµE = ∂E = ∂∗E. It follows
that (s

r

)n−1P (E;B(y0, s))

sn−1
≤ P (E;B(x0, r))

rn−1
(4.69)

and so applying (4.66) at y0 ∈ ∂∗E gives(s
r

)n−1(
ωn−1(λ/Λ)n/2 − Csα

)
≤ P (E;B(x0, r))

rn−1
. (4.70)

Sending s→ r− completes the proof.

Let us recall a definition. For a set of locally finite perimeter of E, the essential
boundary of E, denoted by ∂eE, is the set of points with neither full nor zero
volume density, that is,

∂eE = Rn \ (E(0) ∪ E(1)). (4.71)

Here E(t) denotes the points of volume density t, that is,

E(t) =
{
x ∈ Rn : lim

r→0+

|E ∩B(x, r)|
ωnrn

= t
}
. (4.72)

In general, we always have ∂eE ⊂ ∂E. Federer’s theorem states that
Hn−1(∂eE \ ∂∗E) = 0 for sets of locally finite perimeter in Rn.

A consequence of the volume density bounds (4.73) in the following proposition is
that the topological boundary of an almost-minimizer E cannot contain any points
of zero or full volume density, that is, the essential boundary ∂eE in U equals the
topological boundary ∂E in U . This fact precludes the existence of sharp cusps
in the topological boundary of E as well as prevents two sheets of the topological
boundary from touching tangentially. The perimeter bounds (4.74) show that the
perimeter measure for E is (n− 1)-Ahlfors regular up to scale r0.

Proposition 4.5 (Volume and perimeter bounds for almost-minimizers). There
exist positive constants c = c(n, λ,Λ) ∈ (0, 1), C = C(n, λ,Λ, κ, α, r0), and ε =
ε(n, λ,Λ, κ, α, r0, ||A||Cα) with the following property. with the following property.
If E is a (κ, α)-almost-minimizer of FA in U at scale r0, then for every x0 ∈ U ∩∂E
with r < d = min{r0, dist(x0, ∂U), ε} <∞,

c ≤ |E ∩B(x0, r)|
ωnrn

≤ 1− c, (4.73)

and

c ≤ P (E;B(x0, r))

rn−1
≤ C (4.74)
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Moreover, the volume density bounds (4.73) imply ∂E ∩ U = ∂eE ∩ U and so
Federer’s theorem gives

Hn−1(U ∩ (∂E \ ∂∗E)) = 0. (4.75)

Proof. The upper bound of (4.74) was proved in Lemma 4.1. For the lower bound
of (4.74) take ε > 0 small enough so that Cεα ≤ (1/2)ωn−1(λ/Λ)n/2 where C is the
constant in Proposition 4.4.

Recall from the proof of Lemma 4.1 that for m(r) = |E ∩ B(x0, r)| we have
m′(r) = Hn−1(E(1) ∩B(x0, r)) for a.e. r < d. Then the inequality (4.30) becomes

P (E;B(x0, r)) ≤ C(m′(r) + rα+n−1). (4.76)

So by the lower bound of (4.74) we have

crn−1 ≤ Cm′(r) + Crα+n−1. (4.77)

Taking ε small enough so that Cεα ≤ c/2 and relabeling c/2 to c gives crn−1 ≤
m′(r) for a.e. r < d. Integrating on (0, r) and modifying constants gives cωnr

n ≤
m(r) = |E ∩ B(x0, r)| which is the lower bound of (4.73). Since Ec is also a
(κ, α)-almost-minimizer of FA, we can apply this lower bound of (4.73) to get
cωnr

n ≤ |Ec ∩B(x0, r)| which gives the upper bound of (4.73).
Federer’s theorem [29, Theorem 16.2] states Hn−1(∂eE \ ∂∗E) = 0. The volume

density bounds (4.73) imply ∂E ∩U = ∂eE ∩U and hence Hn−1(U ∩ (∂E \∂∗E)) =
0.

Hence, given any (κ, α)-almost-minimizer E of FA in U at scale r0, we can shrink
r0 by a fixed amount, depending only on the universal constants n, λ,Λ, κ, α, and
an upper bound for ||A||Cα , so that at points x0 ∈ U∩∂E the volume and perimeter
bounds hold for all r < min{r0, dist(x0, ∂U)}. Throughout the rest of this paper,
we will work at this smaller scale and use the volume and perimeter bounds.

4.5. Compactness for the class of FA-energies. In addition to having fixed
n, λ, Λ, α, fix a positive constants M1 and M2. Define the class of admissible
matrix-valued functions A to be the set{
A ∈ Cα(Rn;Rn ⊗ Rn) :

A is symmetric, ||A||Cα ≤M1, ||A(x)|| ≤M2, and
λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for all x, ξ ∈ Rn

}
.

(4.78)

Lemma 4.5. A is compact in the topology of uniform convergence on compact sets
as a subspace of C(Rn;Rn ⊗ Rn).

Proof. Let {Ah}h∈N be a sequence in A. We apply Arzelà-Ascoli to {Ah}h∈N noting
that pointwise-boundedness follows from ||Ah(x)|| ≤M2 and equicontinuity follows
from ||Ah||Cα ≤M1. Hence there is a subsequence {Ah(k)}k∈N and A ∈ C(Rn;Rn⊗
Rn) such that Ah(k) → A uniformly on compact sets. It follows that A is symmetric
and ||A(x)|| ≤ limk→∞ ||Ah(k)(x)|| ≤M2 for any x ∈ Rn. For any x, y, ξ ∈ Rn,

||A(x)−A(y)|| ≤ ||A(x)−Ah(k)(x)||+M1|x− y|α + ||Ah(k)(y)−A(y)||,
λ|ξ|2 ≤ 〈A(x)ξ, ξ〉+ 〈(Ah(k)(x)−A(x))ξ, ξ〉 ≤ Λ|ξ|2. (4.79)

Sending h(k)→∞, gives ||A||Cα ≤M1 and λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2. Thus A ∈ A

and so A is compact.
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Fix an open set U and κ ≥ 0. Define the class M of almost-minimizers of FA in
U for A ∈ A by

M =
{
E ⊂ Rn : E is a (κ, α)-almost-min. of FA in U at scale r0

for some A ∈ A and r0 > 0
}
. (4.80)

We will show that M is compact by separately proving precompactness and closed-
ness.

Proposition 4.6 (Precompactness of M). Suppose that {Eh}h∈N ⊂M (that is, Eh
is a (κ, α)-almost-minimizer of FAh in U at scale rh for some Ah ∈ A and rh > 0),
and that r0 = lim infh→∞ rh > 0. For any open V ⊂⊂ U with P (V ) < ∞, there
exist h(k)→∞ as k →∞, a set of finite perimeter E ⊂ V , and A ∈ A such that

V ∩ Eh(k) → E, µV ∩Eh(k)
∗
⇀ µE ,

Ah(k) → A uniformly on compact sets. (4.81)

Proof. First we choose h(k) → ∞ as k → ∞ such that limk→∞ rh(k) = r0. Let
x ∈ V and B(x, 4r) ⊂ U with 2r < r0. Let k0 be such that 2r < rh(k) for k ≥ k0.
If P (Eh(k);B(x, r)) > 0, there is y ∈ B(x, r) ∩ ∂Eh(k) and so P (Eh(k);B(x, r)) ≤
P (Eh(k);B(y, 2r)) ≤ C(2r)n−1 by upper density bound (4.74) since B(y, 2r) ⊂
B(x, 4r) ⊂ U . By [29, (16.10)], we have for k ≥ k0 that

P (Eh(k) ∩B(x, r)) ≤ P (Eh(k);B(x, r)) + P (B(x, r)) ≤ Crn−1
0 <∞. (4.82)

and so supk P (Eh(k) ∩ B(x, r)) < ∞. Since V is open and compactly contained

in U , the balls with centers in V that are contained in U form a covering for V .
Hence we may cover V by finitely many balls {B j}Nj=1 where B j = B(xj , sj) satisfy
B(xj , 4sj) ⊂ U with xj ∈ V and 2sj < r0 for 1 ≤ j ≤ N . Choose R > 0 so that⋃N
j=1 B j ⊂ BR. Then

P
(
Eh(k) ∩

( N⋃
j=1

B j

))
≤ P

(
Eh(k);

N⋃
j=1

B j

)
+ P

( N⋃
j=1

B j

)

≤
N∑
j=1

P (Eh(k);B j) + P
( N⋃
j=1

B j

)
≤ Crn−1

0 N + P (BR) <∞ (4.83)

and so we may apply Theorem 3.1 to construct a set F ⊂ BR of finite perimeter

and a further subsequence indices h(k) such that Eh(k) ∩
(⋃N

j=1 B j

)
→ F . Setting

E = V ∩ F , we have that V ∩Eh(k) → E and supk P (V ∩Eh(k)) ≤ supk P (Eh(k) ∩(⋃N
j=1 B j

)
) <∞. Finally, given ϕ ∈ C0

c (Rn) and ψ ∈ C1
c (Rn), we have∣∣∣∣ ˆ

Rn
ϕ dµV ∩Eh(k) −

ˆ
Rn
ϕ dµE

∣∣∣∣
≤
∣∣∣∣ ˆ

Rn
(ϕ− ψ) dµV ∩Eh(k)

∣∣∣∣+

∣∣∣∣ ˆ
Rn
ψ dµV ∩Eh(k) −

ˆ
Rn
ψ dµE

∣∣∣∣+

∣∣∣∣ ˆ
Rn

(ψ − ϕ) dµE

∣∣∣∣
≤ ||ϕ− ψ||sup sup

k
|µV ∩Eh(k) |(R

n) +

∣∣∣∣ ˆ
V ∩Eh(k)

∇ψ dx−
ˆ
E

∇ψ dx
∣∣∣∣

+ ||ϕ− ψ||sup|µE |(Rn)
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≤ ||ϕ− ψ||sup sup
k
|µV ∩Eh(k) |(R

n) + ||∇ψ||sup|(V ∩ Eh(k))∆E|

+ ||ϕ− ψ||sup|µE |(Rn). (4.84)

Since V ∩ Eh(k) → E, this gives

lim sup
k→sup

∣∣∣∣ ˆ
Rn
ϕ dµV ∩Eh(k) −

ˆ
Rn
ϕ dµE

∣∣∣∣
≤ ||ϕ− ψ||sup

(
sup
k
|µV ∩Eh(k) |(R

n) + |µE |(Rn)
)
. (4.85)

So by density of C1
c (Rn) in C0

c (Rn) in the sup norm, we have µV ∩Eh(k)
∗
⇀ µE .

Finally, by Lemma 4.5 we may extract a further subsequence such that, up to
relabeling, we also have Ah(k) → A uniformly on compact sets.

Proposition 4.7 (Closedness of M). Suppose that {Eh}h∈N ⊂M (that is, Eh is a
(κ, α)-almost-minimizer of FAh in U at scale rh for some Ah ∈ A and rh > 0), r0 =
lim infh→∞ rh > 0, V ⊂⊂ U is an open set with P (V ) <∞ such that V ∩ Eh → E
for a set of finite perimeter E, and Ah → A uniformly on compact sets for some
A ∈ A. Then E is a (κ, α)-almost-minimizer of FA in V at scale r0. Moreover,

µV ∩Eh
∗
⇀ µE , (4.86)

FAh(Eh; · ) ∗⇀ FA(E; · ) in V (4.87)

where we view FAh(Eh; · ) and FA(E; · ) as Radon measures. In particular,

(i) if xh ∈ V ∩ ∂Eh, xh → x, and x ∈ V , then x ∈ V ∩ ∂E;
(ii) if x ∈ V ∩∂E, then there exists {xh}h∈N with xh ∈ V ∩∂Eh such that xh → x.

Proof. By the same argument as in the proof of Proposition 4.6 we can show

suph P (V ∩ Eh) < ∞. The weak convergence µV ∩Eh
∗
⇀ µE of (4.86) follows from

V ∩ Eh → E as also shown in the proof of Proposition 4.6.
To show that E is a (κ, α)-almost-minimizer of FA our strategy is as follows.

Given a competitor F for E, we modify F to construct competitors Fh and apply
the almost-minimality of Eh with respect to FAh . We then pass the minimality
inequalities through limits to obtain the desired almost-minimality inequality for
E.

Suppose E∆F ⊂⊂ V ∩ B(x, r) with x ∈ V and r < r0. For y ∈ V , set d(y) =
min{r0, dist(y, ∂V )} > 0. Since Hn−1 ∂∗Eh and Hn−1 ∂∗F are Radon measures,
we have that for a.e. s ∈ (0, d(y)),

Hn−1(∂B(y, s) ∩ ∂∗F ) = Hn−1(∂B(y, s) ∩ ∂∗Eh) = 0, ∀h ∈ N. (4.88)

Note that |(E(1)∆E
(1)
h ) ∩B(y, d(y))| = |(E∆Eh) ∩B(y, d(y))| because a Lebesgue

measurable set is equivalent to its set of points of full density. By the coarea formula,
V ∩ Eh → E, and B(y, d(y)) ⊂ V , it follows that
ˆ d(y)

0

Hn−1((E(1)∆E
(1)
h ) ∩ ∂B(y, s)) ds = |(E(1)∆E

(1)
h ) ∩B(y, d(y))| → 0 (4.89)

as h→∞. Consequently, by Fatou’s lemma,

lim inf
h→∞

Hn−1((E(1)∆E
(1)
h ) ∩ ∂B(y, s)) = 0 (4.90)

for a.e. s ∈ (0, d(y)). Since E∆F is compactly contained in V ∩ B(x, r), we may
find finitely many balls {B(yj , sj)}Nj=1 with yj ∈ V and sj ∈ (0, d(yj)) satisfying
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(4.88) and (4.90) with y = yj , s = sj such that, setting G =
⋃N
j=1 B(yj , sj), we

have E∆F ⊂⊂ G ⊂⊂ V ∩ B(x, r). Now consider the comparison sets Fh defined

by Fh = (F ∩G) ∪ (Eh \G). Since ∂G ⊂
⋃N
j=1 ∂B(yj , sj), by (4.88) there holds

Hn−1(∂G ∩ ∂∗F ) = Hn−1(∂G ∩ ∂∗Eh) = 0, ∀h ∈ N. (4.91)

Additionally, E(1)∩∂G = F (1)∩∂G since E∆F ⊂⊂ G so that by (4.90) there holds

lim inf
h→∞

Hn−1((F (1)∆E
(1)
h ) ∩ ∂G) = 0. (4.92)

Observe that Eh∆Fh ⊂ G ⊂⊂ U ∩B(x, r) with x ∈ U . Since r < r0 = lim infh→∞
rh, there is h0 such that r < rh for all h ≥ h0. For now fix h ≥ h0. By (4.91) we
can apply Proposition 4.3 to obtain

FAh(Fh;B(x, r)) = FAh(F ;G) + FAh(Eh;B(x, r) \G) + FAh(G;F (1)∆E
(1)
h )

≤ FAh(F ;G) + FAh(Eh;B(x, r) \G) + Λ1/2Hn−1((F (1)∆E
(1)
h ) ∩ ∂G). (4.93)

Since Fh is a competitor for the FAh -almost-minimality of Eh, we have

FAh(Eh;B(x, r)) ≤FAh(F ;G) + FAh(Eh;B(x, r) \G)

+ Λ1/2Hn−1((F (1)∆E
(1)
h ) ∩ ∂G) + κrα+n−1 (4.94)

which simplifies to

FAh(Eh;G) ≤ FAh(F ;G) + Λ1/2Hn−1((F (1)∆E
(1)
h ) ∩ ∂G) + κrα+n−1. (4.95)

Similar to (2.11) we have 〈Ah(y)νF , νF 〉1/2 ≤ 〈A(y)νF , νF 〉1/2 + C||Ah(y)−A(y)||.
Integrating yields

FAh(F ;G) ≤ FA(F ;G) + C||Ah −A||supGP (F ;G) (4.96)

where we set ||Ah−A||supG = supy∈G ||Ah(y)−A(y)||. Taking the lim sup as h→∞
gives

lim sup
h→∞

FAh(F ;G) ≤ FA(F ;G) (4.97)

because lim suph→0 ||Ah − A||supG = 0 by the uniform convergence Ah → A on
compact sets. Similarly,

FA(V ∩ Eh;G) ≤ FAh(V ∩ Eh;G) + C||A−Ah||supG P (V ∩ Eh;G). (4.98)

Using the fact that lim inf(ah+bh) ≤ lim inf ah+lim sup bh for nonnegative sequences
{ah}, {bh}, we have

lim inf
h→∞

FA(V ∩ Eh;G) ≤ lim inf
h→∞

FAh(V ∩ Eh;G)

+ lim sup
h→∞

(
C||A−Ah||supG P (V ∩ Eh;G)

)
. (4.99)

By suph P (V ∩ Eh;G) <∞ and lim suph→0 ||Ah −A||supG = 0, this becomes

lim inf
h→∞

FA(V ∩ Eh;G) ≤ lim inf
h→∞

FAh(V ∩ Eh;G). (4.100)

Noting FAh(V ∩ Eh;G) = FAh(Eh;G) since G ⊂⊂ V and using the lower semicon-

tinuity of FA with respect to µV ∩Eh
∗
⇀ µE by Proposition 3.1, this implies

FA(E;G) ≤ lim inf
h→∞

FA(Eh;G) ≤ lim inf
h→∞

FAh(Eh;G). (4.101)
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Now combining our estimates (4.101), (4.95), (4.97), and (4.92), and again using
that lim infh(ah + bh) ≤ lim suph ah + lim infh bh, we obtain

FA(E;G) ≤ lim inf
h→∞

FAh(Eh;G)

≤ lim inf
h→∞

(
FAh(F ;G) + Λ1/2Hn−1((F (1)∆E

(1)
h ) ∩ ∂G) + κrα+n−1

)
≤ lim sup

h→∞
FAh(F ;G) + Λ1/2 lim inf

h→∞
Hn−1((F (1)∆E

(1)
h ) ∩ ∂G) + κrα+n−1

≤ FA(F ;G) + κrα+n−1. (4.102)

Since E∆F ⊂⊂ G, we can add FA(E;B(x, r) \G) = FA(F ;B(x, r) \G) to obtain

FA(E;B(x, r)) ≤ FA(F ;B(x, r)) + κrα+n−1 (4.103)

as desired.
Next we prove the weak convergence of energy measures (4.87). Let Φh =

FAh(V ∩Eh; · ) and Φ = FA(E; · ) which are Radon measures on Rn. It suffices to
show the following claim.

Claim. If Ψ is a Radon measure and {Φh(k)}k∈N is a subsequence such that Φh(k)
∗
⇀

Ψ, then Φ V = Ψ V .
Indeed, suppose the claim is true. By sequential compactness of Radon mea-

sures (which applies since suph Φh(Rn) ≤ Λ1/2 suph P (V ∩ Eh) < ∞), for each
subsequence of {Φh}h∈N there exists a further subsequence that converges weakly
to some Radon measure Ψ. By the claim Ψ V = Φ V and so Φh V converges
weakly to Φ V . Since Φh = FAh(V ∩ Eh; · ) V = FAh(Eh; · ) V by the
decomposition formula of the Gauss-Green measure for the intersection of two sets
of locally finite perimeter (see (16.4) of [29, Theorem 16.3]), this will complete the
proof of (4.87).

Now we prove the above claim. Suppose Φh(k)
∗
⇀ Ψ for some Radon measure Ψ

and subsequence {Φh(k)}k∈N. For convenience we will just write the indices as k
instead of h(k).

Let us show Φ ≤ Ψ on B(Rn) where B(Rn) denotes the Borel sets of Rn. Let W
be an open bounded set and set Wt = {x ∈W : dist(x, ∂W ) > t} for t > 0. Choose
ϕ ∈ Cc(W ; [0, 1]) with 1Wt ≤ ϕ. Note that (4.100) holds for any bounded set in
place of G by the same argument. So applying (4.100) with Wt in conjunction with

the lower semicontinuity of FA with respect to µV ∩Eh
∗
⇀ µE by Proposition 3.1

gives

Φ(Wt) = FA(E;Wt) ≤ lim inf
k→∞

FAk(V ∩ Ek;Wt)

≤ lim inf
k→∞

ˆ
∂∗(V ∩Ek)

ϕ(x)〈Ak(x)νV ∩Ek , νV ∩Ek〉1/2 dHn−1

=

ˆ
ϕ dΨ ≤ Ψ(W ). (4.104)

By monotone convergence, taking t → 0+ gives Φ(W ) ≤ Ψ(W ). Since W was an
arbitrary open, bounded set, it follows that Φ ≤ Ψ on B(Rn).

Now let B(x, s0) ⊂⊂ V with s0 < r0. Define

Fk =
(
E ∩B(x, s)) ∪ (Ek \B(x, s)) (4.105)
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for s ∈ (0, s0) with

Hn−1(∂∗E ∩ ∂B(x, s)) = Hn−1(∂∗Ek ∩ ∂B(x, s)) = 0, ∀k ∈ N

lim inf
k→∞

Hn−1(∂B(x, s) ∩ (E
(1)
k ∆E(1))) = 0. (4.106)

This holds for a.e. s ∈ (0, s0). Then Ek∆Fk ⊂ B(x, s) ⊂⊂ U ∩B(x, s0) with x ∈ U
and s0 < rk for all k larger than some k0. By the same argument as with G above
to prove (4.95), for such k there holds

FAk(Ek;B(x, s))

≤ FAk(E;B(x, s)) + Λ1/2Hn−1((E(1)∆E
(1)
k ) ∩ ∂B(x, s)) + κsα+n−1. (4.107)

Since B(x, s) ⊂⊂ V ,

Φk(B(x, s)) = FAk(V ∩ Ek;B(x, s)) = FAk(Ek;B(x, s)). (4.108)

Sending k → ∞ and using the lower semicontinuity of weak convergent Radon
measures, we have by the same reasoning as for (4.102) that

Ψ(B(x, s)) ≤ lim inf
k→∞

Φk(B(x, s))

≤ lim inf
k→∞

(FAk(E;B(x, s)) + Λ1/2Hn−1(∂B(x, s) ∩ (E
(1)
k ∆E(1))) + κsα+n−1)

= lim sup
k→∞

FAk(E;B(x, s)) + Λ1/2 lim inf
h→∞

Hn−1(∂B(x, s) ∩ (E
(1)
k ∆E(1))) + κsα+n−1

≤ FA(E;B(x, s)) + C lim sup
k→∞

||Ak −A||supB(x,s) P (E;B(x, s)) + κsα+n−1

= Φ(B(x, s)) + κsα+n−1. (4.109)

The lower perimeter bound (4.74) and comparability to perimeter give csn−1 ≤
Φ(B(x, s)). So by (4.109) and Φ(B(x, s)) ≤ Ψ(B(x, s)), which we know because
Φ ≤ Ψ on B(Rn), it follows that

1− Csα ≤ Φ(B(x, s))

Ψ(B(x, s))
≤ 1 (4.110)

for a.e. s ∈ (0, s0). Sending s→ 0+ gives DΨΦ = 1 for Ψ-a.e. x ∈ V ∩ sptΨ. Since
Φ� Ψ, we have that Ψ = Φ on B(V ), the Borel subsets of V . This completes the
proof of our claim.

We finish by showing (i) and (ii). For (i), suppose xh ∈ V ∩ ∂Eh and xh →
x for x ∈ V . Let r > 0 with B(x, r) ⊂⊂ V . Then B(xh, r/4) ⊂ B(x, r/2)

for large enough h. So by the weak convergence of the measures FAh(Eh; · ) ∗
⇀

FA(E; · ) in V , the lower perimeter bound of (4.74), and λ1/2P (Eh;B(xh, r/4)) ≤
FAh(Eh;B(xh, r/4)), we have

0 < c rn−1 ≤ lim sup
h→∞

FAh(Eh;B(xh, r/4)) ≤ lim sup
h→∞

FAh(Eh;B(x, r/2))

≤ FA(E;B(x, r/2)) ≤ Λ1/2P (E;B(x, r)). (4.111)

Hence x ∈ sptµE = ∂E. For (ii), suppose x ∈ V ∩ ∂E and by way of contradiction
that there does not exist a sequence {xh}h∈N with xh ∈ V ∩ ∂Eh and xh → x.
Then there is some r > 0 and h(k) → ∞ as k → ∞ such that B(x, r) ⊂⊂ V and
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B(x, r) ∩ ∂Eh(k) = ∅ for every k ∈ N. It follows that

P (E;B(x, r)) ≤ λ−1/2FA(E;B(x, r)) ≤ λ−1/2 lim inf
k→∞

FAh(k)(Eh(k);B(x, r))

≤ (Λ/λ)1/2 lim inf
k→∞

P (Eh(k);B(x, r)) = 0, (4.112)

contradicting the fact that x ∈ sptµE = ∂E.

5. The excess and the height bound. The concept of the excess is a common
key tool in the study of regularity for minimizers for many geometric variational
problems. This quantity measures the average L2-oscillation of outward unit normal
vector νE with respect to a fixed direction ν and will eventually allow us to control
the average L2-oscillation of νE from its average. Our aim is to show decay estimates
for the excess of almost-minimizers. For our variable coefficient surface energies
and the change of variable, it will be useful to measure this oscillation over balls,
ellipsoids, and cylinders.

5.1. Definition of the excess and basic properties. Given ν ∈ Sn−1 we de-
compose Rn into Rn−1 ×R by identifying Rn−1 with ν⊥ and R with span ν. With
a slight abuse of notation, we write x = (px,qx) where p : Rn → Rn−1 and
q : Rn → R are the horizontal and vertical projections defined by

px = x− (x · ν) ν and qx = x · ν. (5.1)

We define the open cylinder centered at x0 ∈ Rn of radius r > 0 in the direction
ν ∈ Sn−1 by

C (x0, r, ν) =
{
x ∈ Rn : |p(x− x0)| < r, |q(x− x0)| < r

}
. (5.2)

Note that balls and cylinders are comparable as we have

B(x0, r) ⊂ C (x0, r, ν) ⊂ B(x0,
√

2 r) (5.3)

and we have by (4.7) that balls and the ellipsoids W x0
(x0, r) are comparable.

Thus balls, ellipsoids, and cylinders can all be mutually contained in each other by
shrinking or enlarging them by fixed scales.

Given a set of locally finite perimeter E, a point x0 ∈ ∂E, a radius r and direction
ν ∈ Sn−1, we define the spherical excess by

eB (E, x0, r, ν) =
1

rn−1

ˆ
B(x0,r)∩∂∗E

|νE(x)− ν|2

2
dHn−1(x), (5.4)

the ellipsoidal excess by

eW (E, x0, r, ν) =
1

rn−1

ˆ
W x0 (x0,r)∩∂∗E

|νE(x)− ν|2

2
dHn−1(x), (5.5)

and the cylindrical excess by

eC (E, x0, r, ν) =
1

rn−1

ˆ
C (x0,r,ν)∩∂∗E

|νE(x)− ν|2

2
dHn−1(x). (5.6)

Since balls, ellipsoids, and cylinders are comparable, if we can control one of these
types of excess, we can control all of them.

As mentioned in Section 4, it will often be convenient to prove estimates at points
x0 ∈ ∂E with the assumption A(x0) = I. To do this, we make the change of variable
under the transformation Tx0 . The next proposition shows that the excess of the
image set under this transformation is comparable to that of the original set.



3264 DAVID A. SIMMONS

Proposition 5.1 (Comparability of excess under change of variable Tx0). There
exists a positive constant C = C(n, λ,Λ) with the following property. If E is a set
of locally finite perimeter, Ex0

= Tx0
(E) for some x0 ∈ ∂E, then for any r > 0 and

ν ∈ Sn−1,

C−1eB(Ex0
, x0, r, ν̃) ≤ eW(E, x0, r, ν) ≤ CeB(Ex0

, x0, r, ν̃) (5.7)

where ν̃ ∈ Sn−1 is defined by

ν̃ =
A1/2(x0)ν

|A1/2(x0)ν|
, or equivalently ν =

A−1/2(x0)ν̃

|A−1/2(x0)ν̃|
. (5.8)

Proof. Without loss of generality assume x0 = 0 and to simplify notation write
S = A1/2(0), W r = W 0(0, r), and Br = B(0, r). Noting that S is symmetric, the
change of variable y = T0(x) = S−1x gives by Proposition A.2 that νE0

(T0(x)) =
SνE(x)/|SνE(x)| for all x ∈ ∂∗E andˆ

Br∩∂∗E0

|νE0
(y)− ν̃|2 dHn−1(y)

=

ˆ
W r∩∂∗E

∣∣∣∣ SνE(x)

|SνE(x)|
− Sν

|Sν|

∣∣∣∣2 detS−1 |SνE(x)| dHn−1(x). (5.9)

Note that detS−1 = detA−1/2(0) ≤ λ−n/2, |SνE(x)| ≤ Λ1/2, and∣∣∣∣ SνE|SνE |
− Sν

|Sν|

∣∣∣∣2 ≤ 2

∣∣∣∣ SνE|SνE |
− Sν

|SνE |

∣∣∣∣2 + 2

∣∣∣∣ Sν

|SνE |
− Sν

|Sν|

∣∣∣∣2. (5.10)

For the first term, we have the estimate∣∣∣∣ SνE|SνE |
− Sν

|SνE |

∣∣∣∣2 ≤ 1

|SνE |2
|S(νE − ν)|2 ≤ Λ

λ
|νE − ν|2 (5.11)

since the maximum eigenvalue of S is bounded by Λ1/2 and its minimum eigenvalue
is bounded by λ1/2. For the second term, we have the estimate∣∣∣∣ Sν

|SνE |
− Sν

|Sν|

∣∣∣∣2 ≤ |Sν|2∣∣∣∣ 1

|SνE |
− 1

|Sν|

∣∣∣∣2 =
|Sν|2

|SνE |2|Sν|2

∣∣∣∣|Sν| − |SνE |∣∣∣∣2
≤ 1

|SνE |2
|S(ν − νE)|2 ≤ Λ

λ
|νE − ν|2 (5.12)

as above. It follows that ∣∣∣∣ SνE|SνE |
− Sν

|Sν|

∣∣∣∣2 ≤ 4Λ

λ
|νE − ν|2. (5.13)

Hence ˆ
Br∩∂∗E0

|νE0
− ν̃|2 dHn−1 ≤ 4Λ3/2

λn/2+1

ˆ
W r∩∂∗E

|νE − ν|2 dHn−1, (5.14)

or equivalently, eB (E0, 0, r, ν̃) ≤ (4Λn/2+1/λ3/2)eW (E, 0, r, ν). The upper bound
for (5.7) follows by a symmetric argument.

We now recall several known properties of the excess, referring readers to [29,
Chapter 22] for proofs of these facts.
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Proposition 5.2 (Scaling of the excess). If E is a set of locally finite perimeter in
Rn, x0 ∈ ∂E, r > 0, ν ∈ Sn−1, then

eC(E, x0, r, ν) = eC(Ex0,r, 0, 1, ν) (5.15)

where Ex0,r = (E − x0)/r as in Section 4.

Proposition 5.3 (Zero excess implies being a half-space). If E is a set of lo-
cally finite perimeter in Rn, with sptµE = ∂E, x0 ∈ ∂E, r > 0, and ν ∈ Sn−2,
then eC(E, x0, r, ν) = 0 if and only if E ∩ C(x0, r, ν) is equivalent to the set{
x ∈ C(x0, r, ν) : (x− x0) · ν ≤ 0

}
.

Proposition 5.4 (Vanishing of the excess at the reduced boundary). If E is a set
of locally finite perimeter in Rn and x0 ∈ ∂∗E, then

lim
r→0+

inf
ν∈Sn−1

eC(E, x0, r, ν) = 0. (5.16)

Proposition 5.5 (Excess at different scales). If E is a set of locally finite perimeter
in Rn, x0 ∈ ∂E, 0 < s < r, ν ∈ Sn−1, then

eC(E, x0, s, ν) ≤
(r
s

)n−1

eC(E, x0, r, ν). (5.17)

Proposition 5.6 (Excess and changes of direction). For every n ≥ 2, there exists
a constant C = C(n, λ,Λ, κ, α, r0) with the following property. If E is a (κ, α)-
almost-minimizer of FA in U at scale r0, then

eC(E, x0, r, ν) ≤ C
(
eC(E, x0, r, ν0) + |ν − ν0|2

)
(5.18)

whenever x0 ∈ U ∩ ∂E, B(x, 2r) ⊂⊂ U , ν, ν0 ∈ Sn−1.

Proof. It follows from the proof of [29, Proposition 22.5] using the upper density
estimate of Proposition 4.5.

5.2. Small-Excess Position and the Height Bound. We now recall some stan-
dard lemmas we will need about the excess and almost-minimizers and recall the
height bound. The first lemma states that if the excess of an almost-minimizer in a
given cylinder is small enough, then in a smaller cylinder the topological boundary
sits within a narrow strip.

Lemma 5.1 (Small-excess position). Given n ≥ 2 and t0 ∈ (0, 1), there is a positive
constant ω = ω(t0, n, λ,Λ, κ, α, r0) with the following property. If E is a (κ, α)-
almost-minimizer of FA in C(x0, 2r, ν) with x0 ∈ ∂E, 2r < r0, ν ∈ Sn−2, and

eC(E, x0, 2r, ν) ≤ ω, (5.19)

then

|q(x− x0)|
r

< t0, ∀x ∈ C(x0, r, ν) ∩ ∂E, (5.20)∣∣∣{x ∈ C(x0, r, ν) ∩ E :
q(x− x0)

r
> t0

}∣∣∣ = 0, and (5.21)∣∣∣{x ∈ C(x0, r, ν) \ E :
q(x− x0)

r
< −t0

}∣∣∣ = 0. (5.22)

Proof. [7, Lemma 3.8] which applies by Proposition 4.5.
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We define the open disk in Rn−1 centered at z ∈ Rn−1 and of radius r > 0 by

D(z, r) =
{
w ∈ Rn−1 : |z − w| < r

}
, (5.23)

Thus we may write C (x0, r, ν) = D(px0, r)× (−r, r).
The second lemma states that if a set of locally finite perimeter satisfies the

separation property of Lemma 5.1, then the difference of measure of perimeter
sitting above a set G ⊂ D(px0, r) and Hn−1(G) defines a measure which we call
the excess measure.

Lemma 5.2 (Excess measure). If E is a set of locally finite perimeter in Rn, with
0 ∈ ∂E, and such that, for some t0 ∈ (0, 1),

|q(x− x0)|
r

< t0, ∀x ∈ C(x0, r, ν) ∩ ∂E, (5.24)∣∣∣{x ∈ C(x0, r, ν) ∩ E :
q(x− x0)

r
> t0

}∣∣∣ = 0, and (5.25)∣∣∣{x ∈ C(x0, r, ν) \ E :
q(x− x0)

r
< −t0

}∣∣∣ = 0, (5.26)

then, setting for brevity M = C(x0, r, ν) ∩ ∂∗E, we have for every Borel set G ⊂
D(px0, r), function ϕ ∈ Cc(D(px0, r)), and t ∈ (−1, 1) that

Hn−1(G) ≤ Hn−1(M ∩ p−1(G)), (5.27)

Hn−1(G) =

ˆ
M∩p−1(G)

(νE · ν) dHn−1(x), (5.28)

ˆ
D

ϕ dx =

ˆ
M

ϕ(px)(νE(x) · ν) dHn−1(x), (5.29)

ˆ
Et∩D

ϕ dx =

ˆ
M∩{qx>t}

ϕ(px)(νE(x) · ν) dHn−1(x), (5.30)

where Et = {z ∈ Rn−1|(z, t) ∈ E}. In fact, the set function

ζ(G) = P (E;C(x0, r, ν) ∩ p−1(G))−Hn−1(G) (5.31)

= Hn−1(M ∩ p−1(G))−Hn−1(G) (5.32)

defines a Radon measure on Rn−1, concentrated on D(px0, r), called the excess
measure of E over D(px0, r)).

Proof. [7, Theorem A.1] which applies by Proposition 4.5.

We now state the main result we need from this section which is a strengthening of
Lemma 5.1 to quantitatively control the height of an almost-minimizer in a cylinder
by the excess on a larger cylinder.

Proposition 5.7 (Height bound). Given n ≥ 2, there exist positive constants
ε0 = ε0(n, λ,Λ, κ, α, r0) and C0 = C0(n, λ,Λ, κ, α, r0) with the following property.
If E is a (κ, α)-almost-minimizer of FA in C(x0, 4r, ν) at scale r0 with x0 ∈ ∂E,
4r < r0, and

eC(E, x0, 4r, ν) ≤ ε0, (5.33)

then

sup
{ |q(x− x0)|

r
: x ∈ C(x0, r, ν) ∩ ∂E

}
≤ C0eC(E, x0, 4r, ν)1/(2(n−1)). (5.34)

Proof. [7, Theorem A.2] which applies by Proposition 4.5.
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Throughout the course of the proof of our regularity result, we shall keep track of
a number of specific constants for which certain estimates hold. The estimate (5.34)
with the constants C0 and ε0 from Lemma 5.7 are the first of these. Subsequent Ci’s
will be chosen to be larger than previous ones, i.e. C0 ≤ C1 ≤ . . . and subsequent
εi’s will be chosen to be smaller than the previous ones, i.e. ε0 ≥ ε1 ≥ . . . . This way
previous estimates will also hold under any smallness of the excess assumptions. We
shall also choose ε0 ≤ ω(1/4, n, λ,Λ, κ, α, r0) so that the height of our topological
boundary is at most 1/4 of the cylinder.

6. The Lipschitz approximation Theorem. The next step in our proof is to
show that, given a small excess assumption of an almost-minimizer in a cylinder, a
large portion of the topological boundary can be covered by the graph of a Lipschitz
function in a smaller cylinder. Moreover, if we assume A(x0) = I, this Lipschitz
function is quantitatively ‘almost-harmonic’ at x0 with an error controlled in terms
of the excess and the scale. Given a direction ν ∈ Sn−1 which decomposes Rn
into Rn−1 × R, we denote the gradient in the first n − 1 directions by ∇′, that is,
∇′ = (∂1, . . . , ∂n−1).

Theorem 6.1 (Lipschitz approximation theorem). There exist positive constants
ε1 = ε1(n, λ,Λ, κ, α, r0), δ0 = δ0(n, λ,Λ, κ, α, r0), and C1 = C1(n, λ,Λ, κ, α, r0,
||A||Cα) with the following property. If E is a (κ, α)-almost-minimizer of FA in
C(x0, r0, ν) at scale r0 with x0 ∈ ∂E, 13r < r0, and

eC(E, x0, 13r, ν) ≤ ε1, (6.1)

then, setting

M = C(x0, r, ν) ∩ ∂E and M0 = {x ∈M : sup
0<s<8r

eC(E, x, s, ν) ≤ δ0}, (6.2)

there is a Lipschitz function u : Rn−1 → R with Lip u ≤ 1 satisfying

sup
Rn−1

|u|
r
≤ C1eC(E, x0, 13r, ν)1/2(n−1) (6.3)

such that the translation Γ = x0 + {(z, u(z)) : z ∈ Dr} of the graph of u over Dr

contains M0, that is, M0 ⊂ M ∩ Γ, and covers a large portion of M in the sense
that

Hn−1(M∆Γ)

rn−1
≤ C1eC(E, x0, 13r, ν). (6.4)

Moreover, u is ‘almost harmonic’ in Dr in the sense that

1

rn−1

ˆ
Dr

|∇′u|2 ≤ C1eC(E, x0, 13r, ν) (6.5)

and if A(x0) = I, then

1

rn−1

∣∣∣∣ ˆ
Dr

∇′u · ∇′ϕ
∣∣∣∣ ≤ C1 sup

Dr

|∇′ϕ|
(
eC(E, x0, 13r, ν) + rα/2) ∀ϕ ∈ C1

c (Dr).

(6.6)

Proof. Without loss of generality we may assume x0 = 0 and ν = en. We simplify
notation by setting C r = C (0, r, ν). Everything up to and including (6.5) follows
from [7, Theorem A.3] by Proposition 4.5, for an ε1 chosen sufficiently small. We
also choose ε1 small enough so that

ε1 ≤ ε0 ≤ ω(1/4, n, λ,Λ, κ, α, r0) (6.7)
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where ω is the constant from Lemma 5.1 with t0 = 1/4. It follows that

|qx|
r

<
1

4
∀x ∈ C r ∩ ∂E,

{
x ∈ C r ∩ E :

qx

r
>

1

4

}
= ∅,

and
{
x ∈ C r \ E :

qx

r
< −1

4

}
= ∅. (6.8)

Let ϕ ∈ C 1
c(Dr). By considering∇′ϕ/ supDr

|∇′ϕ|, we may assume supDr
|∇′ϕ| = 1

and reduce to proving

1

rn−1

∣∣∣∣ ˆ
Dr

∇′u · ∇′ϕ
∣∣∣∣ ≤ C1

(
eC (E, x0, 13r, en) + rα/2). (6.9)

By the Fundamental Theorem of Calculus and the fact that ϕ = 0 on ∂Dr, we have
supDr

|ϕ| ≤ r. Let η ∈ C1
c ((−3r/4, 3r/4)) be a cutoff function such that

η = 1 on [−r/2, r/2], |η| ≤ 1, and |η′| ≤ 5/r. (6.10)

and define T : Rn → Rn by T (x) = η(qx)ϕ(px)en. Then
T ∈ C1

c (Dr × (−3r/4, 3r/4);Rn), supCr
|T | ≤ r, and

∇T (x) = η(qx)∇′ϕ(px)⊗ en + η′(qx)ϕ(px) en ⊗ en. (6.11)

Hence

|∇T (x)| =
√
|η(qx)|2|∇′ϕ(px)|2 + |η′(qx)|2|ϕ(px)|2 ≤ 6 (6.12)

and so supCr
|∇T | ≤ 6. Consider the family of maps ft : Rn → Rn defined by

ft(x) = x + t T (x). Then ∇ft = Id + t∇T and so Jft = det(Id + t∇T ). We have
that ||∇T (x)|| ≤ |∇T (x)| ≤ 6 where || · || denotes the operator norm and | · | denotes
the Frobenius norm. It then follows by [29, Lemma 17.4] that there are positive
constants ε(n), C(n) such that

Jft = (1 + tdivT ) +O(C(n)t2). (6.13)

for |t| < ε(n). Since divT is bounded, we can choose ε(n) so that ft is a diffeo-
morphism for |t| < ε(n). Letting gt = f−1

t , we also have by [29, Lemma 17.4] that
∇gt ◦ ft = Id− t∇T +O(C(n)t2 for t < ε(n). Choosing ε(n) ≤ 1/8, we claim that
E∆ft(E) ⊂⊂ C r for |t| < ε(n).

To see why this is the case, take y ∈ E∆ft(E). Then y = x + tT (x) for some
x ∈ sptT . By definition of T , py = px ∈ sptϕ and qx ∈ (−3r/4, 3r/4). So
|qy| ≤ |qx| + |qy − qx| ≤ (3/4)r + |t| supCr

|T | < 7r/8 since |t| < ε(n) ≤ 1/8 and
supCr

|T | ≤ r. Hence y ∈ sptϕ× (−7r/8, 7r/8) ⊂⊂ C r.
By [29, Proposition 17.1] we have that

P (ft(E);C r) =

ˆ
Cr∩∂∗E

|(∇gt ◦ ft)∗νE |Jft dHn−1. (6.14)

Claim.We can choose ε(n) small enough so that

P (ft(E);Cr) = P (E;Cr) + t

ˆ
Cr∩∂∗E

divET (x) dHn−1 +O(C(n)P (E;Cr)t
2)

(6.15)

for all |t| < ε(n), where divET = divT − νE · (∇T )∗νE.

To prove the claim, observe that
∣∣(Id + t∇T )∗νE

∣∣2 = 1 − 2t νE · (∇T )∗νE +

t2|(∇T )∗νE |2 and so, since
√

1 + x = 1 − x/2 + O(x2) for small |x| by Taylor’s
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theorem, shrinking ε(n) as necessary, we have∣∣(∇gt ◦ ft)∗νE∣∣ =
∣∣(Id− t∇T )∗νE

∣∣+O(C(n)t2)

= 1− t νE · (∇T )∗νE +O(C(n)t2) (6.16)

whenever |t| < ε(n). Combining this with (6.13) gives∣∣(∇gt ◦ ft)∗νE∣∣Jft = 1 + t(divT − νE · (∇T )∗νE) +O(C(n)t2) (6.17)

for |t| < ε(n). Integrating with respect to Hn−1 (C r ∩ ∂∗E) completes the proof
of the claim.

By the claim, Proposition 4.5, and Lemma 4.2, it follows that

|t|
∣∣∣ ˆ

Cr∩∂∗E
divET (x) dHn−1

∣∣∣ ≤ ∣∣P (ft(E;C r))− P (E;C r))
∣∣+ C(n)P (E;C r)|t|2

≤ Crα+n−1 + Ct2rn−1 (6.18)

whenever |t| < ε(n). Choosing t = ε(n)(r/r0)α/2 < ε(n) gives that∣∣∣ ˆ
∂∗E∩Cr

divET (x) dHn−1
∣∣∣ ≤ Crα/2+n−1. (6.19)

Now, for Hn−1-a.e. x ∈M ∩ Γ, there is λ(x) ∈ {−1, 1} such that

νE(x) = λ(x)
(−∇′u(px), 1)√
1 + |∇′u(px)|2

. (6.20)

By (6.8) and definition of η, we have η(qx) = 1 on a neighborhood M and so
divT (x) = 0 and ∇T (x) = ∇′ϕ(px)⊗en for x ∈M . Hence for Hn−1-a.e. x ∈M∩Γ,
there holds

divET (x) = divT (x)− νE(x) · ((∇T (x))∗νE(x)) =
∇′u(px) · ∇′ϕ(px)

1 + |∇′u(px)|2
(6.21)

since λ(x)2 = 1. Thus∣∣∣∣ ˆ
p(M∩Γ)

∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣ =

∣∣∣∣ ˆ
M∩Γ

divET dHn−1

∣∣∣∣
≤
∣∣∣∣ ˆ
M

divET dHn−1

∣∣∣∣+

∣∣∣∣ ˆ
M\Γ

divET dHn−1

∣∣∣∣
≤ C(rα/2+n−1 +Hn−1(M \ Γ)) (6.22)

by (6.19) and since |divET | ≤ C(n)|∇T | ≤ C(n). Since Dr = p(Γ), it follows that∣∣∣∣ ˆ
Dr

∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣ ≤ ∣∣∣∣ ˆ
p(M∩Γ)

∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣+

∣∣∣∣ ˆ
p(Γ\M)

∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣
≤ C(rα/2+n−1 +Hn−1(M \ Γ)) + CHn−1(Γ \M)

≤ C(Hn−1(M∆Γ) + rα/2+n−1) (6.23)
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where we used the fact that Lip u ≤ 1, |∇′ϕ| ≤ 1, and Hn−1(p(Γ\M)) ≤ Hn−1(Γ\
M). Again, using Lip u ≤ 1, |∇′ϕ| ≤ 1, we have

ˆ
Dr

∣∣∣∣∇′u · ∇′ϕ− ∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣ ≤ ˆ
Dr

|∇′u| |∇′ϕ|
∣∣∣1− 1√

1 + |∇′u|2
∣∣∣

≤
ˆ
Dr

√
1 + |∇′u|2 − 1√

1 + |∇′u|2

=

ˆ
Dr

|∇′u|2√
1 + |∇′u|2(

√
1 + |∇′u|2 + 1)

≤ 1

2

ˆ
Dr

|∇′u|2. (6.24)

By (6.4) and (6.5), it follows that∣∣∣∣ ˆ
Dr

∇′u · ∇′ϕ
∣∣∣∣ ≤ ∣∣∣∣ ˆ

Dr

(
∇′u · ∇′ϕ− ∇′u · ∇′ϕ√

1 + |∇′u|2
)∣∣∣∣+

∣∣∣∣ ˆ
Dr

∇′u · ∇′ϕ√
1 + |∇′u|2

∣∣∣∣
≤ 1

2

ˆ
Dr

|∇′u|2 + C(Hn−1(M∆Γ) + rα/2+n−1)

≤ C(eC (E, x0, 13r, en) + rα/2)rn−1. (6.25)

completing the proof.

7. The reverse Poincaré inequality. In Section 5 we saw that a small excess
controls the height of the topological boundary of an almost-minimizer. In this
section we show that given a small excess assumption on a cylinder, the flatness
of the topological boundary controls the excess on a smaller cylinder. Recall that
the cylindrical flatness of a set of locally finite perimeter E at a point x0 ∈ ∂E,
radius r > 0, in the direction ν ∈ Sn−1 is defined by

f(E, x0, r, ν) =
1

rn−1
inf
c∈R

ˆ
C (x0,r,ν)∩∂∗E

|(x− x0) · ν − c|2

r2
dHn−1(x). (7.1)

This quantity measures how far in an L2 sense the boundary of E is from the best
approximating plane with normal ν.

Theorem 7.1 (Reverse Poincaré inequality). Given n ≥ 2, there is a positive
constant C2 = C2(n, λ,Λ, κ, α, r0, ||A||Cα) with the following property. If E is a
(κ, α)-almost-minimizer in C(x0, 4r, ν) with x0 ∈ ∂E, A(x0) = I, 4r < r0, and

eC(E, x0, 4r, ν) ≤ ω(1/8, n, λ,Λ, κ, α, r0), (7.2)

where ω is the constant from Lemma 5.1, then

eC(E, x0, r, ν) ≤ C2

(
f(E, x0, 2r, ν) + rα

)
. (7.3)

To prove this we modify the proofs presented in [29, Chapter 24]. First we need
several lemmas. Given ν ∈ Sn−1 and the decomposition of Rn into Rn−1 × R, we
define the narrow cylinders

K (z, s) = D(z, s)× (−1, 1) (7.4)

for z ∈ Rn−1 and s > 0.
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Lemma 7.2 (Cone-like competitors [29, Lemma 24.8]). If s > 0 and E is an open
set with smooth boundary in Rn such that

|qx| < 1

4
, ∀x ∈ K(z, s) ∩ ∂E,{

x ∈ K(z, s) : qx < −1

4

}
⊂ K(z, s) ∩ E ⊂

{
x ∈ K(z, s) : qx <

1

4

}
, (7.5)

then, for every t ∈ (0, 1/4) and |c| < 1/4, there exists I ⊂ (2/3, 3/4) with |I| ≥ 1/24
such that for every r ∈ I, there exists an open set F of locally finite perimeter in
Rn, satisfying,

F ∩ ∂K(z, rs) = E ∩ ∂K(z, rs), (7.6)

Hn−1(∂F ∩ ∂K(z, rs)) = Hn−1(∂E ∩ ∂K(z, rs)) = 0, (7.7)

K(z, s/2) ∩ ∂F = D(z, s/2)× {c}, (7.8)

P (F ;K(z, rs))−Hn−1(D(z, rs))

≤ C(n)
{
t
(
P (E;K(z, s))−Hn−1(D(z, s)

)
+

1

t

ˆ
K(z,s)∩∂E

|qx− c|2

s2
dHn−1(x)

}
.

(7.9)

Proof. This is proved in [29, Lemma 24.8], though we point out that (7.7) follows
by line (24.29) in [29, Lemma 24.8] and the fact that F is the cone-like extension
of E ∩ ∂K (z, rs) over the disk D(z, (1− t)rs)× {c} (see [29, Lemma 24.6]).

Lemma 7.3 (Weak reverse Poincaré inequality). If E is a (κ, α)-almost-minimizer
of FA in C4, A(0) = I, at scale r0 > 4, such that

|qx| < 1

8
, ∀x ∈ C2 ∩ ∂E, (7.10)

∣∣∣{x ∈ C2 \ E : qx < −1

8

}∣∣∣ =
∣∣∣{x ∈ C2 ∩ E : qx >

1

8

}∣∣∣ = 0, (7.11)

and if z ∈ Rn−1 and s > 0 are such that

K(z, s) ⊂ C2, Hn−1(∂∗E ∩ ∂K(z, s)) = 0, (7.12)

then, for every |c| < 1/4,

P (E;K(z, s/2))−Hn−1(D(z, s/2))

≤ C
[([

P (E;K(z, s))−Hn−1(D(z, s))
] ˆ

K(z,s)∩∂∗E

(qx− c)2

s2
dHn−1(x)

)1/2

+ κ+ ||A||Cα
]

(7.13)

where C = C(n, λ,Λ, κ, α, r0).

Proof. Properties (7.10) and (7.11) imply by the divergence theorem that

ζ(G) = P (E;C 2 ∩ p−1(G))−Hn−1(G), G ⊂ D2, (7.14)
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defines a Radon measure on Rn−1 concentrated on D2 as in Lemma 5.2. By [29,
Theorem 13.8], given εh → 0+ there exists a sequence {Eh}h∈N of open sets with
smooth boundary such that

Eh
loc→ E, Hn−1 ∂Eh

∗
⇀ Hn−1 ∂∗E, ∂Eh ⊂ Iεh(∂E), (7.15)

where Iεh(∂E) denotes the εh-neighborhood of ∂E. The coarea formula and Fatou’s
lemma give

ˆ 3/4

2/3

lim inf
h→∞

Hn−1(∂K rs ∩ (E(1)∆Eh))dr

≤ lim inf
h→∞

ˆ 3/4

2/3

Hn−1(∂K rs ∩ (E(1)∆Eh))dr

≤ lim
h→∞

|(E(1)∆Eh) ∩Bs| = 0. (7.16)

So for a.e. r ∈ (2/3, 3/4), there holds

lim inf
h→∞

Hn−1(∂K rs ∩ (E(1)∆Eh)) = 0. (7.17)

Provided that h is large enough, Eh
loc→ E and ∂Eh ⊂ Iεh(∂E) imply by (7.10) and

(7.11) that

|qx| < 1

4
, ∀x ∈ C 2 ∩ ∂Eh, (7.18)

∣∣∣{x ∈ C 2 \ Eh : qx < −1

4

}∣∣∣ =
∣∣∣{x ∈ C 2 ∩ Eh : qx >

1

4

}∣∣∣ = 0. (7.19)

Given t ∈ (0, 1/4) and |c| < 1/4 we can apply Lemma 7.2 to each Eh for z ∈ Rn−1

and s > 0 to find the sets Ih ⊂ (2/3, 3/4) with |Ih| ≥ 1/24 such that for each r ∈ Ih
there exists an open set Fh satisfying (7.6), (7.7), (7.8), and (7.9). For each h ∈ N,
we have the containment

⋃
k≥h Ik ⊃

⋃
k≥h+1 Ik and so∣∣∣ ⋂

h∈N

⋃
k≥h

Ik

∣∣∣ = lim
h→∞

∣∣∣ ⋃
k≥h

Ik

∣∣∣ ≥ 1

24
> 0. (7.20)

It follows that there exists a subsequence h(k) → ∞ as k → ∞ and r ∈ (2/3, 3/4)
such that

r ∈
⋂
k∈N

Ih(k), lim
k→∞

Hn−1(∂K rs ∩ (E(1)∆Eh(k))) = 0, and

Hn−1(∂∗E ∩K (z, rs)) = Hn−1(∂Eh(k) ∩K (z, rs)) = 0. (7.21)

By Lemma 7.2 there exist a sequence of open sets Fk of locally finite perimeter in
Rn such that

Fk ∩ ∂K rs = Eh(k) ∩ ∂K rs, (7.22)

Hn−1(∂Fk ∩ ∂K (z, rs)) = Hn−1(∂Eh(k) ∩ ∂K (z, rs)) = 0, (7.23)
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and

P (Fk;K (z, rs))−Hn−1(D(z, rs))

≤ C(n)
{
t
(
P (Eh(k);K (z, s))−Hn−1(D(z, s)

)
+

1

t

ˆ
K (z,s)∩∂Eh(k)

|qx− c|2

s2
dHn−1(x)

}
. (7.24)

Now consider the comparison sets

Gk = (Fk ∩K (z, rs)) ∪ (E \K (z, rs)). (7.25)

Since E∆Gk ⊂⊂ C 2 and

Hn−1(∂Fk ∩ ∂K (z, rs)) = Hn−1(∂∗E ∩ ∂K (z, rs)) = 0, (7.26)

we have that

P (Gk;C 2) =P (Fk;K (z, rs)) + P (E;C 2 \K (z, rs))

+Hn−1(∂K (z, rs) ∩ (E(1)∆Fk)). (7.27)

By Proposition 4.2 we have

P (E;C 2) ≤ P (Gk;C 2) + C(κ+ ||A||Cα) (7.28)

for some C = C(n, λ,Λ, κ, α, r0). Hence

P (E;K (z, rs)) ≤ P (Fk;K (z, rs))

+Hn−1(∂K (z, rs) ∩ (E(1)∆Fk)) + C(κ+ ||A||Cα). (7.29)

It follows that

P (E;K (z, rs))−Hn−1(D(z, rs))

≤ C(n)
{
t
(
P (Eh(k);K (z, s))−Hn−1(D(z, s)

)
+

1

t

ˆ
K (z,s)∩∂Eh(k)

|qx− c|2

s2
dHn−1(x)

}
+Hn−1(∂K (z, rs) ∩ (E(1)∆Fk)) + C(κ+ ||A||Cα). (7.30)

Taking the limit as k →∞, using the weak convergence of (7.15) since
Hn−1(∂E ∩K (z, s)) = 0, and limk→∞Hn−1(∂K rs ∩ (E(1)∆Eh(k))) = 0, we have

P (E;K (z, rs))−Hn−1(D(z, rs))

≤ C(n)
{
t
(
P (E;K (z, s))−Hn−1(D(z, s)

)
+

1

t

ˆ
K (z,s)∩∂∗E

|qx− c|2

s2
dHn−1(x)

}
+ C(κ+ ||A||Cα). (7.31)

Hence

ζ(K (z, s/2)) ≤ ζ(K (z, rs))

≤ C
{
tζ(K (z, s) +

1

t

ˆ
K (z,s)∩∂∗E

|qx− c|2

s2
dHn−1(x) + κ+ ||A||Cα

}
(7.32)
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By (7.14), ζ(K (z, s/2)) ≤ ζ(K (z, s)) and so this inequality also holds for t > 1/4
provided we take C = C(n, λ,Λ, κ, α, r0) ≥ 4. Hence it holds for all t ∈ (0,∞).
Minimizing the right hand side over all t yields

ζ(K (z, s/2)) ≤ C
{(
ζ(K (z, s))

ˆ
K (z,s)∩∂∗E

|qx− c|2

s2
dHn−1

)1/2

+ κ+ ||A||Cα
}

(7.33)

as desired.

Proof of Theorem 7.1. By the scaling given in Proposition 4.2, we have that Ex0,r

is a (κrα, α)-almost-minimizer of FAx0,r in C 4 = C (0, 4, ν) at scale r0/r with
0 ∈ ∂Ex0,r, Ax0,r(0) = I, ||Ax0,r||Cα = ||A||Cαrα, and 4 < r0/r. Thus to prove
(7.3), we may assume eC (Ex0,r, 0, 4, ν) = eC (E, x0, 4r, ν) ≤ ω and show

eC (Ex0,r, 0, 1, ν) ≤ C
(
f(Ex0,r, 0, 2, ν) + κrα + ||Ax0,r||Cα

)
. (7.34)

By Proposition 5.1 and Proposition 5.2, it follows that

|qx| < 1

8
, ∀x ∈ C 2 ∩ ∂Ex0,r, (7.35)

∣∣∣{x ∈ C 2 \ Ex0,r : qx < −1

8

}∣∣∣ =
∣∣∣{x ∈ C 2 ∩ Ex0,r : qx >

1

8

}∣∣∣ = 0, (7.36)

and

Hn−1(G) =

ˆ
C2∩∂∗Ex0,r∩p−1(G)

(νE · ν) dHn−1, ∀ G ⊂ D2. (7.37)

Hence eC (Ex0,r, 0, 1, ν) = P (Ex0,r;C 1)−Hn−1(D1) and so it suffices to show that
for every c ∈ R,

P (Ex0,r;C 1)−Hn−1(D1) ≤ C
{ ˆ

C2∩∂Ex0,r
|qx− c|2 dHn−1 + κrα + ||Ax0,r||Cα

}
.

(7.38)

If |c| > 1/4, then |qx− c| ≥ 1/8 and soˆ
C2∩∂Ex0,r

|qx− c|2 dHn−1 ≥ P (Ex0,r;C 1)

82
(7.39)

and we are done provided we take C ≥ 64. Thus we are left with the case |c| < 1/4.
Set

ζ(G) = P (Ex0,r;C 2 ∩ p−1(G))−Hn−1(G), for G ⊂ D2, (7.40)

which defines a Radon measure on Rn−1, concentrated on D2. We apply Lemma
7.3 in every cylinder K (z, s) with z ∈ Rn−1 and s > 0 such that

D(z, 2s) ⊂ D2, Hn−1(∂∗Ex0,r ∩ ∂K (z, 2s)) = 0, (7.41)

to find that

ζ(D(z, s)) ≤ C
{(
ζ(D(z, 2s) inf

c<1/4

ˆ
K (z,2s)∩∂∗Ex0,r

|qx− c|2

(2s)2
dHn−1

)1/2

+ κrα + ||Ax0,r||Cα
}
. (7.42)
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An approximation argument, setting

h = inf
|c|<1/4

ˆ
C2∩∂∗Ex0,r

|qx− c|2 dHn−1, (7.43)

for brevity, implies by (7.42) that

s2ζ(D(z, s)) ≤ C
(√

s2ζ(D(z, 2s))h+ κrα + ||Ax0,r||Cα
)

(7.44)

whenever D(z, 2s) ⊂ D2 since s < 1. We now use a covering argument to complete
the proof. Let

Q = sup{s2ζ(D(z, s)) : D(z, 2s) ⊂ D2}, (7.45)

and notice Q <∞ since for every D(z, 2s) ⊂ D2, we have

s2ζ(D(z, s)) ≤ ζ(D2) ≤ P (Ex0,r;C 2) <∞. (7.46)

Given D(z, 2s) ⊂ D2, cover D(z, s) by finite many balls {D(zk, s/4)}Nk=1 with
centers zk ∈ D(z, s). This can be done with a bounded number of balls depending
only on the dimension n, that is, N ≤ N(n). So by the subadditivity of the measure
ζ, (7.44), and the definition of Q, we have

s2ζ(D(z, s)) ≤ 16
N∑
k=1

(s
4

)2

ζ
(
D
(
zk,

s

4

))
≤ C

N∑
k=1

(√(s
2

)2

ζ
(
D
(
zk,

s

2

))
h+ κrα + ||Ax0,r||Cα

)
≤ CN(n)

(√
Qh+ κrα + ||Ax0,r||Cα

)
(7.47)

where we used that D(zk, s/4) ⊂ D(z, 2s) ⊂ D2. Hence Q ≤ C(
√
Qh + κrα +

||Ax0,r||Cα) for some C = C(n, λ,Λ, κ, α, r0). By Cauchy-Schwarz, we have C
√
Qh =√

QC2h ≤ 1
2Q+ 1

2C
2h. Combining these gives Q ≤ 1

2Q+C(h+κrα + ||Ax0,r||Cα).
Thus ζ(D1) ≤ Q ≤ C(h + κrα + ||Ax0,r||Cα) for some C = C(n, λ,Λ, κ, α, r0).
Recalling the definitions of ζ(D1) and h, we see that this completes the proof of
(7.38).

8. Tilt-excess decay. We showed in Section 6 that almost-minimizers can be
approximated by ‘almost-harmonic’ Lipschitz functions at points with small excess.
Now we approximate these Lipschitz with harmonic functions which allow us to find
new directions for which the excess experiences quadratic decay.

First we recall a couple lemmas about harmonic functions. These are just the
rescaled versions of [29, Lemma 25.1, Lemma 25.2]. Note that 

Ds

=
1

ωn−1sn−1

ˆ
Ds

(8.1)

denotes the integral average.

Lemma 8.1. There is a positive constant C(n) with the following property. If
v : Rn−1 → R is harmonic in Dr and w : Rn−1 → R is defined by w(z) = v(0) +
∇v(0) · z, then

sup
Dθr

|v − w|
r

≤ C(n)θ2

(  
Dr

|∇′v|2
)1/2

(8.2)
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for every θ ∈ (0, 1/2]. In particular,

 
Dθr

(
|v − w|
θr

)2

≤ C(n)θ2

 
Dr

|∇′v|2. (8.3)

Lemma 8.2 (Harmonic approximation). For every τ > 0 there exists σ > 0 with
the following property. If u ∈W 1,2(Dr) is such that

 
Dr

|∇′u|2 ≤ 1,

∣∣∣∣  
Dr

∇′u · ∇′ϕ
∣∣∣∣ ≤ sup

Dr

|∇′ϕ| σ, ∀ϕ ∈ C∞c (Dr), (8.4)

then there exists a harmonic function v on Dr such that 
Dr

|∇′v|2 ≤ 1, and

 
Dr

|v − u|2 ≤ τr2. (8.5)

We now prove the excess improvement by tilting. This states that if the excess
is small enough in a given direction, then there is a nearby direction in which the
excess at a definite smaller scale sees quadratic decay with the error term seeing
αth power decay. Note in the theorem below, the fraction 1/104 comes from the

rough bound 13 · 4 ·
√

2 ≤ 13 · 4 · 2 = 104 where the 13 comes from the Lipschitz
approximation theorem, the 4 comes from small excess assumption in the reverse
Poincaré inequality, and the

√
2 comes from containing one cylinder inside of another

cylinder that is tilted in a different direction.

Theorem 8.3 (Excess improvement by tilting). Given θ ∈ (0, 1/104], there exist
positive constants ε2 = ε2(n, λ,Λ, κ, α, r0, ||A||Cα , θ) and C3 = C3(n, λ,Λ, κ, α, r0,
||A||Cα) with the following property. If E is a (κ, α)-almost-minimizer of FA in
C(x0, r0, ν0), x0 ∈ ∂E, A(x0) = I, and r < r0 with

eC(E, x0, r, ν0) + rα/2 ≤ ε2, (8.6)

then there exists ν1 ∈ Sn−1 such that

eC(E, x0, θr, ν1) ≤ C3(θ2eC(E, x0, r, ν0) + θαrα/2) (8.7)

Proof. Assuming without loss of generality that x0 = 0 and ν0 = en, it suffices to
prove that given θ ∈ (0, 1/8], there exist positive constants ε2 = ε2(n, λ,Λ, κ, α, r0,
||A||Cα , θ) and C3 = C3(n, λ,Λ, κ, α, r0, ||A||Cα) with the following property. If E
is a (κ, α)-almost-minimizer of FA in C (0, r0, en), A(0) = I, 0 ∈ ∂E, and 13r < r0

with

eC (E, 0, 13r, en) + rα/2 ≤ ε2, (8.8)

then there exists ν1 ∈ Sn−1 such that

eC (E, 0, θr, ν1) ≤ C3(θ2eC (E, 0, 13r, en) + θαrα/2) (8.9)

We set C s = C (0, s, en) for brevity.
We shall select a number of criteria for ε2 to satisfy which together give the

desired result. We place a box around each of these choices to make it easy for
the reader to check that all of these choices are consistent.

Choose ε2 to satisfy

ε2 ≤ ε1 (8.10)



HÖLDER-COEFFICIENT SURFACE ENERGIES 3277

where ε1 is from the Lipschitz approximation theorem. Then eC (E, 0, 13r, en) ≤ ε1

and thus there is a Lipschitz function u : Rn−1 → R such that Lip u ≤ 1 such that

sup
Dr

|u(z)|
r
≤ C1eC (E, 0, 13r, en)1/(2(n−1)), (8.11)

Hn−1(M∆Γ)

rn−1
≤ C1eC (E, 0, 13r, en), (8.12)

 
Dr

|∇′u|2 ≤ C1eC (E, 0, 13r, en), and (8.13)

∣∣∣∣  
Dr

∇′u · ∇′ϕ
∣∣∣∣ ≤ C1 sup

Dr

|∇′ϕ|
(
eC (E, 0, 13r, en) + rα/2) for all ϕ ∈ C1

c (Dr).

(8.14)

where C1 is the constant from the Lipschitz approximation theorem, M = C r∩∂E,
and Γ is the graph of u. Choose ε2 to also satisfy

C1ε2 ≤ 1 . (8.15)

Then C1(eC (E, 0, 13r, en) + rα/2) ≤ 1 and so setting

β = C1(eC (E, 0, 13r, en) + rα/2) and u0 = u/
√
β, (8.16)

we have 
Dr

|∇′u0|2 ≤ 1 and

∣∣∣∣  
Dr

∇′u0 · ∇′ϕ
∣∣∣∣ ≤ sup

Dr

|∇′ϕ|
√
β for all ϕ ∈ C1

c (Dr).

(8.17)

By Lemma 8.2, for every τ > 0 there is σ(τ) > 0 such that if√
β ≤ σ(τ) (8.18)

then there is v0 : Rn−1 → R which is harmonic in Dr such that 
Dr

|u0 − v0|2 ≤ τr2 and

 
Dr

|∇′v0|2 ≤ 1 (8.19)

Setting v =
√
β v0, we have that v is harmonic in Dr and 

Dr

|u− v|2 ≤ τr2β and

 
Dr

|∇′v|2 ≤ β. (8.20)

Since 4θ ≤ 1/2, setting w(z) = v(0) +∇′v(0) · z for z ∈ Dr, we see by Lemma 8.1
that  

D4θr

|v − w|2

(θr)2
≤ C(n)θ2

 
Dr

|∇′v|2 ≤ C(n)θ2β. (8.21)

By (8.20) and D4θr ⊂ Dr,ˆ
D4θr

|u− v|2

(θr)2
≤
ˆ
Dr

|u− v|2

(θr)2
≤ τ

θ2
βrn−1 (8.22)

and so  
D4θr

|u− v|2

(θr)2
≤ C(n)

τ

θn+1
β. (8.23)
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Noting |u− w|2 ≤ 2|u− v|2 + 2|v − w|2, we have that 
D4θr

|u− w|2

(θr)2
≤ C(n)

( τ

θn+1
+ θ2

)
β. (8.24)

We apply the above with τ = θn+3 and choose ε2 to also satisfy√
C1ε2 ≤ σ(θn+3) (8.25)

with σ( · ) as in (8.18). Then
√
β ≤ σ(θn+3) and soˆ

D4θr

|u− w|2 ≤ C(n)θn+3βrn+1. (8.26)

Now let’s set

ν1 =
(−∇′v(0), 1)√
1 + |∇′v(0)|2

∈ Sn−1, c1 = − v(0)√
1 + |∇′v(0)|2

∈ R (8.27)

and estimate f(E, 0, 2θr, ν1). Since C (0, 2θr, ν1) ⊂ C 4θr, we have that

f(E, 0, 2θr, ν1) =
1

(2θr)n+1
inf
c∈R

ˆ
C (0,2θr,ν1)∩∂∗E

|x · ν1 − c|2 dHn−1(x)

≤ C(n)

(θr)n+1

ˆ
C4θr∩∂∗E

|x · ν1 − c1|2 dHn−1(x). (8.28)

This last integral we split in terms of M ∩ Γ and M \ Γ.
For M ∩ Γ, by Lip (u) ≤ 1, (8.27), and (8.26), we haveˆ

C4θr∩M∩Γ

|x · ν1 − c1|2 dHn−1(x)

=

ˆ
D4θr∩p(M∩Γ)

|(z, u(z)) · ν1 − c1|2
√

1 + |∇′u(z)|2dz

≤
√

2

ˆ
D4θr∩p(M∩Γ)

|u− w|2

1 + |∇′v(0)|2

≤
√

2

ˆ
D4θr∩p(M∩Γ)

|u− w|2

≤ C(n)θn+3βrn+1. (8.29)

For M \ Γ, observe thatˆ
C4θr∩(M\Γ)

|x · ν1 − c1|2 dHn−1(x)

=

ˆ
C4θr∩(M\Γ)

|qx+ v(0)− px · ∇′v(0)|2

1 + |∇′v(0)|2
dHn−1(x)

≤
ˆ
C4θr∩(M\Γ)

|qx+ v(0)− px · ∇′v(0)|2 dHn−1(x)

≤ 3Hn−1(M \ Γ)( sup
x∈M
|qx|2 + |v(0)|2 + sup

x∈M
|px|2|∇′v(0)|2). (8.30)

By the height bound, we have

sup
x∈M
|qx|2 ≤ C2

0eC (E, 0, 4r, en)1/(n−1)r2 ≤ C2
0 (13/4)eC (E, 0, 13r, en)1/(n−1)

≤ Cβ1/(n−1)r2. (8.31)
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Also, supx∈M |px|2 ≤ r2. Since v is harmonic,

|v(0)|2 ≤ C(n)

 
Dr

|v|2 and |∇′v(0)|2 ≤ C(n)

r2

 
Dr

|v|2. (8.32)

By (8.20) and supDr
|u|2 ≤ C2

1β
1/(n−1)r2 from (8.11), it follows that

|v(0)|2 + sup
x∈M
|px|2|∇′v(0)|2 ≤ C(n)

 
Dr

|v|2 ≤ C(n)
(  

Dr

|u− v|2 +

 
Dr

|u|2
)

≤ C(θn+3β + β1/(n−1))r2. (8.33)

Since Hn−1(M \ Γ) ≤ Hn−1(M∆Γ) ≤ βrn−1, we haveˆ
C4θr∩(M\Γ)

|x · ν1 − c1|2 dHn−1(x) ≤ Cβrn−1(θn+3β + β1/(n−1))r2. (8.34)

Choose ε2 to also satisfy

ε
1/(n−1)
2 ≤ θn+3 . (8.35)

Then

β1/(n−1) ≤ θn+3. (8.36)

which gives ˆ
C4θr∩(M\Γ)

|x · ν1 − c1|2 dHn−1(x) ≤ Cθn+3βrn+1. (8.37)

Combining these estimates we have

f(E, 0, 2θr, ν1)

≤ C(n)

(θr)n+1

( ˆ
C4θr∩M∩Γ

|x · ν1 − c1|2 dHn−1 +

ˆ
C4θr∩(M\Γ)

|x · ν1 − c1|2 dHn−1

)
≤ Cθ2β. (8.38)

Next, we show that provided ε2 is suitably small, then

eC (E, 0, 4θr, ν1) ≤ ω(1/8, n, λ,Λ, κ, α, r0). (8.39)

By Proposition 5.5 and Proposition 5.6, we have

eC (E, 0, 4θr, ν1) ≤
(13r

4θr

)n−1

eC (E, 0, 13r, ν1) ≤ C̃
(
eC (E, 0, 13r, en) + |en − ν1|2

)
.

(8.40)

where C̃ = C̃(n, λ,Λ, κ, α, r0, θ) Additionally,

|en − ν1|2 =

∣∣∣∣(0, 1)− (−∇′v(0), 1)√
1 + |∇′v(0)|2

∣∣∣∣2
=
|∇′v(0)|2 + (

√
1 + |∇′v(0)|2 − 1)2

1 + |∇′v(0)|2

≤ 2|∇′v(0)|2 ≤ C(n)

r2

 
Dr

|v|2

≤ C(n)

r2

(  
Dr

|u− v|2 +

 
Dr

|u|2
)

≤ C(θn+3β + β1/(n−1)) ≤ Cβ1/(n−1) (8.41)
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where the last several inequalities follow as above. Hence

eC (E, 0, 4θr, ν1) ≤ C̃β1/(n−1). (8.42)

for some C̃ = C̃(n, λ,Λ, κ, α, r0, θ). We choose ε2 to also satisfy

C̃ε
1/(n−1)
2 ≤ ω(1/8, n, λ,Λ, κ, α, r0) (8.43)

so that

eC (E, 0, 4θr, ν1) ≤ ω(1/8, n, λ,Λ, κ, α, r0) (8.44)

since β ≤ ε2. The reverse Poincaré inequality, Theorem 7.1, implies that

eC (E, 0, θr, ν1) ≤ C2(f(E, 0, 2θr, ν1) + (θr)α)

≤ C(θ2β + θαrα)

≤ C(θ2eC (E, 0, 13r, en) + θ2rα/2 + θαrα)

≤ C(θ2eC (E, 0, 13r, en) + θαrα/2) (8.45)

as desired.

9. Regularity of almost-minimizers. We are almost in the position to prove
our main regularity result. All we first need is to prove the following lemma which
allows us to remove the assumption A(x0) = I and obtain an excess-decay estimate
which we will iterate in the proof of our regularity theorem.

Lemma 9.1. For each β ∈ (0, α/4], there exist positive constants θ1 = θ1(n, λ,Λ, κ,
α, r0, ||A||Cα , β) < 1, ε3 = ε3(n, λ,Λ, κ, α, r0, ||A||Cα , β), and C4 = C4(n, λ,Λ, κ, α,
r0, ||A||Cα , β) with the following property. Let E be a (κ, α)-almost-minimizer of
FA in C(x0, r, ν0) with r < r0 and x0 ∈ ∂E, and set

e∗C(E, x, s, ν) = max
{

eC(E, x, s, ν),
sα/2

θn−1+2β
1

}
, for x ∈ Rn, s > 0, ν ∈ Sn−1.

(9.1)

If r < r0 and

e∗C(E, x0, r, ν0) ≤ ε3, (9.2)

then there exists ν1 ∈ Sn−1 such that

e∗C(E, x0, θ1r, ν1) ≤ θ2β
1 e∗C(E, x0, r, ν0), and (9.3)

|ν1 − ν0|2 ≤ C4e
∗
C(E, x0, r, ν0). (9.4)

Proof. We will eventually make choices for positive constants θ̃ = θ̃(n, λ,Λ, κ, α, r0,

||A||Cα , β) < 1 and C̃ = C̃(n, λ,Λ, κ, α, r0, ||A||Cα , β) show that (9.3) holds if we
set

θ1 =
( λ

4Λ

)1/2

θ̃ and ε3 = C̃−1ε2 (9.5)

where ε2 is the constant from Proposition 8.3 applied with θ = θ̃.
Since 2β ≤ α/2 and θ1 < 1, we have

(θ1r)
α/2

θn−1+2β
1

≤ θα/21 e∗C (E, x0, r, ν0) ≤ θ2β
1 e∗C (E, x0, r, ν0). (9.6)
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Consequently, we only need to show the existence of ν1 ∈ Sn−1 such that

eC (E, x0, θ1r, ν1) ≤ θ2β
1 e∗C (E, x0, r, ν0). (9.7)

If eC (E, x0, r, ν0) ≤ rα/2, then by Proposition 5.5 we have

eC (E, x0, θ1r, ν0) ≤ 1

θn−1
1

eC (E, x0, r, ν0)

≤ θ2β
1

rα/2

θn−1+2β
1

≤ θ2β
1 e∗C (E, x0, r, ν0) (9.8)

and so we can take ν1 = ν0. Otherwise, eC (E, x0, r, ν0) ≥ rα/2. We will proceed
by applying Proposition 8.3, but we need to use the change of variable Tx0

since we
are not assuming that A(x0) equals the I. This enables us to work with the set Ex0

which is an almost-minimizer of FAx0 with Ax0(x0) = I. Let ν̃0 denote the image
of ν0 under this change of variable, that is,

ν̃0 =
A1/2(x0)ν0

|A1/2(x0)ν0|
. (9.9)

First note that

C
(
x0,

r

(2Λ)1/2
, ν̃0

)
⊂ B

(
x0,

r

Λ1/2

)
and W x0

(
x0,

r

Λ1/2

)
⊂ B(x0, r) ⊂ C (x0, r, ν0).

(9.10)

Then Ex0
is an almost-minimizer of FAx0 in C

(
x0,

r
(2Λ)1/2

, ν̃0

)
by Proposition 4.1

since

C
(
x0,

r

(2Λ)1/2
, ν̃0

)
⊂ Tx0

(
W x0

(
x0,

r

Λ1/2

))
⊂ Tx0

(
C (x0, r, ν0)

)
. (9.11)

It also follows by (9.10) and Proposition 5.7 that

eC

(
Ex0 , x0,

r

(2Λ)1/2
, ν̃0

)
≤ 2(n−1)/2eB

(
Ex0 , x0,

r

Λ1/2
, ν̃0

)
≤ 2(n−1)/2CeW

(
E, x0,

r

Λ1/2
, ν0

)
≤ CeC (E, x0, r, ν0). (9.12)

Hence by our assumption eC (E, x0, r, ν0) ≥ rα/2

eC

(
Ex0

, x0,
r

(2Λ)1/2
, ν̃0

)
+

rα/2

(2Λ)α/4
≤ (C + (2Λ)−α/4)eC (E, x0, r, ν0)

≤ CeC (E, x0, r, ν0)

≤ C̃ε3 ≤ ε2 (9.13)

where at this step we make our choice for C̃ = C. Thus Proposition 8.3 applies to
Ex0

with radius r/(2Λ)1/2 and so there is ν̃1 ∈ Sn−1 such that

eC

(
Ex0

, x0,
θ̃r

(2Λ)1/2
, ν̃1

)
≤ C3

(
θ̃2eC (Ex0

, x0,
r

(2Λ)1/2
, ν̃0) + θ̃α

rα/2

(2Λ)α/4

)
≤ Cθ̃αeC (E, x0, r, ν0). (9.14)

Let ν1 ∈ Sn−1 denote the preimage of ν̃1 under the change of variable Tx0 , that is,

ν1 =
A−1/2(x0)ν̃1

|A−1/2(x0)ν̃1|
. (9.15)
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Note that

C
(
x0,
( λ

4Λ

)1/2

θ̃r, ν1) ⊂ B
(
x0,
( λ

2Λ

)1/2

θ̃r
)
⊂W x0

(
x0,

θ̃r

(2Λ)1/2

)
. (9.16)

So by definition of θ1 and Proposition 5.7, we have that

eC (E, x0, θ1r, ν1) ≤ (2/λ)(n−1)/2eW

(
E, x0,

θ̃r

(2Λ)1/2
, ν1

)
≤ (2/λ)(n−1)/2CeB

(
Ex0 , x0,

θ̃r

(2Λ)1/2
, ν̃1

)
≤ CeC

(
Ex0

, x0,
θ̃r

(2Λ)1/2
, ν̃1

)
. (9.17)

Combining this with (9.14) yields

eC (E, x0, θ1r, ν1) ≤ Cθ̃αeC (E, x0, r, ν0) ≤ Cθ̃α−2βθ2β
1 eC (E, x0, r, ν0). (9.18)

Using this C we now make our choice for θ̃ by setting

θ̃ = min
{ 1

104
,
( 1

C

)1/(α−2β)}
. (9.19)

The condition θ̃ ∈ (0, 1/104] allows us to apply Proposition 8.3 as above and since

Cθ̃α−2β ≤ 1, (9.18) implies

eC (E, x0, θ1r, ν1) ≤ θ2β
1 eC (E, x0, r, ν0) ≤ θ2β

1 e∗C (E, x0, r, ν0), (9.20)

completing the proof of (9.3).
Now we turn to (9.4). Integrating the inequality |ν1 − ν0|2 ≤ 2|νE − ν1|2+

2|νE − ν0|2 over the set C (x0, θ1r, ν1) which is contained in C (x0, r, ν0) gives

P (E;C (x0, θ1r, ν1))

(θ1r)n−1
|ν1 − ν0|2 ≤ 4eC (E, x0, θ1r, ν1) +

4

θn−1
1

eC (E, x0, r, ν0).

(9.21)

The lower density estimate of (4.74) along with (9.3) imply

c|ν1 − ν0|2 ≤ 4(1 + θ1−n
1 )eC (E, x0, r, ν0) (9.22)

completing the proof of (9.4).

Now we prove our main theorem. Before we start, let’s briefly describe the
structure of the argument. In the Lipschitz approximation theorem, Theorem 6.1,
we saw that given a small excess assumption, there is a Lipschitz function u :
Rn−1 → R such that, setting

M = C (x0, r, ν) ∩ ∂E and M0 = {x ∈M : sup
0<s<8r

eC (E, x, s, ν) ≤ δ0}, (9.23)

the translated graph graph Γ = x0 +{(z, u(z)) : z ∈ Dr} of u over Dr contains M0.
We proceed by iterating (9.3) at points x ∈M to obtain a sequence of unit vectors
νj(x) for which certain decay estimates of the excess hold, namely (9.35) and (9.36).
Using this, we show that x ∈ ∂∗E and that νj(x) converges to νE(x). Moreover, our
iteration gives estimates for Hölder continuity of νE . Lastly, we show M0 in fact
equals M , that is, C (x0, r, ν)∩ ∂E equals the graph of u. Hölder estimates for ∇′u
follow from the ones for νE .
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Theorem 9.2 (C1,α/4-regularity of almost-minimizers of FA). There exist posi-
tive constants ε4 = ε4(n, λ,Λ, κ, α, r0, ||A||Cα) and C5 = C5(n, λ,Λ, κ, α, r0, ||A||Cα)
with the following property. If E is a (κ, α)-almost-minimizer of FA in C(x0, 13r, ν0)
with 13r < r0 and x0 ∈ ∂E such that

eC(E, x0, 13r, ν0) + rα/2 ≤ ε4, (9.24)

then there exists a Lipschitz function u : Rn−1 → R with Lip (u) ≤ 1 satisfying

sup
Rn−1

|u|
r
≤ C5eC(E, x0, 13r, ν0)1/(2(n−1)) (9.25)

such that

C(x0, r, ν0) ∩ ∂E = x0 +
{

(z, u(z)) : z ∈ Dr

}
, (9.26)

C(x0, r, ν0) ∩ E = x0 +
{

(z, t) : z ∈ Dr, −r < t < u(z)
}

(9.27)

and u ∈ C1,α/4(Dr) with

|∇′u(z)−∇′u(w)| ≤ C5

(
eC(E, x0, 13r, ν0) + rα/2

)1/2( |z − w|
r

)α/4
, (9.28)

|νE(x)− νE(y)| ≤ C5

(
eC(E, x0, 13r, ν0) + rα/2

)1/2( |x− y|
r

)α/4
, (9.29)

for every z, w ∈ Dr and x, y ∈ C(x0, r, ν0) ∩ ∂E.

Proof. Without loss of generality we may assume x0 = 0. Let θ1 < 1, ε3, and
C4 denote the constants from Lemma 9.1 with the choice β = α/4 which hence
depend only on n, λ,Λ, κ, α, r0, and ||A||Cα . As mentioned before, we will choose

ε4 ≤ ε3 ≤ ε2 ≤ ε1 and apply the Lipschitz approximation theorem, Theorem 6.1.

This gives that there is a Lipschitz function u : Rn−1 → R with Lip u ≤ 1 satisfying

sup
Rn−1

|u|
r
≤ C1eC (E, 0, 13r, ν0)1/2(n−1) (9.30)

and such that, setting

M = C (0, r, ν0) ∩ ∂E and M0 = {x ∈M : sup
0<s<8r

eC (E, x, s, ν0) ≤ δ0}, (9.31)

the translated graph graph Γ = {(z, u(z)) : z ∈ Dr} of u over Dr contains M0, that
is, M0 ⊂M ∩ Γ. As in Lemma 9.1, we define

e∗C (E, x, s, ν) = max
{

eC (E, x, s, ν),
sα/2

θ
n−1+α/2
1

}
, for x ∈ Rn, s > 0, ν ∈ Sn−1.

(9.32)

Let x ∈M . Then C (x, 8r, ν0) ⊂ C (0, 13r, ν0) and so

e∗C (E, x, 8r, ν0) ≤ eC (E, x, 8r, ν0) +
(8r)α/2

θ
n−1+α/2
1

≤
(13

8

)n−1

eC (E, 0, 13r, ν0) +
(8r)α/2

θ
n−1+α/2
1

≤
(13

8

)n−1 8α/2

θ
n−1+α/2
1

(eC (E, 0, 13r, ν0) + rα/2)

= C(eC (E, 0, 13r, ν0) + rα/2). (9.33)
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where C = C(n, λ,Λ, κ, α, r0, ||A||Cα). For this constant C, choose ε4 to also satisfy

ε4 ≤ C−1ε3 (9.34)

so that e∗C (E, x, 8r, ν0) ≤ ε3.

Claim. There exists a sequence {νj(x)}∞j=1 ⊂ Sn−1 and ν(x) ∈ Sn−1 with νj(x)→
ν(x) such that for every j ≥ 0,

e∗C(E, x, θj18r, νj(x)) ≤ θ(α/2)j
1 e∗C(E, x, 8r, ν0) (9.35)

|ν(x)− νj(x)|2 ≤ C θ
(α/2)j
1 e∗C(E, x, 8r, ν0) (9.36)

for some constant C = C(n, λ,Λ, κ, α, r0, ||A||Cα).

Proof of claim. Since e∗C (E, x, 8r, ν0) ≤ ε3, we may apply Lemma 9.1 to find
ν1(x) ∈ Sn−1 such that

e∗C (E, x, θ18r, ν1(x)) ≤ θα/21 e∗C (E, x, 8r, ν0), (9.37)

|ν1 − ν0|2 ≤ C4e
∗
C (E, x, 8r, ν0). (9.38)

In particular, since θ1 < 1,

e∗C (E, x, θ18r, ν1(x)) ≤ e∗C (E, x, 8r, ν0) ≤ ε3. (9.39)

Proceeding inductively we find a sequence {νj(x)}∞j=0 ⊂ Sn−1 such that

e∗C (E, x, θj+1
1 8r, νj+1(x)) ≤ θα/21 e∗C (E, x, θj18r, νj(x)) ≤ ε3, (9.40)

|νj+1(x)− νj(x)|2 ≤ C4e
∗
C (E, x, θj18r, νj(x)). (9.41)

for j ≥ 0. Stringing together the inequalities of (9.40) gives (9.35) and stringing
together the inequalities of (9.41) gives

|νj+1(x)− νj(x)|2 ≤ C4θ
(α/2)j
1 e∗C (E, x, 8r, ν0) (9.42)

for j ≥ 0. Given 0 ≤ j < h, it follows that

|νh(x)− νj(x)| ≤
h−1∑
k=j

|νk+1(x)− νk(x)| ≤
(
C4e

∗
C (E, x, 8r, ν0)

)1/2 h−1∑
k=j

θ
(α/4)k
1

≤
(
C4e

∗
C (E, x, 8r, ν0)

)1/2 ∞∑
k=j

θ
(α/4)k
1

=
(
C4e

∗
C (E, x, 8r, ν0)

)1/2 θ
(α/4)j
1

1− θα/41

(9.43)

and so

|νh(x)− νj(x)|2 ≤ C θ
(α/2)j
1 e∗C (E, x, 8r, ν0) (9.44)

where C = C(n, λ,Λ, κ, α, r0, ||A||Cα) since θ1 depends only on these constants
too. Hence {νj(x)}∞j=1 ⊂ Sn−1 is Cauchy and so there is ν(x) ∈ Sn−1 such that
νj(x)→ ν(x) as j →∞. Sending h→∞ in (9.44) gives (9.36) and this first claim
is proved.

Claim. There is a constant C = C(n, λ,Λ, κ, α, r0, ||A||Cα) such that

e∗C(E, x, s, ν(x)) ≤ C
(s
r

)α/2
e∗C(E, x, 8r, ν0) ∀s ∈ (0, 4r), (9.45)

eC(E, x, s, ν0) ≤ Ce∗C(E, x, 8r, ν0) ∀s ∈ (0, 8r). (9.46)
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Proof of claim. Given s ∈ (0, 4r), there is j ≥ 0 such that

θj+1
1 8r < 2s ≤ θj18r. (9.47)

Integrating |νE−ν(x)|2 ≤ 2|νE−νj(x)|2+2|ν(x)−νj(x)|2 with respect toHn−1 ∂∗E
over C (x, s, ν(x)) ⊂ C (x, 2s, νj(x)), and using the the perimeter bound (4.74) and
(9.36), it follows that

e∗C (E, x, s, ν(x)) ≤ 2ne∗C (E, x, 2s, νj(x)) + C|ν(x)− νj(x)|2

≤ 2n
(θj18r

2s

)n−1

e∗C (E, x, θj18r, νj(x)) + C|ν(x)− νj(x)|2

≤ 2n
( 1

θ1

)n−1

e∗C (E, x, θj18r, νj(x)) + C|ν(x)− νj(x)|2

≤ Cθ(α/2)j
1 e∗C (E, x, 8r, ν0) ≤ C

θ
α/2
1

(θj+1
1 )α/2e∗C (E, x, 8r, ν0)

≤ C
(s
r

)α/2
e∗C (E, x, 8r, ν0) (9.48)

which is (9.45). Now, take s ∈ (0, 8r). In the case where s ∈ (2r, 8r), it follows that

eC (E, x, s, ν0) ≤
(8r

s

)n−1

eC (E, x, 8r, ν0) ≤ 4n−1e∗C (E, x, 8r, ν0). (9.49)

Otherwise, s ∈ (0, 2r) and so integrating |νE − ν0|2 ≤ 2|νE − ν(x)|2 + 2|ν(x)− ν0|2
with respect to Hn−1 ∂∗E over C (x, s, ν0) ⊂ C (x, 2s, ν(x)), using (9.45) with
2s ∈ (0, 4r) and (9.36) with j = 0 gives

eC (E, x, s, ν0) ≤ 2neC (E, x, 2s, ν(x)) + C|ν(x)− ν0|2

≤ 2nC
(2s

r

)α/2
e∗C (E, x, 8r, ν0) + C|ν(x)− ν0|2

≤ Ce∗C (E, x, 8r, ν0). (9.50)

Hence (9.46) holds. This completes the proof of our second claim.

Suppose x, y ∈ M = C (0, r, ν0) ∩ ∂E. Then |x− y| <
√

2r and so there is some
j ≥ 0 such that

θj+1
1

√
2r ≤ |x− y| < θj1

√
2r. (9.51)

Integrating |νj(x)−νj(y)|2 ≤ 2|νE−νj(x)|2 + 2|νE−νj(y)|2 with respect to Hn−1

∂∗E over B(x, θj1r) ⊂ C (x, θj1r, νj(x)) ⊂ C (y, θj18r, νj(y)) and using the perimeter
bounds (4.74) gives

c|νj(x)− νj(y)|2 ≤ 4eC (E, x, θj1r, νj(x)) + 4 · 8n−1eC (E, y, θj18r, νj(y))

≤ 4 · 8n−1eC (E, x, θj18r, νj(x)) + 4 · 8n−1eC (E, y, θj18r, νj(y)).
(9.52)

Hence by (9.35) and the definition of e∗C we have, eC

|νj(x)− νj(y)|2 ≤ Cθ(α/2)j
1 (e∗C (E, x, 8r, ν0) + e∗C (E, y, 8r, ν0)). (9.53)
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By this, (9.36), (9.33), and θj+1
1

√
2r ≤ |x− y|, it follows that

|ν(x)− ν(y)|2 ≤ 3(|ν(x)− νj(x)|2 + |νj(x)− νj(y)|2 + |νj(y)− ν(y)|2)

≤ Cθ(α/2)j
1 (e∗C (E, x, 8r, ν0) + e∗C (E, y, 8r, ν0))

≤ Cθ(α/2)j
1 (eC (E, 0, 13r, ν0) + rα/2)

≤ C(eC (E, 0, 13r, ν0) + rα/2)
( |x− y|

r

)α/2
(9.54)

and so

|ν(x)− ν(y)| ≤ C
(
eC (E, 0, 13r, ν0) + rα/2

)1/2( |x− y|
r

)α/4
. (9.55)

We now prove x ∈ ∂∗E and νE(x) = ν(x) so that (9.55) becomes (9.29), proving
the Hölder continuity of the outer normal to E.

By (9.45), lims→0+ eB (E, s, r, ν(x)) = 0. So by perimeter bounds (4.74), we have

lim
s→0+

1

P (E;B(x, s))

ˆ
B(x,s)∩∂∗E

|νE(z)− ν(x)|2

2
dHn−1(z) = 0. (9.56)

Expanding |νE(z)− ν(x)|2 = |νE(z)|2 − 2νE(z) · ν(x) + |ν(x)|2 = 2− 2νE(z) · ν(x)
implies

ν(x) · lim
s→0+

1

P (E;B(x, s))

ˆ
B(x,s)∩∂∗E

νE(z) dHn−1(z) = 1. (9.57)

Since |ν(x)| = 1 and∣∣∣ lim
s→0+

1

P (E;B(x, s))

ˆ
B(x,s)∩∂∗E

νE(z) dHn−1(z)
∣∣∣ ≤ 1, (9.58)

this implies

ν(x) = lim
s→0+

1

P (E;B(x, s))

ˆ
B(x,s)∩∂∗E

νE dHn−1. (9.59)

Since ν(x) ∈ Sn−1, this by definition means x ∈ ∂∗E with νE(x) = ν(x) and hence
(9.29) holds.

Combining (9.46) with (9.33) gives

eC (E, x, s, ν0) ≤ C(eC (E, 0, 13r, ν0) + rα/2), ∀s ∈ (0, 8r). (9.60)

Lastly, for this constant C, we choose ε4 to also satisfy

ε4 ≤ C−1δ0 (9.61)

where δ0 is the constant from the Lipschitz approximation theorem. It follows for
x ∈M that

sup
0<s<8r

eC (E, x, s, ν0) ≤ δ0 (9.62)

and so M = M0 ⊂ Γ. By the Lipschitz graph criterion, [29, Theorem 23.1], the
graph of the Lipschitz function u coincides with ∂E in C (0, r, ν0). Moreover,

νE(x) =
(−∇′u(px), 1)√
1 + |∇′u(px)|2

(9.63)
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for all x ∈ C (0, r, ν0) ∩ ∂E. Since Lip u ≤ 1, for x, y ∈ C (0, r, ν0) ∩ ∂E, it follows
that

|∇′u(px)−∇′u(py)|2 ≤2

∣∣∣∣ ∇′u(px)√
1 + |∇′u(px)|2

− ∇′u(py)√
1 + |∇′u(px)|2

∣∣∣∣2
≤4

∣∣∣∣ ∇′u(px)√
1 + |∇′u(px)|2

− ∇′u(py)√
1 + |∇′u(py)|2

∣∣∣∣2
+ 4

∣∣∣∣ ∇′u(py)√
1 + |∇′u(py)|2

− ∇′u(py)√
1 + |∇′u(px)|2

∣∣∣∣2
≤4|νE(x)− νE(y)|2 (9.64)

and |x− y|2 = |px− py|2 + |u(px)− u(py)|2 ≤ 2|px− py|2. So by (9.29) we have
u is C1,α/4 with the estimate (9.28).

Theorem 9.3 (Regularity of the reduced boundary and characterization of the
singular set). If U is an open set in Rn, n ≥ 2, and E is a (κ, α)-almost-minimizer
of FA in U , then U ∩∂∗E is a C1,α/4-hypersurface that is relatively open in U ∩∂E,
and it is Hn−1-equivalent to U ∩ ∂E. Hence the singular set Σ(E;U) of E in U

Σ(E;U) = U ∩ (∂E \ ∂∗E), (9.65)

is closed. Moreover, Σ(E;U) is characterized in terms of the excess as follows:

Σ(E;U)

=
{
x ∈ U ∩ ∂E : inf

0<13r<r0,B(x,13
√

2r)⊂⊂U

(
inf

ν0∈Sn−1
eC(E, x, 13r, ν0) + rα/2

)
≥ ε4

}
(9.66)

where ε4 = ε4(n, λ,Λ, κ, α, r0, ||A||Cα) is the positive constant from Theorem 9.2.

Proof. The regularity and relative openness of U ∩ ∂∗E follows from Theorem 9.2
and the Hn−1-equivalence follows from Proposition 4.5. Consequently, Σ(E;U) is
closed. Hence all we need to show is (9.66). Consider the set defined by

Σ (9.67)

=
{
x ∈ U ∩ ∂E : inf

0<13r<r0,B(x,13
√

2r)⊂⊂U

(
inf

ν0∈Sn−1
eC (E, x, 13r, ν0) + rα/2

)
≥ ε4

}
.

We show Σ = Σ(E;U).
By Proposition 5.4, for each x ∈ U ∩ ∂∗E, we have

lim
r→0+

(
inf

ν0∈Sn−1
eC (E, x, 13r, ν0) + rα/2

)
= 0 (9.68)

and so x ∈ (U ∩ ∂E) \ Σ. Hence U ∩ ∂∗E ⊂ (U ∩ ∂E) \ Σ.
If x ∈ (U ∩∂E)\Σ, then there is 0 < 13r < r0, ν0 ∈ Sn−1, with C (x, 13r, ν0) ⊂⊂

U such that

eC (E, x, 13r, ν0) + rα/2 < ε5. (9.69)

By Theorem 9.2, C (x, r, ν0)∩∂E coincides with the graph of a C1,α/4-function and
so x ∈ ∂∗E. Hence (U ∩ ∂E) \ Σ ⊂ U ∩ ∂∗E.

Now that we have established regularity of almost-minimizers at points in the
reduced boundary, we wish to study the singular set which we do in the next section.
However, before we move on to that, we prove the convergence of the outer unit
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normal vectors along sequences of almost-minimizers and points in the reduced
boundaries. The contrapositive of this will be a useful tool in showing that the
blow-ups at a singular point must converge to a singular point.

We first need the following lemma regarding almost upper semicontinuity of the
excess. Recall from Section 4 the class A of uniformly elliptic, Hölder continuous
matrices with respect to the given universal constants and the class M of (κ, α)-
almost-minimizers of FA with A ∈ A.

Lemma 9.4 (Almost upper semicontinuity of the excess). Suppose that {Eh}h∈N ⊂
M is a sequence of (κ, α)-almost-minimizers of FAh in U at scale rh, r0 =
lim infh→∞ rh > 0, V ⊂⊂ U is an open set with P (V ) <∞ such that V ∩Eh → E for
a set E of finite perimeter, and Ah → A uniformly on compact sets for some A ∈ A.
Furthermore suppose x0 ∈ V ∩ ∂E and r < r0 with A(x0) = I, C(x0, r, ν0) ⊂⊂ V ,
and

Hn−1(∂∗E ∩ ∂C(x0, r, ν0)) = 0, (9.70)

then

lim sup
h→∞

eC(Eh, x0, r, ν0) ≤ eC(E, x0, r, ν0) + Crα. (9.71)

for some positive constant C = C(n, λ,Λ, κ, α, r0, ||A||Cα).

Proof. By Proposition 4.7, E is a (κ, α)-almost-minimizer of FA in V at scale r0,
satisfying

µV ∩Eh
∗
⇀ µE , (9.72)

FAh(Eh; · ) ∗⇀ FA(E; · ) in V. (9.73)

We write C r for C (x0, r, ν) to simplify notation and claim

lim sup
h→∞

P (Eh;C r) ≤ P (E;C r) + Crα+n−1 (9.74)

for some C = C(n, λ,Λ, κ, α, r0, ||A||Cα).
To show this, note

|P (Eh;C r)− P (E;C r)|
≤ |P (Eh;C r)− FAh(Eh;C r)|+ |FAh(Eh;C r)− P (E;C r)|. (9.75)

Noting |A(x)− I| ≤ ||A||Cα |x− x0|α, we bound the first term of (9.75) by

|P (Eh;C r)− FAh(Eh;C r)|
≤ |P (Eh;C r)− FA(Eh;C r)|+ |FA(Eh;C r)− FAh(Eh;C r)|
≤ C||A||CαrαP (Eh;C r) + ||A−Ah||P (Eh;C r). (9.76)

Similarly, for the second term of (9.75), we have

|FAh(Eh;C r)− P (E;C r)|
≤ |FAh(Eh;C r)− FA(E;C r)|+ |FA(E;C r)− P (E;C r)|
≤ |FAh(Eh;C r)− FA(E;C r)|+ C||A||CαrαP (E;C r). (9.77)

Since x0 ∈ V ∩∂∗E, by Proposition 4.7 there is a sequence xh ∈ V ∩∂∗Eh such that
xh → x0. Given r < s, we have C r = C (x0, r, ν) ⊂ C (xh, s, ν) ⊂⊂ U for large h.
So

lim sup
h→∞

P (Eh;C r) ≤ lim sup
h→∞

P (Eh;C (xh, s, ν)) ≤ Csn−1 (9.78)
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by the upper perimeter bound (4.74) for Eh. Hence lim suph→∞ P (Eh;C r) ≤
Crn−1. We also have P (E;C r) ≤ Crn−1. So by (9.75), (9.76), and (9.77), we have

|P (Eh;C r)− P (E;C r)| ≤|FAh(Eh;C r)− FA(E;C r)|
+ C||A||Cαrα+n−1 + C||A−Ah||rn−1. (9.79)

Note FA(V ∩ Eh;C r) = FA(Eh;C r) because C r ⊂⊂ V and so FA(Eh;C r) →
FA(E;C r) by (9.73) and Hn−1(∂∗E∩∂C r) = 0. This and the uniform convergence
of Ah → A on C r complete the proof of our claim.

Note µV ∩Eh(C r) = µEh(C r) because C r ⊂⊂ V and so

ν · µEh(C r)→ ν · µE(C r) (9.80)

by (9.72) and Hn−1(∂∗E∩∂C r) = 0. By |ν−νE |2 = 2(1−(ν ·νE)) and |ν−νEh |2 =
2(1− (ν · νEh)), we have

eC (E, x0, r, ν) =
P (E;C r)− ν · µE(C r)

rn−1
(9.81)

and

eC (Eh, x0, r, ν) =
P (Eh;C r)− ν · µEh(C r)

rn−1
. (9.82)

From these equations, (9.74), and (9.80), we obtain (9.71).

Theorem 9.5 (Convergence of outer unit normals). If {Eh}h∈N and E are (κ, α)-
almost-minimizers of FAh and FA, respectively, in the open set U ⊂ Rn at scale r0,
and

Eh
loc→ E, Ah → A uniformly on compact sets,

xh ∈ U ∩ ∂Eh, x0 ∈ U ∩ ∂∗E, xh → x0, (9.83)

then xh ∈ U ∩ ∂∗Eh for h large enough. Moreover,

lim
h→∞

νEh(xh) = νE(x0). (9.84)

Proof. Considering the translated sets Eh + (x0 − xh), note that

νEh(xh) = νEh+(x0−xh)(x0), (9.85)

Eh+ (x0−xh)
loc→ E, and Ah( · + (x0−xh))→ A uniformly on compact sets. Hence

by replacing Eh with Eh + (x0 − xh) and Ah with Ah( · + (x0 − xh)), and U with
{x ∈ U : dist(x, ∂U) > δ} for some sufficiently small δ > 0, we may assume that
xh = x0 for every h.

By applying the change of variable Tx0
on Eh, E and Ah, A, we may assume

without loss of generality that A(x0) = I. Choose an open set V ⊂⊂ U with x0 ∈ V
and P (V ) < ∞. Lemma 9.4 with Eh ∩ V

loc→ E ∩ V implies there is a constant C
for which

lim sup
h→∞

eC (Eh, x0, 13r, ν0) + rα/2 ≤ eC (E, x0, 13r, ν0) + Crα/2 (9.86)

holds for every r > 0 such that C (x0, 13r, ν0) ⊂⊂ V and Hn−1(∂∗E ∩ ∂C (x0, 13r,
ν0)) = 0. Since x0 ∈ U ∩ ∂∗E, by Proposition 5.4 there is r > 0 and ν0 ∈ Sn−1 with
0 < 13r < r0, C (x0, 13r, ν0) ⊂⊂ V , Hn−1(∂∗E ∩ ∂C (x0, 13r, ν0)) = 0, and

eC (E, x0, 13r, ν0) + Crα/2 < ε4 (9.87)
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where ε4 is the constant from Theorem 9.2. Then eC (Eh, x0, 13r, ν0)+rα/2 < ε4 for
large h and so by Theorem 9.3, x0 ∈ U ∩ ∂∗Eh for large h. Moreover, by Theorem
9.2 there exist Lipschitz functions uh, u;Dr → R with Lip uh,Lip u ≤ 1 such that

C (x0, r, ν0) ∩ Eh = x0 +
{

(z, t) : z ∈ Dr, −r < t < uh(z)
}
, (9.88)

C (x0, r, ν0) ∩ E = x0 +
{

(z, t) : z ∈ Dr, −r < t < u(z)
}
, (9.89)

and such that for z, w ∈ Dr,

|∇′uh(z)−∇′uh(w)| ≤ C
( |z − w|

r

)α/4
(9.90)

where C = C(n, λ,Λ, κ, α, r0, suph ||Ah||Cα). Thenˆ
Dr

|uh − u| = |(Eh∆E) ∩C (x0, r, ν0)| → 0. (9.91)

It follows by integration by parts and the density of C1
c (Dr) in Cc(Dr) thatˆ

Dr

ϕ∇′uh →
ˆ
Dr

ϕ∇′u (9.92)

for every ϕ ∈ Cc(Dr). By (9.90), {∇′uh} is equicontinuous and it is bounded by
Lip uh ≤ 1. Thus by Arzelà-Ascoli it is compact under uniform convergence. By
(9.92), ∇′u is the only possible limit point of {∇′uh}. Hence ∇′uh → ∇′u uniformly
on Dr. Consequently, as x0 ∈ ∂∗Eh ∩ ∂∗E, it follows that

νEh(x0) =
(−∇′uh(0), 1)√
1 + |∇′uh(0)|2

→ (−∇′u(0), 1)√
1 + |∇′u(0)|2

= νE(x0) (9.93)

as desired.

10. Analysis of the singular set. In this final section, we turn to the portion of
Theorem 1.1 which addresses the size of singular set.

Theorem 10.1 (Dimensional estimates of singular sets of (κ, α)-almost-minimizers).
If E is a (κ, α)-almost-minimizer of FA in the open set U ⊂ Rn at scale r0, then
the following hold true:

(i) if 2 ≤ n ≤ 7, then Σ(E;U) is empty;
(ii) if n = 8, then Σ(E;U) has no accumulation points in U ;

(iii) if n ≥ 9, then Hs(Σ(E;U)) = 0 for every s > n− 8.

This result is known to be sharp in the case of perimeter minimizers in the sense
that Simons’ cone,

Σ =
{
x ∈ R8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8

}
, (10.1)

is a perimeter minimizer in R8 with singular set {0}, and for n ≥ 9, Σ × Rn−8

is perimeter minimizer in Rn that gives Hn−8(Σ × Rn−8) > 0. Since our surface
energies FA include perimeter when A = I, our theorem is also sharp.

We use blow-up analysis and a standard Federer dimension reduction argument
to prove Theorem 10.1. The next theorem shows the convergence of the singular
set along sequences of almost-minimizers. Recall again from Section 4 the class A

of uniformly elliptic, Hölder continuous matrices with respect to the given universal
constants and the class M of (κ, α)-almost-minimizers of FA with A ∈ A.
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Theorem 10.2 (Closure and local uniform convergence of singularities). If {Eh}h∈N
⊂ M and E ∈ M are (κ, α)-almost-minimizers of FAh and FA, respectively, in the
open set U at scale r0, and

Eh
loc→ E, Ah → A uniformly on compact sets,

xh ∈ Σ(Eh;U), x0 ∈ U ∩ ∂E, xh → x0, (10.2)

then x0 ∈ Σ(E;U). Moreover, given ε > 0 and H ⊂ U compact, then

Σ(Eh;U) ∩H ⊂ Iε(Σ(E;U) ∩H) (10.3)

for all large h where Iε denotes the ε neighborhood of a set.

Proof. It must be that x0 ∈ Σ(E;U) since x0 ∈ U ∩ ∂∗E would contradict The-
orem 9.5. We prove (10.3) by contradiction. Indeed, assume there exist ε > 0,
H ⊂ U compact, h(k) → ∞ as k → ∞, and yk ∈ Σ(Eh(k);U) ∩ H such that
dist(yk,Σ(E;U) ∩H) ≥ ε. By compactness of H and reducing to a further subse-
quence, we may assume yk → y0 for some y0 ∈ H ⊂ U . By Proposition 4.7 (i), we
have y0 ∈ U ∩ ∂E. By the first part of this theorem, we have y0 ∈ Σ(E;U). This
implies yk ∈ Iε(Σ(E;U) ∩H) for large k, a contradiction.

10.1. Existence of blow-up limits. We now prove the existence of blow-up limits
along subsequences and their convergence to singular minimizing cones. We say that
F is a cone with vertex x0 if it is invariant under blow-ups at x0, that is, if

F = Fx0,r =
F − x0

r
(10.4)

for all r > 0. If F is a cone which is a (global) minimizer of FA in Rn and
Σ(F ) = Σ(F ;Rn) 6= ∅, we say that F is a singular minimizing cone of FA. A
singular minimizing cone of perimeter we simply refer to as a singular minimizing
cone.

Note that if F is a singular minimizing cone, then 0 ∈ Σ(F ), for otherwise the
blow-ups F0,r would converge to a half-space, implying that F = F0,r is a half-space,
in contradiction with Σ(F ) 6= ∅.

Theorem 10.3 (Existence of blow-up limits at singular points). If E is a (κ, α)-
almost-minimizer of FA in the open set U at scale r0, x0 ∈ Σ(E;U), and rh → 0+,
then, setting

Eh = Ex0,rh =
E − x0

rh
, and Ah(x) = Ax0,rh(y) = A(rhx+ x0), (10.5)

there exist h(k)→∞ as k →∞ and a set of locally finite perimeter F in Rn such
that

Eh(k)
loc→ F, µEh(k)

∗
⇀ µK ,

FAh(k)(Eh(k); · )
∗
⇀ FA(x0)(F ; · ) on bounded subsets of Rn (10.6)

and F is singular minimizing cone of FA(x0) in Rn with vertex 0.

Proof. The change of variable Tx0 allows us to assume without loss of generality
that A(x0) = I since the convergence properties and cones are preserved under
this affine transformation. For each R > 0, BR is eventually contained in Ux0,rh

for large h. Note that Eh is a (κrαh , α)-almost-minimizer of FAh in Ux0,rh at scale
r0/rh by Proposition 4.2 and ||Ah||Cα ≤ rαh ||A||Cα . Hence ||Ah||Cα ≤ M1 and
||Ah(x)|| ≤ ||A(rhx + x0)|| ≤ M2 for some positive constants M1 and M2. Once
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rαh ≤ 1, we have Eh is a (κ, α)-almost-minimizer of FAh . Thus we may apply the
compactness of Proposition 4.6 and Proposition 4.7 to obtain h(k)→∞ as k →∞,
a set of locally finite perimeter F , and a uniformly elliptic, Hölder continuous matrix
A∞ such that BR ∩ Eh(k) → F and Ah(k) → A∞ uniformly on compact sets and
F is a minimizer of FA∞ in BR at scale lim infk→∞ r0/rh(k) = ∞. Note that
A∞(x) = limk→∞A(rh(k)x+x0) = A(x0) = I. Hence FA∞ = P . By Proposition 4.7
and a diagonalization argument, we obtain a subsequence such that up to relabeling

Eh(k)
loc→ F,

Ah(k) → I uniformly on compact sets,

F is a (global) minimizer of perimeter in Rn,

FAh(k)(Eh(k); · )
∗
⇀ P (F ; · ) on bounded subsets of Rn. (10.7)

By Theorem 10.2 we have 0 ∈ Σ(F ) because 0 ∈ Σ(Eh(k);U). All that remains is
to show that F is a cone with vertex 0. Choose one of the a.e. r > 0 for which we
have Hn−1(∂∗F ∩ ∂Br) = 0. By (10.7), Proposition 4.2, and Corollary 1, it follows
that

P (F ;Br) = lim
k→∞

FAh(k)(Eh(k);Br)

= lim
k→∞

FA(E;B(x0, rrh(k)))

rn−1
h(k)

= rn−1θA(E, x0) (10.8)

since W x0
(x0, rrh(k)) = B(x0, rrh(k)) as A(x0) = I. Hence

P (F ;Br)

rn−1
= θA(E, x0) for a.e. r > 0. (10.9)

The monotonicity formula for perimeter minimizers [29, Theorem 28.9] gives

d

dr

P (F ;Br)

rn−1
=

d

dr

ˆ
Br∩∂∗F

(
νF (x) · x

)2
|x|n+1

dHn−1(x) for a.e. r > 0. (10.10)

So (10.9) implies

d

dr

ˆ
Br∩∂∗F

(
νF (x) · x

)2
|x|n+1

dHn−1(x) = 0 for a.e. r > 0. (10.11)

Hence

ˆ
Bs∩∂∗F

(
νF (x) · x

)2
|x|n+1

dHn−1(x) =

ˆ
Br∩∂∗F

(
νF (x) · x

)2
|x|n+1

dHn−1(x) (10.12)

for a.e. 0 < s < r, and thus

ˆ
(Br\Bs)∩∂∗F

(
νF (x) · x

)2
|x|n+1

dHn−1(x) = 0. (10.13)

This implies νF (x) · x = 0 for Hn−1-a.e. x ∈ ∂∗F . Thus F (1) is a cone with vertex
0 by [29, Proposition 28.8].
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10.2. Dimension reduction argument. Let’s first recall a few results from the
standard argument for the characterization of the singular set for perimeter min-
imizers. We will use these results in our adapted proof and refer readers to [29,
Chapter 28] for proofs.

Theorem 10.4. If n ≥ 2 and there exists a singular minimizing cone F ⊂ Rn with
Σ(F ) = {0}, then n ≥ 8.

Theorem 10.5 (Dimension reduction theorem). If F is a singular minimizing cone
in Rn, x0 ∈ Σ(F ), x0 6= 0, and if rh → 0+, then, up to extracting a subsequence
and up to rotation, the blow-ups Fx0,rh locally converge to a cylinder G×R, where
G is a singular minimizing cone in Rn−1.

Lemma 10.6 (Half-lines of singular points). If F is a singular minimizing cone in
Rn, x0 ∈ Σ(F ), and x0 6= 0, then {t x0 : t > 0} ⊂ Σ(F ) and n ≥ 3.

Lemma 10.7 (Cylinders of locally finite perimeter).

(i) If F is a set of locally finite perimeter in Rn−1, then F ×R is of locally finite
perimeter in Rn, with

µF×R = (νF (px), 0)Hn−1
(
(∂∗F )× R

)
. (10.14)

Moreover, if F is a perimeter minimizing in Rn−1, then F ×R is a perimeter
minimizer in Rn.

(ii) If E is a set of locally finite perimeter in Rn such that

νE(x) · en = 0 for Hn−1 − a.e. x ∈ ∂∗E, (10.15)

then there exists a set of locally finite perimeter F in Rn−1 such that E is
equivalent to F ×R. If, moreover, E is a perimeter minimizer in Rn, then F
is a perimeter minimizer in Rn−1.

Lemma 10.8.

(i) If E is a Borel set such that Hs(E) <∞, s > 0, then

lim sup
r→0+

Hs∞(E ∩B(x, r))

ωsrs
≥ 1

2s
, for Hs − a.e. x ∈ E. (10.16)

(ii) If E is an (κ, α)-almost-minimizer of FA in the open set U ⊂ Rn at scale r0,
and rh → 0+, then, setting

Eh = Ex0,rh =
E − x0

rh
, and Ah(x) = Ax0,rh(x) = A(rhx+ x0), (10.17)

we have

Hs∞(Σ(E;U) ∩H) ≥ lim sup
h→∞

Hs∞(Σ(Eh;U) ∩H) (10.18)

for every compact set H ⊂ U .
(iii) If s ≥ 0, F ⊂ Rn−1, and Hs∞(F ) = 0, then Hs+1

∞ (F × R) = 0.

Proof. (i) and (iii) are proved in [29, Lemma 28.14] and we now adapt the proof of
his version of (ii) to the case of (κ, α)-almost-minimizers.

Let F be a finite covering by open sets of the compact set Σ(E;U) ∩H. Then
there exists ε > 0 such that Iε(Σ(E;U) ∩ H) ⊂

⋃
F∈F F . Eventually U ⊂ Ux0,rh
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and rαh ≤ 1, and so by Proposition 4.2 Eh is a (κ, α)-almost-minimizer of FAh in U .
Then by Theorem 10.2,

Σ(Eh;U) ∩H ⊂ Iε(Σ(E;U) ∩H) ⊂
⋃
F∈F

F (10.19)

for large h. Hence by definition of Hs∞ it follows that

lim sup
h→∞

Hs∞(Σ(E;U) ∩H) ≤ Hs∞(
⋃
F∈F

F ) ≤ ωs
∑
F∈F

(diam(F )

2

)s
(10.20)

Taking the infimum over all such coverings F proves the result.

Lastly we recall a technical result [30, Theorem 8.16] before we jump into the
proof of Theorem 10.1.

Lemma 10.9. If E ⊂ Rn and Hs(E) > 0, then there exists F ⊂ E with 0 <
Hs(F ) <∞.

Proof of Theorem 10.1. (i) Let E be a (κ, α)-almost-minimizer of FA in U with
2 ≤ n ≤ 7. By way of contradiction, suppose there exists x0 ∈ Σ(E;U). As usual
we may assume without loss of generality that A(x0) = I by the change of variable
Tx0

. By Theorem 10.3 there exists a singular minimizing cone F in Rn, but this
contradicts Simons’ theorem on the nonexistence of singular minimizing cones in
dimensions 2 ≤ n ≤ 7, see [29, Theorem 28.1 (i)].

(ii) Let E ⊂ R8 be a (κ, α)-almost-minimizer of FA in U . By way of contra-
diction, suppose x0 ∈ U ∩ ∂E is an accumulation point of Σ(E;U). Then there
is a sequence xh ∈ Σ(E;U) such that xh → x0. Again we may assume without
loss of generality that A(x0) = I. Set rh = |xh − x0| and consider the blow-ups
Eh = Ex0,rh . By Theorem 10.3 there is a subsequence, which upon relabeling as
Eh, converges locally to a singular minimizing cone F in Rn. Let yh = (xh−x0)/rh.
Then yh ∈ Sn−1 and so by compactness there exists y0 ∈ Sn−1 and a further sub-
sequence so that, up to relabeling, we have yh → y0. Note that yh ∈ Σ(Eh;Ux0,rh)
as xh ∈ Σ(E;U). So by Theorem 10.2 we have y0 ∈ Σ(F ). Since y0 6= 0, we have
H8(F ) > 1 and so by Theorem 10.5 there exists a singular minimizing cone G in
R7, contradicting (i).

(iii) Let E ⊂ Rn be a (κ, α)-almost-minimizer of FA in U and suppose
Hs(Σ(E;U)) > 0 with s > 0. Then there exists x0 ∈ Σ(E;U). By the change of
variable Tx0

, we may assume without loss of generality that A(x0) = I. By [30,
Theorem 8.16] and Lemma 10.8 (i), there exists rh → 0+ such that

Hs∞(Σ(E;U) ∩B(x0, rh)) ≥ ωsr
s
h

2s+1
(10.21)

for all h ∈ N. This is equivalently rewritten in terms of the blow-ups Eh = Ex0,rh

as

Hs∞(Σ(Eh;Ux0,rh) ∩B1) ≥ ωs
2s+1

(10.22)

for all h ∈ N. Eventually B2 ⊂ Ux0,rh when h is sufficiently and thus

Hs∞(Σ(Eh;B2) ∩B1) ≥ ωs
2s+1

. (10.23)

By Theorem 10.3 there exists a subsequence, which up relabeling as Eh, converges
locally to a singular minimizing cone F in Rn. By Lemma 10.8 (ii) we have

Hs∞(Σ(F ) ∩B1) ≥ lim sup
h→∞

Hs∞(Σ(Eh;B2) ∩B1) ≥ ωs
2s+1

. (10.24)
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We may apply the above argument with F and Rn in place of E and U . By Theorem
10.5 there exists a singular minimizing cone G× R

Hs∞(Σ(G× R) ∩B1) ≥ ωs
2s+1

. (10.25)

By Lemma 10.8 (iii) we must have Hs−1(Σ(G)) > 0. If we now assume that n ≥ 9
and s > n− 8, repeating this argument n− 8 times gives the existence of a singular
minimizing cone G in R8 with Hs−(n−8)(Σ(G)) > 0, in contradiction to (ii). Thus
we conclude that s ≤ n− 8.

Acknowledgments. The author would like to thank his advisor Prof. Tatiana
Toro for her guidance and support during the work on this paper.

A. Appendix. In this appendix we provide a proof for the change of variable
formula for sets of locally finite perimeter with bounded, continuous integrands
depending on both x and νE . This is a generalization of [29, Proposition 17.1] and
[27, Theorem A.1].

Proposition A.1 (Change of variable for sets of locally finite perimeter). Suppose
f is a diffeomorphism of Rn and denote g = f−1. If E is a set of locally finite
perimeter in Rn, then f(E) is a set of locally finite perimeter in Rn such that

∂∗f(E) = f(∂∗E), and νf(E)(f(x)) =
(∇g ◦ f)tνE(x)

|(∇g ◦ f)tνE(x)|
for all x ∈ ∂∗E. (A.1)

If Φ: Rn × Sn−1 → [0,∞) is a bounded and continuous function and U is an open,
bounded set satisfying Hn−1(∂U ∩ ∂∗f(E)) = 0, and ∇f and ∇g are bounded, then
the change of variable y = f(x) givesˆ

U∩∂∗f(E)

Φ(y, νf(E)) dHn−1(y)

=

ˆ
g(U)∩∂∗E

Φ
(
f(x),

(∇g ◦ f)tνE
|(∇g ◦ f)tνE |

)
Jf |(∇g ◦ f)tνE | dHn−1(x). (A.2)

Note that Jf |(∇g ◦ f)tνE | is the tangential Jacobian of f with respect to ∂∗E.

Proof. The fact that f(E) is a set of locally finite perimeter is shown in [29, Propo-
sition 17.1] and (A.1) is proved in [27, Theorem A.1]. Hence we only need to show
(A.2).

Let uε = 1E ∗ ρε where ρε denotes the standard mollifier and let vε = uε ◦ g.
Then uε → 1E in L1

loc(Rn) and vε → 1E ◦ g = 1f(E) in L1
loc(Rn) as shown in the

proof of [29, Proposition 17.1]. Note that ∇vε = (∇g)t(∇uε ◦ g) and so ∇vε ◦ f =
(∇g ◦ f)t∇uε. By [29, Remark 8.3], the change of variable y = f(x) givesˆ
U

Φ
(
y,− ∇vε
|∇vε|

)
|∇vε|dy =

ˆ
g(U)

Φ
(
f(x),− ∇vε ◦ f

|∇vε ◦ f |

)
Jf |∇vε ◦ f |dx

=

ˆ
g(U)

Φ
(
f(x),− (∇g ◦ f)t∇uε

|(∇g ◦ f)t∇uε|

)
Jf |(∇g ◦ f)t∇uε|dx.

(A.3)

We shall show that this equation converges to (A.2) as ε→ 0+. To do this, we shall
apply the version of Reshetynak’s continuity theorem provided in [40, Theorem 1.3].
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Under the hypotheses that Φ is bounded and continuous and U is open, this states
that

lim
h→∞

ˆ
U

Φ(x,D|µh|µh)d|µh| =
ˆ
U

Φ(x,D|µ|µ)d|µ| (A.4)

whenever µh, µ are finite Rn-valued measures satisfying

lim
h→∞

ˆ
T · dµh =

ˆ
T · dµ, ∀ T ∈ C0(U ;Rn), and |µh|(U)→ |µ|(U), (A.5)

where C0(U ;Rn) denotes the completion, with respect to the sup norm, of the
compactly supported continuous functions from U to Rn.

Starting with the right-hand side of (A.3), first note that −(∇g ◦ f)t∇uεLn
∗
⇀

(∇g ◦ f)tµE since (∇g ◦ f)t is continuous. By [29, Theorem 12.20], −∇uεLn
∗
⇀ µE

and |∇uε|Ln
∗
⇀ |µE | where Ln denotes Lebesgue measure. Since U is bounded

and g is continuous, g(U) is bounded. Since ∇g is bounded, Hn−1(∂(g(U)) ∩
∂∗E) = Hn−1(g(∂U ∩ ∂∗f(E))) ≤ Lip (g)n−1Hn−1(∂U ∩ ∂∗f(E)) = 0. Hence
(|∇uε|Ln)(∂(g(U))→ |µE |(∂(g(U))) and

lim
ε→0+

ˆ
T · (−∇uε)dx =

ˆ
T · dµE (A.6)

for all T ∈ C0(g(U);Rn), since T ∈ Cc(Rn;Rn) as g(U) is compact. Thus −∇uεLn
g(U), µE g(U) are finite Rn-valued measures which satisfy (A.5) (where we take
discrete sequences of εh → 0+). Hence for each ϕ ∈ C c(Rn), applying [40, Theorem
1.3] to the bounded, continuous function (x, ξ) 7→ ϕ(x)|(∇g ◦ f(x))tξ| gives

lim
ε→0+

ˆ
g(U)

ϕ
∣∣∣(∇g ◦ f)t (−∇uε)|∇uε|

∣∣∣|∇uε|dx =

ˆ
g(U)∩∂∗E

ϕ|(∇g ◦ f)tνE | dHn−1,

(A.7)

that is, |(∇g ◦f)t∇uε|Ln g(U)
∗
⇀ |(∇g ◦f)tνE |Hn−1 (g(U)∩∂∗E). In particular,

it follows from the fact Hn−1(∂(g(U))∩∂∗E) = 0 that (|(∇g ◦ f)t∇uε|Ln)(g(U))→
(|(∇g ◦ f)tνE |Hn−1 ∂∗E)(g(U)). Hence (A.5) holds for (∇g ◦ f)t∇uεLn g(U),
(∇g ◦ f)tνEHn−1 (g(U)∩∂∗E) and so we can apply [40, Theorem 1.3] to (x, ξ) 7→
Φ(f(x), ξ)Jf(x) which is bounded continuous since Φ and ∇f are. We obtain

lim
ε→0+

ˆ
g(U)

Φ
(
f(x),− (∇g ◦ f)t∇uε

|(∇g ◦ f)t∇uε|

)
Jf |(∇g ◦ f)t∇uε|dx

=

ˆ
g(U)∩∂∗E

Φ
(
f(x),

(∇g ◦ f)tνE
|(∇g ◦ f)tνE |

)
Jf |(∇g ◦ f)tνE | dHn−1(x). (A.8)

This is the convergence of the right-hand side of (A.3) to the right-hand side of
(A.2).

Now moving on to the left-hand side of (A.3), note that for all ϕ ∈ C1
c (Rn),

ˆ
ϕ(−∇vε)dy =

ˆ
(∇ϕ)vεdy →

ˆ
f(E)

∇ϕ dy =

ˆ
ϕ dµf(E) (A.9)
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since vε → 1f(E) in L1
loc(Rn). So by density of C1

c (Rn) in Cc(Rn), we have

−∇vεLn
∗
⇀ µf(E). The change of variable y = f(x) ([29, Remark 8.3]) givesˆ
ϕ|∇vε| dy =

ˆ
(ϕ ◦ f)|∇vε ◦ f |Jfdx =

ˆ
(ϕ ◦ f)|(∇g ◦ f)t∇uε|Jfdx

→
ˆ

(ϕ ◦ f)|(∇g ◦ f)tνE |Jfdx =

ˆ
ϕ d|µf(E)| (A.10)

where the last equality is by [29, Proposition 17.1]. Hence |∇vε|Ln
∗
⇀ |µf(E)|. Thus

(|∇vε|Ln)(U)→ |µf(E)|(U) since Hn−1(∂U ∩ ∂∗f(E)) = 0 and

lim
ε→0+

ˆ
T · (−∇vε)dy =

ˆ
T · dµf(E) (A.11)

for all T ∈ C0(U ;Rn), since T ∈ Cc(Rn;Rn) as U is compact. Hence −∇vεLn
U, µf(E) U satisfies (A.5) so by [40, Theorem 1.3], we have

lim
ε→0+

ˆ
U

Φ
(
y,− ∇vε
|∇vε|

)
|∇vε|dy =

ˆ
U∩∂∗f(E)

Φ(y, νf(E)) dHn−1(y). (A.12)

Hence left hand side of (A.3) converges to the left hand side of (A.2) and we are
done.
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