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ABSTRACT. We study almost-minimizers of anisotropic surface energies de-
fined by a Holder continuous matrix of coefficients acting on the unit normal
direction to the surface. In this generalization of the Plateau problem, we
prove almost-minimizers are locally Holder continuously differentiable at reg-
ular points and give dimension estimates for the size of the singular set. We
work in the framework of sets of locally finite perimeter and our proof follows
an excess-decay type argument.

1. Introduction. The Plateau problem is a classical geometric variational prob-
lem. It consists in minimizing surface area among all surfaces with a certain pre-
scribed boundary. The analogous physical phenomenon occurs in soap films as they
seek to minimize surface tension, an equivalent to minimizing surface area. The
existence and regularity of solutions to the Plateau problem has been the subject of
study in a variety of settings and continues to be a centerpiece of much mathematical
research (to name a few, see [20, 33, 9, 34, 1, 44, 25, 12, 27]). A natural generaliza-
tion of the Plateau problem is to study minimizers of surface energies other than
surface area. Anisotropic surface energies are those which depend on the normal
direction to the surface and possibly the spatial location of the surface as well. This
means that the energy assigned to a surface depends not only on its geometry but
also on how and where the surface sits in space. Such anisotropic energies arise in
physical phenomena such as the formation of crystals and in crystalline materials.

Almgren was the first to study regularity of minimizers to anisotropic variational
problems in his paper [4]. This initial work as well as much of the subsequent
work in the area was done in the setting of varifolds and currents with many of
the results applying to surfaces of arbitrary codimension but with rather strong
regularity assumptions on the integrands of the anisotropic energies.
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In this paper we work in the setting of sets of locally finite perimeter and study
the existence and regularity of minimizers of anisotropic surface energies of the form

FA(B:U) = / (A@)ve(), ve(@)Y? dH"(2) (1.1)
UNo*E

where A = (a;;(v))};—; is a uniformly elliptic, Holder continuous matrix-valued
function, F is a set of locally finite perimeter in R™, and U is an open set. Here 0*FE
denotes the (n — 1)-dimensional reduced boundary of E and vg denotes its outward
unit normal vector. We note that Holder continuity is a rather weak regularity
assumption and the previously known regularity results for general integrands do
not apply (see the discussion below). Our main regularity result applies to almost-
minimizers which are sets of locally finite perimeter in R" satisfying the minimality
condition

TA(E; B(x,r)) < Fa(F; B(x,r)) + rrotn! (1.2)

whenever EAF CC UNB(z,7), x € U, and r < 1 (see Section 2 for full definitions
and notation).

Theorem 1.1 (Regularity of almost-minimizers). Let n > 2 and U be an open set
in R™. Suppose F 4 is the anisotropic energy given by (1.1) for a uniformly elliptic,
Hélder continuous matriz-valued function A = (a;j(z)); ;= with Hélder exponent
a € (0,1). If E is a (k,a)-almost-minimizer of F 4 in U, that is, it satisfies (1.2),
then U NO*E is a CY*/*-hypersurface which is relatively open in U NOE, while the
singular set of E in U,

S(E;U)=Un(0FE\ 0'E), (1.3)
satisfies the following:
(i) if 2 <n <7, then 2(E;U) is empty;

(i) if n =8, then X(E;U) has no accumulation points in U;
(iwi) if n > 9, then H*(X(E;U)) =0 for s >n — 8.

A regularity result of the form of Theorem 1.1 was first proved by De Giorgi in
[9] for minimizers of surface area. De Giorgi worked within the framework of sets
of locally finite perimeter which he had introduced and shown to be equivalent to
the earlier notion of Caccioppoli sets. Shortly thereafter Reifenberg also proved a
similar regularity result for minimizers of surface area in [34, 35, 36]. In [42, 43],
Tamanini extended De Giorgi’s result to almost-minimizers of perimeter satisfying
the minimality condition P(E; B(z,r)) < P(F; B(z,r)) + sr®t"~1 proving C1-A-
regularity at points in the reduced boundary for each 8 € (0,«/2). In fact, his
result applies with a more general error term.

The anisotropic surface energies treated by Almgren in [4] are given in terms
of the integral of a bounded, continuous, elliptic integrand f = f(z,&) over the
surface. Here x denotes the spatial variable and & denotes the directional variable.
Almgren proved that if f is C* for some k > 3, then minimal surfaces with respect
to f are C*~1-regular almost everywhere. Bombieri extended this to the case k = 2
by showing in [5] that if f is C?, then minimal surfaces with respect to f are C'-
regular almost everywhere. In [37], Schoen and Simon provided an alternate proof
of this type of regularity result with weakened hypotheses. They showed that if f
is Lipschitz in the spatial variable 2 and C?# in the directional variable &, then
minimizers are C'1%-regular almost everywhere for any a € (0, 1).
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A characterization of the singular set for codimension one oriented hypersurfaces
as in Theorem 1.1 was proved in the case of the area integrand f = 1 in a series
of papers by various authors. Miranda proved in [31] that H" !-measure of the
singular set is zero. The rest of the results deal with the Bernstein problem which
asks about the existence of global minimizers of surface area in R™. Fleming and
Almgren proved some intermediate results of nonexistence in singular minimizing
cones in R? and R*, respectively, in [23, 3]. The next result was by De Giorgi in [10]
where he showed that the non-existence of a singular minimal cone in R™ implies
non-existence in R”~!. Simons showed the non-existence of singular minimal cones
in dimensions 2 < n < 7 in [39] and Bombieri, De Giorgi, and Giusti demonstrated
in [6] that Simons’ cone

S={zeR®: 2] +a]+a5+2] =0} +a5+22+23} (1.4)

is a singular minimal cone in R® with singular set {0}. Federer concluded in [22] by
proving the Hausdorff dimension of the singular set is less than or equal to n — 8.
In the anisotropic case, it was shown in [38] that H" 3-measure of the singular set
is zero for elliptic integrands which are C3.

Surface energies of the particular form of (1.1) first appeared in the paper [45]
by Jean Taylor. This is a follow-up paper to her celebrated paper [44] in which
she proves that the structure of singularities of soap-like minimal surfaces in R?
are exactly as conjectured by the experimental physicist Joseph Plateau. In [45],
she proves that minimizers of F4 in R?® are locally C1*® at regular points and
possess a singular set with the same general structure as in the case of surface
area minimizers. Taylor worked with varifolds as her notion of surface and only
with 2-dimensional surfaces in R2. This enabled her to utilize the classification
of 2-dimensional surface area minimizing cones in R3. Such a classification is not
known in higher dimensions. Note that the singularities dealt with by Jean Taylor
cannot occur within our setting of sets of locally finite perimeter as 2-dimensional
minimizing cones in R® come from non-oriented surfaces. This is why, for instance,
we do not have singularities when 2 < n < 7, even though there are singularities in
lower dimensions when working with varifolds.

Allard’s work in [1] established some important results for the Plateau problem
in the setting of varifolds, some of which have been generalized to the anisotropic
setting. Allard first proved that a varifold V with bounded first-variation 0V is
rectifiable. He then proved regularity by showing that if there are LP-type bounds on
the generalized mean-curvature of V' for p large enough (depending on the dimension
of V), then V is locally C** for some « € (0,1) (depending on p and the dimension
of V) outside a closed singular set of measure zero. A recent breakthrough was
made in the setting of anisotropic integrands in [14] to prove rectifiability. There,
De Philippis, De Rosa, and Ghiraldin were the first to successfully compute the
first-variation 07V with respect to an anisotropic integrand f. Using this they
showed that if f is an elliptic C''-integrand satisfying the so-called atomic condition
(equivalent to ellipticity in codimension one), then a varifold whose anisotropic first-
variation d¢V is locally bounded is indeed rectifiable. Very recently, De Rosa and
Tione proved in [19] that m-dimensional Lipschitz graphs with bounded anisotropic
mean-curvature in LP for some p > m have C1®-regularity almost everywhere.
Other than that not much is currently known. One of the main obstructions is the
lack of a monotonicity formula. This is essential in Allard’s regularity arguments
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and does not exist for general integrands as demonstrated in [2]. Much of the related
relevant literature in contained in [11, 13, 17, 15, 18].

Another related problem of interest is volume constrained minimization. Reg-
ularity is known in the case of volume constrained perimeter minimizers [24] and
some results are known in anisotropic settings [32, 28].

Let us briefly describe the organization of this paper. We start in Section 2 by
providing the essential definitions pertaining to sets of locally finite perimeter, our
anisotropic surface energies, and almost-minimizers. In Section 3 we follow the Di-
rect Method of the Calculus of Variations to establish the existence of minimizers to
our formulation of the anisotropic Plateau problem. The rest of the paper is devoted
to the study of the regularity of almost-minimizers and to the characterization of
the singular set. In Section 4 we cover a key change of variable that allows us to
assume A(xzg) = I (the identity matrix) at a given point x, as well as prove many
important properties of almost-minimizers. These include an almost-monotonicity
formula, Theorem 4.4, volume and perimeter bounds, Proposition 4.5, and com-
pactness of the class of almost-minimizers, Proposition 4.7. Next in Section 5 we
define the excess, (5.4), an important notion in regularity theory, and recall some of
its properties. There we also state the height bound, Proposition 5.7, which allows
us to control the height of the boundary of an almost-minimizer given a small excess
assumption. Following this we show in Section 6 that a small excess assumption
together with the assumption A(zg) = I allows us to find a Lipschitz function that
well approximates JF and is ‘almost-harmonic’ with a controlled error, Theorem
6.1. In Section 7 we prove a reverse Poincaré inequality, Theorem 7.1, which in Sec-
tion 8 we combine with a harmonic approximation of the Lipschitz function from
Section 6 to prove a tilt-excess decay result, Theorem 8.3. Finally, in Section 9 we
use this and an iteration argument to prove our main regularity result, Theorem
9.2. We conclude the paper in Section 10 by using blow-up analysis and a Federer
reduction argument to prove the characterization of singular set, Theorem 10.1.

2. Preliminaries. We will work in R” for a fixed n > 2. The open ball centered
at x € R™ of radius r > 0 is defined by

Blo,r) = {y € R": [y —a| <1}, (2.1)

where | - | denotes the standard Euclidean norm and we write B, for B(0,r). We
denote the volume of the n-dimensional ball by w,,.

Like De Giorgi and Tamanini, we shall also work with sets of locally finite perime-
ter following much of the notation and definitions given in the insightful expository
book by Maggi [29]. Throughout this paper we will follow a scheme inspired by the
one presented there.

A Lebesgue measurable set £ C R™ is said to be of locally finite perimeter if
there exists an R™-valued Radon measure pp (called the Gauss-Green measure
of E) such that the Gauss-Green formula

/ Ve dx :/ wdug, Ve € CHR™) (2.2)
B R™

holds. The induced total-variation measure |ug| is called the perimeter measure
of E and is denoted by P(FE; -). The set E is said to be of finite perimeter if
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P(E) = P(E;R"™) < co. The set of those |ug|-a.e. x € sptug for which
pe(B(z,r))
D = lim ————=~
et (@) = B B )
is called the reduced boundary of F and is denoted by 0*E. The measure-

theoretic outer unit normal to E is then defined to be the measurable function
vp : O*E — S"1 given by

exists and is in S"~* (2.3)

pe(B(z,r))

r—0t |up|(B(z,7))
The De Giorgi structure theorem states that 0*FE is (n — 1)-rectifiable and that
pp = vpH" 1L 0'FE where H" ! denotes the (n — 1)-dimensional Hausdorff mea-
sure. We may modify a set of locally finite perimeter on and/or up to a set of
Lebesgue measure zero without changing its perimeter measure. As a consequence,
the topological boundary OF of a generic set of locally finite perimeter may be quite
messy and might not be well related to 0*E. However, we may always modify our
set of locally finite perimeter F so that sptup = OF without changing its perimeter
measure, in which case 9*E = JE (see [29, Remark 16.11, Remark 15.3]). When
discussing boundary regularity of a set of locally finite perimeter we shall always
choose this representative of E.

vg(x) = (2.4)

2.1. Anisotropic surface energies with Hoélder coefficients. Now let’s pro-
vide precise definitions for the anisotropic energies and almost-minimizers we will
study. Denote by R™ ® R”™ the set of real n x n-matrices equipped with the oper-
ator norm || - [|. Let A = (a;;())7;=; be a bounded, measurable function on R"
that takes values in R™ ® R™. We say that A is symmetric if A(z) = A(z)" for
all x € R", where -! denotes the matrix transpose. We say that A is uniformly
elliptic if there exist constants 0 < A < A < +oo such that

AEP? < (A()€,€) < AP (2.5)

for all z,£ € R™, where (-, -) denotes the standard Euclidean inner product. We
say that A is Holder continuous with exponent « € (0,1) if

Alx) — A
I4llce = sup MA@ =AW (256)
z#y |z =yl
and call ||A]|ce the H6lder seminorm of A. In particular,
|A(z) = Ay)l| < [|Allca]z —y|* (2.7)

holds for all z,y € R™.

Definition 2.1 (F4-surface energy). Let A = (a;;(z));';—; be uniformly elliptic,
and Holder continuous. Given a set of locally finite perimeter E in R™ and a Borel
set F', we define the F 4-surface energy of F in F' by

Fu(B:F) = / (Al)vp (@), ve (@) 2 dH" (@) € 0,00, (2.8)
FNO*E

Note that Fa(F; - ) defines a Borel measure on R" and we will often denote

FA(E5R") by Fa(E).

Remark 2.1 (Symmetry of A). We may assume without loss of generality that A

is symmetric which we do throughout this paper. We may make this assumption

as the equality (A(z)¢,&) = (3 (A(z) + A(z)")&,€) holds for all z,& € R™. Hence
we can always symmetrize A without changing the values of F4.



3238 DAVID A. SIMMONS

Remark 2.2 (Ellipticity). The integrand f(z,&) = (A(z)€,€)'/? is elliptic in the
sense of Almgren in [4]. In our setting this means that for every bounded set U there
is a constant ¢ > 0 such that for every set of locally finite perimeter F, half-space
H, and zg € U,
F A(z0) (B3 B(20,7)) = Fa(ao) (H; B(wo,7))
> ¢ [H" Y (0"E N B(xo,7)) — H" Y(OH N B(xo,7))] (2.9)

whenever EAH CC U N B(xg,7), r > 0. Here Fy(y,)(E; - ) denotes the energy
associated to the frozen integrand fu, (¢) = (A(x0)€,€)'/2. As Almgren notes, this
notion is equivalent to uniform convexity in codimension one as is our case by
uniform ellipticity of A and (2.9) holds with ¢ = A. Ellipticity ensures that half-
spaces are the unique minimizers when compared with their compactly contained
variations.

Remark 2.3 (Holder continuity of integrand of F4). The integrand f(z,§) =
(A(z)€,€)Y/? is Holder continuous with respect to the spatial variable x, that is,

[(A(2)€, V2 = (Ay), )] < o HAIIcalz*y\"‘ (2.10)

for all z,y,£ € R™ with |£] = 1. This follows from (2.7) combined with the useful
inequality

[(A(2)€, )Y — (A(y)€, &)V?| =

!( (2)€,€) — (A(y)§, €)]
Y2

(z)€, + (A(y)§, )12
A —A 2.11
_2A|\ (z) — Ay)|| (2.11)
for all z,y,& € R™ with |{] = 1. Note our regularity assumption is much weaker

than in [4] where he assumes the integrand f = f(z,&) is C* for some k > 3 and
weaker than the assumption in [37] where they assume the integrand f = f(x,§) is
Lipschitz in z.

Remark 2.4 (Comparability to perimeter). F4(E; - ) is comparable to P(E; -)
since it follows for all Borel sets F' that

M2P(E;F) < FA(E; F) < AV2P(E; F). (2.12)

by the uniformly ellipticity of A. When A equals the identity matrix I we have the
isotropic case Fa(F; ) = P(E; - ).

Remark 2.5. The complement E¢ = R"™ \ F of a set of locally finite perimeter is
also a set of locally finite perimeter with ppe = —vgH" 1L 9*F and so F4(E°; -) =
Fa(E; -).

2.2. Notions of almost-minimizers. We are interested in studying the boundary
regularity of those sets of locally finite perimeter which are almost-minimizers of the
F 4-surface energy in an open set when compared to their local compactly contained
variations. Recent work addressing regularity of almost-minimizers for other varia-
tional problems can be found in [41, 16, 8, 26] and the notions of almost-minimizers
we consider are similar.

Fix universal constants n > 2, 0 < A < A < 400, kK > 0, o € (0,1) and
ro € (0,400), and let A = (a;;(z));';—; be a symmetric, uniformly elliptic, and
Holder continuous with respect to A, A, and « and fix an open set U in R".
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Definition 2.2 ((k,a)-almost-minimizer of F4). We say a set of locally finite
perimeter E in R™ is a (k, a)-(additive) almost-minimizer of F4 in U at scale
ro if sptup = OF and

Fa(E; B(x,7)) < Fao(F; B(x,r)) + krotn=! (2.13)

whenever EAF CC U N B(x,r) where F' is a set of locally finite perimeter, x € U,
and r < rq.

When (2.13) holds with x = 0, we say that E is a local minimizer of ¥4 in
U at scale g, and when (2.13) holds for all scales rq € (0,+00), we say that E
is a minimizer of ¥4 in U. Typically we will omit the descriptor additive when
discussing almost-minimizers. However, we will include it when we wish to highlight
the difference from the following alternative notion of almost-minimality.

Definition 2.3 ((k,a)-multiplicative almost-minimizer of F4). We say a set of
locally finite perimeter E in R™ is a (k, a)-multiplicative almost-minimizer of
Fain U at scale rg if sptup = OF and

Fa(E; B(z,r)) < (L4 &r)Fa(F; B(z,r)) (2.14)

whenever EAF CC U N B(x,r) where F is a set of locally finite perimeter, x € U,
and r < rq.

Note that Taylor worked with this notion of multiplicative almost-minimizer in
[45] but handled a more general error term. We now show that multiplicative
almost-minimizers are also additive almost-minimizers. To prove this, we need an
upper bound for perimeter bounds of multiplicative almost-minimizers at points in
the topological boundary. Whenever we write C' we mean a constant (which may
change from line to line) that depends only on the universal constants n, A, A, k, , rg
and an upper bound for ||A||ce, but does not depend on E or zg. If we wish to
specify dependence on fewer constants and write for example, C'(n) for constants
that only depend on n.

Lemma 2.4. There exists a positive constants C = C(n,\, A, k,a,19) with the
following property. If E is a (k,a)-multiplicative almost-minimizer of F4 in U at
scale rq, then for every xo € U NOE with r < d = min{dist(zo,0U), 7o} < 00,
P(E; B(xo,7))
pn—1
Proof. Since H" 'L 9*F is Radon, H" 1 (0*E N OB (x¢,r)) = 0 for a.e. r € (0,d).
Choose one such radius r and for s € (r,d) consider the comparison set F =
E\ B(zg,r) in B(xg,s). Then EAF C B(xg,r) CC B(xg,s). It follows from

comparability to perimeter (2.12) and the multiplicative almost-minimality of F
that

<C (2.15)

M/2P(E; B(xo,5)) < Fa(E; B(xo, s))
< 1+ ks*)Fa(E\ B(zo,7); B(xo,5))
< (14 wr$)AY2P(E\ B(xo,r); B(xo, 5)). (2.16)
Hence
P(E; B(xg,s)) < C P(E\ B(xg,r); B(x0,$))
=C(H" 1 (EW N98B(xo,7)) + P(E; B(xo,s) \ B(xo,7))) (2.17)
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since H"~1(9*E N OB (zo,r)) = 0. Sending s — r and noting
H Y ED NOB(z0,7)) < nw,r™ ! gives

P(E; B(zg,7)) < CH" Y (EM NaB(xo,7)) < Cr" L. (2.18)
By density of these radii, this holds for all r € (0, d). O

Proposition 2.1. If E is a (k,«)-multiplicative almost-minimizer of Fa in U at
scale rq, then for each open set V.CC U, there is a constant k' = &' (n, \, A, k, a, 1)
such that E is a (K',a)-(additive) almost-minimizer of Fo in V at scale r, =
min{(1/2)rg, (1/4)dist(V,U°)}.

Proof. Let EAF CC B(x,r)NV, 2 € V, and r < r,. Suppose E is a (k,q)-
multiplicative almost-minimizer of ¥4 in U at scale rg. The minimality condition
is trivially satisfied if F4(E; B(x,r)) < Fa(F; B(z,r)) or P(E; B(x,r)) = 0. So
suppose F4(F; B(z,1)) < Fa(E;B(z,r)) and P(E; B(x,r)) > 0. Then there is
y € B(z,r) NOE. So by Lemma 2.4, which applies since 2r < ro and B(y,2r) C
B(x,4r) C U, we have P(E; B(z,r)) < P(E;B(y,2r)) < C(2r)"~1. Hence by
comparability to perimeter (2.12), we have

Fa(F; B(x,r)) < AV2P(E; B(x,r)) < Cr™~1. Tt follows that

Fa(E; B(x,r)) < Fa(F; B(z,7)) + kr*F4(F; B(z, 1))
< Fa(F; B(x,7)) + w/rotrt (2.19)
for some k' = K'(n, \, A, k, o, 19). O

Thus Proposition 2.1 implies that any interior regularity results for (additive)
almost-minimizers shall also apply to multiplicative almost-minimizers. We shall
focus on proving a regularity theorem for (additive) almost-minimizers and shall
henceforth only work with (additive) almost-minimizers which we simply refer to
as almost-minimizers.

3. Existence of anisotropic minimizers. Our first order of business is to estab-
lish existence of solutions to the anisotropic Plateau problem for F4. The existence
of anisotropic minimizers in the setting of varifolds and currents is known in general
in the framework of varifolds and currents (see [21, Chapter 5]) which should imply
existence of minimizers of F4 in the framework of sets of locally finite perimeter.
However, for completeness, we present our own full proof of this result in our setting.
Additionally, the lower semicontinuity result of Proposition 3.1 will prove useful at
several places in the regularity portion of our paper.

Let A = (ai;(x))} ;=1 be a symmetric, uniformly elliptic, continuous function on
R™ with values in R” ® R™ (we do not need Hélder continuity to show existence of
minimizers) and consider the F4-surface energy. Fix an open bounded set U and a
set of finite perimeter Ey in R™. The anisotropic Plateau problem for ¥4 in U
with boundary data Fj is to show that the infimum

Ya(Ep,U) = inf {’J"A(E) : E a set of finite perimeter in R”, E\ U = Ej \ U}
(3.1)

is attained (Cf. [29, (12.29)]). That is, we minimize F4 in R™ among those sets of
finite perimeter which agree with Ey outside of U.

To show that (3.1) is achieved by a set of finite perimeter, we follow the Direct
Method of the Calculus of Variations. This consists of () taking a sequence {E}, }nen
of competitors such that F4(FEr) — va(Eo, U), (i) using a key compactness result
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in an appropriate topology to extract a subsequence {Eh(k)}keN converging to some
competitor F satisfying E\ U = Ey \ U, and (#ii) applying lower semicontinuity of
F 4 with respect to the convergence in the chosen topology which shows that F4(FE)
equals the infimum v4(Ep,U) in (3.1).

3.1. Compactness of sets of locally finite perimeter. The first key ingredient
of the Direct Method is compactness of our class of admissible competitors. One of
the primary reasons that sets of locally finite perimeter provide a suitable setting
to work on geometric variational problems is that they possess compactness with
respect to local convergence of sets. Let’s recall the definition of this convergence
and a known compactness theorem for sets of locally finite perimeter.

We say that a sequence of sets of locally finite perimeter {E}p,}ren in R™ con-

verges locally to E (and write Ej, tog E) if
[(ErAE)N K| —0ash — o0 (3.2)

for each compact K C R", and say {F} }ren converges to E (and write E, — E)
if
|EpbAE| — 0 as h — oo. (3.3)

Recall that EAF = (E'\ F)U (F \ E) and that | - | denotes Lebesgue measure on
R™.

Theorem 3.1 (Compactness from perimeter bounds, [29, Theorem 12.26]). If R >
0 and {Ep}ren are sets of finite perimeter in R™, with
E;, C Br, YheN, and sup P(E}) < oo, (3.4)
heN

then there exist a set E of finite perimeter in R™ and indices h(k) — 0o as k — oo,
with

Epwy — E, Ep ) — 1E; and E C Bg. (3.5)

3.2. Lower semicontinuity of F4. The second key ingredient of the Direct
Method is to show lower semicontinuity of the Fs-surface energy. Here we have
some work to do and start with a couple lemmas. The first lemma deals with lower
semicontinuity when A is constant, while the second one is a technical lemma we
need in the proof when A is no longer constant.

Lemma 3.2 (Lower semicontinuity for constant A). If A is a constant, uniformly el-
liptic matriz, and { Ep}nen and E are sets of locally finite perimeter with vg, H" 'L
O*Ep = vgH™ ' L O*E, then for any open set U,

Fa(E:U) < liminf Fa(Ey; V). (3.6)
—00

Proof. By Remark 2.1 we may assume A is symmetric and by uniform ellipticity
its eigenvalues are positive. So by the spectral theorem we can write A = VDV !
where D is a diagonal matrix with the eigenvalues of A and where V is the matrix
of corresponding orthonormal eigenvectors. Setting A'/2 = VD2V ~! we have
A = AY2AY? with AY? symmetric since V=1 = Vi So (A, €6)Y2 = |AY2%¢.
Define R™-valued Radon measures on R",

pn = AYug, H L O'E), and p=AY2upH" L 9'E. (3.7)
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It then follows that p; — g because, given any ¢ € C.(R™;R"), we have A/2¢p €
C.(R™;R™) and thus

hli_)ngo v - dpn = hh—{go OE (g, AT 2w,
*Ep
= lim <A1/2<p, vg, ) dH" " :/ <A1/2<p,VE> dH"™ !
h—o0 9*Ey, O*E
= | teatugyan = [ o d (3.:)

By lower semicontinuity of the total variation of weak-star convergent vector-valued
Radon measures ([29, Proposition 4.19]), we have

TAB0) = [ A ] 4 = ) < lymind ()
UNO*E h—o0
= lim inf |AY 2y, |dH™ ! = lim inf 55 (En; U) (3.9)
—00

h—o0 Uﬁa*E;L
which concludes the proof. O

Lemma 3.3. Let {®},}pen and © be Radon measures on R™ and ¢ € C.(R™; [0, 00))
such that limsupy,_, .. Pr({¢ > 0}) < 0o. Then the following two statements hold:

(i) If o(U) < lihm inf @5, (U) for any open set U, then
— 00

(p®)(U) < liminf(p®,)(U) (3.10)

h— 00
for any open set U in R™.
(1) If limsup @, (K) < ®(K) for any compact set K, then
h— o0

lim sup(p®) (K) < (9®)(K) (3.11)

h—o0

for any compact set K in R™.
Proof. Let € > 0 and choose 0 =ty < t; < --- < ty_1 < supy < ty such that
tj —tj—1 < eand ®({p = t;}) =0 for j = 1,...,N. This is possible since ® is
Radon and so ®({¢ = t}) > 0 for at most countably many ¢. Set
Uj = {tj,1 <p< tj} and Kj = Uj (312)

and note that the U;’s are open and the K;’s are compact.
Proof of (i): Assume the hypothesis and let U be an open set. Observe that

N N—1
(0D) (1) :/ngdé :;/Um@dclﬂr ; LOU N {o=1;))

N
:Z/ © dd (3.13)
j=1 UﬁU]‘
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since (U N{p =t;}) =0for j =1,...,N —1. Since ¢ < t; on UNU; and
(U NU;) <liminf, @, (UNU;) for j =1,..., N, we have

<Z/ t; d<I><Zt hmmf(I)h(UﬂU)

Unu;

= 1iminf2tjq>h(U nuU;), (3.14)

h— o0 —

where we used the property that liminf, ap +1liminfy, b, < liminf},(ap +by,) for any

sequences {ap}, {br}. Note that t; < t;_1 +e <@ +econUNU, and so
N N
< Timi ' Y < Timi
(p2)(U) < hhn_1>1£fj§71 t; 0, (UNT;) < hhrglorolf E /UmUj(SO +¢)dPy

< 1ihminf(<p<1>h)(U) + elimsup @, (U N{p > 0}) (3.15)
— 00

h—o00

since U N{¢ > 0} = U;\Ll U NUj. Sending ¢ — 0" completes the proof of (7).
Proof of (iz): Assume the hypothesis and let K be a compact set. Recalling
K; = Uj, observe that

(p®)(K) = /K o dd = g/” pdd g LK N {p = 1,])

N
=> / © d®, (3.16)
=1/ KNK;

since ®(K N{p=t;})=0for j=1,...,N —1, and

N-1

(oK) = [ wd@h—z/ pdy— 3 ;0K N {p =t;))
KNK; =
N
< © d®y. (3.17)
j_Zl/I(ij
It follows that
N

lim sup(p®;)(K) < limsupZ/ pd®), < thsup/ pd®p, (3.18)
h—o0 h— o0 j=17KNK; j=1 h—oo JKNK;

where we used the property that lim sup,, (ax+0bp) < lim sup,, ap,+lim sup,, by, for any
sequences {ap }, {br}. Since ¢ < t; on KNK; and limsup, &, (KNK;) < ®(KNK;),
we have

N N
lim sup(p®,,)(K) < Z 1msup/ w d®y, < thq)(KﬁKj). (3.19)
KNK;

h—o0 j=1 h—o0 j=1

Note that t; <t;_1 +e¢ < p+con KN K; and so

=

lim sup(¢®4)(K) < Z(ap +e)P(KNK;) = (pP)(K)+eP(K Nspty)  (3.20)
j=1

h—o0
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where we used ®(KN{p =t;}) =0for j =1,...,N—1. Sending ¢ — 0" completes
the proof of (i7). O

With these lemmas in hand, we are now ready to state and prove the lower
semicontinuity of F4.

Proposition 3.1 (Lower semicontinuity of 4). Let A = (a;;(z))} ;= be a symmet-
ric, uniformly elliptic, continuous function on R™ with values in R™ @ R™. Suppose
{En}nen is a sequence of sets of locally finite perimeter in R™ and E is Lebesgue
measurable, with

E, = E, and limsup P(Ep; K) < 00 (3.21)

h—o0

for every compact set K in R™. Then E is a set of locally finite perimeter in R™
with

ve, H" 'L OBy > vgH" 'L O'E, (3.22)
and for any open set U in R",
Fa(E;U) < lihm inf Fa(Ep; U). (3.23)
—00

Proof. That E is of locally finite perimeter and
ve, H* 'L 0*E) > vpH" 'L O*F follow from [29, Proposition 12.15]. Thus we
need only to prove the lower semicontinuity.

First assume that U is bounded. By taking a subsequence of {F4(Fn;U)}hen »
we may assume up to relabeling that

lim Fa(Ep;U) = lihminf?A(Eh; U) < . (3.24)
—00

h—o0

Note this subsequence depends on U but this is not an issue. Since
limsup,,_, ., P(Ep; K) < oo for every compact set K, there is a further subsequence
{Eh(k) }ren and a Radon measure W such that HrL L OBy S Wask— oo (see
[29, Remark 4.35]).

Let V CC U be open and fix € > 0. Since A is uniformly continuous on U, there
exists 0 < r < dist(V,U¢) such that for any z,y € U, we have ||A(z) — A(y)|| < €

whenever |z — y| < r. Thus by the inequality (2.11), for any z,y € U,

(A@)E 6V < (AW)E OV + e (3.25)

whenever |z —y| <7 and |§| = 1.

Since V is compactly contained in U and spt®z = OF = 0*E, there exist finitely
many balls {B(z;,7)}}L, each of radius r and center z; € V N &*E which cover
V NOE. Take a partition of unity {¢;}}_, with ¢; € C.(B(z;,7),[0,1]) such that
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Z;V:1 p; =1on VNO*E and Z;\le ¢; <1 elsewhere. It follows that
liminf F4 (Ep; U) = lim T4 (Eppy; U)
h—00 k—o0

N
. _ 1 ne
> lim [/ <pj<A(xj)uEh(k)7th(k)>1/2 dH"1 56/ o, dH" 1]
j=1 LY 0" En(k) O*En (k)
. n— 1 e
> » liminf [/ 901<A(5”J')VE}L<;€)»VEh,(k.)>1/2 dH" ! — ﬁ6/ w; dH 1]
O*E (1 “Eh (k)

N
1
> {/ 0 (A(z;)vi, ve) /2 dH ™ — ﬁelim sup/ ©;j d?—["l}, (3.26)
- O*E O*Ep (k)

j k— o0
where in the last inequality, for each j = 1,..., N, we applied part (¢) of Lemma 3.3
to ¢, and the measuresd®;, = <A('/Ej>VEh,(k)7VEh(k)>1/2 dH" 'L 0*Ep) and d® =
(A(z)vg,vE)'/? dH" ' 0*E which by Lemma 3.2 satisfies the lower semicontinuity
hypothesis. By part (i) of Lemma 3.3, applied to H" "1 L O"En (k) L,

lim sup / o dH" < / @ AV (3.27)
k—oo  JO*Ep ptey;
foreach j =1,..., N, and so
N
th sup/ @ dH™ < Z/ ©; AU < U(U) (3.28)
1 k—oo JO*ELm) j=1"sPte;

since U;vzl spte; C U and ZN,l ¢; < 1. It follows that

11m1nf9’,4 (En; U {Z/ ;i (A(x;) VEyVE>1/2 dH"™ 1} — —c¥(U)

N
1 1 _
> . 1/2 n—1__ = . n—1 -
> g [/a*E v (A(x)ve, vE) '~ dH 2)\5/8*]3 v dH } 2)\€\I/(U)

> FA(E; V) — 76[4&"—1(? NO'E) + W(U)] (3.29)

2\
since, as above,

Z/ @ dH™ ! < Z/ o dH" P <H"H (U NOE) (3.30)
O*E j=1 spty;NO*E
by Uj:1 spte; C U and Zj:1 ¢; < 1. Letting ¢ — 0%, we obtain Fa(E;V) <
liminfy, Fs(ER;U). Approximating U by V from below and using monotone con-
vergence, we obtain F4(E;U) < liminfy Fa(Ep; U).

For the case when U is unbounded, we have

FA(E; V) <liminf Fa(Ep; V) < liminf Fo(Er; U) (3.31)
h—o00 h—oc0

for every bounded open set V' C U. We conclude by approximating U from below
by bounded open sets V' C U and using monotone convergence. O
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3.3. Existence theorem of minimizers for F 4. We now show the anisotropic
Plateau problem for F4 given by (3.1) has a solution. We follow a similar approach
as [29, Theorem 12.29].

Theorem 3.4 (Existence of minimizers for Fa). Let A = (a;(z))}';—; be a uni-
formly elliptic, continuous function on R™ with values in R™ @ R™, let Ey be a set
of finite perimeter in R™, and let U be an open bounded set. There exists a set of
finite perimeter E in R™ with E\ U = Eo \ U such that F5(E) = va(Fo,U) from
(3.1). In particular, E is a minimizer of F4 in U.

Proof. Let {E},}ren be a sequence of sets of finite perimeter in R™ with Ej \ U =
Eo \ U such that F4(Ey) — va(Eo;U) as b — oo and Fo(Ep) < Fa(Ep) < oc.
Consider My, = ERAEy C U. Noting that by [29, Theorem 16.3], (in particular, by
[29, Exercise 16.5]),

P(My,) < P(Ep) + P(Eo) < 227 Y25 4(Ey) < . (3.32)

Hence sup;, P(M},) < co. Choose R > 0 with U C Bpg so that M) C Br. By
Theorem 3.1, there is a set of finite perimeter M C Br and h(k) — oo as k — oo
such that Mjy — M. Up to modifying by a set of measure zero M C U. Set
E = MAEy. Then E\U = Ey \ U and note that Ej, = M, AEy. Hence Eyy — E
since |Ep () AE| = |[My)AM| — 0 as k — oo. Finally, observe that

limsup P(Ej ) < A2 limsup Fa(Epry) < A2Fa(Ey) < 0. (3.33)
k—o00

k—o0

Consequently, by Proposition 3.1,
va(Eo;U) < Fa(E) < iminf 54 (Ep)) = va(Eo; U). (3.34)

Thus F4(E) = va(Ep; U).

Suppose EAF cC UnN B(x,r), x € U, and r < ro. Then F\U = Ey\ U
and so F4(E) < Fu(F). Since EAF CC B(z,r), we have F4(E;R™ \ B(z,r)) =
Fa(F;R™\ B(z,7)). Hence F4(E; B(z,r)) < Fa(F; B(z,7)). O

4. Basic properties of almost-minimizers. In this section we begin our jour-
ney toward proving regularity of almost-minimizers by proving some fundamen-
tal properties that almost-minimizers possess and which play a crucial role in our
excess-decay argument.

4.1. Invariance under an affine change variable. One of the key ideas that
allows us to adapt the standard excess-decay arguments for perimeter minimizers
to the setting is a certain change of variable.

If A is a constant matrix, then by symmetry we can orthogonally diagonalize A
and write A = VDV !, where D is a diagonal matrix with the eigenvalues of A and
where V' is the matrix of corresponding orthonormal eigenvectors. By ellipticity the
eigenvalues of A are bounded below and above by the positive constants A and A.
Setting A2 = VDY2V =1 we have A = A'/2A4Y2. Note that A'/2 and A~1/2
are symmetric since V~! = V*. In the coordinate system of V, the matrix A~1/2
is diagonal and so almost-minimizers of 4 can be viewed as almost-minimizers
of perimeter when deformed by the change of variable y = T(z) = A~Y2z (see
Proposition 4.1 below). Of course this change of variable preserves any regularity of
almost-minimizers and we know by Tamanini’s work in [43] that almost-minimizers
of perimeter are Holder continuously differentiable.
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If A = (aj;())};=; varies Holder continuously, then almost-minimizers of F4
cannot simply be viewed as almost-minimizers of perimeter since deformation varies
from point to point. However, philosophically it is reasonable to expect a similar
amount of regularity since the deformation varies Holder continuously. In subse-
quent sections we will prove decay estimates for the excess at points zg € OF with
small excess on some ball or cylinder. In the proofs of these estimates it will be
convenient to be able to assume that A(zg) = I, allowing us to think of F4 as a per-
turbation of perimeter at the point xy. In order to make this assumption, we shall
do the following change of variable which was similarly used in [8, 26] for almost-
minimizers of other types of functionals involving coefficients A = (a;;(z))};—;. As
in the constant case, for each fixed xo € R" we can write A(zg) = VDV ! where
D is a diagonal matrix with the eigenvalues of A(zo) and where V is the matrix of
corresponding orthonormal eigenvectors. Setting A'/2 (z9) = VD2V =1 we have
that AY/2(z¢) and A=1/2(xg) are symmetric since V' = V* and satisfy

AN2le| < |AYV2(zo)€) < AV2IE,  ATMRIE < JATV R (o)) < ATVREL (4.1)

In particular, A2 < [|AY2(x0)€|| < AYV2 and A=Y2 < ||JA7V2(20)|] < X712,
Define the affine change of variable T,, at o € OF by
Ty (z) = Ail/Q(wo)(x — x0) + o, Tgi)l(y) = Al/z(xo)(y —x0) + w0, (4.2)
and define
Eyy =Ty (E), Uzy = Ty, (U), Az, (y) = A_1/2($0)A(Tz_ol (y))A_1/2($0)~
(4.3)
Note that T, (z¢) = o, Az, (xo) = I, while A, is symmetric, uniformly elliptic
with constants 0 < A/A < A/ < +oo and Holder continuous with exponent o and
Holder seminorm ||A,,||ce < (A®/2/A) ||A]|ca. The uniform ellipticity constants
follow from
MNP < NATY2(@o)él? < (AT, (y) A2 (w0)€, A7V2(w0)€)
< AJATV2 (o)é]* < (A/N)ES (4.4)
and the bound on the Hélder norm follows from estimate that for all x,y € R™ there
holds

Az (2) = Awy ()| = 472 (0) [A(T}(2) = A(T2 ()] A7 (o))
XA @) - AT )

(0]

A(
<A [Alles ] zo( ) = T )l
< A7 Allea A =yl (4.5)

Thus constants for A,, depend on the same universal constants as A.
The ellipsoid at xg € R™ of radius r > 0 is defined by

W, (zo,7) = T, (B(z0,7)). (4.6)

o
We use W, for our notation as this is the Wulff shape, introduced in [46], for the
integrand f(zo,&) = (A(20)&,€)/2. The ellipsoid W, (20,7) has axial directions
corresponding to the eigenvectors of A/ 2(z0) and axial lengths corresponding to the
eigenvalues scaled by a factor of . Since the eigenvalues of A'/?(xg) are bounded
between A2 and A2, we have

B(x0, \'2r) € W, (20,7) C B(xo, AY?r). (4.7)



3248 DAVID A. SIMMONS

We now prove the invariance of almost-minimizers under the change of variable
T, and refer readers to the change of variable formula given in Proposition A.1 in
Appendix A.

Proposition 4.1 (Invariance of almost-minimizers under the change of variable
T:). If E is a (k,a)-almost-minimizer of F4 in U at scale ro, then E., is a
(Alotn=1/2\=n/2 o) -almost-minimizer of Fa,, iUy, at scale ro/AY2.

Proof. Suppose E,,AF,, CC B(z,7)NU,, for some z € U,, and r < ro/A'/? (here
we write Fy, as an arbitrary competitor for F,, whose image F' under T L will
be a competitor for E). Applying Proposition A.1 with y = T,,(z), noting that
Jf = JTy, = det A=1/2(x0) and (Vgo f) = AY2(xg) since A/?(zg) is symmetric,
we have

Fa.. (Eny: B(z7)) = / (Ao (), v, )2 dH () =
B(z,r)NO*E

/ (Agy (Twy (2))AY 2 (20)vg, AY2 (20)vE) /% det A=V (20) dH™(x)
o (B(z,m))NO*E

/ (AY2(20) Ay (Tuo (2))AY 2 (20)vE, ve)/? det A7YV2(20) dH™(2).
o (B(z,r))NO*E
(4.8)

Note that A, (T, () = A~Y2(x)A(z)A~1/2(x0) and so
AV2(50) Ay (T, () AY2 () = A(z). Hence

Fa,, (Bugi B(z,7)) = det A™2(20)FA(E; T, (B(z,7))). (4.9)
Likewise, Fa, (Fiy; B(2,7)) = det A~ V2(20)Fa(F; T, (B(2,7))). Note that
EAF cC T; N (B(z,7))NU C B(T,.*(2), AY?r) N U, T,.'(2) €U,
and AY%r < 1. (4.10)

Thus Fa(E; B(T;.1(2), AY?r)) < Fa(E; B(T;H(2), AY?r)) + Aletn=1/2 patn—1
by the mlmmahty condltlon This simplifies to

Fa(E; T (B(2,1)) < FalE; Ty (B(z,1)) + Aletn=1/2 patn=1 Tt then follows
that

Fa,, (Bugi Blz,7)) = det A=/2(20)F a(E; Ty, (B(2,7)))

< det A2 (w0)Fa(F; Ty, (B(2,7))) + det A7V (o) Aletn =D/ potnt

< T,y (Fryi B(z,7)) + AT D2 N0 2 pectn (4.11)
as desired. ]

Hence any of the properties or estimates we prove for (k, «)-almost-minimizers
also hold for the set E,, (with any bounds or estimates having modified constants
but which depend only on the same universal constants). Working with E,, will
allow us to assume A(zg) = I in the proof of many of our estimates and will in
turn allow us to prove additional properties and estimates for general (&, a)-almost-
minimizers.

As previously mentioned, whenever we write C' we mean a constant (which may
change from line to line) that depends only on the universal constants n, A\, A, k, «, 7,
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and upper bounds for ||A||ge, but does not depend on the set E or the point xg.
In cases where we wish to emphasize that a constant depends on fewer constants
such as, for example, on the dimension n only, we write C'(n).

4.2. Scaling of the energy F4. In Section 7 we will use the scaling of the energy
F 4 to simplify and work at scale 1 instead of of scale  and in Section 10 we will
utilize blow-up analysis to study the singular set almost-minimizers. The blow-ups
E.,.» of aset E at a point zo € R™ and scale r > 0 are defined by

E—
Bppr = —20 = a0, (E) (4.12)
r
where @, , : R®™ — R™ is the map defined by
By (@) = =2 (4.13)

We denote the inverse of ®,, , by ¥y, ,», that is, Uy, (y) = ry + 9. Given a
matrix-valued function A = (a;;(z))}';—;, we denote by A, , the matrix-valued
function

Ay r(y) = A(ry + x0) = Ao Wy, (y) (4.14)

(this is not to be confused with A,, from the previous subsection). Note that
[ Azo rlloe = 72| Allce

Proposition 4.2 (Scaling of F4). If E is a set of locally finite perimeter in R™,
rg € R™, r > 0, then
_ Fa(E;F)

Ea:,’I‘;Fwo,T) = 7‘”771 (415)

Fa

zo,r(

for Borel sets F. In particular, if E is a (k,«)-almost-minimizer of Fa in U at
scale o, then Ey, » is a (kr%, a)-almost-minimizer of Fa,,, Uz at scale ro/r.

N

Proof. We apply Proposition A.1 with the change of variable y = f(x) = ®,, () =
(z—1x0)/r and integrand (, &) > (A, - (2)&, €)% Then g(y) = Uuy - (y) = ry+mo,
Vg=rl,and Jf =r~". So |(Vgo f)'vg| =r and it follows that

?AJOYT(E.’IJU,T; Fro,r) = / <A(Ty + :CO)VEJO,M VET,O,T>1/2 dHnil(y)
Fy,rNO*E

*
xq,T xq,T

- / (A(x)ve, ve)? e dH (z)
FNo*E
T F)

rn—l

(4.16)

Now, let F' be a set of locally finite perimeter in R” with E, ,AF,, , CC B(z,s)N
Ugor for @ € Uyyr and s < 19/r. Then EAF CC ¥, (B(z,s)) NU. Note
Vo r(B(z,s)) = B(rx + xo,rs) with rz + x9 € U and rs < rg. Applying (4.16) to
B(z, s) and using the almost-minimality of E in U at scale ro, we have

_ JFA(E; B(rxz + x9,78))

o pn—1

< Fa(F; B(rx + xg,75)) + r(rs)*tn-1

F g (Bag,ri B(2,5))

Tn—l
= SFAIO,T(FIO,T? B(z,s)) + krosetn—l (4.17)

that is, Ey, , is an (kr®, «)-almost-minimizer of F4, . in Uy, , at scale rg/r > 0. O

zq,r
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4.3. Comparison sets. To utilize the almost-minimality condition we will often
construct competitors by modifying E inside an open set. The following proposition
allows us to do this.

Proposition 4.3 (Comparison sets by replacements). If E and F are sets of locally
finite perimeter in R™ and G is an open set of finite perimeter in R™ such that

H" Y PGNOE) =H""(O*GNIF) =0, (4.18)
then the set defined by

Fy=(FNG)U(E\G) (4.19)
s a set of locally finite perimeter in R™. Moreover, if G CC U and U is open, then
Fa(Fo;U) = Fa(F;G) + Fa(B; U\ G) 4+ Fa(G; EVAFW). (4.20)

Proof. In the proof of [29, Theorem 16.16] the decomposition, see (16.35),
pr, = prt G+ puc(FONEO) 4 upe R\ G) —pgL (EVNFO)  (4.21)

is proved. Since all of the measures on the right-hand side are concentrated on
disjoint sets and since the measures F4(G¢; - ) and Fo(G; - ) are equal and puge =
—ua, we have

Fa(Fo;U) = Fa(F;G) + Fa(B; U\ G) + Fa(G; (FO 0 ED)u(EW N FO))

(4.22)
by additivity of F4. By H"}(0*GNI*E) = 0 and H" " (R"\(EQOUEMUI'E)) = 0,
FA(G, FONE®) =F (G, FO\ ED), (4.23)

Likewise, H"~1(0*G N 9*F) = 0 and H" (R \ (F© U F() U §*F)) = 0 and so
FA(GEDNFO) = F (G, B\ FD), (4.24)
These along with (4.22) prove (4.20). O

4.4. Volume/perimeter bounds and the almost-monotonicity formula. One
important property which almost-minimizers of ¥4 possess is bounds on both the
volume and the perimeter of E on balls centered at points in their topological
boundary. Recall that we require sptug = OF for almost-minimizers. The full set
of estimates is given in Proposition 4.5 but we have some work to do to prove this.
The first step is showing the upper bound on perimeter.

Define the perimeter density ratio of E at xy by

P(F; B(xo,r)).

O(E,xq,7) = o (4.25)
and perimeter density of E at xy by
Q(E, .’E()) = lim Q(E, Zo, 'I’) (426)
r—0t

whenever the limit exists.

Lemma 4.1 (Upper perimeter bound). There exists a positive constant C =

C(n, A\, A, k,a, 1) with the following property. If E is a (k, a)-almost-minimizer of
Fa inU at scalerg, then for every xg € UNOE withr < d = min{dist(xq, U)o} <
OO7

P(E; Bxo,7)) _ (4.27)

,r.n—l -
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Proof. Consider the function m: (0,d) — R defined by m(r) = |[EN B(xg,)|. Note
that m is increasing, m/(r) = H" 1 (EM N dB(xg,r)) for a.e. r by the coarea
formula, and H"~1(0*E N B (xg,7)) = 0 for a.e. r because H" 'L O*FE is a
Radon measure. Let r € (0,d) be one of the a.e. radii that satisfies both m/(r) =
H Y EVNOB(xg,7)) and H" 1 (*ENOB(z0,7)) = 0. For s € (r,d) consider the
comparison set F' = E'\ B(xg,r) in B(xo,s). Then EAF C B(xq,r) CC B(xg,s).
It follows from comparability to perimeter and the almost-minimality that
M2P(B; B(xo,5)) < Fal(E; B(xo, s))
< FA(E\ B(xo,7); B(xo,s)) + rs*t"1
< AV2P(E\ B(xo,7); B(zo,5)) + kst (4.28)
and so
P(E; B(zg,s)) < C(P(E\ B(zo,r); B(zg,s)) +s*7"1)
= C(H" Y(EY NdB(xo,r)) + P(E; B(zo,s) \ B(xo,7)) +s*™71)  (4.29)
since H"~1(0"E N OB(x0,7)) = 0. Sending s — rT yields the inequality

P(E; B(xo,7)) < C(H" Y (EW n8B(xo,7)) +r*T"1). (4.30)
This, together with H"~1(EM N B (xg,7)) < nw,r"~ ! and r < rq, gives
P(E; B(zqg,7)) < CrnL. O

To obtain the lower perimeter bound for almost-minimizers of F 4, we shall adapt
an argument given by Tamanini for almost-minimizers of perimeter in [42, 43] which
makes use of an almost-monotonicity formula. Monotonicity formulas are often
times a valuable tool in regularity theory. For example, the monotonicity of density
ratios for minimizers of surface area is heavily relied upon in [1, 44] as well as in
many other papers. By this we mean the fact that if £ is a perimeter minimizer in
U, xg € U, then the density ratio
P(E; B(x,7))

rn—l

0(E;xo,7) = (4.31)

is monotonically increasing in r (see, for example, [29, Theorem 17.16]). In [2],
Allard demonstrated for integrands depending solely on the direction variable vg
(and not on the spatial variable ) that monotonicity formulas exist if and only if the
integrand is a linear change of variable from the area integrand. Under the change
of variable T, we have A(xg) = I so that our sets satisfy the condition for almost-
minimality of perimeter when making comparisons on balls centered at zy as shown
in Lemma 4.2 below. A key observation is that we only need these comparisons
to apply the standard cone-competitor argument to obtain an almost-monotonicity
formula as we do in Lemma 4.3.

Lemma 4.2. There exists a positive constant C = C(n, \, A, k, a, 79) with the fol-
lowing property. If E is a (k,a)-almost-minimizer of F4 in U at scale ro > 0,
20 € UNOE, and A(xg) = I, then

P(E; B(zg,7)) < P(F; B(zo,7)) + C(k + ||A||ga )r* ! (4.32)
whenever EAF CC B(xg,r) and r < d = min{r, dist(zq,0U)}.
Proof. Let EAF CC B(xg,7) CU and r < ro. If P(E; B(xo,7)) < P(F; B(zo,7)),
then (4.32) trivially holds true. So consider the case when P(F;B(xzg,r)) <
P(E; B(zg,r)).
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By inequality (2.11) and A(xg) = I, we have
vl < (A, ve) V> + S| AGro) — AG)]
< (A, v) " + g5 | Alleez ol (4.3

and so |vg| < (A(2)ve, ve)Y/? 4 (1/2))||A||car® for x € B(xo,r). Integrating with
respect to H" 1L O*E gives

P(B; B(ro,1)) < F4(: Blro, ) + g5 14]

o P(E: Blxo,r)  (434)
Similarly, (A(z)vp, ve)'/? < Jvp| 4+ (1/2)0)||A]|car® for = € B(zg,) and so
1
Fa(F; B(zo,7)) < P(F; B(zo,7)) + aHAHCa?"aP(F; B(zo,1)) (4.35)

Combining the almost-minimizer inequality with (4.34), (4.35), and
P(F; B(xg,r)) < P(E; B(xg,r)) gives

P(E; B(zg,7)) < P(F; B(zo,7)) + £t 4 (1/2)0)]|A||cer“P(E; B(x0,7)).

(4.36)

The upper perimeter bound P(E; B(zg,7)) < Cr"~! gives
P(E; B(zo,7)) < P(F; B(z0,7)) + C(k + ||A]|ga )rotm 1 (4.37)
as desired. 0

Lemma 4.3. There exists a positive constant C = C(n, \, A, k, a, 19, ||A||ca) such
that the following holds. If E is a (k,«)-almost-minimizer of F4 in U at scale
ro > 0 with xg € UNIE and A(xo) = I, then the function
P(E; B
— DB Blzo,r) nf”fo’r)) +Cre (4.38)
T
is monotonically increasing on (0,d) where d = min{rq, dist(xg,U)} > 0.

Proof. Without loss of generality assume x¢ = 0 and write B, = B(xg,r). Define
the function ®: (0,d) — (0,00) by ®(r) = P(E; B,). ® is increasing and hence
differentiable for a.e. r € (0,d). Thus it suffices to prove

d (®(r)
— + “) > .e. .
o (Tn_l Cr ) 0 for a.e. 7 € (0,d), (4.39)
which can be rewritten as
o(r) < —1 . 14”(1") + Crotnt for a.e. r € (0,d). (4.40)

The idea of the proof of (4.40) is to construct cone competitors over £ N dB,
with vertex at 0 for each r > 0 to use in the comparison inequality (4.32). To do this
we will need to approximate F by open sets with smooth boundary and construct
the cone competitors for the approximating sets.

By [29, Theorem 13.8], there is a sequence {E}}ren of open sets with smooth
boundary in R™ such that Ej, ¢ F and lg,| = |pe|. For now hold h € N fixed.
The set E, N OB, is relatively open in dB,. for every r > 0. By Sard’s lemma,

OEL, N OB, is a smooth (n — 2)-dimensional surface for a.e. r > 0. (4.41)
Consider the cones with vertex 0 over E;, N OB,

Kh(r):{)\xeR":)\>O, xEEhﬂaBr}- (4.42)
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For the a.e. r > 0 such that (4.41) holds we have that Kj(r) is a set of locally finite
perimeter in R™ with

[, () = Vi (ML 0Ky (r), and vk, (o (2) -2 =0, Vo € Kj(r) \ {0}. (4.43)
For r > 0 such that (4.41) holds, the coarea formula for (n — 1)-dimensional recti-
fiable sets (see [29, Theorem 18.8]) on 0K} (r) with u(x) = |z| yields

P(K(r); B,) = / H" (0K (r) N OBy) dt (4.44)
0
since |VO%n("y| = |Vu| = 1. Note that for t < r we have
t t
DKy (r) N OB, = (;) (0Kw(r) NOB,) = (;) (9, N 0B,) (4.45)
and hence for r such that (4.41) holds we have

T n—2
P(Ku(r); B,) = /O (t) H""2(OE, NOB,)dt = ﬁ?—t”‘z(aEh NoB,)

' (4.46)

Consider a radius r > 0 such that for all » € N both (4.41) and
H" Y O*'ENOB,) =H" Y (OE,NOB,) = 0 hold (and consequently (4.46) as well).
This true for a.e. 7 € (0,d) since H" 'L §*E and H" 'L OF}, are Radon measures
and by Sard’s lemma. Consider the comparison sets Fy, = (Kp(r) N B,)U(E\ B,).
Let s be such that r < s < d. By (16.32) of [29] we have

P(Fy; By) = P(Ku(r); B,) + P(E; B, \ B,) + H' H((EWAK,(r)) NOB,).
(4.47)

Since EAF}, C B, CC By, applying Lemma 4.2 gives
P(E; B,) <P(Ky(r); B,) + P(E; B, \ B,)
+H" L (EWAK(r) N oB,) + Cstnt (4.48)

which by subtracting P(E; B, \ B,.) from each side together with (4.46) simplifies
to

P(E;B,) < ﬁﬂn_2(3Eh NoB,) + an—l((E(l)AEh) N 8BT) + Ogotn—1,
(4.49)
Sending s — r* gives
P(E;B,) < ﬁfﬂn%(@Eh NoB,)+H ' ((EWAE,) NOB,) + Crotn=!,
(4.50)
This inequality holds for a.e. r € (0,d) and integrating over the interval (s,t) C
(0, d) yields
t 1 .
/ P(E;B,)dr Sm/ r ’H”*Q(aEh NOB,.)dr

+H T ((EWAEL) N By) + C(tT" — st (4.51)
Applying the coarea formula for (n — 1)-dimensional rectifiable sets ([29, Theorem

18.8]) on OE), with u(x) = |z|, and g = |z|, gives

t
/ r H""2(0E), N OB,) dr = / [o]|VOFrul <t P(Ey; By \ Bs) (4.52)
s OERN(B¢\B.)
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since |V?Fry| < |Vu| = 1. Thus combining (4.51) and (4.52) gives
/t P(E; B,)dr g%P(Eh;E \ By) + 1" ((EWAEL) N By)
S + Ot — st (4.53)
By Ej, ¢ E and lE, | = ||, sending b — oo gives
/: P(E;B,) dr < %P(E;Et \ B,) + C(toF™ — ot (4.54)

Dividing by ¢ — s and sending t — s™ at points of differentiability of ® yields (4.40)
as desired. O

Now we are able to use a perturbation argument and the change of variable T},
to obtain an almost-monotonicity formula when A(zg) is not assumed to equal I.

Theorem 4.4 (Almost-monotonicity formula). There exists a positive constant
C=C(n,\ A, k,a, 710, ||A||ce) with the following property. If E is a (k, «)-almost-
minimizer of F4 in U at scale g, then for every xog € U NIOE, we have

TalE; Wao(20,5)) _ TalE; Wao(20,7))

Sn—l Tn—l

+ore (4.55)

whenever 0 < s <1 < d where d = A~/? min{ry, dist(zq, dU)}.

Proof. Applying Lemma 4.3 to E,, and Fa,  gives that

rs 1~ (U P(E, ; B(xg,r))+ Cr® is monotone increasing on (0, d,, ) where d,,, =
min{A~1/2rq, dist(xo, OU,,)}. The change of variable y = T}, (x) applied to E gives
P(Eyy; B(mo, 7)) = det A™Y2(20)F 4 (20) (B3 W4y (w0, 7)). This and the bound

(det A=/2(24))~* < A™2 imply that

r '_> g‘A(IU)(E7 Wwo (.T/'O,'I"))

rnfl

+Cre (4.56)

is monotone increasing on (0, dy,). Note U = T;.1(Uy,) and Lip Tj;;* = ||AY2(20)||
< A2, Given z € U, setting y = Ty, () € OU,,, it follows that
|z — 20| = | T, (y) — Tyt | < Lip Tyt |y — wol < AM2dist(wo, OU,, ). (4.57)

Hence dist(zq,0U) < AY2dist(xg, 0U,,) and so d = A~ min{re, dist(zo, U} <
dz,- Thus (4.56) is monotone increasing on (0,d). By (2.11) we have

(Al vs)? < (Ao, ve)? + (Alz) — Azo))vp, vi)'/?
< (Alwo)vs, v} + 55 l|Allcel — ol (4.58)

and so (A(x)VE,VE>1/2 < <A(I0)VE,Z/E>1/2 + C||A||cas® for x € W, (x0,s) by
(4.7). Tt follows that

Fa(E; Wy (0,5)) _ Fago) (B3 Way(20,5)) + 050 PE W (20, 5))

Sn—l Sn—l Sn—l

< F Azo) (E5 W gy (20, 8))

sn—l

+ Cs” (4.59)
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where we used that P(E; W ., (x0,s)) < P(E; B(xg, A'/?s)) < Cs™~! by the upper
perimeter bound (4.27). Similarly, we have

?A(xo)(E; Wﬂﬁo(x()vr)) < f‘:FA(E‘§ on(x077'))

Tn—l ,rn—l

+Cr® (4.60)

Combining this last inequality and (4.59) with (4.56) and s < r yields
9jA(-E; Wm’o (xOv 8)) < ?A(Ea Wzg(an 7”))

sn— 1 rn— 1

+ Cr® (4.61)
as desired. O

For xy € OF, define the F 4-density ratio of E at xg by
_ FalE; Wy (20,7))

Oa(E, xo,1) = o . (4.62)
and the F 4-density of E at xg by
0A(E,x0) = lim 04(E,xg,7) (4.63)
r—0+

when the limit exists.

Corollary 1 (Existence of densities). If E is a (k,@)-almost-minimizer of Fa in
U at scale rg, then for every xg € U N OFE the density

0a(E,x9) = lim 04(F,xg,7) (4.64)
r—0t
exists.

Proof. For every 0 < s < r < d we have by almost-monotonicity that 04(E, zg, s) <
04(E, zo,7)+ Cr*. Taking the limsup as s — 0% followed by the liminf as r — 0
yields

limsup 04(F, zg,s) < lUminf 04 (E, zg,r) + limsup Cr® = liminf 04 (E, zo,7)
s—0+ r—0+t r—0+ r—0+
(4.65)

Hence 04(F,x0) = lim,_g+ 04(E, xo,7) exists. O

Using the almost-monotonicity formula, we are now able to control the perimeter
density ratios from below.

Proposition 4.4. There exists a positive constant C = C(n, A\, A, k, a, ro, || A]|c)
with the following property. If E is a (k,a)-almost-minimizer of F4 in U at scale
ro, then for every xg € U NOE, we have

P(E7 B(‘rOv T))

Tn—l

wn_1 (A A2 = Cre < (4.66)

for r < min{rg, dist(zo, 0U)}.

Proof. Let r < min{ro, dist(zg,0U)}. First consider the case xo € *E. The limit
of perimeter density rations at a point in the reduced boundary converge to wy,_1
as r — 0% [29, Corollary 15.8]. Note that A~'/2r < A='/2min{ro, dist(zo,dU)}
and so for s < r we can apply Theorem 4.4 with A=1/2s < A='/?r to obtain

Fa(By Way (20, A7 25)) _ Fa(B; Wy (w0, AV/?r))
(A—l/ZS)n—l - (A—l/QT)n—l

+Cr” (4.67)
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By comparability to perimeter and (4.7), we have

P(E; B(zg, (\/A)Y?5s)) . 1 Fa(E; W (z0, A" 1/2%5))

=1
R (PV) N VER IR S TV (A=1/25)n=1
1 SFA(E; on (l‘o,A_l/Q’l“)) a A(n_l)/Q gA(E§ B(Jfo,?“)) «
= \n/2 (A=1/27)n—1 +Or s —7 1 +Or
A\"/2 P(E; B(xg,T))
< (= A St S LA a, .
(A rEBe o

Hence (4.66) holds for zy € 0*E.

Now consider the general case zo € OF (but perhaps not in 6*& Given 0 <
s < r, there is yo € O*E with B(yo,s) C B(xo,r) by sptug = OF = 0*E. It follows
that

n—1 . .
r gn—1 prn—1
and so applying (4.66) at yg € O*FE gives
5\ n o) . P(E; B(zo,7))
(;) (wn_l(/\/A) 2 _ s ) < (4.70)
Sending s — r~ completes the proof. O

Let us recall a definition. For a set of locally finite perimeter of E, the essential
boundary of E, denoted by 9°FE, is the set of points with neither full nor zero
volume density, that is,

O°E =R"\ (EQ UEWD), (4.71)
Here E® denotes the points of volume density ¢, that is,
ENB
E® = {x eRr": fim EOB@ I t}. (4.72)
r—0+ WpT™

In general, we always have 9°FE C OF. Federer’s theorem states that
H1(O°E \ 0*E) = 0 for sets of locally finite perimeter in R".

A consequence of the volume density bounds (4.73) in the following proposition is
that the topological boundary of an almost-minimizer E cannot contain any points
of zero or full volume density, that is, the essential boundary 0°F in U equals the
topological boundary JF in U. This fact precludes the existence of sharp cusps
in the topological boundary of E as well as prevents two sheets of the topological
boundary from touching tangentially. The perimeter bounds (4.74) show that the
perimeter measure for E is (n — 1)-Ahlfors regular up to scale ryg.

Proposition 4.5 (Volume and perimeter bounds for almost-minimizers). There
exist positive constants ¢ = c¢(n,\,A) € (0,1), C = C(n,\,A,k,a,r9), and € =
e(n, \, A, k, o, 10, ||A]|ce) with the following property. with the following property.
If E is a (k, a)-almost-minimizer of F4 in U at scale ro, then for every xg € UNOE
with r < d = min{ro, dist(zq, 0U), e} < oo,
ENB
c< ENB@o| (4.73)
wWp ™
and
P(E; B
c< P(E; B(zo, 1)) <C (4.74)

= 7""_1 =
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Moreover, the volume density bounds (4.73) imply OE N U = 9°E NU and so
Federer’s theorem gives

H' N U N (OE\ 9E)) = 0. (4.75)

Proof. The upper bound of (4.74) was proved in Lemma 4.1. For the lower bound
of (4.74) take £ > 0 small enough so that Ce® < (1/2)w,_1(A/A)*/? where C is the
constant in Proposition 4.4.

Recall from the proof of Lemma 4.1 that for m(r) = |E N B(xo,r)| we have
m'(r) = H* Y (EMW) N B(xg,r)) for a.e. r < d. Then the inequality (4.30) becomes

P(E; B(zq,7)) < C(m/(r) +r*tn=1). (4.76)
So by the lower bound of (4.74) we have
er"t < Cm!(r) + CrotTt, (4.77)

Taking e small enough so that Ce® < ¢/2 and relabeling ¢/2 to ¢ gives cr"~! <
m/(r) for a.e. r < d. Integrating on (0,r) and modifying constants gives cw,r" <
m(r) = |E N B(xg,r)| which is the lower bound of (4.73). Since E° is also a
(k, @)-almost-minimizer of F4, we can apply this lower bound of (4.73) to get
cwnr™ < |E°N B(xg,r)| which gives the upper bound of (4.73).

Federer’s theorem [29, Theorem 16.2] states H"~1(9°E \ 0*E) = 0. The volume
density bounds (4.73) imply 0ENU = 9°ENU and hence H* 1 (UN(OE\ 0*E)) =
0. O

Hence, given any (k, «)-almost-minimizer E of F4 in U at scale rg, we can shrink
ro by a fixed amount, depending only on the universal constants n, A, A, k, «, and
an upper bound for ||A||c«, so that at points xo € UNJE the volume and perimeter
bounds hold for all » < min{rg,dist(xg, 0U)}. Throughout the rest of this paper,
we will work at this smaller scale and use the volume and perimeter bounds.

4.5. Compactness for the class of F4-energies. In addition to having fixed

n, A\, A, «a, fix a positive constants M; and M. Define the class of admissible
matrix-valued functions A to be the set

A is symmetric, ||A]lce < My, [|A(x)|] < Ma, and

@ n.mn ny . 9 ) )

{Acc@irm o) 3 BTG 6 < Al for all 1€ € RY }

(4.78)

Lemma 4.5. A is compact in the topology of uniform convergence on compact sets
as a subspace of C(R™;R™ @ R™).

Proof. Let {Ap, }ren be a sequence in A. We apply Arzela-Ascoli to {Ap, }ren noting
that pointwise-boundedness follows from ||Ap(z)|| < Ms and equicontinuity follows
from [[Ap||ce < M;. Hence there is a subsequence { Ay i) ren and A € C(R™; R"®
R™) such that Ay — A uniformly on compact sets. It follows that A is symmetric
and [|A(2)|| <limp oo |[Any (2)|] < My for any 2 € R™. For any z,y,{ € R”,

1A(z) = AY)l| < [[A(z) = Apy (@)[] + Mz = y|* + [[An) (y) = AW,
A€ < (A(2)€, ) + ((An () — A(2))€,€) < Al¢. (4.79)

Sending h(k) — oo, gives ||Al|ce < My and M¢]? < (A(2)€,€) < A|¢)?. Thus A€ A
and so A is compact. O
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Fix an open set U and k > 0. Define the class M of almost-minimizers of F 4 in
U for A€ A by

M= {E CR": Eis a (k,«a)-almost-min. of F4 in U at scale rg
for some A € A and ry > 0}. (4.80)

We will show that M is compact by separately proving precompactness and closed-
ness.

Proposition 4.6 (Precompactness of M). Suppose that {Ep}nen C M (that is, Ep,
is a (K, a)-almost-minimizer of F 4, in U at scale vy, for some Ap € A and r, > 0),
and that ro = liminfy, oo rp > 0. For any open V. CC U with P(V) < oo, there
exist h(k) — 00 as k — o0, a set of finite perimeter E C'V, and A € A such that

VNOEL,mw — E, BVAE, ) = ug,

Apy — A uniformly on compact sets. (4.81)
Proof. First we choose h(k) — oo as k — oo such that limy_co 7pk) = 70. Let
r €V and B(x,4r) C U with 2r < rg. Let ko be such that 2r < rjq,) for & > k.
If P(Eyy; B(x,7)) > 0, there is y € B(x,7) N OEy) and so P(Epx); B(z,r)) <
P(Epu); B(y,2r)) < C(2r)"~' by upper density bound (4.74) since B(y,2r) C

B(z,4r) C U. By [29, (16.10)], we have for k > ko that
P(Epy N B(z,7)) < P(Eypy; B(w,7)) + P(B(z,7)) < Cry ' <oco.  (4.82)

and so supy, P(Ep) N B(x,7)) < co. Since V is open and compactly contained

in U, the balls with centers in V that are contained in U form a covering for V.

Hence we may cover V by finitely many balls { B }évzl where B; = B(x;, s;) satisfy

B(xzj,4s;) C U with z; € V and 2s; < rg for 1 < j < N. Choose R > 0 so that
B;)) < P(Eway: U By) + P(

UL, B; C B. Then
Bj)
J=1 Jj=1 i=1
P(Enu); Bj) +P(

Bj)
1 j

< Ory 'N + P(Bgr) < (4.83)

N

C =
C=

P(Eh(k) N (

IA
M=
C=5

<.
Il
Il
—

and so we may apply Theorem 3.1 to construct a set ' C Bpg of finite perimeter
and a further subsequence indices h(k) such that Ej, ) N (U;vzl Bj) — F. Setting
E =V NF, we have that V N Ej,;) — E and supy, P(V N Ep)) < supy, P(Eppy N
(U;V:1 Bj)) < co. Finally, given ¢ € C2(R") and ¢ € C}(R"), we have

/ (0 — ) dpvo,g, +] /R b diveg, g, /R ¥ dys

< 1160 — 9l oup SUD [y, o, |(R™) + ‘ / Vi do / Ve da
k VﬂEh(k) E

+ H(p - 1/}Hsup|:uE|(Rn)

<

+’/Rn(1/}—%0)dME
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< lle = Wlloup sup [pvrim, o [(R”) + [V lsup| (VO Enry ) AE]

+ 1l = ¥lsup| el (R™). (4.84)
Since V' N By — E, this gives

lim sup / Y AduvnE, G — / pdup
k—sup n R™
<llp - 1/f\|sup(81;p |1vng, | (R") + [ue|(R™)). (4.85)

So by density of C}(R™) in CJ(R™) in the sup norm, we have pyng,,, X g
Finally, by Lemma 4.5 we may extract a further subsequence such that, up to
relabeling, we also have Aj ) — A uniformly on compact sets. O

Proposition 4.7 (Closedness of M). Suppose that {Ep}hen CM (that is, Ep, is a
(K, @)-almost-minimizer of F 4, in U at scale rp, for some Ap € A andrp, > 0), 1o =
liminfy, oo 7 >0, V CC U is an open set with P(V) < co such that VN E, - E
for a set of finite perimeter E, and A, — A uniformly on compact sets for some
A€ A. Then E is a (k,a)-almost-minimizer of F4 in V at scale ro. Moreover,

[vAE, = 1E, (4.86)
Fa,(En; ) = Fa(EB; ) inV (4.87)

where we view Fa, (Ep; - ) and F4(E; - ) as Radon measures. In particular,

(i) if cp, € VNOEy, xp — x, and x €V, then x € VNIE;
(i) if x € VNOE, then there exists {xp}hen with xp € VNOE}, such that xp — x.

Proof. By the same argument as in the proof of Proposition 4.6 we can show
sup,, P(V N E},) < co. The weak convergence jiyng, — pg of (4.86) follows from
V N E; — F as also shown in the proof of Proposition 4.6.

To show that F is a (k,a)-almost-minimizer of F4 our strategy is as follows.
Given a competitor F' for E, we modify F' to construct competitors Fj and apply
the almost-minimality of Ej with respect to F4,. We then pass the minimality
inequalities through limits to obtain the desired almost-minimality inequality for
E.

Suppose EAF CcC VN B(x,r) with x € V and r < ry. For y € V, set d(y) =
min{ro, dist(y,0V)} > 0. Since H" 1L 9*E) and H" 'L 9*F are Radon measures,
we have that for a.e. s € (0,d(y)),

H" Y OB(y,s) NO*F) = H" Y (0B(y,s) N 0*E},) =0, Yh € N. (4.88)

Note that |(E(1)AE£1)) N B(y,d(y))| = [(EAER) N B(y,d(y))| because a Lebesgue
measurable set is equivalent to its set of points of full density. By the coarea formula,
VNE,— E, and B(y,d(y)) C V, it follows that

d(y)
/ H L (EWAEN)N0B(y, 5)) ds = [(EVAEN) N B(y,d(y))| — 0 (4.89)
0

as h — oo. Consequently, by Fatou’s lemma,
liminf H" ((EMWAEM) N oB(y, s)) =0 (4.90)
h— 00

for a.e. s € (0,d(y)). Since EAF' is compactly contained in V N B(x,r), we may
find finitely many balls {B(y;,s;)}_, with y; € V and s; € (0,d(y;)) satisfying
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(4.88) and (4.90) with y = y;, s = s; such that, setting G = Ujvzl B(y,,s;), we
have EAF CcC G CcC V N B(x,r). Now consider the comparison sets Fj, defined
by F, = (FNG)U (E), \ G). Since 0G C Ujvzl 0B (y;,s;), by (4.88) there holds
H YOG NI F) =H"" (OGN I*E)) =0, Vh € N. (4.91)
Additionally, EM NG = FM NG since EAF CC G so that by (4.90) there holds
liminf #" 1 (FOAEM) N 0G) = 0. (4.92)
h—o0

Observe that E,AF;, C G CC UN B(x,r) with € U. Since r < ro = liminfj,_, o
1, there is hg such that r < rp, for all h > hg. For now fix h > hg. By (4.91) we
can apply Proposition 4.3 to obtain

Fa, (F; B(x,7)) = Fa, (F; G) + Fa, (Ep; B(z,7) \ G) + Fa, (G; FVAEV)
< Fa, (F;G) + Fa, (Ep; B(z,1)\ G) + AV2H L (FOAENN) n0G).  (4.93)
Since Fj, is a competitor for the F4, -almost-minimality of E}, we have
Fa, (Ep; B(z,r)) <Fa,(F;G) + Fa, (En; B(z,7)\ G)
+ AR L (FWAE) N 0G) + ket (4.94)
which simplifies to
Fa, (Bn; G) < Fu, (F;G) + ANPH Y (FOAED) N 0G) + krotn=1. (4.95)

Similar to (2.11) we have (A, (y)ve, ve)/? < (A(y)ve, ve)t/? + C||An(y) — A(y)|].
Integrating yields
T4, (F;G) < Fa(F;G) + Cl|An — Allsupc P(F; G) (4.96)

where we set [[Ap — Al|sup ¢ = sup, e ||An(y) —A(y)||. Taking the limsup as h — oo
gives

limsup Fu, (F;G) < Fa(F;G) (4.97)

h—o0

because limsup;,_,q ||4n — Al|supe = 0 by the uniform convergence A, — A on
compact sets. Similarly,

?A(V N Eh;G) < ?Ah(V NEy;G)+ CHA — AhHsqu P(V N Ey; G) (4.98)

Using the fact that lim inf(a,+by) < liminf aj+lim sup by, for nonnegative sequences
{an},{br}, we have

liminf Fu(V N Ep; G) <liminf Fy, (VN Ep; G)
h—o0 h— o0 )
+ limsup (C[|A — Apllsupc P(V N En; G)). (4.99)
h—o00
By sup, P(V N Ey; G) < oo and limsupy,_,q ||4n — Al|sup e = 0, this becomes
lminf Fu(V N Ep; G) < liminf Fy, (V N Ep; G). (4.100)
h— o0 h—o0

Noting Fa, (VN Ep; G) = Fa, (E; G) since G CC V and using the lower semicon-
tinuity of F4 with respect to uyng, X i by Proposition 3.1, this implies

Fa(E;G) < lihminf Fa(Er;G) < lihminf Fa, (Er; Q). (4.101)
—00 —00
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Now combining our estimates (4.101), (4.95), (4.97), and (4.92), and again using
that liminfy, (ap + by) < limsupy, ap, + liminfy, by,, we obtain

FA(E;G) < lihm inf Fa, (Ep; G)
—00
< liminf (T4, (F; G) + AP (FOAEN) N 0G) + ket
— 00

< limsup T, (F; G) + AY/? lihm inf ’H"*l((F(l)AEél)) NoG) + krotn=t
—00

h—o0

< FA(F;G) + krotrnt, (4.102)
Since EAF CC G, we can add F4(E; B(z,r) \ G) = F4(F; B(z,r) \ G) to obtain
Fa(E; B(x,7)) < Fa(F; B(x,7)) + krotn=! (4.103)

as desired.

Next we prove the weak convergence of energy measures (4.87). Let &, =
Fa,(VNE) -)and ® = F4(F; - ) which are Radon measures on R™. It suffices to
show the following claim.

Claim. IfV is a Radon measure and {®p ) }ren is a subsequence such that ®p, N
U, then ®L V =UL V.

Indeed, suppose the claim is true. By sequential compactness of Radon mea-
sures (which applies since sup, ®;(R™) < AYZsup, P(V N E},) < o0), for each
subsequence of {®, }ren there exists a further subsequence that converges weakly
to some Radon measure ¥. By the claim . V = &L V and so ;L V converges
weakly to ®L V. Since @), = F4, (VN Ep - )L V = Fy, (En; - )L V by the
decomposition formula of the Gauss-Green measure for the intersection of two sets
of locally finite perimeter (see (16.4) of [29, Theorem 16.3]), this will complete the
proof of (4.87).

Now we prove the above claim. Suppose @) X0 for some Radon measure ¥
and subsequence {®,(x)}ren. For convenience we will just write the indices as k
instead of h(k).

Let us show & < ¥ on B(R"™) where B(R™) denotes the Borel sets of R™. Let W
be an open bounded set and set W, = {z € W : dist(z, 0W) > ¢} for ¢ > 0. Choose
v € C.(W;[0,1]) with 1y, < . Note that (4.100) holds for any bounded set in
place of G by the same argument. So applying (4.100) with W} in conjunction with
the lower semicontinuity of F4 with respect to uyng, X ug by Proposition 3.1
gives

B(Wy) = Fa(B; W) < liminf Fa, (V 0 By W)
—00

< lim inf/ o(x)(Ap()vvnp,, vvap, )2 dH !
8*(VﬂEk)

k—o0
= /(p AU < T(W). (4.104)

By monotone convergence, taking ¢t — 0 gives ®(W) < ¥(W). Since W was an
arbitrary open, bounded set, it follows that ® < ¥ on B(R").
Now let B(z,so) CC V with sg < r¢. Define

F, = (EN B(z,s)) U (B \ B(z,)) (4.105)
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for s € (0, sp) with
H NI ENOB(z,s)) = H' L (O*E,NOB(x,s)) =0, VkeN
lim inf #" 1 (9B (. 5) N (EWAEWM)) =0, (4.106)
c—» OO

This holds for a.e. s € (0,s9). Then ExAFy, C B(x,s) CC UNB(z,so) withz € U
and sg < ry for all k larger than some ky. By the same argument as with G above
to prove (4.95), for such k there holds

Fa,(Ey; B(z,s))
< Fu (E; B(x,5) + AV 2H N (EWAED) N 0Bz, ) + kst L. (4.107)
Since B(z,s) CCV,
®p(B(z,s)) = Fa, (VN Ey; B(,s)) = Fa, (Ex; B(z,s)). (4.108)

Sending k& — oo and using the lower semicontinuity of weak convergent Radon
measures, we have by the same reasoning as for (4.102) that

U(B(zx,s)) < likm inf @y (B(z,s))
—00
< liminf(Fa, (E; B(z,s)) + AVPHY Y OBz, s) N (BN AED)) 4 kst
—00

= limsup F 4, (E; B(z,s)) + A2 lihm inf H" "1 (OB (x,s) N (E,(CI)AE(D)) + ks tn—l
—00

k—o00

< Fa(E; B(z,s)) + Climsup || Ay — Al|sup B(z,s) P(E; B(z,5)) + kst

k—o0

= ®(B(z,s)) + rs*T L, (4.109)

The lower perimeter bound (4.74) and comparability to perimeter give cs”~! <
®(B(z,s)). So by (4.109) and ®(B(x,s)) < ¥(B(z,s)), which we know because
® < ¥ on B(R™), it follows that

®(B(z,s))
U (B(z,s))

for a.e. s € (0,50). Sending s — 07 gives Dg® = 1 for V-a.e. z € V Nspt¥. Since
® <« ¥, we have that ¥ = ® on B(V), the Borel subsets of V. This completes the
proof of our claim.

We finish by showing (i) and (ii). For (i), suppose z, € V N OFE) and x; —
x for x € V. Let r > 0 with B(z,r) cC V. Then B(xp,r/4) C B(x,r/2)
for large enough h. So by the weak convergence of the measures Fyu, (Ep; - ) N
Fa(E; -) in V, the lower perimeter bound of (4.74), and A\Y/2P(Ey; B(xp,7/4)) <
Fa,, (En; B(xh,7/4)), we have

1-Cs* < <1 (4.110)

O<er™ < limsup Fu, (En; B(zp,r/4)) < limsup Fa, (Er; B(z,r/2))

h—o0 h—o0

< FA(E; B(z,1/2)) < AY2P(E; B(x,r)). (4.111)

Hence z € sptug = OFE. For (ii), suppose € V N IE and by way of contradiction
that there does not exist a sequence {zj}nreny with xp € V N IE, and z, — .
Then there is some r > 0 and h(k) — oo as k — oo such that B(z,r) CC V and



HOLDER-COEFFICIENT SURFACE ENERGIES 3263

B(z,7) N 0Ly = @ for every k € N. It follows that
P(E; B(x,7)) < X V2F4(B; B(w,r) < A2 liminf Fa,  (Bpy: Ba,r))
< (A/N)V2 lim inf P(Ep); B(x, 7)) =0, (4.112)
contradicting the fact that « € sptug = OF. O

5. The excess and the height bound. The concept of the excess is a common
key tool in the study of regularity for minimizers for many geometric variational
problems. This quantity measures the average L2-oscillation of outward unit normal
vector vg with respect to a fixed direction v and will eventually allow us to control
the average L?-oscillation of vg from its average. Our aim is to show decay estimates
for the excess of almost-minimizers. For our variable coefficient surface energies
and the change of variable, it will be useful to measure this oscillation over balls,
ellipsoids, and cylinders.

5.1. Definition of the excess and basic properties. Given v € S*~! we de-
compose R™ into R*~! x R by identifying R”~! with v and R with span v. With
a slight abuse of notation, we write # = (pz,qz) where p : R® — R""! and
q: R™ — R are the horizontal and vertical projections defined by

pr=z—(x-v)v and qr ==z - v. (5.1)
We define the open cylinder centered at zg € R™ of radius r > 0 in the direction
v € S"1 by
C(xg,r,v) = {x ER": |p(z —xo)| <, |a(z —x0)| < r}. (5.2)
Note that balls and cylinders are comparable as we have
B(xy,7) C C(zo,7,v) C B(x0,V27) (5.3)

and we have by (4.7) that balls and the ellipsoids W, (zg,r) are comparable.
Thus balls, ellipsoids, and cylinders can all be mutually contained in each other by
shrinking or enlarging them by fixed scales.

Given a set of locally finite perimeter F, a point xg € JF, a radius r and direction
v € S" ! we define the spherical excess by

1 _ 2
ep(E,xo,m,v) = — / lvp(@) = v[* dH"(z), (5.4)
r B(zo,r)NO*E 2
the ellipsoidal excess by
1 _ 2
ew (B, wo,r,v) = —— / lvp(@) —v[® dH" 1 (2), (5.5)
T W o (20,7)NO*E 2
and the cylindrical excess by
1 _ 2
eC(E7$O7r7 y) = — / ‘VE(J?) V‘ d?‘[n_l(l'). (56)
r C(xo,r,v)NO*E 2

Since balls, ellipsoids, and cylinders are comparable, if we can control one of these
types of excess, we can control all of them.

As mentioned in Section 4, it will often be convenient to prove estimates at points
xo € OF with the assumption A(xzg) = I. To do this, we make the change of variable
under the transformation 73,. The next proposition shows that the excess of the
image set under this transformation is comparable to that of the original set.
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Proposition 5.1 (Comparability of excess under change of variable Ty,). There
exists a positive constant C = C(n, A, A) with the following property. If E is a set
of locally finite perimeter, E,, = Ty, (E) for some x¢ € OF, then for any r > 0 and
vest

Clep(E.,, 0,7, 7) < ew(E,x,7,v) < Cep(Ey,,vo,7,7) (5.7)
where U € S"~! is defined by

_ AY2(x0)v

5 A @)y A2 (wo)v
|AY/2 (o)v|

A2 (z0)7] (58)

or equivalently v =

Proof. Without loss of generality assume xy = 0 and to simplify notation write
S = AY2(0), W, = W(0,7), and B, = B(0,r). Noting that S is symmetric, the
change of variable y = Ty(z) = S~ 'z gives by Proposition A.2 that vg,(Ty(z)) =
Svg(x)/|Sve(z)| for all © € O*E and

[ bmw e )
B,.NOo*Ey

B / Svg(x) Sv
W,.NO*E

|Svp(z)]  [Sv]
Note that det S~ = det A=/2(0) < A="/2, |Svg(z)| < AY?, and

2

2
det ™1 |Svg(z)| dH" (z). (5.9)

2 2

Svg B Sv < Svg B Sv Sv B Sv . (5.10)
|Sve|  |SV| |Sve|  |Svg| |Sve| |SV|
For the first term, we have the estimate
Svg  Sv |? 1 , A )
— < S — < — — 5.11
\Sve| |Sve|| — |SVE|2| e —v)l" < )\|UE 4 (5:11)

since the maximum eigenvalue of S is bounded by A'/? and its minimum eigenvalue
is bounded by A'/2. For the second term, we have the estimate

Sv Sv |? 1 1 ? |Sv|? 2
e I [ e e AR
1 A
< — 2 <= —vl? 12
< \SuEP'S(V vp)l” < Ylve —v| (5.12)
as above. It follows that
Svg  Sv|® _4A )
— = ——| < —|vg —v|°. 5.13
R I (5.18)
Hence
4A3/2
lvg, — V|2 dH" ! < 7/ lvg — v|2dH" 1, (5.14)
/B,ﬂ(’?*Eg 0 AL gy ok
or equivalently, ep(Ep,0,7,7) < (4A™?+1/\3/2)eyw (E,0,7,v). The upper bound
for (5.7) follows by a symmetric argument. O

We now recall several known properties of the excess, referring readers to [29,
Chapter 22] for proofs of these facts.
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Proposition 5.2 (Scaling of the excess). If E is a set of locally finite perimeter in
R™, 20 € OE, r >0, v € S* 1, then

ec(E,xo,1,v) =ec(Ey r,0,1,v) (5.15)
where Ey, » = (E — xg)/r as in Section /.

Proposition 5.3 (Zero excess implies being a half-space). If E is a set of lo-
cally finite perimeter in R™, with sptug = OE, g € OE, r > 0, and v € S"~2,
then ec(E,xq,7,v) = 0 if and only if E N Clxg,r,v) is equivalent to the set
{x € Clag,r,v): (x —xg) - v < 0}.

Proposition 5.4 (Vanishing of the excess at the reduced boundary). If E is a set
of locally finite perimeter in R™ and xq € O*FE, then
li inf E xg,r,v) =0. 5.16
S, dal, el z0,1,v) (5:16)

Proposition 5.5 (Excess at different scales). If E is a set of locally finite perimeter
inR", 20 €OE, 0<s<r,veS" !, then

r

S

n—1
ec(E,xg,s,v) < ( ) ec(E,xg, 1, V). (5.17)
Proposition 5.6 (Excess and changes of direction). For every n > 2, there exists
a constant C = C(n, A\, A, k,a,10) with the following property. If E is a (k,«)-
almost-minimizer of F4 in U at scale ro, then

ec(E,zg,r,v) < C(eC(E,mo,r, vo)+ v — 1/0|2) (5.18)
whenever xo € UNOE, B(x,2r) CCU, v,vg € S"1.

Proof. Tt follows from the proof of [29, Proposition 22.5] using the upper density
estimate of Proposition 4.5. O

5.2. Small-Excess Position and the Height Bound. We now recall some stan-
dard lemmas we will need about the excess and almost-minimizers and recall the
height bound. The first lemma states that if the excess of an almost-minimizer in a
given cylinder is small enough, then in a smaller cylinder the topological boundary
sits within a narrow strip.

Lemma 5.1 (Small-excess position). Givenn > 2 and ty € (0,1), there is a positive
constant w = w(tg,n, A\, A, &, a, ) with the following property. If E is a (k,)-
almost-minimizer of Fa in C(xo,2r,v) with xo € OF, 2r < 1o, v € S""2, and

ec(E, xg,2r,v) < w, (5.19)
then
M < to, Vr € Clxg,r,v) NOE, (5.20)
er C(:EO,T,V)OE:M>t0H:07 and (5.21)
er C(xo,r,y)\E:M <7t0}’ ~0. (5.22)

Proof. [7, Lemma 3.8] which applies by Proposition 4.5. O



3266 DAVID A. SIMMONS

We define the open disk in R”~! centered at z € R*~! and of radius r > 0 by
D(z,r)={weR"":|z—w| <r}, (5.23)

Thus we may write C(zg,r,v) = D(pzg,r) x (—=r,r).

The second lemma states that if a set of locally finite perimeter satisfies the
separation property of Lemma 5.1, then the difference of measure of perimeter
sitting above a set G C D(pxo,r) and H" !(G) defines a measure which we call
the excess measure.

Lemma 5.2 (Excess measure). If E is a set of locally finite perimeter in R™, with
0 € OF, and such that, for some to € (0,1),

la(z — o)

< to, Vr € Clxg,r,v) NOE, (5.24)

r
Hxé C(xo,r,z/)ﬁE:M>toH:0, and (5.25)
Hx € C(xg,r,v)\ E: M < —to}’ =0, (5.26)

then, setting for brevity M = C(xg,r,v) N O*E, we have for every Borel set G C
D(pzxog, ), function ¢ € C.(D(pxo,r)), and t € (—1,1) that

HHG) < H" N (M np Q) (5.27)

W (@) = / (i - v) dH" (), (5.28)
Mnp~Y(G)

/ pdr = / o(px)(ve(z) - v)dH" (), (5.29)
D M

/ pdr = / o(pr)(ve(z) - v)dH" (), (5.30)
E.ND Mn{qz>t}
where By = {z € R"71|(2,t) € E}. In fact, the set function
((G) = P(B; Clxo,m,v) NP~ H(G)) = H"H(G) (5.31)
=H" ' Mnp @) -H"HG) (5.32)

defines a Radon measure on R" ™1, concentrated on D(pxg,r), called the excess
measure of E over D(pxg,7)).

Proof. [7, Theorem A.1] which applies by Proposition 4.5. O

We now state the main result we need from this section which is a strengthening of
Lemma 5.1 to quantitatively control the height of an almost-minimizer in a cylinder
by the excess on a larger cylinder.

Proposition 5.7 (Height bound). Given n > 2, there exist positive constants
go = eo(n, \, Ak, a,rg) and Co = Co(n, A\, A, k, a, 70) with the following property.
If E is a (K, a)-almost-minimizer of Fa in C(xg,4r,v) at scale ro with x¢ € OF,
4r < rg, and

ec(E,xg,4r,v) < g, (5.33)
then

sup {M cx € C(xg,r,v) N BE} < Coec(E, xg, 4r, )/ @n=1)  (5.34)

Proof. [7, Theorem A.2] which applies by Proposition 4.5. O
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Throughout the course of the proof of our regularity result, we shall keep track of
a number of specific constants for which certain estimates hold. The estimate (5.34)
with the constants Cy and ¢ from Lemma 5.7 are the first of these. Subsequent C;’s
will be chosen to be larger than previous ones, i.e. Cy < C; < ... and subsequent
€;’s will be chosen to be smaller than the previous ones, i.e. €9 > &1 > .... This way
previous estimates will also hold under any smallness of the excess assumptions. We
shall also choose g9 < w(1/4,n,\, A, k,a, 1) so that the height of our topological
boundary is at most 1/4 of the cylinder.

6. The Lipschitz approximation Theorem. The next step in our proof is to
show that, given a small excess assumption of an almost-minimizer in a cylinder, a
large portion of the topological boundary can be covered by the graph of a Lipschitz
function in a smaller cylinder. Moreover, if we assume A(z) = I, this Lipschitz
function is quantitatively ‘almost-harmonic’ at x¢ with an error controlled in terms
of the excess and the scale. Given a direction » € S ! which decomposes R”
into R"~! x R, we denote the gradient in the first n — 1 directions by V’, that is,
V' =(01,..,0n-1)-
Theorem 6.1 (Lipschitz approximation theorem). There exist positive constants
g1 = e1(n, \, A K, a, 1), 00 = do(n, A\, Ak, a,19), and C; = Ci(n, A\ A, Kk, a, o,
[|Allce) with the following property. If E is a (k,a)-almost-minimizer of F4 in
C(xo,70,v) at scale ro with xo € OF, 13r < rg, and
ec(E, o, 13r,v) < e, (6.1)
then, setting
M = Clxg,r,v) NOE and My ={x € M : sup ec(E,xz,s,v) < do}, (6.2)
0<s<8r
there is a Lipschitz function v : R 1 — R with Lip u < 1 satisfying
u
sup J < Crec(E, xg,13r,v)1/2=1) (6.3)
Rn—1 T

such that the translation T' = xo + {(z,u(z)) : z € D,.} of the graph of u over D,

contains My, that is, My C M NT, and covers a large portion of M in the sense
that

H Y (MAT

% < Crec(E, z,13r,v). (6.4)

Moreover, u is ‘almost harmonic’ in D, in the sense that

1

rn—l

and if A(zo) = I, then

1 / Vu-V'
D,

n—1
7‘ T

/ |V'u|? < Crec(E, z9,13r,v) (6.5)

-

< Oy sup |V'o|(ec(E, xo, 137, v) +1/?) Vo € CH(D,).
D,
(6.6)

Proof. Without loss of generality we may assume xg = 0 and v = e,,. We simplify
notation by setting C, = C(0,r,v). Everything up to and including (6.5) follows
from [7, Theorem A.3] by Proposition 4.5, for an e; chosen sufficiently small. We
also choose €1 small enough so that

[e1 <0 Sw(1/4,m A Ak, 0,m0) | (6.7)
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where w is the constant from Lemma 5.1 with to = 1/4. It follows that

lqz| qr 1
- E, SNE: = >t =g,
T<4Va:eCﬂa {xeCm r>4}
1

Let ¢ € C(D,). By considering V'/ supp, |V'¢|, we may assume supp, |V'¢p| = 1
and reduce to proving

1 / Vu-V'ip
D,

—1
By the Fundamental Theorem of Calculus and the fact that ¢ = 0 on 0D,., we have
supp, |p| < r. Let n € C}((—3r/4,3r/4)) be a cutoff function such that

n=1on [-r/2,7/2], |n| <1, and || < 5/r. (6.10)

and define T': R™ — R" by T'(z) = n(qx)e(px)e,. Then
T € CHD, x (=3r/4,3r/4);R"), sup¢_|T| < r, and

VT (z) = n(qr) V'e(pr) @ e, +n'(qz)p(pz) en @ en. (6.11)

< Cy(ec(E,x0,13r,¢,) +ro/2), (6.9)

,,an

Hence

VT (z)] = /In(az)]2[V'e(pz) 2 + [ (az)[2|p(pz) |2 < 6 (6.12)

and so supg, |[VT| < 6. Consider the family of maps f;: R" — R" defined by
fi(x) =x +tT(x). Then Vf; =1d 4+ tVT and so Jf; = det(Id 4+ tVT). We have
that ||VT(x)|| < |VT(z)| < 6 where ||-|| denotes the operator norm and | -| denotes
the Frobenius norm. It then follows by [29, Lemma 17.4] that there are positive
constants £(n), C(n) such that

Jfy = (1 +tdivT) + O(C(n)t?). (6.13)

for |t| < e(n). Since divT is bounded, we can choose €(n) so that f; is a diffeo-
morphism for [t| < e(n). Letting g; = f; *, we also have by [29, Lemma 17.4] that
Vgio f =1d —tVT + O(C(n)t? for t < e(n). Choosing £(n) < 1/8, we claim that
EAfi(E) CcC C, for |t| < e(n).

To see why this is the case, take y € EAfi(E). Then y = x + tT'(x) for some
x € sptT. By definition of T, py = pz € spty and qz € (—3r/4,3r/4). So
lay| < |az| + |qy — az| < (3/4)r + |t|supe, |T| < 7r/8 since [t| < e(n) < 1/8 and
supg, |T'| < 7. Hence y € spty x (=7r/8,7r/8) cC C,.

By [29, Proposition 17.1] we have that

PUf(E); C) = /C Ve el fd (6.14)

Claim. We can choose £(n) small enough so that

P(fi(E); C.) = P(FE; C,) + t/ divgT(z) dH" * + O(C(n)P(E; C.)t?)
C.NO*E
(6.15)
for all |t| < e(n), where divgT = divT —vg - (V) *vg

To prove the claim, observe that |(Id + tVT)*VE|2 =1-2tvg - (VT)*vg +
t2|(VT)*vg|? and so, since /1 +z = 1 — /2 + O(2?) for small |z| by Taylor’s



HOLDER-COEFFICIENT SURFACE ENERGIES 3269

theorem, shrinking £(n) as necessary, we have

[(Vgio fo) ve| = |(Id = tVT)*vg| + O(C(n)t?)
=1—tvg- (VT)'vg +O(C(n)t?) (6.16)

whenever |t| < ¢(n). Combining this with (6.13) gives
|(Vgt o ft)*l/E’th =14 t(divl — vg - (VT)*vg) + O(C(n)t?) (6.17)
for [t| < e(n). Integrating with respect to H" 1L (C, N J*E) completes the proof

of the claim.
By the claim, Proposition 4.5, and Lemma 4.2, it follows that

][ diveT@) an| < [PUE: ©) - PUES €|+ Cn)P(EB: Ol
C,.NO*E
< OrotnTt 4 opnt (6.18)

whenever |t| < e(n). Choosing t = (n)(r/r¢)*/? < e(n) gives that
| / diveT (x) "] < Ore/24n 1, (6.19)
9*ENC,

Now, for H" t-a.e. x € M NT, there is A(x) € {—1,1} such that

(—V'u(pz),1)

) A e

(6.20)

By (6.8) and definition of 7, we have n(qz) = 1 on a neighborhood M and so
divT(z) = 0 and VT'(x) = V'¢(pr)®e, for v € M. Hence for H" l-a.e. x € MNT,
there holds

_ V'u(pz) - V'p(pr)

divgT(z) = divl(z) —vg(x) - (VT(2))*ve(z)) = T+ [Va(pa) 2 (6.21)
since A\(z)? = 1. Thus
1, !
/ NVu- Ve |_ ‘/ divpT dH"
p(MNT) 1+ |V’u|2 MAT
< ‘ / divgT dH" | + ’ / divpT dH"
M M\T

< C(ro/#n=t Ly M\ T)) (6.22)

by (6.19) and since |divgT| < C(n)|VT| < C(n). Since D, = p(T'), it follows that

/ V'u- V' n / V'u -V
p(Mnr) v/ 1+ [V'ul? p(\M) 1+ |[V'ul?
< C(re/Fn=t Ly Y M\ T)) + CH YT\ M)
< C(H" Y (MAT) 4 ro/2+n=1) (6.23)

V'u -V

b, I+ VU2

<
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where we used the fact that Lip u < 1, |[V/p| < 1, and H" H(p(T'\ M)) < H"1(T'\
M). Again, using Lip u < 1, [V'p| < 1, we have

Viu-V’
/D - g/ |V/u||V'<p|‘1—

V14| Vuf?
| ST

VI+ Va2 |2

Vu-V'ip—

=
14 |V'ul?

_/ [V'ul®

D, 1+ [Vu(y/1+[Vu]2+1)
1

< 7/ |V ul?. (6.24)
2 Jp,

By (6.4) and (6.5), it follows that
‘/ V'u- V'
s/1+\V’u|2

/
‘/ V- v" / (v'u-v’<p Viu-V'y
1
<5 [ IVl CoeQraD) 4 g
D,

VIt VP |2

< Clec(E,xo,13r,e,) 4+ r®/?)rm=1, (6.25)
completing the proof. O

7. The reverse Poincaré inequality. In Section 5 we saw that a small excess
controls the height of the topological boundary of an almost-minimizer. In this
section we show that given a small excess assumption on a cylinder, the flatness
of the topological boundary controls the excess on a smaller cylinder. Recall that
the cylindrical flatness of a set of locally finite perimeter E at a point x¢ € OF,
radius r > 0, in the direction v € S"~! is defined by

1 — U —cl?
£(E, z0,7,v) = — inf/ (@=z0) v=of g1y, (7.
rn-l cer C(xo,r,v)NO*E 2

This quantity measures how far in an L? sense the boundary of F is from the best
approximating plane with normal v.

Theorem 7.1 (Reverse Poincaré inequality). Given n > 2, there is a positive
constant Cy = Co(n, \, A, K, a, 10, ||Al|ca) with the following property. If E is a
(K, @)-almost-minimizer in C(xg, 4r,v) with ©o € OF, A(xo) = I, 4r <19, and

ec(FE,xg,4r,v) <w(1/8,n,\, A, k, o, 1), (7.2)
where w is the constant from Lemma 5.1, then
ec(E,xo,r,v) < Co(f(E, xo,2r,v) + 7). (7.3)

To prove this we modify the proofs presented in [29, Chapter 24]. First we need
several lemmas. Given v € S"~! and the decomposition of R" into R"~! x R, we
define the narrow cylinders

K(z,5) = D(z,5) x (—1,1) (7.4)

for z € R»1 and s > 0.
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Lemma 7.2 (Cone-like competitors [29, Lemma 24.8]). If s > 0 and E is an open
set with smooth boundary in R™ such that

1
laz| < T Ve € K(z,s) NOE,
1 1
{x € K(z,s) 1 qr < 71} C K(z,s)NE C {LE € K(z,8):qz < Z}’ (7.5)
then, for everyt € (0,1/4) and |c| < 1/4, there exists I C (2/3,3/4) with |I| > 1/24

such that for every r € I, there exists an open set F of locally finite perimeter in
R™, satisfying,

FNoK(z,rs) = ENJK(z,rs), (7.6)
H Y OF NOK(z,1s)) = H" HOE N OK(z,rs)) =0, (7.7)
K(z,s/2)NOF = D(z,s/2) x {c}, (7.8)

P(F; K(z,75)) — H" Y (D(z,7s))
< C(n){t(P(E; K(z,5)) — H""(D(z,5)) + 1/1(( e @ d?—l”_l(x)}.
) (7.9)

Proof. This is proved in [29, Lemma 24.8], though we point out that (7.7) follows
by line (24.29) in [29, Lemma 24.8] and the fact that F' is the cone-like extension
of ENOK (z,rs) over the disk D(z, (1 —t)rs) x {c} (see [29, Lemma 24.6]). O

Lemma 7.3 (Weak reverse Poincaré inequality). If E is a (k, o)-almost-minimizer
of Fa in Cy, A(0) = I, at scale ro > 4, such that

1
lqz| < 3’ Ve € CoNOE, (7.10)

‘{xeCz\E:qz<—éH:er CzﬂE:qx>é}‘:O, (7.11)
and if z € R"! and s > 0 are such that
K(z,5) C Cyy,  H" HO'ENOIK(z,5)) =0, (7.12)
then, for every |c| < 1/4,
P(E; K(2,5/2)) = H"~\(D(2,5/2))

<C {([P(E, K(z,5)) = 1" "N (D(z,s))] /K( (g —¢)? dHn—l(x))l/Q

z,8)NO*E 52
+ K+ |A||ca} (7.13)
where C = C(n, \, A, k, a, 7).
Proof. Properties (7.10) and (7.11) imply by the divergence theorem that
C(G)=P(E;Conp @) —H"HG), G C D, (7.14)
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defines a Radon measure on R™~! concentrated on Dy as in Lemma 5.2. By [29,
Theorem 13.8], given €5, — 0% there exists a sequence {FE}, }ren of open sets with
smooth boundary such that

BB, WL 0B, “H''L 0B, 0B, CIL,(0F),  (1.15)

where I, (OF) denotes the j,-neighborhood of OE. The coarea formula and Fatou’s
lemma give

3/4
/ liminf H" (K s N (EWAE))dr
2/3 h—o00

3/4
< liminf / H Y OK s N (EVAE)))dr
h—o00 2/3

< lim [(EWAE) N B,| = 0. (7.16)

" h—oo

So for a.e. r € (2/3,3/4), there holds

liminf "1 (OK . N (EVAE})) = 0. (7.17)

h—o0

Provided that h is large enough, Ej, ¢ B and 0E), C I., (OF) imply by (7.10) and
(7.11) that

1
qr| < -, Ve € CoNOE,, 7.18
4

er Co\E,:qz< —i}‘ = er CoNE:qr> i}‘ =0. (7.19)

Given t € (0,1/4) and |c| < 1/4 we can apply Lemma 7.2 to each E}, for z € R"~1
and s > 0 to find the sets I;, C (2/3,3/4) with |I}| > 1/24 such that for each r € I},
there exists an open set F}, satisfying (7.6), (7.7), (7.8), and (7.9). For each h € N,
we have the containment ;) Ix O Upspq Ik and so

1
= 1 > - . .
| U 5| = tim [ U 5]z 57 >0 (7.20)
heNk>h k>h

It follows that there exists a subsequence h(k) — oo as k — oo and r € (2/3,3/4)
such that

: n—1 (1) _
re () Inw, Jim H"HOK o 0 (B AB)) =0, and
keN
H" Y PENK(z,rs)) =H" (0Ewu) N K(z,75)) = 0. (7.21)

By Lemma 7.2 there exist a sequence of open sets Fj of locally finite perimeter in
R"™ such that

FL.NOK,, = Eh(k) NOK g, (722)

H" N OF, NOK (2,rs)) = H" (OEp) NOK (2,15)) = 0, (7.23)
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and
P(Fy; K(2,7r8)) — H" 1 (D(z,7rs))
< C){t(P(Bu; K (2,5) = "1 (D(2,5))
2
" % /K(z,s)naEh(k) % den_l(x)}. (72
Now consider the comparison sets
Gr = (FxNK(z,75)) U(E\ K(z,715)). (7.25)
Since FAG, cC C5 and
H" Y OF, NOK (2,75)) = H" Y (O*ENOK (2,75)) = 0, (7.26)

we have that

P(Gy; C2) =P(Fy; K(z,rs)) + P(E; C2 \ K(z,715))
+H Y OK (z,75) N (EWAFR)). (7.27)
By Proposition 4.2 we have
P(E; C2) < P(Gy; C2) + C(k + [|A]|ce) (7.28)
for some C' = C(n, \, A, k,a, 7). Hence
P(E; K(z,18)) < P(Fy; K(z,rs))
+H"HOK (2,75) N (EWAF)) + C(k + ||Allce).  (7.29)
It follows that
P(E; K (z,rs)) —H" 1 (D(z,rs))
< C){t(P(Bu; K (2,5) = K" (D(2,5))

1 _ a2
4 7/ |q$c : C| dr}_ln—l(x)}
tJK(z)n0ELw S
+HTHOK (2,75) N (EWAF)) + Clk + [| Al co)- (7.30)

Taking the limit as k — oo, using the weak convergence of (7.15) since
H' Y OEN K (z,s8)) =0, and limy_,oo H* (0K s N (E(l)AEh(k))) =0, we have

P(E;K(z,1s)) — H" Y(D(z,rs))
< C(n){t(P(E K(z,) - 4" (D(z.) + 5 /K< o 8

+ C(k +[|Al[g=)- (7.31)

laz — ¢?

cm"—l(x)}

Hence
C(K(2,8/2)) < (K (2,75))

1
< C{tC(K(z,s) + ;/

2
K(z,5)NO*E s

_ a2
19z =m0y 4 x4 |\A||Ca} (7.32)
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By (7.14), ((K(z,5/2)) < ((K(z,s)) and so this inequality also holds for ¢ > 1/4
provided we take C' = C(n, A\, A, k,a,79) > 4. Hence it holds for all ¢t € (0, c0).
Minimizing the right hand side over all ¢ yields

(K (2/2) < O (oK ) [

K(z,5)NO*E S

—cl? 1/2
|q$ _ Cl dHn_l) + K+ HA”CO‘}
(7.33)

as desired. O
Proof of Theorem 7.1. By the scaling given in Proposition 4.2, we have that E
is a (k7 a)-almost-minimizer of F4, . in Cy = C(0,4,v) at scale 7o/r with
0 € OE4y ry Azor(0) = I, [|Agy rllce = ||A]lcar®, and 4 < r9/r. Thus to prove
(7.3), we may assume ec(Ey, ,0,4,v) = ec(E, xo,4r,v) < w and show

eC(E.”cO,T‘a 07 17 V) S C(f(Emo,T’v Oa 23 V) + Kre + ||AI077‘||C”‘)' (734)
By Proposition 5.1 and Proposition 5.2, it follows that

1
lgz| < Ve € CoaNOEy, ., (7.35)

gi
Hx € Co\ Eyyy i qz < —é}‘ - Hme CyNEyy,:qr> 1}‘ =0, (7.36)

8
and

HHG) = /C . (G)(VE ‘V)dH™', VG C D,. (7.37)
2Mo* T,D,'r‘ﬂp71

Hence ec(Eyy 1, 0,1,) = P(Ey, ;3 C1) — H"1(D1) and so it suffices to show that
for every c € R,

P(Eqyr; C1) —H" '(Dy) < C{ / gz — c? dH" " + 5 + || Ay, |Ca}
CzﬂaEmom
(7.38)
If |¢| > 1/4, then |gz — ¢| > 1/8 and so
P(Eg, - C
/ lqz — c|>dH" > % (7.39)
CzﬂﬁEwO,,,. 8

and we are done provided we take C' > 64. Thus we are left with the case |c| < 1/4.
Set

((G) = P(Eyyr; C2np H(G)) —H" 1 (G),  for G C Dy, (7.40)

which defines a Radon measure on R”~!, concentrated on D,. We apply Lemma
7.3 in every cylinder K (z,s) with 2 € R"~! and s > 0 such that

D(2,25) C D>, H" OBy NOK (2,25)) =0, (7.41)
to find that

. n—1 1/2
awte cof(cpesa s, [ e

+ A 4[| Ago rllce } (7.42)
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An approximation argument, setting

h= inf / lqz — c|* dH" 1, (7.43)
lel<1/4 J Cno*Eay,

for brevity, implies by (7.42) that

$2C(D(z,5)) < C’(x/sQC(D(z, 2s))h + K + \|Aw07r||ca) (7.44)

whenever D(z,2s) C Dy since s < 1. We now use a covering argument to complete
the proof. Let

Q = sup{s?¢(D(z,s)) : D(z,2s) C D5}, (7.45)
and notice @ < oo since for every D(z,2s) C D3, we have
s°¢(D(z,5)) < ((D3) < P(Ey, r; C2) < 0. (7.46)

Given D(z,2s) C Ds, cover D(z,s) by finite many balls {D(zy,s/4)}_, with
centers z € D(z,s). This can be done with a bounded number of balls depending
only on the dimension n, that is, N < N(n). So by the subadditivity of the measure
¢, (7.44), and the definition of @, we have

2 <163 (3 e(D(.2))
k=1

N s\ 2 s
O3 (y(5) e (o0 3) e 1)
k=1
< ON(n) (,/Qh TR ||Az0,r||ca) (7.47)

where we used that D(z,s/4) C D(z,2s) C Ds. Hence Q < C(v/Qh + kr® +
||Azg.r||ce) for some C = C(n, A\, A, k, a, 79). By Cauchy-Schwarz, we have C/Qh =
VQC?h < 1Q + 3C?h. Combining these gives Q < 1Q + C(h+ kr® + || Ay r[|c).
Thus (D7) < @ < C(h + kr® + ||Azyrl|lce) for some C = C(n, A\, A, K, a,19).
Recalling the definitions of {(D) and h, we see that this completes the proof of
(7.38). 0

IA

8. Tilt-excess decay. We showed in Section 6 that almost-minimizers can be
approximated by ‘almost-harmonic’ Lipschitz functions at points with small excess.
Now we approximate these Lipschitz with harmonic functions which allow us to find
new directions for which the excess experiences quadratic decay.

First we recall a couple lemmas about harmonic functions. These are just the
rescaled versions of [29, Lemma 25.1, Lemma 25.2]. Note that

1
]{75 -— /D (8.1)

Lemma 8.1. There is a positive constant C(n) with the following property. If
v: R"™1 — R is harmonic in D, and w: R"™1 — R is defined by w(z) = v(0) +
Vu(0) - z, then

denotes the integral average.

sup [v=w] < C(n)92(][D |V'1}|2> v (8.2)

Dy, r 7‘
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for every 6 € (0,1/2]. In particular,

]isr ('v arw|)2 < C(n)¢? ][D V02, (8.3)

Lemma 8.2 (Harmonic approximation). For every T > 0 there exists o > 0 with
the following property. If u € WYH2(D,.) is such that

][ IV/ul? <1, ’ ][ V'u - V’(p‘ <sup|V'p|o, Yo € CZ(D,), (8.4)
D, D, D,
then there exists a harmonic function v on D, such that

][ V'v|? <1, and ][ v —uf?* < 772 (8.5)

We now prove the excess improvement by tilting. This states that if the excess
is small enough in a given direction, then there is a nearby direction in which the
excess at a definite smaller scale sees quadratic decay with the error term seeing
ath power decay. Note in the theorem below, the fraction 1/104 comes from the
rough bound 13 -4 - V2 < 13-4-2 = 104 where the 13 comes from the Lipschitz
approximation theorem, the 4 comes from small excess assumption in the reverse
Poincaré inequality, and the v/2 comes from containing one cylinder inside of another
cylinder that is tilted in a different direction.

Theorem 8.3 (Excess improvement by tilting). Given 6 € (0,1/104], there exist
positive constants 2 = ea(n, \, A, Kk, ro, ||Al|ce, 0) and C5 = Cs(n, \, A, Kk, a, 7,
[|Al|ce) with the following property. If E is a (k,a)-almost-minimizer of F4 in
C(xo,70,10), To € OF, A(xo) =1, and r < ro with

eC(E,Io,T, VO) +Ta/2 S €2, (86)
then there exists v; € S"1 such that
ec(E, xo,0r,v1) < C3(0%ec(E,xo,7,10) + 90‘7“0‘/2) (8.7)

Proof. Assuming without loss of generality that xg = 0 and vy = e, it suffices to
prove that given 6 € (0,1/8], there exist positive constants eo = e2(n, A\, A, k, a, 79,
[|Al|ce,0) and C5 = Cs(n, A\, A, K, o, 10, ||Al|c«) with the following property. If E
is a (k, @)-almost-minimizer of F4 in C(0,rg,e,), A(0) =1, 0 € OF, and 13r < rg
with
ec(E,0,13r,e,) + 1Y% < &, (8.8)
then there exists 4 € S*~! such that
ec(E,0,0r, 1) < C3(0%ec(E,0,13r,e,) + 0°r*/?) (8.9)

We set C; = C(0, s, e,) for brevity.
We shall select a number of criteria for €5 to satisfy which together give the

desired result. We place a around each of these choices to make it easy for
the reader to check that all of these choices are consistent.

Choose 2 to satisfy
10
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where € is from the Lipschitz approximation theorem. Then e¢(F,0,13r,¢e,) < €1
and thus there is a Lipschitz function u: R*~' — R such that Lip u < 1 such that

sup @ < Crec(E,0,13r,e,)"/ =) (8.11)
D,
n=1(MAT
Eé“;éii“‘)'55(719641?,0,13T,en), (8.12)
][ |V'ul? < Crec(F,0,13r,¢e,), and (8.13)
D,

][ Viu-V'p
D,

where C is the constant from the Lipschitz approximation theorem, M = C, NJE,
and I' is the graph of u. Choose €2 to also satisfy

G 2] 19

Then Ci(ec(E,0,13r, e,) +r*/?) < 1 and so setting

< Crsup [V'p|(ec(E,0,13r,¢,) + r/2) for all p € CX(D,).
D,
(8.14)

B =Ci(ec(E,0,13r, e,) + r®/?) and uo = u//B, (8.16)
we have
][ |V'upl? < 1 and ’ V'ug - V'o| < sup |V'g|\/B for all ¢ € CH(D,.).
' " DT (8.17)
By Lemma 8.2, for every 7 > 0 there is o(7) > 0 such that if
VB < o(r) (8.18)
then there is vg : R*~! — R which is harmonic in D, such that
][ lup — vo|* < T1? and ][ V| <1 (8.19)

T T

Setting v = v/B vg, we have that v is harmonic in D, and

][ lu—v]*> <7r’B  and f Vo] < B. (8.20)
D,

Since 460 < 1/2, setting w(z) = v(0) + V'v(0) - z for z € D,, we see by Lemma 8.1
that

v — w|2 2 702 2
5~ < C(n)f [V'v|* < C(n)o°s. (8.21)
Do, (Or) r
By (8.20) and Dgp, C D,
lu —v]? / lu—of _ T
< < — .
/D e =), e e (8.22)

and so

2
]{) |“(9T)U2| SC(n)gnTHﬂ. (8.23)
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Noting |u — w|? < 2|u — v|? + 2|v — w|?, we have that

Ji W = C(”)(enT+1 +92)ﬂ~ (8.24)

We apply the above with 7 = 8”13 and choose ¢35 to also satisfy

Cheo < o(67F3) (8.25)
with o(-) as in (8.18). Then /B < o(6"3) and so
/ lu —w|* < C(n)e"T3prm Tt (8.26)
Daor
Now let’s set
v/
p= VUOD g MO g (8.27)

1+ [V'0(0)]2 1+ [V'u(0)[?

and estimate f(F,0,20r,v1). Since C(0,20r,v1) C C49,, we have that

f(E,0,20r,v1) = |z vy — e dH™ (x)

e i .
——— inf
(20r)"H1 ceR J ¢ (0,20r,01)n07E

C(n) / 2 1
< — z-vy — P dH" " (2). 8.28
(97”)"“ C4ema*E| ! 1 (=) ( )

This last integral we split in terms of M NT and M \ T
For M NT, by Lip (u) <1, (8.27), and (8.26), we have

/ |z - vy — cr|* dH™ (2)
Ca9-NMNT

:/ |(z,u(2)) - 1 = e1PV/1 + [VVu(z)Pdz
D46rﬁp(MﬂF)
lu —wl?
<2 - '
Dagrnp(vnry 1+ [V/0(0)[2

<V2 u—wl?
DygrNp(MNT)

< C(n)om3prm L (8.29)
For M \ T, observe that

/ R R £ A )
C4€TO(M\F)

_ R v 2
— / |qx + U(O) Pz 4 ’U(O)| dHn_l(l')
Cao-N(M\T)

14 |V'v(0)[?
</ e+ 0(0) — pz - V'0(0) 2 dH" ()
C1o-N(M\T)
<3H"H M\ T)(sup |qz|* + [v(0)|* + sup |pz*|V'v(0)[%). (8.30)
reM reEM

By the height bound, we have

sup |qz|? < C2ec(E,0,4r,e,) V12 < C2(13/4)ec(E,0,13r, e,) Y/ ("1
reM

< Cpl/(n=by2, (8.31)
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Also, sup, ¢y, [pz|? < 72. Since v is harmonic,

= 7"2

lw(0)? < C(n)][ o> and  |[V'0(0)]* < %][ lv|2. (8.32)

D, r

By (8.20) and supp, |ul? < CEBY (= Yr? from (8.11), it follows that

RO + sup a2V < ) f o < C)(f -l f i)

< O3+ Y/ Dy2, (8.33)
Since H" "} (M \T) < H" L (MAT) < Br"~1, we have

/ |z -1 — 1|2 dH ) < Oprn L (9n T35 4 Y/ (D)2, (8.34)
Cap-N(M\T)

Choose €2 to also satisfy

s/ () < gnt3 | (8.35)
Then
pL/ (=1 < gn+3, (8.36)
which gives
/ |z vy — P dH™ (z) < COm 3Bt (8.37)
CaorN(MN\T)

Combining these estimates we have

f(E,0,20r,11)

C
< (n) v —cPdH T+ |z vy —er|PdH™ !
(07~)TL+1
Cuo-NMAT CaprN(M\T)

< CH*B. (8.38)
Next, we show that provided e5 is suitably small, then
ec(F,0,40r,11) <w(1/8,n, A\, Ak, 19). (8.39)
By Proposition 5.5 and Proposition 5.6, we have
13\ -1 ~
ec(F,0,40r,v1) < (ﬁ) ec(F,0,13r,11) < C(eC(E,O, 13r,e,) + |en — V1|2).
r
(8.40)

where C' = 5(n, A ALK, 1o, 0) Additionally,
I
— 1
‘en — 1/1|2 = ’(07 1) _ M
V14 |Vu(0)]?
_ V() + (V1 +[Vu(0)) —1)°

1+ |V'v(0))2
C(n
<ofvoo)f < S p

r

< S, o f, )

< C(9n+36+ﬁ1/(n_1)> < Cﬂl/(n_l) (841)

2
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where the last several inequalities follow as above. Hence

ec(E,0,40r,1,) < CpY =), (8.42)
for some C = é(n, M A K, a,r9,0). We choose g5 to also satisfy
éeé/("_l) <w(1/8,n, A\, A, Kk, 70) (8.43)
so that
ec(E,0,40r,11) < w(1/8,n,\, A, Kk, a, 1) (8.44)

since 8 < 5. The reverse Poincaré inequality, Theorem 7.1, implies that
ec(E,0,0r,v1) < Co(f(E,0,20r,v1) + (61)7)
< C(0%B + 0°r™)
< C(0%ec(E,0,13r,e,) + 62r®/2 4 6%02)
< C(0%ec(E,0,13r,e,) 4 0°r%/2) (8.45)
as desired. O

9. Regularity of almost-minimizers. We are almost in the position to prove
our main regularity result. All we first need is to prove the following lemma which
allows us to remove the assumption A(xg) = I and obtain an excess-decay estimate
which we will iterate in the proof of our regularity theorem.

Lemma 9.1. For each B € (0, /4], there exist positive constants 61 = 01(n, \, A, k,
a, 1o, ||Al|lce, B) <1, e3 = e3(n, \, A, K, o, ro, ||A]|ce, 8), and Cy = Cy(n, A\, A, K, a,
ro, ||Allce, B) with the following property. Let E be a (k,a)-almost-minimizer of
Fa in Clxo,r,1v9) with r < rg and g € OF, and set

et(E,x,s,v) = max {eC(E,x,s,y), 9;01/;5}, forz € R", s>0, veS" L
(9.1)
If r <rg and
ec(E,zo,7m,10) < €3, (9.2)
then there exists 1, € S*~1 such that
et(E, xg,01r,11) < OfﬂeE(E,xo,r, vy), and
vy — vo|? < Cuee(E, 0,7, 10). (9.4)

Proof. We will eventl}vally {Ivlake choices for positive constants 0= g(n, MA K, a1,
[|Al|ce, B) < 1 and C = C(n, A\, A, K, a, 70, ||A]|ce, B) show that (9.3) holds if we
set

AN1/2~ ~
01*(@) §  and e3=C"le (9.5)

where 5 is the constant from Proposition 8.3 applied with § = 0.
Since 23 < /2 and 67 < 1, we have

01 a/2 . .
énl_%% < 9?/2eC(E,m0,r, vg) < OfBeC(E,xO,T, V). (9.6)
1
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Consequently, we only need to show the existence of v; € S*~! such that
ec(E,xg,01m,11) < H%Be*c(E, o, Ty V). (9.7)

If ec(E, xo,7,110) < r®/?, then by Proposition 5.5 we have

1

eC(vaovelrv VO) S FeC(va()?rﬂ VO)
1

7,04/2

—1+28
oy

<67° < 67 (E, xo,1,10) (9.8)
and so we can take v; = vy. Otherwise, ec(FE, xo,r,10) > /2. We will proceed
by applying Proposition 8.3, but we need to use the change of variable T3, since we
are not assuming that A(zg) equals the I. This enables us to work with the set Ey,
which is an almost-minimizer of 4, with Ay, (zo) = I. Let 7% denote the image
of vy under this change of variable, that is,

Al/Q(xo)Vo

YT AT (2o )|

(9.9)
First note that
r

C(l‘o, — ;0) C B(l‘o,

RS and W, (o,

- B(Jjoﬂ") C C(Qfo,'l“, VO)'
(9.10)

T T
e a7

Then E,, is an almost-minimizer of Fa,, in C(mo, W, DO) by Proposition 4.1
since
r - r
C($07 Wa VO) C Tz, ( W, (an m)) C Ty, (C(l‘o, Ty VO))' (9'11)

It also follows by (9.10) and Proposition 5.7 that
r ~ n—1)/2 o~
eC(EwO,.TO7w,V0) S 2( )/ eB(Ewo?x()?W’VO)

< 2=V/2Cey (B, x, #7 )

< Cec(E,xzg,r,10). (9.12)

Hence by our assumption ec(E, zq, 7, v) > /2

r - ro/2 a4
ec(EQEO,CL'O7 W,Vo) + W <(C+(20) / Yec(E, zg,7,10)

< Cec¢(E,xg,7,10)
S 663 S 135)) (913)

where at this step we make our choice for C = C. Thus Proposition 8.3 applies to
E,, with radius r/(2A)'/? and so there is 7; € S*~! such that

0 r . ~ ro/2
Gayz o) o (2A)a/4>

< CO%c(E,x0,7,10). (9.14)

ec(Exz,, o, ) <Cs (5260(15950,%0,

o
(2A)1/2’

Let 11 € S"~! denote the preimage of 7; under the change of variable T, that is,

A2 (o)

T AT (o)

(9.15)
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Note that
A\ 1/2- A\ 1/2~ or
C(x(h (ﬂ) 07’, l/l) C B(CU(], (ﬂ) 97") C WEO (CU(], W) (916)
So by definition of §; and Proposition 5.7, we have that
or
ec(E,xg,01m,11) < (2/)\)("_1)/2eW(E,xO, W,ul)
< (2/N) " V2Cep (B, a o )
= B oo 0> (2A)1/27 1
< Cec(E o 9.17
= ec( x0,$07W,V1)~ ( . )

Combining this with (9.14) yields
ec(E,xg,01r,11) < CgaeC(E,xo,r, v) < Cga_QBHf'BeC(E,xO,T, V). (9.18)

Using this C' we now make our choice for ] by setting

~ 1 1\ 1/ (a=28)

i ()

R STVRANG (6:19)

The condition 6 € (0,1/104] allows us to apply Proposition 8.3 as above and since
CH2=20 < 1, (9.18) implies

ec(E, xo,01r,11) < 03Pec(E,x0,7,10) < 0375 (B, x0,7,10), (9.20)

completing the proof of (9.3).
Now we turn to (9.4). Integrating the inequality |11 — 1p|? < 2vg — vi|*+
2lvg — vp|? over the set C(xg, 017, v1) which is contained in C(xg,7,1p) gives

P(E, C(iCo, 017’, Vl))

4
|V1 - VO|2 < 4eC(E,SU0,01T, Vl) + FeC(E7x07T7 VO)'

(Orr)n 1 "
(9.21)
The lower density estimate of (4.74) along with (9.3) imply
clvr — vl <401+ 61 Mec(E, 0,7, 10) (9.22)
completing the proof of (9.4). O

Now we prove our main theorem. Before we start, let’s briefly describe the
structure of the argument. In the Lipschitz approximation theorem, Theorem 6.1,
we saw that given a small excess assumption, there is a Lipschitz function u :
R™ ! — R such that, setting

M = C(zo,r,v)NOE and My ={x € M : sup ec¢(E,z,s,v)<d}, (9.23)

0<s<8r

the translated graph graph I = z¢ + {(z,u(2)) : 2 € D,.} of u over D, contains Mp.
We proceed by iterating (9.3) at points © € M to obtain a sequence of unit vectors
vj(z) for which certain decay estimates of the excess hold, namely (9.35) and (9.36).
Using this, we show that = € 0*F and that v;(x) converges to vg(x). Moreover, our
iteration gives estimates for Holder continuity of vg. Lastly, we show Mj in fact
equals M, that is, C(xg,r,v) NOFE equals the graph of u. Holder estimates for V'u
follow from the ones for vg.
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Theorem 9.2 (C1*/*-regularity of almost-minimizers of F4). There exist posi-
tive constants €4 = e4(n, A, A, k, o, 1o, ||Al|ce) and Cs = Cs(n, A\, A, k, a, 10, || Al|ca)
with the following property. If E is a (k, @)-almost-minimizer of F 4 in C(xg, 131, 1)

with 13r < rg and g € OF such that
ec(E, xo,13r,10) + r%/? < &4, (9.24)

then there exists a Lipschitz function u: R"~1 — R with Lip (u) < 1 satisfying

Sup u < C5eC(E7 Zo, 13T7 VO)l/(Q(n_l)) (925)
Rn— T
such that
C(xg,m,10) NOE = 20 + {(z, u(z)):z € D,«}, (9.26)
C(zo,m,v0) NE =20+ {(2,t) : 2€ Dy, —r <t <u(z)} (9.27)
and v € CH*/4(D,) with
_ a/4
[V'u(z) — V'u(w)| < Cs(ec(E, o, 13r,115) + T“/2)1/2 (M) , (9.28)
T

€Xr — (X/4
() ~ vi(w)] < G (ecl Bz, 13r,w0) +19/2) (Y9 99)

for every z,w € D,. and x,y € C(xq,r,19) NOE.

Proof. Without loss of generality we may assume zo = 0. Let 6; < 1, €3, and
Cy4 denote the constants from Lemma 9.1 with the choice 8 = «/4 which hence
depend only on n, \, A, Kk, a, 79, and ||A||ce. As mentioned before, we will choose

< &3 < g1 and apply the Lipschitz approximation theorem, Theorem 6.1.
This gives that there is a Lipschitz function u : R*~! — R with Lip v < 1 satisfying

sup |%| < Crec(E,0,13r,1)Y/2=D (9.30)
Rn—1
and such that, setting

M= C(0,r,1y) NOF and My ={zx € M : sup ec(FE,z,s,v9) <do}, (9.31)
0<s<8r
the translated graph graph T' = {(z,u(z)) : z € D} of u over D, contains My, that
is, Mo C M NT. As in Lemma 9.1, we define

a/2
ex(E,x,s,v) = max {eC(E,a:,s,y), enim}, forz € R", s >0, ve S L
1
(9.32)
Let x € M. Then C|(x,8r,19) C C(0,13r,v9) and so
: (8r)°?
eC(E, x, 8’/"7 1/0) S eC(E, x, 87”, 1/0) + W
(8r)/?
S ( ) E 0 137‘ 1/0) W
1

n— a/2
( ) t_8 (ec(E,0,13r, vo) + r°/?)
or n—1+a/2 0 » 70

= C(ec(E, 0 13r,v0) + 1r%/2). (9.33)
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where C = C(n, \, A, k, a, 79, ||A]|ce). For this constant C, choose €4 to also satisfy

o3
so that e (E, x, 87, 1) < €3.

Claim. There exists a sequence {v;(x)}52, C S*~! and v(x) € S"~! with v;(x) —
v(z) such that for every j >0,
eu(E,x, 9{87‘, vi(z)) < 9§a/2)je*C(E, x, 87, V) (9.35)
lv(z) —v;(2)]* < C 9§a/2)je*C(E,x, 87, 19) (9.36)
for some constant C' = C(n, A\, A, k, a, 1, || A]|ce).

Proof of claim. Since e (E,x,8r,1p) < e3, we may apply Lemma 9.1 to find
vi(x) € S~ ! such that

ex(E,x,0:8r,v1(x)) < 9(11/2e2~(E, x, 87, 1), (9.37)
1 — w|? < Cuels(E, x, 87, 1p). (9.38)
In particular, since 6, < 1,
ex(E,x,0:8r,vi(x)) < ex(E,z,8r 1) < 3. (9.39)
Proceeding inductively we find a sequence {v;(z)}52, C §*~' such that
e5(E, 2, 0078r v, (1)) < 075 (E, 2,0i8r, v;(z)) < €3, (9.40)
vi41(2) — (@) < Cren(E,, 0187, v;(2)). (9.41)

for j > 0. Stringing together the inequalities of (9.40) gives (9.35) and stringing
together the inequalities of (9.41) gives

i (z) — v;(@)]> < C40L el (B, 2, 8r, 1) (9.42)
for 7 > 0. Given 0 < j < h, it follows that

h—1 h—1
i (@) = vi(@)] < i (z) — vi(@)] < (Cael(B,2,8r,m0)) 2 00/ D*
k=3 k=3

< (C4e*C(E, z, 87, VO)) 1/2 Z 9§Q/4)k

k=3
i 9(04/4)j
= (Cieo(B,,8r,m)) (9.43)
1-67]
and so
lvn(z) — v;(2)]* < C 9§a/2)je*c(E,x, 8r, 1) (9.44)

where C = C(n,\, A, k,a, 70, ||A]|ce) since 6; depends only on these constants
too. Hence {v;(z)}32, C S"~' is Cauchy and so there is v(z) € S"~! such that
vj(z) = v(z) as j — oco. Sending h — oo in (9.44) gives (9.36) and this first claim
is proved.

Claim. There is a constant C = C(n, A\, A, k, a, 1o, ||A]|ce) such that

a/2
e*C(E,x,s,y(x))gc(;) eL(E,z,8rv0) Vs € (0,4r), (9.45)
C

ec(E,x,s,1p) et(E,x,8r, 1) Vs € (0,8r). (9.46)
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Proof of claim. Given s € (0,4r), there is j > 0 such that

01T 18r < 25 < 0787 (9.47)
Integrating |vg—v(z)|* < 2|lvp—v;(x)|?+2|v(z) —v;j(x)|? with respect to H"1LO*E
over C(z,s,v(x)) C C(z,2s,vj(z)), and using the the perimeter bound (4.74) and
(9.36), it follows that

ec(E,x,s,v(x)) <2"ex(E,xz,2s,vi(x)) + Clv(z) — Vj(l‘)|2

ng n—1 .
<2 (L) el w,0i8r v (@) + Cl(a) - vy(a)?
nf 1\, i 2
<2'(5) eo(B 048 v;(x)) + Clu(a) — v (@)
1
« | % C j a *
< 00§ /2)JeC(E,fE,8T', vg) < o2 (01T 2 (B, x, 87, 1)
1
a/2
< c(g) el (B, z, 8, 1) (9.48)

which is (9.45). Now, take s € (0,8r). In the case where s € (2r, 8r), it follows that

n—1
ec(E,z,s,19) < <%) ec(E,x,8rv) < 4" el (E,z,87, ). (9.49)
s

Otherwise, s € (0,2r) and so integrating |vg — 19|? < 2|lve — v(x)|? + 2|v(z) — vo|?
with respect to H" 1L 9*F over C(z,s,vp) C C(z,2s,v(z)), using (9.45) with
2s € (0,4r) and (9.36) with j = 0 gives

eC(E7x7 S, VO) < 2nec(E,],‘7 285 V(Jf)) + C|1/(.’E) - VO‘Q

25\ /2
< 2"6’(75) et (B, 2,87, v9) + Clv(x) — vol?

< Cep(E,z,8r ). (9.50)

Hence (9.46) holds. This completes the proof of our second claim.
Suppose z,y € M = C(0,7,19) NOE. Then |z — y| < v/2r and so there is some
j > 0 such that

07N 2 < |z —y| < 0V2r. (9.51)
Integrating |v;(z) —v; (v)]? <2|vg —v; (z)]?+ 2|vE —v; (y)|? with respect to H" 'L
O*E over B(z,0{r) C C(x,0]r,v;(z)) C C(y,0]8r,v;(y)) and using the perimeter
bounds (4.74) gives

C|Vj(m) - Vj(y)|2 < 4eC(E, (E,O{T, l/j(x)) +4- Sn_leC(E7y7 0{8T7 Vj(y))

<4. 8”_1eC(E,x, 9{8r, vi(x)) +4- S”_IeC(E,gh@{Sr7 Vj(g(/)) |
9.52

Hence by (9.35) and the definition of e}, we have, e¢

lvj(z) — Z/j(y)|2 < CQ%Q/Z)j(e*C(E,x, 8r, 1) + e (E, vy, 8r,1p)). (9.53)
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By this, (9.36), (9.33), and 6] 7'/2r < |z — y|, it follows that
v(z) = v(y)]* < 3(lv(x) — vi(@)]* + [vi(2) — v (W) + vi(y) —v))
< C@ﬁa/Q)j(e’&(E, x,8r, 1) + e (E,y, 8r, 1))
< 0 (e (E,0,13r, 1) + 1°/?)

I:v—y\)‘*/2

. (9.54)

< Clec(E,0,13r, 1) + ra/2)(
and so

u)a/4. (9.55)

v(@) = v(y)] < Clea(£.0,13r,m) +r/2)* (£
We now prove z € 0*E and vg(x) = v(z) so that (9.55) becomes (9.29), proving
the Holder continuity of the outer normal to E.

By (9.45), lim,_,g+ ep(E, s,r,v(x)) = 0. So by perimeter bounds (4.74), we have

: 1 lve(z) — v(z)]? -1
lim 7/ =~ dH" ' (2)=0. 9.56
s—0+ P(E; B(2,5)) JB(s,s)noE 2 2) (9.56)

Expanding |vg(2) — v(z)]? = [ve(2)|? — 2vE(2) - v(z) + [v(2)|> = 2 = 2vp(2) - v(z)
implies

1
v(z)- lim 7/ ve(2)dH" 1 (2) = 1. 9.57
@) . P(E; B(z,5)) JB(z,s)noE =(2) ) 957
Since |v(x)| =1 and
1
lim 7/ ve(z)dH" Y 2)| <1, 9.58
s—0F P(E,B(QZ,S)) B(z,s)NO*E E( ) ( ) ( )
this implies
1
v(z) = lim 7/ vepdH" L. (9.59)
s—07F P(E,B(.’I},S)) B(z,s)NO*E

Since v(z) € S"1, this by definition means z € 9*F with vg(z) = v(x) and hence
(9.29) holds.
Combining (9.46) with (9.33) gives

ec(E,x,s,1p) < Clec(E,0,13r, 1) + /%), Vs e (0,8r). (9.60)

Lastly, for this constant C, we choose ¢4 to also satisfy

oo

where g is the constant from the Lipschitz approximation theorem. It follows for
xr € M that

sup ec(F,x,s,vp) < dp (9.62)
0<s<8r

and so M = My C T'. By the Lipschitz graph criterion, [29, Theorem 23.1], the
graph of the Lipschitz function u coincides with OF in C(0,r,vp). Moreover,
(=V'u(pz),1)

e = T ulpa)P

(9.63)
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for all z € C(0,7,19) NOE. Since Lip u < 1, for z,y € C(0,r,19) NIE, it follows
that
2

/ / 2 V'u(pz) V'u(py)
|V'u(pz) — V'u(py)|? <2 VIt IVupn)? 1+ ]|Vulpr)?
V'u(p) B V'u(py)
=T F Vupa)E 1+ [Vulpy)P
V'u(py) B V'u(py) ’
VI+IVulpy)? /14 [Viu(pr)l?
<Alvp(z) — ve(y)? (9.64)

and |z —y[*> = |[pz — py|* + |u(pz) — u(py)|* < 2[pz — pyl*. So by (9.29) we have
u is CT*/* with the estimate (9.28). O

Theorem 9.3 (Regularity of the reduced boundary and characterization of the
singular set). If U is an open set in R™, n > 2, and E is a (K, «)-almost-minimizer
of Fa in U, then UNI*E is a CH*/*-hypersurface that is relatively open in UNOIE,
and it is H"'-equivalent to U N OE. Hence the singular set ©(E;U) of E in U

Y(E;U)=Un(0FE\ 0'E), (9.65)
is closed. Moreover, 3(E;U) is characterized in terms of the excess as follows:
Y(E;U)

= {x ceUNOJOE: inf ( inf ecg(E,x,13r19) + ro‘/z) > 54}
0<13r<ro,B(z,13V2r)CCU vo€S™™!

(9.66)
where g4 = e4(n, A\, A, K, o, 10, ||Al|ce) is the positive constant from Theorem 9.2.

Proof. The regularity and relative openness of U N 9*E follows from Theorem 9.2
and the H"!-equivalence follows from Proposition 4.5. Consequently, ¥ (FE;U) is
closed. Hence all we need to show is (9.66). Consider the set defined by

5 (9.67)

= {33 ceUNOJE : inf ( inf ec(F,x,13r 1) —l—r“/Q) > 64}.
0<13r<ro,B(x,13v2r)CCU  vo€S™~1
We show ¥ = X(E;U).
By Proposition 5.4, for each € U N 0*F, we have
li inf E,x,13 */2y =0 9.68
7"—1>r(r)1+ (yoérSlﬂfleC( 2,137, v0) + 7 ) ( )
and so z € (UNOE)\ X. Hence UNO*E C (UNJE)\ X.
If z € (UNOE)\ X, then there is 0 < 13r < 7o, vy € S"~ 1, with C(z,13r,19) CC
U such that

ec(E,x,13r 1) + r%/? < 5. (9.69)

By Theorem 9.2, C(z,7,15) NOE coincides with the graph of a C*/*-function and
so x € 0*E. Hence (UNJE)\X CUNOJ'E. O

Now that we have established regularity of almost-minimizers at points in the
reduced boundary, we wish to study the singular set which we do in the next section.
However, before we move on to that, we prove the convergence of the outer unit
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normal vectors along sequences of almost-minimizers and points in the reduced
boundaries. The contrapositive of this will be a useful tool in showing that the
blow-ups at a singular point must converge to a singular point.

We first need the following lemma regarding almost upper semicontinuity of the
excess. Recall from Section 4 the class A of uniformly elliptic, Holder continuous
matrices with respect to the given universal constants and the class M of (k, a)-
almost-minimizers of ¥4 with A € A.

Lemma 9.4 (Almost upper semicontinuity of the excess). Suppose that {Ep}ren C
M is a sequence of (k,a)-almost-minimizers of Fa, in U at scale rp, ro =
liminfy, oo 7 > 0, V CC U is an open set with P(V') < oo such that VNE, — E for
a set E of finite perimeter, and A — A uniformly on compact sets for some A € A.
Furthermore suppose xg € VNIE and r < rg with A(xg) = I, C(xo,r,19) CCV,
and

H" YO ENIC(xg,7,10)) =0, (9.70)
then
limsup ec(Ehn, o, 7, 10) < ec(E, xo,T,10) + Cre. (9.71)

h—o0

for some positive constant C' = C(n, A\, A, &, a, ro, || A]|ce ).

Proof. By Proposition 4.7, E is a (k, a)-almost-minimizer of F4 in V at scale ro,
satisfying

pvnm, = HE, (9.72)
Fa,(En; -) = Fa(E; -)in V. (9.73)

We write C,. for C(zg,r,v) to simplify notation and claim
limsup P(Ey; C,) < P(E; C,) + Crotn=! (9.74)

h—o0
for some C' = C’(n, MA K o, T, HAHC“)-
To show this, note

|P(En; Cr) — P(E; Cy)|
< |P(Ew; Cp) — Fa, (Ep; Cr)| + [Fa, (Ey; Cr) — P(E; C,)). (9.75)
Noting |A(x) — I| < ||A||¢=|x — xo|®, we bound the first term of (9.75) by
|P(Ep; Cr) — Fa, (En; Cr)
< |P(Ep; Cr) — Fa(Ep; Cr)| + [Fa(Ep; Cr) — Fa, (Er; Cr)
< C||Allgar® P(Ey; C,) + | A — A ||P(Ey; C,). (9.76)
Similarly, for the second term of (9.75), we have
|F 4, (Ep; Cr) — P(E; C,)
< |Fa, (Ep; Cr) = Fa(E; Cr)| + |Fa(E; Cr) — P(E; Cy)
< |Fa,(En; Cr) = Fa(E; Cr)| + C||Al|cer®P(E; C). (9.77)
Since xg € VN O*E, by Proposition 4.7 there is a sequence x; € V NJ*E}, such that
xp — xo. Given r < s, we have C,. = C(xo,r,v) C C(xp,s,v) CC U for large h.
So
limsup P(Ey; C,) < limsup P(Ey,; C(z,s,v)) < Cs" 1 (9.78)

h— o0 h— o0
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by the upper perimeter bound (4.74) for Ej. Hence limsup,_,., P(Ep; C,) <
Cr"~!. We also have P(E; C,.) < Cr"~1. So by (9.75), (9.76), and (9.77), we have

[P(Ep; Cr) = P(E; Cr)| <|Ta, (Bp; Cr) = Ta(E; Cy)|
+ CllAllgar®™ ™ + Cl|A = Ayllr™t (9.79)

Note F4(V N Ep; C) = Fa(Ep; C,) because C, CC V and so Fa(Fp; C) —
Fa(E; C,.) by (9.73) and H*~1(0*ENAC,.) = 0. This and the uniform convergence
of Ay, — A on C, complete the proof of our claim.

Note pyvng, (Cr) = pg, (C,) because C, CC V and so

v-ug,(Cy) = v-up(C,) (9.80)

by (9.72) and H""1(0*ENOC,) = 0. By [v—vg|?> =2(1—(v-vg)) and |v—vg, |*> =
2(1 — (v-vg,)), we have

P(E§ CT) -V .UE(CT)

eC(E7anTa V) = -1 (981)
and
PEy; C,.)—v- C.
ec(Ep,zo,m,v) = (B )rn_yl LA )- (9.82)
From these equations, (9.74), and (9.80), we obtain (9.71). O

Theorem 9.5 (Convergence of outer unit normals). If {Ep}pen and E are (k, a)-
almost-minimizers of T4, and JF 4, respectively, in the open set U C R™ at scale 1o,
and

loc

En, = E, Ap — A uniformly on compact sets,

r, € UNOEY, o€ UNIE, xp — xo, (9.83)
then xp, € U NIJ*Ey for h large enough. Moreover,
lim vg, (zn) = ve(xo). (9.84)
h—o0

Proof. Considering the translated sets Ej, + (xg — x), note that
VE,, (xh) = VEy+(zo—zp) ($0)’ (985)

Ep+ (x0—xp) log E, and Ap(- 4 (o —xp)) — A uniformly on compact sets. Hence
by replacing Ej, with Ej + (2o — zp) and Ay, with Ap( - + (xg — xp)), and U with
{z € U : dist(x,0U) > ¢} for some sufficiently small § > 0, we may assume that
xp = xq for every h.

By applying the change of variable T,,, on Ej, E and Ap, A, we may assume
without loss of generality that A(xg) = I. Choose an open set V CC U with zg € V

loc

and P(V) < co. Lemma 9.4 with E, NV — E NV implies there is a constant C
for which
limsup ec (En, 2o, 137, 14) + /% < e¢(E, x9, 13r, 119) + Cr®/? (9.86)
h—o00
holds for every r > 0 such that C(z¢,13r,19) CC V and H"~1(9*E N O C (0, 13,
1)) = 0. Since x¢g € U N J*E, by Proposition 5.4 there is r > 0 and vy € S"~! with
0 < 13r < rg, C(z0,13r,19) CCV, H* 1 (O*E N IC(x0,13r,15)) = 0, and

ec(E,x0,13r, 1) + Cre/? < g4 (9.87)
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where g4 is the constant from Theorem 9.2. Then e (Ey, zo, 137, 1) +7%/% < g4 for
large h and so by Theorem 9.3, xg € U N 0*E}, for large h. Moreover, by Theorem
9.2 there exist Lipschitz functions uy,u; D, — R with Lip uj, Lip u < 1 such that

C(xzg,r,v9) N Ep =20 + {(z,t) cz€D,, —r<t< uh(z)}, (9.88)
C(xo,r,10) NE =0 + {(z,t) czeD,, —r<t< u(z)}, (9.89)
and such that for z,w € D,
Vun(2) - V()] < ¢(EZ) ™ (9.90
where C' = C(n, \, A, k, a, 79, supy, || An||ce). Then
/ lup, — u| = |[(ERrAE) N C(xo,7,10)| — 0. (9.91)
It follows by integration by parts and the density of C}(D,) in C.(D,) that
/ oV'up, — / oV'u (9.92)
D, D,

for every ¢ € C.(D,). By (9.90), {V'uy} is equicontinuous and it is bounded by
Lip up, < 1. Thus by Arzela-Ascoli it is compact under uniform convergence. By
(9.92), V'u is the only possible limit point of {V’uy}. Hence V'u;, — V'u uniformly
on D,.. Consequently, as z¢ € 0*F, N 0*E, it follows that

(=V'up(0),1) (=V'u(0),1)

vE, (To) = NSO — NE RO =vg(xo) (9.93)

as desired. O

10. Analysis of the singular set. In this final section, we turn to the portion of
Theorem 1.1 which addresses the size of singular set.

Theorem 10.1 (Dimensional estimates of singular sets of (k, a)-almost-minimizers).
If E is a (k,«)-almost-minimizer of Fa in the open set U C R™ at scale 1¢, then
the following hold true:

(i) if 2<n <7, then X(E;U) is empty;

(i) if n =8, then X(E;U) has no accumulation points in U;
(i) if n > 9, then H*(X(E;U)) =0 for every s > n — 8.

This result is known to be sharp in the case of perimeter minimizers in the sense
that Simons’ cone,

2:{xeRs;x%+m§+az§+xi=x§+x§+m$+m§}, (10.1)

is a perimeter minimizer in R® with singular set {0}, and for n > 9, ¥ x R*~8
is perimeter minimizer in R™ that gives H"~8(X x R"~®) > 0. Since our surface
energies ¥ 4 include perimeter when A = I, our theorem is also sharp.

We use blow-up analysis and a standard Federer dimension reduction argument
to prove Theorem 10.1. The next theorem shows the convergence of the singular
set along sequences of almost-minimizers. Recall again from Section 4 the class A
of uniformly elliptic, Holder continuous matrices with respect to the given universal
constants and the class M of (x, @)-almost-minimizers of F,4 with A € A.
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Theorem 10.2 (Closure and local uniform convergence of singularities). If { Ey } hen
C M and E € M are (k,a)-almost-minimizers of Fa, and Fa, respectively, in the
open set U at scale o, and

loc

E, — E, Ap — A uniformly on compact sets,

xp € X(ER;U), 20 € UNOE, xp — xo, (10.2)
then zg € S(E;U). Moreover, given € >0 and H C U compact, then
S(Ep;U)N H C I(S(E;U) N H) (10.3)

for all large h where I, denotes the & neighborhood of a set.

Proof. Tt must be that zg € X(E;U) since ¢y € U N *F would contradict The-
orem 9.5. We prove (10.3) by contradiction. Indeed, assume there exist £ > 0,
H C U compact, h(k) — oo as k — oo, and yr € X(Epm);U) N H such that
dist(yg, 2(E;U) N H) > e. By compactness of H and reducing to a further subse-
quence, we may assume Yy, — Yo for some yo € H C U. By Proposition 4.7 (i), we
have yo € U NOE. By the first part of this theorem, we have yy € X(E;U). This
implies yi, € I.(X(E;U) N H) for large k, a contradiction. O

10.1. Existence of blow-up limits. We now prove the existence of blow-up limits
along subsequences and their convergence to singular minimizing cones. We say that
F is a cone with vertex x if it is invariant under blow-ups at xg, that is, if
F — ZTo
r

F=F,,= (10.4)

for all » > 0. If F is a cone which is a (global) minimizer of F4 in R" and
Y(F) = %(F;R™) # @, we say that F is a singular minimizing cone of F4. A
singular minimizing cone of perimeter we simply refer to as a singular minimizing
cone.

Note that if F' is a singular minimizing cone, then 0 € X(F'), for otherwise the
blow-ups F{ , would converge to a half-space, implying that F' = Fj , is a half-space,
in contradiction with X(F) # @.

Theorem 10.3 (Existence of blow-up limits at singular points). If F is a (k,«)-
almost-minimizer of F 4 in the open set U at scale rq, xg € X(E;U), and rp, — 07T,
then, setting
E - i)
En=Ey ., = m— and Ap(r) = Agy ey, (y) = A(rpz + 29),  (10.5)
there exist h(k) — 0o as k — oo and a set of locally finite perimeter F in R™ such
that

loc *
Engy = F, KB,y — K,
Fana Enwy; ) N T A(zo)(F; -) on bounded subsets of R" (10.6)

and F is singular minimizing cone of F 5(y,) in R™ with vertex 0.

Proof. The change of variable T, allows us to assume without loss of generality
that A(xg) = I since the convergence properties and cones are preserved under
this affine transformation. For each R > 0, By is eventually contained in Uy, .,
for large h. Note that Ej, is a (krf), a)-almost-minimizer of F4, in Uy, ,, at scale
ro/rn by Proposition 4.2 and [|Ap||ce < 7i||Allce. Hence |[An]lce < M and
[|An(@)|] < ||A(rpz + z0)|| < My for some positive constants M; and M. Once
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ry < 1, we have Ej, is a (k, o)-almost-minimizer of F4,. Thus we may apply the
compactness of Proposition 4.6 and Proposition 4.7 to obtain h(k) — oo as k — oo,
a set of locally finite perimeter F', and a uniformly elliptic, Holder continuous matrix
Ao such that Br N Ep) — F and Apr) — Ao uniformly on compact sets and
F' is a minimizer of F4__ in Bpr at scale liminfy_ To/Th(k) = o0o. Note that
Aso(x) = limp 00 A(rpyz+x0) = A(20) = I. Hence F4_, = P. By Proposition 4.7
and a diagonalization argument, we obtain a subsequence such that up to relabeling

Engy S F,
Apky — I uniformly on compact sets,

F is a (global) minimizer of perimeter in R",

Fanio Enwy; ) X P(F; -) on bounded subsets of R". (10.7)
By Theorem 10.2 we have 0 € X(F) because 0 € X(Ej(); U). All that remains is
to show that F' is a cone with vertex 0. Choose one of the a.e. » > 0 for which we
have H"~1(0*F N 0B,.) = 0. By (10.7), Proposition 4.2, and Corollary 1, it follows
that

P(F;By) = lim Fa, ., (Bn); Br)

Fa(E; B(wo, ) _ P94 (B, o) (10.8)

= lim

k—o0 n—1

"h(k)
since W, (z0, 77h(k)) = B(20,77h(k)) as A(zo) = I. Hence

P(F;B,)

pre 04(E, ) for a.e. 7> 0. (10.9)

The monotonicity formula for perimeter minimizers [29, Theorem 28.9] gives

2
d P(F;B,) d (ve(z) - z) .

T ™ o A" for a.e. 0. (10.10
dr =t dr /Bmw pp @) forae r>0. (10.10)

So (10.9) implies

2
d .
W dH" Y (z) =0 for a.e. 7> 0. (10.11)

dr B,N&*F

Hence
/ (VF(.Z‘) -x)2 d/anl(z) B / (yF(a:) . ;1';)2 d,Hnil(x) (10 12)
B.nor T[T B.nor T[T .
for a.e. 0 < s < r, and thus
2
/ W dH"(z) = 0. (10.13)
(B, \B,)No*F ||

This implies vp(z) - 2 = 0 for H* '-a.e. x € 9*F. Thus FV) is a cone with vertex
0 by [29, Proposition 28.8]. O
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10.2. Dimension reduction argument. Let’s first recall a few results from the
standard argument for the characterization of the singular set for perimeter min-
imizers. We will use these results in our adapted proof and refer readers to [29,
Chapter 28] for proofs.

Theorem 10.4. Ifn > 2 and there exists a singular minimizing cone F' C R™ with
Y(F) = {0}, thenn > 8.

Theorem 10.5 (Dimension reduction theorem). If F' is a singular minimizing cone
in R", zg € X(F), xg # 0, and if r, — 0T, then, up to extracting a subsequence
and up to rotation, the blow-ups Fy, ., locally converge to a cylinder G x R, where
G is a singular minimizing cone in R"~1,

Lemma 10.6 (Half-lines of singular points). If F' is a singular minimizing cone in
R™, zg € X(F), and o # 0, then {t o : t > 0} C X(F) and n > 3.
Lemma 10.7 (Cylinders of locally finite perimeter).
(i) If F is a set of locally finite perimeter in R"~1, then F x R is of locally finite
perimeter in R™, with
ppxe = (vp(pz),0)H" 'L ((0"F) x R). (10.14)
Moreover, if F is a perimeter minimizing in R"~1, then F xR is a perimeter
minimazer in R™.
(ii) If E is a set of locally finite perimeter in R™ such that

ve(x) e, =0 for H" ' —a.e. x € O'E, (10.15)

then there exists a set of locally finite perimeter F in R ! such that E is
equivalent to F' x R. If, moreover, E is a perimeter minimizer in R™, then F'
is a perimeter minimizer in R* ™1,
Lemma 10.8.
(i) If E is a Borel set such that H*(E) < oo, s > 0, then
Hi (EN B(z,r)) S 1
weTs - 28’

lim sup for H® —a.e. x € E. (10.16)

r—0+
(ii) If E is an (k,a)-almost-minimizer of F4 in the open set U C R™ at scale ro,
and r, — 0T, then, setting
E— o

E,=FE; ., = T, and Ap(x) = Ay ry (&) = A(rpx + x0), (10.17)

we have

HS(S(E;U) N H) > limsup He(S(Ep; U) N H) (10.18)

h—o0

for every compact set H C U.
(i) If s >0, F CR" 1, and H3 (F) =0, then HIH(F x R) = 0.

Proof. (i) and (i4i) are proved in [29, Lemma 28.14] and we now adapt the proof of
his version of (i) to the case of (k, a)-almost-minimizers.

Let F be a finite covering by open sets of the compact set X(E;U) N H. Then
there exists ¢ > 0 such that I.(S(E;U) N H) C Jper F. Eventually U C Uy,
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and ry < 1, and so by Proposition 4.2 E}, is a (k, a)-almost-minimizer of ¥4, in U.
Then by Theorem 10.2,

S(EnU)NH C L(S(B;U)NH) C | F (10.19)
FeF
for large h. Hence by definition of HZ it follows that

diam(F")\ s

limsup #S, (S(B;U) N H) < Ha (| F) <ws (%()) (10.20)
h=ro0 FeF FeF

Taking the infimum over all such coverings F proves the result. O

Lastly we recall a technical result [30, Theorem 8.16] before we jump into the
proof of Theorem 10.1.

Lemma 10.9. If E C R™ and H*(E) > 0, then there exists F' C E with 0 <
HE(F) < 0.

Proof of Theorem 10.1. (i) Let E be a (k,«)-almost-minimizer of F4 in U with
2 < n < 7. By way of contradiction, suppose there exists zop € X(E;U). As usual
we may assume without loss of generality that A(xg) = I by the change of variable
T;,. By Theorem 10.3 there exists a singular minimizing cone F' in R™, but this
contradicts Simons’ theorem on the nonexistence of singular minimizing cones in
dimensions 2 < n < 7, see [29, Theorem 28.1 (i)].

(ii) Let E C R® be a (k,a)-almost-minimizer of ¥4 in U. By way of contra-
diction, suppose zg € U N JF is an accumulation point of X(E;U). Then there
is a sequence ), € X(F;U) such that x, — x9. Again we may assume without
loss of generality that A(xg) = I. Set 7, = |xp — 20| and consider the blow-ups
Ey = Egy.r,,- By Theorem 10.3 there is a subsequence, which upon relabeling as
E},, converges locally to a singular minimizing cone F in R™. Let y;, = (x, —20)/7h-
Then y, € S ! and so by compactness there exists yo € S* ! and a further sub-
sequence so that, up to relabeling, we have y, — yo. Note that y, € Z(En; Uzy )
as xp € X(F;U). So by Theorem 10.2 we have yo € X(F). Since yg # 0, we have
H8(F) > 1 and so by Theorem 10.5 there exists a singular minimizing cone G in
R7, contradicting (7).

(7i) Let E C R™ be a (k, a)-almost-minimizer of F4 in U and suppose
H(E(E;U)) > 0 with s > 0. Then there exists zo € £(F;U). By the change of
variable T,,, we may assume without loss of generality that A(zg) = I. By [30,
Theorem 8.16] and Lemma 10.8 (i), there exists r, — 0T such that

S
Hao(S(E;U) N Blao,mn) = 52
for all h € N. This is equivalently rewritten in terms of the blow-ups E;, = E
as

(10.21)
xo,Th

Ws

Moo (BB Uso,r) N B1) 2 525 (10.22)
for all h € N. Eventually B, C Uy, ,, when h is sufficiently and thus
Heo(S(En; By) N By) > oo (10.23)

- 2s+1 :
By Theorem 10.3 there exists a subsequence, which up relabeling as E}, converges
locally to a singular minimizing cone F' in R"™. By Lemma 10.8 (i) we have
Ws

" (S(F)NBy) > lim sup Ho(S(En; B2) N B1) > 577 (10.24)
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We may apply the above argument with F' and R™ in place of £ and U. By Theorem
10.5 there exists a singular minimizing cone G x R

He(S(G x R)nBy) > % (10.25)
By Lemma 10.8 (iii) we must have H5~1(2(G)) > 0. If we now assume that n > 9
and s > n — 8, repeating this argument n — 8 times gives the existence of a singular
minimizing cone G in R® with H*~("=8)(2(G)) > 0, in contradiction to (7). Thus
we conclude that s <n — 8. O
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A. Appendix. In this appendix we provide a proof for the change of variable
formula for sets of locally finite perimeter with bounded, continuous integrands
depending on both x and vg. This is a generalization of [29, Proposition 17.1] and
[27, Theorem A.1].

Proposition A.1 (Change of variable for sets of locally finite perimeter). Suppose

f is a diffeomorphism of R™ and denote g = f~. If E is a set of locally finite

perimeter in R™, then f(E) is a set of locally finite perimeter in R™ such that
(Vgo f)ive(z)

O*f(E) = f(O'E), and vsg)(f(x)) = (Vgo Nivp@)] forallz € O°E. (A1)

If &: R" x S*1 —[0,00) is a bounded and continuous function and U is an open,
bounded set satisfying H"~1(OU N O*f(E)) =0, and Vf and Vg are bounded, then
the change of variable y = f(x) gives

/ (y, Vf(E))d’Hnil(y)
Uno*f(E)

_ 2), Vgo e Yol d3
‘/gwm*E‘I’(f‘ PR I (Vg o f)vel i (a). (A2

Note that Jf |(Vgo f)tvg| is the tangential Jacobian of f with respect to O*E.

Proof. The fact that f(E) is a set of locally finite perimeter is shown in [29, Propo-
sition 17.1] and (A.1) is proved in [27, Theorem A.1]. Hence we only need to show
(A.2).

Let ue = 1g * p. where p. denotes the standard mollifier and let v. = u. o g.
Then u. — 1g in Lj, (R™) and v. — 1pog = 1y in L}, (R™) as shown in the

proof of [29, Proposition 17.1]. Note that Vv. = (Vg)!(Vue 0 g) and so Vv, o f =
(Vgo f)'Vue. By [29, Remark 8.3], the change of variable y = f(z) gives

[ o)ty = [ @ (1)~ ) 119 o flae

= (Vgo f)'Vu. ,
- /g(U) (I)(f(x)’ 7W)UI(W o f)'Vu.|dz.
(A.3)

We shall show that this equation converges to (A.2) as € — 0%. To do this, we shall
apply the version of Reshetynak’s continuity theorem provided in [40, Theorem 1.3].
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Under the hypotheses that @ is bounded and continuous and U is open, this states
that

i [ @, Dymdnl = | @ Dyl (A1)

h—oo Ji7

whenever pp, @ are finite R™-valued measures satisfying

Jim [T di = [T dp YT € CoUR), and () > @), (A5)
where Co(U;R™) denotes the completion, with respect to the sup norm, of the
compactly supported continuous functions from U to R™.

Starting with the right-hand side of (A.3), first note that —(Vgo f)*Vu L" =
(Vgo f)tug since (Vgo f)t is continuous. By [29, Theorem 12.20], —Vu L™ = up
and |Vu.|L™ = |ug| where £™ denotes Lebesgue measure. Since U is bounded
and g is continuous, g(U) is bounded. Since Vg is bounded, H"~1(d(g(U)) N
O*E) = H" 1 (g(dU n §*f(E))) < Lip (9)" *H""1(0U N §*f(E)) = 0. Hence
(IVue | £7)(9(9(U)) = |prl(d(9(V))) and

lim [ T (—=Vu.)dz = /T ~dpg (A.6)

e—0t

forall T € Cy(g(U);R™), since T € C.(R™;R™) as g(U) is compact. Thus —Vu L™
g(U), pgvr g(U) are finite R™-valued measures which satisfy (A.5) (where we take
discrete sequences of €, — 07). Hence for each ¢ € C.(R™), applying [40, Theorem
1.3] to the bounded, continuous function (x,&) — ¢(z)|(Vgo f(x))'€| gives

t(=Vue)
|Vu,|

lim - <p‘<Vgo f)

e—0t g

|V |dz = / ©|(Vgo f)lvg|dH" T,
g(U)NO*E
(A7)

that is, |(Vgo f)!Vu|L"L g(U) = |(Vgo f)tvg|H* 'L (9(U)NO*E). In particular,
it follows from the fact H"~1(9(g(U))NO*E) = 0 that (|(Vgo f)!Vu.|L")(g(U)) —
(|(Vgo f)tvg|H" 1L 0*E)(g(U)). Hence (A.5) holds for (Vgo f)i'VuL"L g(U),
(Vgo £)lvgH" 1L (g(U)NO*E) and so we can apply [40, Theorem 1.3] to (z,§)
O(f(x),&)J f(x) which is bounded continuous since & and V f are. We obtain

. (VQ ° f)tVua
lim D f(z), =S
=0t Jyw) ( |(Vgo f)tVu.|

_ o (V9o f)ve o el d3 (o
= o O e ) g0 Pl @) (a9

)IFI(Vgo f) Vue|de

This is the convergence of the right-hand side of (A.3) to the right-hand side of
(A.2).
Now moving on to the left-hand side of (A.3), note that for all ¢ € C}(R"),

/w(—Vvs)dy= /(Vw)vady — . Vo dy = /vdufw) (A.9)
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since v. — 1y in Lj, (R"). So by density of C}(R") in C.(R"), we have
—Vu L = ts(m)- The change of variable y = f(x) ([29, Remark 8.3]) gives

/ Vo] dy = / (90 )Vu. o f|J fdz = / (0o F)(Vgo f)VulJ fdu

= [(oNITgo pYvelisds = [ oduss (A.10)
where the last equality is by [29, Proposition 17.1]. Hence |Vv |£" = ltty(my]. Thus
(IVue|£m)(U) = |ppe)|(U) since H*1(dU N &*f(E)) = 0 and

e—0t

lim [ T-(—Vv.)dy = /T ~dpig (g (A.11)

for all T € Co(U;R™), since T € C.(R";R") as U is compact. Hence —Vuv.L" L
U, pse) L U satisfies (A.5) so by [40, Theorem 1.3], we have

. Vo, 1
lim <I>(y, ——— ) |Vu|dy = / (y,v dH" ™ (y). A.12
Jim [ () IVeddy = | @) 0T (A12)
Hence left hand side of (A.3) converges to the left hand side of (A.2) and we are
done. O
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