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Abstract

In this paper, we prove the isoperimetric inequality for the anisotropic Gaussian measure and
characterize the cases of equality. We also find an example that shows Ehrhard symmetrization
fails to decrease for the anisotropic Gaussian perimeter and gives a new inequality that
includes an error term. This new inequality, in particular, gives us a hint to prove a uniqueness
result for the anisotropic Ehrhard symmetrization.
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1 Introduction

The Euclidean isoperimetric problem says that the minimizers of the perimeter among sets
with fixed volume are Euclidean balls. More precisely: for any (Lebesgue) measurable set
E C R" with |[E| < o0,

P(E) = nwy"|E|"=D/",

where w,, is the volume of the unit ball, P(E) the perimeter of E and |E| its n-dimension
Lebesgue measure. Moreover, equality holds if and only if E is equivalent to a ball, i.e.,
|[EAB(x,r)| = 0 for some x € R"”, r > 0. One is also interested in a similar problem where
volume and perimeter are replaced by Gaussian measure and Gaussian perimeter, which are
defined as

T 1)n/z / s,
T E

and
1 —|x|?/2 n—1
Py (E) =7 e dH (.x),
Qm) z JoE

respectively. The resulting inequality is called the Gaussian isoperimetric inequality. It states
that for any measurable set E C R”,

P, (E) > e W ENP2,
where

b0 = —— [ e Par
X) = — e .
27'[ —00

Moreover, equality holds if and only if E is equivalent to a half-space. The Gaussian isoperi-
metric problem was first studied by Sudakov, Tsirel’son and Borell via Paul Levy’s spherical
isoperimetric inequality (see, for example, [7, 20, 26]). In addition, using the Ornstein-
Uhlenbeck semigroup techniques, Carlen-Kerce [11] characterized half-spaces as the unique
minimizers in the Gaussian isoperimetric problem. A geometric approach using Ehrhard
symmetrization has been provided by Cianchi-Fusco-Maggi-Pratelli [10]. A natural gener-
alization of the Gaussian isoperimetric problem is to study the following question:

inf {P,,(E) : ya(E) =r},

where y4 is called the A-anisotropic Gaussian measure (mass)

E 2r)2 JE

and the perimeter with respect to y4 is called the A-anisotropic Gaussian perimeter

Vdet A
P, (E)= Y= / e T2 g ().
Qm) 7T JoME

Here A is a positive definite matrix, and 9ME is the (n — 1)-dimensional essential boundary of
E (we will define this in Sect.2). We may assume without loss of generality that our positive
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definite matrix A is symmetric as

(Ax, x) = <% (A n AT) x,x>

and % (A + AT) is a symmetric positive definite matrix. We will assume that A is symmetric
throughout the rest of this paper. Our first result is the following:

Theorem 1.1 Let A be a symmetric positive definite matrix and E be a measurable set in R”.
Then

-1 2 1
P, (E) > e 7 (a(ENI/2 . (1.1)
’ IV/A)
Here || - || is the matrix norm induced by the Euclidean norm. Moreover,

(1) ifn =1, equality holds if and only if either ys(E) = 0 or yo(E) = 1, or E is equivalent
to a half-line of the form

(_OO ¢1(yA<E))> o <_¢>1(yA(E)> +Oo>
7 N :

(2) ifn = 2, equality holds if and only if either ys(E) = 0 or yo(E) = 1, or E is equivalent
to a half-space of the form

-1
H (w’ ¢~ (ya(E))

dmin

(W A),

) for some unit vector w € Vg, .
where dmin is the smallest eigenvalue of /A and Vo (v/A) is the eigenspace of VA
associated with dpjn.

The anisotropic Gaussian isoperimetric inequality (1.1) is a special case of the Bakry-

Ledoux isoperimetric inequality for log-concave measures if we consider the log-concave
measure e~ “4**)/24yx and use the e-enlargement definition for the perimeter (see [21, Theo-
rem 1.1] and [5]). The main contribution here is to characterize the cases of equality in (1.1)
for the anisotropic Gaussian measure.
One of the most important properties in the Lebesgue measure is that the (Euclidean) perime-
ter decreases under Steiner symmetrization (see, for example, [23, Theorem 14.4]). A similar
result in the Gaussian measure was first mentioned by Ehrhard [15], where he introduced
another way to symmetrize sets, now called the Ehrhard symmetrization. One of the key
properties in his setting is that the Gaussian measure has a product structure, so that the prob-
lem can be reduced to the one-dimensional case. Based on this, we also want to generalize
this result to the anisotropic Gaussian measure. The main difficulty in our setting is that the
measure y4 doesn’t have the product structure, i.e., it has cross terms, which means new ideas
will need to be developed to address this issue. In fact, the anisotropic Gaussian perimeter
does not behave monotonously under Ehrhard symmetrization (see Example 4.1). Our sec-
ond result shows that we are still able to find an upper bound for the perimeter of Ehrhard
symmetrization set in terms of the original perimeter plus a term involving the deviation of A
from the identity in the direction of the symmetrization times a term involving the differences
of the anisotropic Gaussian barycenters. To be more precise, we have the following:

Theorem 1.2 Letn > 2, A be a symmetric positive definite matrix, and let E be a set of finite
A-anisotropic Gaussian perimeter in R" and u € S*=1. Then, ES, |, is a set of locally finite
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perimeter in R". Moreover, for every Borel set B C (u)* with |u| = 1 we have
Py, (E} i B® () < Py, (E; B (u)
+ V27 || Au — (Au, uul|(by, (ESy , N (B & (u)))
— by (EN(B @ (u))), u).
Here B ® (u) := {z +tu:z € B,t € R} and E} , is the Ehrhard symmetrization of £

with respect to the u-direction and matrix A (see definition (4.32)) and

by, (E) = / x dya(x)
E
is called the A-anisotropic Gaussian barycenter of E.

Theorem 1.2 ensures that the anisotropic Gaussian perimeter decreases if we do the
Ehrhard symmetrization with respect to any eigenvector direction of A. Our final result
says that the converse of it is also true, i.e., the only situation in which the anisotropic Gaus-
sian perimeter decreases is when the Ehrhard symmetrization occurs along an eigenvector
direction of A.

Theorem 1.3 Letn > 2, A be a symmetric positive definite matrix, and let u € sn1 Then,
Py, (E} ) < Py, (E) for all finite A-anisotropic Gaussian perimeter set E in R"

s ue V(A NS for some r >0

where V) (A) is the eigenspace of A associated with eigenvalue A. Moreover,
ya is Ehrhard symmetrizable < A = al, for some constant a > 0.
Here y4 is called Ehrhard symmetrizable if
Py(E3 ) < Pyy(E)

forall u € S"~', and for all measurable set E C R".

Now we describe the structure of this paper. We first collect some important definitions
and theorems about sets of locally finite perimeter and finite anisotropic Gaussian perimeter
in Sect. 2. In Sect. 3, we provide a proof for the anisotropic Gaussian isoperimetric inequality
using an approximation argument and characterize the cases of equality (Theorem 1.1). We
introduce the Ehrhard symmetrization in Sect.4 with other essential tools and apply those
tools to prove Theorem 1.2. Finally, in Sect. 5, we discuss some regularity results for Ehrhard
symmetrization sets and prove Theorem 1.3.

2 Background and notation

2.1 Sets of locally finite perimeter

In this section, we will recall some useful definitions and theorems from Maggi’s book [23]
and Evans-Gariepy’s book [14].

Let U be an open subset in R”. A function f € L'(U) has bounded variation in U if

sup{/ fdivwdx:(pGCC](U;]R”), lp| < 1} < 00.
U
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We write BV (U) to denote the space of such functions. A function f € LIIOC(U ) has locally
bounded variation in U if for every open set V CC U,

sup{/ fdivedx:peCl(V;R"), |<p|§l}<oo.
v

We write B Vioe(U) to denote the space of such functions. A £"-measurable subset £ C R”
has finite perimeter in U if xg € BV (U). A L"-measurable subset £ C R" has locally
finite perimeter in U if xg € BVioc(U).

We recall the following theorem from [14, Chapter 5.1, Theorem 1].

Theorem 2.1 Let f € BV (U). Then there exists a Radon measure p on U and a |-
measurable function o : U — R" such that

(1) lox)| =1 p-ae.;
(2) Forany g € CL(U;R"),

/fdivgodx:—/go-adp,.
U U
We write |Df| for u, Df := o|Df|, and D; f := o;|Df|. Moreover,

|Df|(V)=sup{/ fdivedx e CH(V;R"), || < 1}
\%4

:sup[/ ¢-dDf 19 e C}(ViR"), |p| < 1}
Vv
forany V.CC U, i.e., the total variation of Df is |Df|. Also,

E is a set of locally finite perimeter <= |Dyg|(K) < oo for every compact set K C R".

Remark If f = xp, and E is a set of locally finite perimeter in U, we will write

vE =0, vpi=—0, wug:=velDxel
where vE (x) (vg (x)) is called the generalized inner (outer) unit normal of E at x and the
R”-valued Radon measure g on R” is called the Gauss-Green measure of E. Let E be a
set of locally finite perimeter. The reduced boundary 9* E of E is the set of those x € spt ug
such that
dug ) . we(B(x,r))
= lim ———

(x):

= exists and is in $" 1, 2.1)
dpgl r—0t |ppl(B(x,r))

vE(x) =

where spt ug = {x : ug(B(x,r)) > 0 forall r > 0}. In fact, we have
0"E C sptug C 0E

andsptug = {x : 0 < |[EN B(x,r)| < |B(x,r)| forall r > 0}. Moreover, the De Giorgi
structure theorem states that 9*F is (n — 1)-rectifiable and that

pe =veH" 'L 9*E,  |ue|=H"'L 9*E, (2.2)

or equivalently,
Dxp =vEH" 'L 9*E, |Dxg|=H""'L 9*E, (2.3)
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where H"~! denotes the (n — 1)-dimensional Hausdorff measure. Hence, we have the diver-
gence theorem in the following form:

/ F~vEdH"_1(x):/ F-d;LE:/divF, forany F € C/(R"; R"), (2.4)
O*E R” E

where - is the Euclidean dot product (see [23, Proposition 12.19, Theorem 15.9]).

Let E be any measurable subset in R” and 0 < d < 1. The set of points of density d of E is
defined as

E@ ={x e R": 0,(E)(x) := lim £(ENQ)W) _
p=0 LM (Q,(x))

where Q,(x) is the cube centered at x, whose sides are parallel to the coordinate axes with
length 2p. We will use | - | or £L" for Lebesgue measure on R". By Lebesgue points theorem,

0,(E)=1 ae.onk, 0,(E)=0 ae.onR"\E.

Therefore, |[EAE (1)| =0, i.e., every Lebesgue measurable set E is equivalent to E M, Now
we introduce the essential boundary ¥ E of a measurable set E defined as

ME =R\ (E<°> u E(l)) .
Then Federer’s theorem tells us that for any set of locally finite perimeter E,
EcC EVY coME,  H'IOME\VE) =0.
Moreover,

E is a set of locally finite perimeter <= H"~1(0™ E N K) < 00, VK compact in R".
(2.5)

We also define the (relative) perimeter of E in F as
P(E; F)=H"'OMENF),
for any Borel set F C R” (see [23, Corollary 15.8, Theorem 16.2] and [16, Theorem 4.5.11]).

2.2 Important background results

In this subsection, we collect some significant results that will be used in the later sections.

Proposition 2.2 [23, Proposition 4.29] If i and p are vector-valued Radon measures with
Mk—*‘l% then for every open set A C R" we have

[1](A) < liminf |ug| (A).
k— 00
Proposition 2.3 (Diffeomorphic images of sets of finite perimeter [23, Proposition 17.1]) If
E is a set of locally finite perimeter in R" and f is a diffeomorphism of R" with g = f~!,
then f(E) is a set of locally finite perimeter in R" with H"~' (f (0*E) Ad* f(E)) = 0, and
/ ovy dH' = / (po f)If(Dgo f)ve dH"™!
3* f(E) IE
for every ¢ € Cc (R"), where J f = |det(Df)| is the Jacobian of f on R".
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Theorem 2.4 (Ehrhard’s Inequality [8, Theorem 1.1]) If A, B are Borel sets in R", then
¢~ (y(A+ (1= 1)B) = 1~ (¥(A) + (1 —1$ ™' (¥(B),  forx e (0,1),
where

1 2 1 * 2
Ey= — [ 172 gy, x)=—/ e 12 4y,
y(E) (Zn)”/z/E s =—=[

Recall that we define R” -valued Radon measure 1 on R” as the bounded linear functional
on C.(R", R™) and set

(. @) == /Rn ¢-du, @ e C.MR"R™).

The following three propositions are useful when we calculate the total variation. The first
one can be found in [23, Remark 4.8], and the rest are straightforward applications of the
results in [23, Chapter 4].

Proposition 2.5 [23, Remark 4.8] Let i1 be a Radon measure on R" and let f : R* — R™
be a R™-valued function with f € Lllac (R", u; R™). Then we may define a bounded linear
Sunctional fu : C.(R*; R™) — Ras

(fue, o) :=/ fredu
R}l

Jorany ¢ € C.(R"; R™), i.e., fu is a R™-valued Radon measure on R". Moreover, the total
variation of fuis |fu| = |f|n, where

[ f 11 (E) IZ/EIfIdu, E € BR").

Proposition 2.6 Let i be a R™-valued Radon measure on R" and let h : R" — R be
a real-valued bounded Borel function. Then we may define a bounded linear functional
hi: Co(R"; R™) — Ras

(his. 0) :=/ he - dp
Rn

forany ¢ € C.(R"; R™), i.e., hu is a R™-valued Radon measure on R". Moreover, the total
variation of hi is |hu| = |h|| |, where

|hl|l(E) 1=/E|h|d|/¢|, E € B(R").

Proposition 2.7 Let i1 be a R™-valued Radon measure on R" and let f : R" — R" be a
homeomorphism. Then we may define a bounded linear functional fsu : C.(R"; R™) — R
as

it 9) = /Rn(<p0f) du

forany ¢ € C.(R"; R™), i.e., fau is a R™-valued Radon measure on R". Moreover, the total
variation of fyp is | fair| = fa|p|, where

Sell(E) = |ul(f 71 (E),  E e BMR")
is called the push-forward of |i1| through f.
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2.3 Anisotropic Gaussian Hausdorff measure and anisotropic Gaussian perimeter

Let A € M,(R) be a symmetric positive definite matrix. There exists a unique symmetric
positive definite matrix +/A such that

A= (VA)?

(see [18, Theorem 7.2.6]). We will use the notation A > 0 (A > 0) to mean the matrix A
is symmetric positive definite (symmetric positive semi-definite). Notice that we have the
following equalities:

e~ (Axx)2 e_(‘/X""/X”/2 = e—\\/XxP/z, Vdet A = det VA.

The matrix norm induced by the Euclidean norm is defined as

(Ax, y).

Al := max [[Ax|2 =
x|2=1

max
llx] xl2=lylla=1

Notice that

141l = IVAVA] = [VA'VA| = IVAI? = J14]1} = V4]

In addition, vA~T = (v/A)~! and hence
1) _
A~ = 1V
Now we define the A-anisotropic Gaussian measure (mass) as
E 2m)2 JE
for any (Lebesgue) measurable set E C R". The connection between y4 and y is
ya(E) =y (VA(E)),

where y := yy, is the (standard) Gaussian measure on R", i.e.,

1 2
_ —lxl</2
y(E) = IS /Ee dx.

Given any k € N with 0 < k < n, we define the k-dimensional A-anisotropic Gaussian
Hausdorff measure H’; , by

Jdet A
(Q2m)t

My, (B) = / e X2 gk (x),  for any Borel set B. (2.6)
B

Let E be a measurable set in R” and F be a Borel set in R”. The (relative) A-anisotropic
Gaussian perimeter of E in F is defined by

Py (E: F) = H! (aME n F) ,

and we say E is a set of locally finite A-anisotropic Gaussian perimeter if P,, (E; K) =
H’;XI(BME N K) < oo for every compact set K C R". In particular, E is a set of finite
A-anisotropic Gaussian perimeter if P, (E) < oo. We will omit the notation A and simply
say F is a set of finite anisotropic Gaussian perimeter if there is no confusion.
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Proposition 2.8 E is a set of locally finite perimeter if and only if E is a set of locally finite
anisotropic Gaussian perimeter, that is, P,,(E; K) = H’)’,;I(BME N K) < oo for every
compact set K C R".

Proof (=) For any compact set K,

\/d tA +/det A
Py (E:K) = VAL g1 () < Y€ / 1aH ()
(271) OMENK MENK
J/det A
= YL P(EK) < 0.
Q)7
(<) For any compact set K, let
mg = min ef‘ﬂxlz/z > min tfdfzﬂaxl)“z/2 >0,
xekK xekK
where dpay i the largest eigenvalue of /A. Then
+/det A +/det A
%0 > P, (E:K) = = / e WALRgyn=t ) > X0 f P(E; K).
(2]-[) MENK 2w) 2
O

Remark 1t is clear that
E is a set of finite perimeter — E is a set of finite anisotropic Gaussian perimeter.

However, the converse is not true. For example, letn = 2, E, = [—«, a] x (0, 00), and

ab
A=2 |:b c:| >0
witha,c > 0and b > 0. Then
e ax 2 _2bxy—cy? — (A ). (x,))/2 —|f(x W22

< e—n(f)—ln 2(x2+y2>/2 < o IHTI2

and

det A o ) 00 o o
P, (Ey) = VdetA (/ et =2bay—cy? g +/ (et 2bey—er? g +/ . dx)
V2 0 0 »

= det 4 (2 /00 e IVATI2 2y 2/@! e’ dx) < 00.
N 2m 0 0

That is, E, is a set of finite anisotropic Gaussian perimeter and clearly P(Ey) = 00, i.e., Ey
is not a set of finite perimeter.

Now we establish the lower semicontinuity, locality, complementation, and subadditivity
for the anisotropic Gaussian perimeter. Proposition 2.9 is a straightforward consequence
of Proposition 2.8. The locality, complementation, and subadditivity can be deduced by
Proposition 2.9 with results in [23, Chapter 16].
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Proposition 2.9 (Lower semicontinuity) If E is a set of locally finite anisotropic Gaussian
perimeter and U C R" is an open set, then

Py, (E; U) = v2m sup {/ divp(x) — (p(x), Ax) dysa(x) 1 ¢ € C(,! (U; ]R”) ,sup |p| < 1} .
E U
Moreover, for any sequence of sets of locally finite perimeter Ey with xg, — X in
1
Llnc (Rn’ J/A),
Py, (E;U) < liminf P,, (Ex; U).
k— 00

Conversely, if E is a measurable set, U is an open set, and for any open set V CC U,
sup i/ dive(x) — (p(x), Ax) dya(x) : ¢ € CC1 (V; R") ,sup lo| < 1} < 00,
E v

then E is a set of locally finite anisotropic Gaussian perimeter in U.

Proposition 2.10 (Properties of perimeter)

(1) (Locality) Let E be a set of locally finite perimeter. If F is equivalent to E in some open
set U CR", ie., (EAF)NU| =0, then

Py, (E;U) = P, (F; U).

(2) (Complementation) Let E be a set of locally finite perimeter and U be an open set in
R". Then E€ is also a set of locally finite perimeter and

P, (E;U) = P, (ES; U).
(3) (Subadditivity) If E, F are sets of locally finite perimeter and U is an open set in R",
P, (EUF;U)+ P, (ENF;U) < Py, (E;U)+ Py, (F; U).

Although the anisotropic Gaussian measure satisfies ya(E) = i, (v/AE), this kind of
relation doesn’t hold in the anisotropic Gaussian perimeter, i.e.,

P,,(E) # P,, (VAE).
In fact, we have the following formula:

Proposition 2.11 If E is a set of locally finite perimeter, then

v ap () dHL T () = /

VA)T! dH" 1 (x),
R

/Fma*(ﬂ E)

equivalently,

[Vav .0 ]dr o) = / vE () dHIT (),

/Fma*(ﬁE) (VA1 F)no*E

and hence

P, (VAE; F) = /
" (WA)-1F)na*E

Py, (E; (WA)TF) =/

FN*(v/AE)

VA op )| art ),

‘ﬂuﬂE(x)’ dH (),

for any Borel set F C R". Moreover,
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(1) if F =R", then
IVAIT Py, (E) < Py, (VAE) < (VAP (E).
(2) if O is an orthogonal matrix and A = I,,, then
Py, (OE) = Py, (E).
(3) if O is an orthogonal matrix, then

P, (E;OF)=P, . (O'E;F).

oTa0

In particular, E is a set of finite A-anisotropic Gaussian perimeter if and only if 0~ E
is a set of finite O AO-anisotropic Gaussian perimeter:

Proof Since E is a set of locally finite perimeter and x +—> VAxisa diffeomorphism, by
Proposition 2.3, for any ¢ € C.(R"),

n—1 _ —14T n—1
/a i PONAED) 4T <y>—|det<ﬁ)|/8 *E«»(ﬂx)[[(ﬁ) Mg ar =)

= |det(ﬂ)|/ ¢(«/Xx)[(ﬂ)—1u,;(x)] dH" 1 (x),
0*E
2.7

where +/ A is symmetric. Let F be a Borel set. We can set

o(y) = Y2y (y)

1 _
(2m)n-172¢

in (2.7) since we can first approximate open sets then Borel sets. Hence,

v ip () dHIN () = /

\/X_l dHn—l . 28
((ﬂ)*‘F)ﬂa*E[( ) UE(X)] va (). (2.8)

/Fma*(ﬂ E)
Since F is an arbitrary Borel set, the following two measures are the same:
v H T LOWAE) = VA ([(JZ)—IVE]H';;I L a*E) .
Taking total variation on both sides, by Proposition 2.5 and 2.7, we have
HL L 9" (VAE) = (VA (‘(«/K)—IVE’H;;I L B*E) .
That is,

P,(VAE: F) =/

(VA op )| dr ! . 2.9)
(WA)-1F)na*E

Applying +/A on both sides of equation (2.8),

\/Z dHn71 :/ denfl ]
/FOB*(x/ZE)[ v“/ZE(y)] y W ((ﬁ)ﬂF)na*ng(x) va )

Taking total variation on both sides, by Proposition 2.5 and 2.7, we have

Py, (E; (VA)TIF) =/

VA dH™ 1 (x). 2.10
m*(m)\ vy @] dH T @) (2.10)
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In fact, by using the same argument in (2.8) with any diffeomorphism f on R”, we have

/ v () dHE ()
FNo*f(E)

1

- —If P2 * n—1
= Gran /f—l(ma*Ee (17 g0 prosw]an '), @1

where g = f~ 1.
(1) Let F = R" in (2.9). Then

Py (VAE) = / . WA (0| 1 ) = 1WA P, ).
On the other hand,

1= o] = [VAVD ™ vp)| < IVAI| WD vew| = |H )| z 1va1".
Thus,
P,(VAE) = /S*E (VA op )| ar @) = VAL Py, (B).

(2) Let O be a positive definite orthogonal matrix. Applying (2.11) to the map f : x — Ox,
we have

P,(OE) = / ‘OVE(X)‘ dH "\ (x) = P, (E).
JI*E
(3) Replacing F as VAOF in (2.10), we have

P, (E; OF) :/ ’ﬁvﬁE’dHy. (2.12)

(VAOF)NO(vAE)
On the other hand, by replacing F as v OTAOF in (2.10) again, we have

P, . (O7'E; F):/
o 40 (OTVAOF)Na (OTVAO (O~ E))

VAOv,r |ty 2.13)

‘OT\/ZOUOT\/ZO(O_IE) dHV

B /(OTJKO F)N*(OTVAE)

where VOTAO = OT/AO. Applying v/AO on both sides of equation (2.11) with f(x) =
Ox, E as \/XE, and F as OTx/XOF, we have

VAOV dH :/ JAv dH,,.
/(OWXOFmB*(OR/ZE) R L (VAOF)NO*(AE) VaE STy
Taking total variation on both sides, we have
VA0 1 ‘dH =/ }«/Xu ‘d’H .
/(oTﬂOF)ma*(oTﬂE) OTVAE v (WAOF)NI*(/AE) VAE v
(2.14)

Therefore, by (2.12), (2.13), and (2.14),
Py (E; OF) = Py; (O7'E;F).
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2.4 Approximation for the finite anisotropic Gaussian perimeter

Proposition 2.12 For any measurable set E with P,, (E) < oo, there exists a sequence { Ey}
of bounded open sets with smooth boundary such that

X, — xgin L'"(R", ya) and Py, (Ex) — P,,(E).

Proof For any measurable set E with P, (E) < oo, by Proposition 2.8, E is a set of locally
finite perimeter. Hence, E N By is also a set of finite perimeter, where Bg := B(0, R) is an
open ball (see [23, Lemma 15.12]).

Step 1: We first claim that, as R — oo,

XEnBg — XEin L'(R", ya) and P,,(E N Bg) — Py, (E).
To begin, by the dominated convergence theorem and y4 (R") = 1 < oo,
/ |XE—XEQBR|dyA—>0 as R — oo.
RVI
For the second part, since Py, (E) < oo,
lim P,,(E;R"\ Bg) =0.
R—o0
Moreover, by [23, Lemma 15.12], for a.e. R > 0,
\wenBgl =H"""L(EN0BR) + |ie|L B.

That is,
Py, (ENBg) = H'ﬁ;l(a*(E N Bg)) = m)ii% /3*(EOBR) e IWAXIP/2 g1
N @yr;:% /n eTWAE/2 dlEnBg|
- (271;(1”% </BR WA g1 + /maBR e—\«/ﬁxﬁ/zd?{n_l(x))
det A

_ o vaeta —IVAx[?/2 a4 m—1 n—1
T r)(=D)/2 /d*E)mB ¢ ) dH + My, (ENDBR)

=11 (@*E) N BR) + M, (E N 3BR) = Py, (E: Bg) + M, (E N 3Bp).
2.15)

Notice that since

1
x| = |(VA) " WAx| < |V IVAx| = [VAx| > ————|x],
* ) ) TN T

we have

+det A
@ )(n (D7) =12

v/det A
- (27-[)(” D/2

Vdet A

= Qn)n-D/2

HI-Y(EN8Bg) < HY, ' (9Bg) = e WAL 21— (x)

/ g_u(ﬂr‘nﬂx‘ /de”—l(x)
IBR

e e K /27-("*1(33,3)
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_ wdetA
- (27.[)(;1—])/2

N TS
T TRy RU 0 as R — oo,
(2.16)

where «, is the surface area of the unit ball in R”. Combining (2.15) and (2.16) together, we
have

Py, (E) = Py,(E;R" \ Bg) + Py, (E; Bg)
= Py, (E;R"\ Bg) + (Py,(E N Bg) — M, '(EN3Bg)),
and hence, as R — o0,
|Py,(E) — Py, (E N Bg)| < Py, (E;R"\ Bg) + M}, ' (EN3Bg) — 0.
Step 2: Consider
ER .= EN Bg.

Fix R > 0. Applying [23, Theorem 13.8] on E &, there exists a sequence {E ,f }oo; of bounded
open sets with smooth boundary such that £ ,f C Bpry4 forall &,

Xpk = Xpr  as k — oo in L' (R") (and hence in L' (R", y4)), (2.17)
and
*
lprl=Ingrl.

Let n, € C°(R") be a smooth cutoff function with n; = 1 on Bg4; and n; — xp, with
L > R + 1. Applying the weak-star convergence, as k — oo,

Vdet A o WAP/2 g1
Q@ )(n D/2 dER

Jdet A .
© e‘lﬁ”z/zng(x) dH"!
(277)(11 Qr)n=D/2 [,k

Jdet A _IVAxI22
s 1)/2/ e e (V)| g
det A

(oo @M=D o

R
Py (Ep) =

*I«/>x| /2,7 (x)dH"~ I

Taking ¢ — 0% and L — oo on both sides, we have
det A
(27‘[)(” 1)/2
By Step 1, we can let { Ry} be a sequence with Ry /' oo such that

_ 2 _
Jlim P, (EF) = / K WAXP/2y 0 (0)dH™" = P, (EF). (2.18)
*E
Xpke — xgin L'(R", y4) and Jim Py, (ERy = P, (E).

Now we use a diagonal argument with (2.17), (2.18) to finish the proof. By a diagonal

argument, there exists a sequence {E } 2= of bounded open sets with smooth boundary
such that

Xghe = XE i L'(R", y4) and Py, (ENS) — Py, (E).
N
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3 Anisotropic Gaussian isoperimetric inequality

Define the function ¢ : R — (0, 1) as

1 * 2
P(x) = —/ e /2,
A/ 271’ —00
and notice that ¢ is strictly increasing from 0 to 1. The inverse function ¢~ : [0, 1] —
[—o0, +00] is also strictly increasing with ¢>_1 (0) = —o0 and d)‘l (1) = +o00. Moreover,
we have
—1
tB(0,1
lim M =1 3.1)
—00 t

(See [22, Section 3.3] and [25, Lemma 9]). We define the (nonrenormalized) A-anisotropic
Gaussian barycenter of the set E as

by, (E) ::/xdyA(x).
E

Let H(w, t) be the half-space of the form H(w,t) = {x : (x, w) < t}, where v € s
t € R, and (-, -) is the Euclidean inner product. Since y = y;, is rotation invariant, we can
compute the following quantities directly:

v(H(,1) = ¢(), P,(H,0))=e "2 b,(Hw,1) = L )
Y Y m

Moreover, we have the following for half-spaces under y4:

Proposition 3.1 Let H(w, t) be the half-space with w € S" ' and t € R.

(1) If M is an invertible n x n matrix, then

( MY o t >
M (H(w,t)) =H .

(M)~ ol (M) |

(2) The anisotropic Gaussian mass of the half-space is

t
ya(H(w,1)) = ¢ (7) .
(VAo
(3) The anisotropic Gaussian perimeter of the half-space is
2
1

2
P, (H(w, 1) =e > IO 1ol

(VA lw|

Moreover,

P,, (Hy) = Py, (H) for any half-spaces Hy, Hy with ys(H\) = ya(H2)

<= A = al, for some constant a > 0.

(4) The anisotropic Gaussian barycenter of the half-space is

-1 12 7 Al
b H(w, = 2 Wy Te2 | 7 .
m(H (.0 = 5e <|(ﬂ)lw|>

Moreover,

’b]/A (Hl)‘ = |byA(H2)’ for any half-spaces Hy, Hy with yo(H1) = y4(H>)
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<= A = al, for some constant a > 0.
Proof (1) Given any point y = Mx € M(H(w, t)), we have (x, w) < t. Then
M o M o w t
V, =) ={(Mx, —=——) = (x, < .
(MT) =l (M7~ (MT)~lw| (MT) =l

MH e
(MH~ o] I(MT) Lo

(v ) = (M ) = (- ame) <
Sl el T\ T m e T\ i e T T el

Thus, (x,w) < t,ie.,x € H(w,1).
(2) Observe that y4(E) = y(«/X(E)) for any Borel set E, and by (1),

VaH e t WA o t
VA(H( ,r»:H((( , = H , ,
¢ (VA o] (VA o] (VA ol [VA) el

since v/ A is symmetric. Applying Eq. (3.2), we have
t
ya(H (. 1) = ¢ <7) .
(VA ol

det A
(27.[)(11—1)/2

Conversely, for any y € H ( ) let x = M~'y. Notice that

(3) Notice that

Py, (H(w,1)) =

J/det A

(27T)(" Qn)e=D/2 H (o, 1‘)

Vet A le( —IVax2/2 ) dx

(Zﬂ)(” D2 [t

Vdet A
- z/ — (Ax, w) e VA2 gy
(271)(” 72 [t

det A
(f A~

(2;1)(" 07 n=D/2

/ e~ WARP/2 gn=1 (1
IH (w.1)

7\«/>x| /2 ) wdH" ' (x)

1
- ,«/Ka)>e_|y|2/2 —d
<y | det v/A| Y

o
\(f) w\ |WAa)~1 m|)

- —m< ydy<y>,ﬂw>

H( WA~ ' )
(VA Lo (VA Tl

WA o t
_m<by (H (wz)lwr |(¢Z)lw|>> ’\/Xw>
—r<

-1 2 Th—TolZ (f) w
Vo i <|(f> lw|)’ﬂw>

2 1
e 2\(f> 1WA T2

|(VA) o]

where we used the change of variables y = +/Ax and the fact that the outer unit normal
of H(w, 1) iS VH(w,r) = w. Next, we prove the second part. Let H; = H(w1,t) and
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Hy = H(wy, ). Suppose that A = al,. Then
ya(Hi) = ya(H) = 1 =n.
Therefore,
Py, (H(w1,1) = 1 Ja = e~ \/a = Py, (H(w), 1),
Conversely, for any Hy = H(w1,t1) and Hy = H(wy, tr) with ya(Hy) = ya(H>), ie.,
|(\/Zt)1*1m1| = |(\/Kt)2*1 - we have

1 1
(VA o] (VA Tl

That is, |(v/A) | is a constant for all @ € S"~'. Since /A is orthogonally diago-
nalizable, say VA = ODO™!, where the orthogonal matrix O = (v; v2---v,) and
D = diag(dy, d>, - --dy),i.e,for j =1,--- ,n,wehave |v;| = 1and

«/ij = djv.,' (i.e. (\/Z)ilvj = dj_lvj).

Py, (H (w1, 1)) = Py, (H(w2, 1)) =

Therefore,dy = dp - -- = dy, > 0 and hence A = OD?0~! = 0(d}1,)0~" = d?1,.
(4) Notice that
b, (E) = Vdet A *lfx\ 24
YA (2 )n/z

(271)”/2/ VA ye P Ray = (VA) b, (VAE),

where we used the change of variables y = +/Ax. In particular, using the calculation above
and (3.2), we have

- I 2 WA
b, (H(w. — (v b AH (o, = (VA ! 2\(f>
i (H(w, 1) = (VA b, (VAH (0, 1)) = (VA) ﬁe <|(f)1w|)

— 1 -1
— ! e T2 \(f) w\z <A7w) .
U (VA |

The proof of the second part is the same as (3); hence, we omit the proof. O

3.1 Two anisotropic Gaussian isoperimetric inequalities

We are ready to prove the anisotropic Gaussian isoperimetric inequality (¢-enlargement
version). As mentioned in the introduction, Bakry and Ledoux proved a general result about
isoperimetric inequality for log-concave measures (see [21, Theorem 1.1] and [5]). However,
for completeness, we provide a proof for the case of anisotropic Gaussian measure using an
argument inspired by Latata paper [19, Section 3]. The proof is based on Ehrhard’s inequality
and the regularity of Radon measures.

Theorem 3.2 (Anisotropic Gaussian Isoperimetric Inequality (e-enlargement version))

(1) For any measurable set E in R",

¢ (a(Ee) = ¢~ (va(E) + ———
A A 1A
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where || - || is the matrix norm induced by the Euclidean norm. The set
E.:=E+¢B(0,1) = {x e R" : dist(x, E) < ¢}

is called the e-(Minkowski) enlargement of E. Here B(0, 1) is the closed unit ball in
R".
(2) Let E be a measurable set in R" and let H(w, t) be a half-space such that
va(E) > ya(H (o, 1)).

Then, for every ¢ > 0,

(/D) ol
E;) > H , _— .
yal )>“< (w H'En(\/ﬁ)—ln))

Proof (1) Let E be a Borel set. Applying Ehrhard’s inequality (see Theorem 2.4) with
ya(E) = )/(\/Z(E)), we have the following: if B, C are Borel sets in R”, then

¢ yaOC+ A —=)B) = 2 (ya(C) + (1 =~ (ya(B)),  forae (0,1),
where

1 * 2
— —17/2
X) = e dt.
¢( ) «/E —00

Let C = E and B = B(0, 1). Then we have
07 4B = 97 aE +eB) =~ [ra(x(3) + 1 -0 (8))]

=207 [ra(5)] + 0 = o~ [ra ()] _

=307 [ra(5)]+ =007 [ (55 VA®)]
=207 [ra(5)] + - 067 fkmB)}

using that ¢! is increasing and v/ A(B) D m ﬂl)_l [ B. Taking 2. — 17, by (3.1), we have

=207 V(g )
_ 4571[)’<ﬁ AT B)] e ¢
=R /SR VAT WA

That is, for any Borel set E,

¢ (a(Ee) = ¢ (va(E) + ———.
! . 1A

A standard regularity argument ensures the above is true for all Lebesgue measurable sets.
(2) Using (1) with our assumption, we have

71 Ee Z 71 E _}_L
¢ (va(Ee)) = ¢ (ya(E)) T GET
> ¢~ (ya(H(w, 1))
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& t &
+ = + :
VA 1WA el VAT

since ¢! is increasing. Applying ¢ on both sides and using Proposition 3.1,

t 6 =
(Ee) > ¢ ( + ) _g| v
" (VAo AT (A o]

3 PN (CZORZ
_VA<H< i ||<JK>1||>)'

[}
Suppose the boundary of E is “nice” enough. Intuitively, we have the following
ya(Ee) — ya(E)
— P, (E),
£ o n®)
where the extra factor —— appears in front of P,, since we define P,, with coefficient

Nezd

(27r)<+'>/2' In order to use this idea, we need to introduce the signed distance function. Let

E be a subset of R". Define dr : R” — R to be the signed distance function from E:

dp (x) = dist(x, E) — dist (x, E°) = ;S:(S;(Xagf) i ; Z .
Moreover, dgc(x) = —dg(x),

dp(x) =0 < x € 0E,
and

[xreR":x € QE).} ={x eR": |dp(x)| < ¢}.

In particular, dg is Lipschitz, and by Rademacher’s theorem, df is differentiable a.e. Fur-
thermore, |Vdg| = 1 a.e. if E is a bounded open smooth set (see [4, Theorem 1 and Remark
3], as well as the discussion in [1, Section 3], and [24, Lemma 4]).

Theorem 3.3 (Anisotropic Gaussian Isoperimetric Inequality (perimeter version)) Let E be
a measurable set in R". Then

1
VA=

In particular, if A = I, we have the standard Gaussian isoperimetric inequality,

P, (E) > e 197 atEDP/2

P, (E)> ¢ 1@ nEDF/2

Proof Step 1: We first assume that E is a bounded open set with smooth boundary in R” and
P,,(E) < oo. Since E is a set of finite anisotropic Gaussian perimeter, by Proposition 2.8,
E is a set of locally finite perimeter. Moreover, since E is bounded and open with smooth
boundary,

dg is smooth in a tubular neighborhood of 9 E and vg = Vdg on 0 E
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(see [4, Theorem 2]). By co-area formula, for any Borel function g : R* — [0, co] and
Lipschitz function u : R" — R, we have

/g(x)m(xn dx=/ (/ g(y)dH”“(y)) dt
R"” —00 {u=t}

(see [3, Remark 2.94]). Consider u = dg,

/det A —IWVAxP)2
(2ﬂ)n/2 e

8= X{0<dg<e}»

and define the smooth function ; as
Y (x) = x +1tVdg(x) in the tubular neighborhood of dE.

Then we have
= ® L [ S b,
€ Eo\E (2m)"/?

Jdet A
—\fx| 12 g1
/ /dE t} (271)]1/2 dH" (x) dt

Vdet A 1 o IVAxP/2 dH" ™ (x) dt
T @enyle (OE) o

Taking ¢ — 07 on both sides, by the fundamental theorem of calculus,

Ee) — ya(E det A 1
iy HELZD / VAP a1 ) = =Py, (E),
e—>0T & (271’)”/2 9E m
where ¥(dE) = dE. On the other hand, by Theorem 3.2, we have
71 e _
Ya(Ee) — ya(E) - ¢ <¢ (va(E)) + m) ya(E)
€ B €
1 1 o 5 1
— ¢’ (¢~ (ya(E)) = el aE P2 L
as & — 0T. That s,
Py, (E) > o L
(VA=

Step 2: Now for any measurable set £, we may again assume that P, (E) < oco. By Propo-
sition 2.12, there exists a sequence {Ex} of bounded open sets with smooth boundary such
that

xg, = xe in L'R", ya), Py, (Ex) > Py, (E).
Applying (1) on Ej, we have
1
VA1

Taking k — oo, we have finished the proof. O

P, (Ep) > e™197 raEOP/2
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In the paper of Cianchi-Fusco-Maggi-Pratelli [ 10, Proposition 3.1 and Theorem 4.1], they
have characterized the equality cases for the standard Gaussian measure yy,. The result reads
as follows: let E be a measurable subset of R"”. Then

PVln (E) > e_[¢’7](VI,1(E))]2/2' (3.3)
Moreover,

(1) if n = 1, equality holds if and only if either y;(E) = 0 or y1(E) = 1, or up to a set of
measure zero and for some 0 € R, E = (—o0, —o) or E = (0, 00).

(2) ifn > 2, equality holds if and only if either y;, (E) = Oor y;,(E) = 1, or E is equivalent
to a half-space.

Notice that we can also derive Theorem 3.3 from Proposition 2.11 and equation (3.3),

1 a1 VAE)2/2 1
Py (E) = Py, (VAE)——=—— > ¢71#7 i (WVAEDF/
" 7 I(/A) I(/A)
_ e gaEnP2_ L
=e _—. (3.4)
(VA1

3.2 Proof of Theorem 1.1 (cases of equality)

Notice that (1) follows directly from Cianchi-Fusco-Maggi-Pratelli [10, Proposition 3.1]. We
justneed to prove (2) here. Suppose the equality holds and assume that y4 (E) = yi, (VAE) €
(0, 1). By equation (3.4), we have

L AP
IV A IV A
P Y N

VA1)

Py, (E) =P, (VAE

That is,
P, (VAE) = o107 v, WAENP /2.

By [10, Theorem 4.1], JVAE is equivalent to a half-space, say H(w, t), where w € s
Then

E is equivalent to («/X)_I(H(a), t)Y=H (

VAw t )
IWVAw| " VAo| ]

Moreover, by Proposition 3.1,

A
ya(E) = ya (H(f‘” ! )) —p() = t=¢ " (ya(E)

WAw| " |vAo|
and
«/Za) t 1,2 —1 2
Pu(E)=P, [H| = —=— || = e 2" |VA0| = ¢ 0aEN/21 /40
YA VA( (I«/ZwI I«/ZwI
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By our assumption, we have
1
(A~

—[p~ (va(ENI?/2

e =P, (E) = e—[¢—‘<yA<E)>]2/2|¢gw|

= VA0l = ———— = duin, (3.5)
¢ ||(f> )

where dpi, is the smallest eigenvalue of /A and we have used

||(x/X)’1 || = the largest eigenvalue of (x/Z)’l =

dmin

Now we claim that
w € Vg VA NS
Notice that we can decompose A into
A=0"Do,

with an orthogonal matrix O and a diagonal matrix D. If all eignevalues of D are the same,
ie., D = dglinln, then VA = dminl, and 0 € Vg . (\/Z) nst1 Hence, we may assume
that D has the following form:

D = |:[())1 DO ] , D1 =Aminli, and D5 has eigenvalues strictly greater than Apjp,
2

where Amin = dglin is the smallest eigenvalue of A. Let

01 0
o=|oror):
then /A = OTDY20 and

1/2 1/2
IWAw]> = 10TD2 0w = D2y = D 311> + 1Dy *yal? = d2nli P + IDY 32
3.6)

where

Y1
=y:=0Ow.
[yz] re e

d]%qm - d[%linlwlz m1n|y| mm|y1| + m1n|y2|2' (37)
Therefore, by (3.5), (3.6), and (3.7),

On the other hand,

172
D)2y = d2 |2 = 2 =0
since D; has eigenvalues strictly greater than Ay, = dr%m. Thus,
o7 o1 || dminli O ¥yl dmin O] y1
—_ nTpl/2 _ NTnpl/2, _ 13 _ min V|
VAo = 0'D'?00 =0"D"y=| "1 "3 o 1= aote |
02 04 0 D2 manle

and
OT OT Vi dmin OTyl
dmin® = dmyin 0"y = digin | L 3 = | = VAo
min minV Y min |:O;- OI 0 dmin02Ty1
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Hence,
\/Z(U - dminw - 0 = we€ Vdmin (\/X)

We conclude that

-1
E is equivalent to VA " (H(w, 1) = H ( VAo ! ) —H <w’ w> .

VAw| |VAw]
Now we prove the converse of (2) in Theorem 1.1. It is clear that the equality holds when

ya(E) = 0orys(E) = 1.Hence, we may assume that y4 (E) € (0, D,ie,¢ ' (ya(E)) € R.
Since w € Vg, (vVA) NSS!, V/Aw = dyinw. By Proposition 3.1, we have

dmin

o~ a (ENP?
-1 a2,
E _1 min 1
pyA (E) — P)’A (H (a), w>) —e¢ 2 IWAHTewZ
dimin [(VA) Lo

1
VA=

— 1T M ENP2y oo (A (EDF /2

4 Anisotropic Gaussian perimeter inequality under Ehrhard
symmetrization

4.1 Ehrhard symmetrization

In this section, we will use the following notations:
x=(z,y)forx eR", z € RrR*! and y € R.

Similar to (2.6), we define two (outer) measures /t, and Hg on R! such that

po(F1) = / e WAERgy VR e LRY)., HUF) = / e WAE2410(y), VF, C R,
F F

4.1)
where H? is the counting measure. Moreover, we define
P(F)=H23MF), FcR!,
where 9™ F is the essential boundary of F. We also define an auxiliary function ¢, as
" VAR * AP/
¢.(1) = e dy, ¢;(00) = e dy, 4.2)
—00 —00

and ¢, (—oo0) = 0, where z € R"~!. Let E be a measurable set in R” with n > 2. The section
E. C R of E is defined as

E.={yeR:(z,y) € E}, wherez e R" !
Define vg : R"~! — Ras

VE(R) = pz (E;), VYze Rn_l.
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Notice that e~ IVAX/2 < o= I/ATN2P/2 gpg x 1 o IVDTIT2RP/2 ¢ L'(R"). By
Fubini theorem, we have

vp e L'R™).
The Ehrhard symmetrization of E with respect to the y-direction is defined as
E'=E)_, ={G@yeR :y<¢ ' (ve@)}. (4.3)
and the essential projection of E with respect to the y-direction is defined as
T (E) i= 14 A —e,(E) :={z € R vp(z) = u; (E;) > 0}.
We now define

pe@ =M [@VE).].

Roughly speaking, the set 77, (E) captures the set in R"~! over which the one-dimensional
vertical slices in E have positive mass. We recall the co-area formula for sets of finite perimeter
(see [10, equation (4.1)]): for any non-negative Borel function g : R" — [0, co], we have

/ g(x)
IME
E

where v,” means (vE, e,). We also recall the following theorem by Vol’port from [27] (see
also [3, Theorem 3.108], [9, Theorem G], and [10, Theorem 4.2]):

Felawtw=[ [ seyatora @
RS (OME),

Theorem 4.1 (Vol’pert Theorem) Let E C R” be a set of locally finite perimeter withn > 2.
Then there exists a Borel set B C m (E) with L1 (m+(E) \ Bg) = 0 such that for every
Z € BE,

(i) E; is a set of locally finite perimeter in R;
(i) (WME), =0oM (E;) = 0* (E;) = (0*E).;
(iii) vf(z, y) # 0 for every y such that (z, y) € 0*E.

We will call Bg the Vol’pert set.

In order to understand the Ehrhard symmetrization set E¥, our first goal is to analyze the
regularities of the mappings z — vg(z) and z — ¢ L(vg (2)). For the isotropic Gaussian
case, the mapping z — ¢~ (y1(E.)) is in BV, (R" 1) since z > 1 (E,) is in BV (R"™!)
and w — ¢~ '(w) is C'(R). Here we have used a fact proven by Vol’pert [27] that the
composition of a C! map with a BV function is again a BV function. In fact, Ambrosio-Dal
Maso [2] showed that this is also true if we compose a BV function with a Lipschitz map.
However, in our setting, the function ¢ !'is also depending on the variable z € R"~! which
required a different proof for the regularity of z — ¢ Yvg(2)).

4.2 Aregularity result for the map z — ¢z‘1 (ve(2))

Our first goal is to show that vg € BV(R”’l) if E is a set of finite anisotropic Gaussian
perimeter. The proof is similar to Chlebik-Cianchi-Fusco’s paper [9, Lemma 3.1 and Lemma
3.2]. Before doing that, we need the following preliminary result for the integrand e~1VA*/2,
The cross term a;;x;x; in (Ax, x) = |v/Ax|? also plays an important role in the calculation.
We will need those estimates throughout this section.
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Lemma 4.2 (Computational lemma) Let n > 2 and let VA be a symmetric positive definite
matrix. Then

(1) (Derivative for the integrand)
LetV' = (01,...,0,_1) and x = (z, y). Then

n
8, e VAP = VA2 row (A, x), 02 IVAR =2 dl,.
i=1
4 (e,‘ﬁx|2/2) = e WAPRA L and v (e,|ﬁx\2/2> = —e WAy,

where /A = (aij) and A" € My—1)xn(R) is the first n — 1 rows of matrix from A.
(2) (Regularity estimates)

(a) Forany zo € R"™! and for any measurable set F,

=20

lim (e—wX(z,y)P/z _ e—lﬂ(zo,y)\z/Z) dy = 0.
F

In particular, the mapping
o 2
vVizZ> / e_“/X(Z’y)l /2 dy is continuous.
0

(b) Foranyz € R"! and for any measurable set F,

e~ WAGH P2 _ - IVAG Y2 _ (efwK(z,y»z/Z) Tk

li _
k20 F< k] )dy
(4.5)

In particular, the mapping v in (a) is differentiable and
o0
Viu(z) = / 4 (e_‘ﬁ(z’-")wz) dy.
0

(c) Let K be a convex compact set in R* ' and h € CH(K). Then for any zp, z € K,

IVAGR@P/2 _ e\ﬁ(zmh(zo))\z/z’ < C(K,h, Az — 20|

for some constant C(K, h, A) > 0.
(3) (Integral bounds)

(a) There exists a constant C1(A) > 0 such that

1| 3
sup  sup (/ e (e—|ﬂx|2/2>
I1<k<n—1 ;cpnr-1 —00

0zx
(b) There exists a constant Co(A) > 0 such that

sup / 9 (€—|JXX\2/2)
1<k<n-—1 n

92k
Proof We will denote x = (z, y) in the following calculations. When we do matrix multipli-
cation, the notation Ax = A(z, y) means

dy) < Ci(A) < o0.

dx < Cr(A) < o0.

Az, )" € Myx1(R).
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(1) (Derivative for the integrand)
Let A = (A;j), /A = (a;;). Then

n n -1

n
I\/Xx|2 = Z Za,-jxj

2 2
n
i=1 \j=1 i=1 \j=

aijzj +ainy |
1

n n—1 n
2 2 2
3),y|\/Ax| = 0y E 2 E aijzj +aiy | ain | =2 E ap,,
=1 \j=I i=1

and
n n—1 n
2
0y, IV Ax|" = Z Zzaikaiij + ZZaikamy
i=1 j=1 i=1
fork =1,2,---,n — 1. Since /A is symmetric, i.e., ajx = ai;, we have

n n—l1 n

0z, (e—\ﬂx|2/2) = — VA2 Zzaikaijzj‘ + Zaikainy

i=1 j=1 i=1

n—1
2 2
= —e VAT N Az + Ay | = —e” VAT 2 (row (A), x)
j=1

Therefore,

(row(A), x)
4 (67|ﬂﬂ2/2> — WA : — e WAXP/2 47y

(1'0an1 (A), )C)
and V (e"VAXP/2) = oA A
(2) (Regularity estimates)

(a) Let K be a compact set with zg, z € K. By using (1) and the mean value theorem,
’em/Z(z,y)\z/z _ ef|ﬂ<zo,y>\2/2’ <z -zl ‘efl«/K(L)')IZ/ZA/(L y)
<A@, y) e IVATINR2), _ )
= Vi (ATA) (5] + 1y1) eIV TIEER ) 5
< Vi ATAN (1 (K) + [y]) e IVD IR g 4.6)

where ¢ lies between z and zg, Amax (AT A’) is the largest eigenvalue of A”TA’, and

r(K) = sup |¢|. We now claim that
cek

lim [ e WAGYP/2Z _ o= WAGP/2gy — g,
=20 F
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Since z — zo, we may assume that z € K := B(zo, 1). Thus, as z — zo,

/ ‘e—lﬁ(z,y)\z/z _ e—|\/K<ZO,y>\2/2‘ dy
F

< /F /—)Vmax(A/TA/)(r(K) n |y|>ef||(ﬂ)*‘\|*2\y|2/2|Z — 2ol dy
=1z —zo|\/m/F () + Iy1)e VAP0 2y g,
(b) By Taylor expansion, if f € CI(R”_I) and x|, xp € R"71,
f(xa) = fx) + (V' f(x1), x2 — x1)
+ /Ol(V’f(M +1(x2 —x1)) = V' f(x1), x2 — x1) dt
(see, for example, [13, Theorem 1.14]). Fix y e R, k € ]R”’l, and set
f(z) = e WAGHI2,

Let K be a convex compact set with z, z + k € K. Then by a similar argument as
(4.6),

‘ﬂﬂ(m,y)ﬁ/z _ e~ WAGYIR2 _ (e,h/z(z,y)‘z/z) , k’

1
/ (—e"‘/z(“’k*”‘z/zA’(z Fk,y) + e WAGYI2 40 (o y)) ~kdt
0

< /1 ’(_e—l«/K<z+tk,y)l2/2A/(Z Ttk y) + e"ﬁ(“”‘»”'z/zA’(z, y)> -k’ dt
0

+ /1 ‘(_e—lﬁ(zﬁk,y)lz/QA/(Z, ) 4 e WAGYE2 g1 y)> .k‘ dt
0

< %deefn(ﬂ)*'||*2|y|2/2\/m

4 3 RPN, AT () + 1) (21 + 13

where z 4+ tk € K since K is convex. In particular, for any z € R"~! and for any
measurable set F', we have the following
e WAGHE /2 _ o= INA@IR2 _ (e—lﬂ(z.y)lzﬂ) Tk
lim dy = 0.
k=0 Jp k|

(c) Recall that

|ex — 1| <ell 1< |x|e|x‘ for all x € R.
Thenby h € C 1 (K), the convexity of K, and a similar argument as (4.6),
VAGR@)P/2 _ e\x/z(zmh(zo))\z/z}

VAo hzg)
2

=e e

IWAGRE) P~ IVAE k) 1‘
) _
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WAGoheo ‘ IWAGhE)R=IVAGg.hGo)2
z(),h(z 2
e 2

WAz, h(@2)? = [VA(z0, h(z0))? .
2

< C(K,h, Az — zol
for some constant C(K, h, A) > 0.

(3) (Integral bounds)
We will only prove (3)(a) since the proof of (3)(b) is similar. By (1), we have

K (e WARR) | = [emAsEry | = [e VAR 4T

rowg (A), x)
0Zk

ek, Xx)

_ 2 _ —1=21,12

< e WA All|x| < [|Alle IVATTITTE/2 4
—1—21,2 —11—2112

< ||A||e_”(‘/z) 172 1z] /Ze—l\(ﬂ) I==1yl#/2 Uzl + [y]).

Hence,
/'OO
Therefore, there exists a constant C1(A) > 0 such that

|9
sup  sup ( / 7(6—\«/Xx|2/2>
1<k<n-—1 zER'Fl —00

0zg
We are now ready to show that vg isin B V(R”‘l). Moreover, we prove a relation between
|Dvg| and Py, (E; - x R) and a weak derivative formula for D;vg. These two ingredients
play an important role in proving our main result (see Theorem 4.10).

82{ ( WAz /2>

dy < |Alle” 1D /2|z|/ D22 2

_ —1 -2 _ —1=2
A eI I /2/ IVATI2R2 4y

—0o0

dy) < Ci(A) < o0.

[m}

Lemma4.3 (Regularity of vg and its distributional derivative formula) Let n > 2 and let
E be a set of finite anisotropic Gaussian perimeter in R". Then vg € BV (R"_l), ie.,

|Dvg|(R"™") < o0, and
det /A detvA / v/ (e—lx/lez/2> dy‘ dz

G IJE.
dD,vELBE( ),

W|DUE|(G) <Py, (E;G x R) + m
AL " Bg

for every open set G C R~ ! Moreover, let Djvg(z) :=

E
E(,. 9
DivE(z):/ wd']‘lg(y)—l—/ 7(.?—'\@‘2/2) dy fori=1,2,....n—1,
@E), [VE ()| E. 3%;

Sfor L' '-a.e. z € Bg, where B is the set appearing in Vol’pert Theorem.

Proof Since vr € L' (R"™1), our goal is to show that vz € BV (R"™1).

Step 1: Let ¢ € CC1 (R”_l) and ¥ € CCI(R) withO < ¢;(y) < lfory € R, j € N, and
such that lim; o ¥;(y) = 1 forevery y € R. Forany i = I, ...,n — 1, by the dominated
convergence theorem,

a
/ 29 @yve () dz = / ) / WAL 24y 4
R 1 8 n—1 azi E.
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/RH (/RT(Z) XE (z,y)e” \«/Xx|z/2dy> dz

lim 8— @ vixe (z, y)e"‘/xxlz/zdzdy (insert lim; ; = 1)
Zi ' '

Jj—oo Jrr

lim {/ div( @) j(y)e VA2, )XE (z,y)dzdy
]Rn

j—00
3
B /R" azl < —Ifﬂ /2> (p(z)l//j(y)XE (Z y) dydz}
= lim {/le (so @) ¥j(y)e VA2, )dzdy / 33 ( —IVAxP? /2> @V (y) dydz}
e E 0%i

=i {/ 0 (@) (e VAL 2o E g1 (2, y)
*E
( VAR /2> P@V; () dde}
lim { 0 @) (e VAP 2D, yp

+ /E 5 (VA2 o (v dydz} (by (23))

0
= —/ ©(2) ef‘ﬂ"lzﬂdD,-XE —/ — (eil‘/lez/z) @(z) dydz.
R" E 02

(a) Notice that for |p| < 1,

L o @uo) e VAR < [ VAR a0 = )

*E
and hence

. _ 2
— lim / 0 () ¥ (e VAP24D,yp < P, (E) < co.
j—)OO R’l

(b) By Lemma 4.2, there exists a constant C > 0 such that

0 2
_ —|VAx[?/2 9 (,—IVAxP2
[ e (V) gy dyde = [ | (VAR [dya < €
and hence
a
— lim ( —WAx? /2) @)Y (y) dydz < C < 0.
j— JE aZl

Taking the sup over ¢ € CC (R"_l) with |¢| < 1, (a), and (b), we conclude that vg €
BV (R"‘l) since for any vector function ¢ = (¢, .., gp—1) € C, (R”‘l; R"‘l) with |p| <

1, the above argument works for each ¢;,i = 1, ..., n — 1. Moreover, we have
0
/ (9@ dDivE(2) = / 0 @) e VAERAD, 4 / 5 (e VREP) (o) dyaz
R"™ E i

4.7
for every ¢ € C! (R" 1.
Now we consider n = (1, ..., My—1) € CC] (G; R”il) with |n| < 1, where G is open in
R"~!. By an approximation argument, we may set ¢ in (4.7) as

0(2) = 1i(2)x6(2).
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Thatis, fori =1,...,n—1,

/G ni(2) dDivg (2) = / e WAL 20 (2) d Dy (x)

GxR
d
+/ — <€—|ﬂx\2/2) ni(z) dydz.
EN(GxR) 0Zi

Therefore,

/G 7(z) - dDuelz) = /G Re_lﬂx‘z/zﬂ(z) ~d (D1xg, DaXE. .., Du—1XE) (%)

+ / n(z) V' (e—lﬂxlzﬂ) dydz (4.8)
EN(G xR)
for any n € CH(G; R"™!) with [n| < 1. Let ; € CI/(R) with 0 < ¥;(y) < 1 fory € R,

J € N, and such that lim;_, o ¥;(y) = 1 for every y € R. By the dominated convergence
theorem and Proposition 2.6,

/ n(2) - dDvE(z) — / 0 -V (VP2 dya;
G EN(GxR)
. _ 2
= lim e WA (02w (1)) - d (D1 X&) DaxE, - - Du1xE) (X)
J=70 JGxR
< sup {/ e WAL2500) L d (Dyxg, DaxE. .. Daoi xE) (x)
GxR
(5 € Co(G x R; RN 7] < 1}
2
=/ e WAL 41Dy yE, Daxg. ... Duixe)] (x)
GxR

< / e WAL gDy | (x) = / e WA2 gpn =T | g*E (x)
G xR GxR

(2n)("_1)/2

= mPVA(E; G x R).
Thus,
(2m)(n=D/2 1 (L —INAxP)2
(z) -dDvg(z) < ————P. (E;GX]R)+/ (2) - V' (e"WAT2) dydz
/G'i E et\/z VA Em(Gx]R)77 ( ) Y
(27.[)(;171)/2 / / V(AR
== _ P, (E;:GxR)+ - [ V(e WAT2) dyd;
NI RCHN ( ) dv
e, kG R)+/ / V' (eTWAF2) ay|a
= 5 X e Z.
detvV/A 7 G |JE. Y

Taking the sup over n on both sides, we have

(271)("*1)/2

et«/X

for every open set G € R

|IDvE|(G) < PyA(E;GXR)+/

G

/Ez v (e—\ﬁxﬁ/z) dy‘dz
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Step 2: Let Bg, be the set given by Vol’pert (Theorem 4.1). Applying equation (2.1), we have

vE (2, y) _ iy Dixe (Br 2, 3)
= lim s
PVE (z,y)|  r=01Duxel (Br (2, )

for every z € Bp and every y such that (z, y) € 9*E. By the Besicovitch differentiation
theorem,

E
57 PnxelL(BE xR).

[vir|

DixegL(Bg xR) =

Now, let g be any function in C. (R"_l). We can set ¢ (z) = g (z) xB, (z) in (4.7) since we
can first approximate opens sets then Borel sets. Therefore,

/ g (@) dDjvg = / 2@ e VAT2aD, yp(x)
Bg

BEXR

d
+/ ( —IVAxP? /2) g(z) dydz
EN(Bg xR) 9z

vf (2, y) VS
=/ S () e VA2 | Dy |
Bexk [VE (2, )]

a
—IVAx2/2
ol e

Moreover, by | D, x| = [vE |H"~ 'L 9*E and co-area formula (4.4),

vE (2. y) 2
/ g (@) e VA2 | Dy |
Bexk [VE (2, 9|

- /a EN(B R)g(z)e_lﬂx‘z/z"iE (z.y)dH"!
* £ X

/ 8@ / D) i 2aH’(y) dz
Bg d

(0*E), |V (z, y)|
/ 2 () / v @) dH(y) dz (4.10)
B @£y, |VE (. y)\

(see (4.1) for the definition of Hg). Combining (4.9) and (4.10) together,

vE@y) 3 [ A
dDivg = 1 +/ — (e"VAT/2) g )d,.
/BEg<z) vE /BEg(Z)</<a*E)Z V] RO [ 5 (e )dy )dz

Since g is arbitrary, we have

vE(z, y) 9 )
D,’U L Br = / I dHO + / o *|\/Zx\ /2 d £n71 L Br.
e ( @), |[vE@E Y| ) E. 92 (e ) y E

That is,

vE(z,
DivE(z):/ #d?‘lg()’)ﬁ-/ —(e—'ﬂﬂz/z) dy, @.11)
(0*E), VE(z, )| E. 0Zi

for £ 1-ae.z € Bg. O
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With Lemma 4.2 in hand, we first show that & : z ¢;l(UE(Z)) is C! when vg is CL.

The key idea is to use the integral equation (4.12) and the lower bound estimate of e~ WAxP2,
We will prove the general case of vg in Theorem 4.5.

Lemma 4.4 (Regularity Estimates for the map z — ¢;1(v(z))) Letx =(z,y) € R xR
and

t
$:(1) = / o VA 2y,

Let Q2 be an open set in R*™ ' and v e CHQ) with0 < v < g, where g(z) = ¢;(c0). Then
themap h : 7 — q);l(v(z)) is also CY(Q), and for all 7 € Q, we have

WA h()? h(z)
v/h(z) —e 2z (V/U(Z) _ / V/ (e—‘\/X(Z,y)lz/2> dy .
—00
Moreover, if we assume that V'v is locally Lipschitz on Q. Then

2+ V'h(z) is also locally Lipschitz on Q.

Proof Since h(z) = qﬁz_l(v(z)), i.e., ¢, (h(z)) = v(z), we have

h(z)
/ e WACYE gy — (). (4.12)

—0o0

Step 1: Assume that v € C%(2). We first show that 4 € C%(2). For any zg € €,

he) hzo)
v(z)_v(m):/ e—\ﬂ(z,y>|2/2dy_/ e IWAGE2 gy
—00 —00
he) hzo) hzo)
:/ efWX(z,ynz/zdy_/ ! ef\ﬂ<z,)v>|2/2dy+/ U e WAGYER g,
—00 —00 —00
hzo)
_/ 0 e—\ﬁ(Zo,y)lz/Qdy
—00

h(z) h(z0)
_ / ? VA 2g, +/ Y VACHP _ WAy
h(zo)
By Lemma 4.2 (2)(a) and v € C%(Q), as z — 70 in L,
h(z)
fim [ e WAGIE2y — g

2720 J(zo)

—00

Now we claim that
h(z) = h(zo) asz— 20.
Suppose not, there exists &9 > 0 and a sequence zx — zo in €2 such that
|h(zk) — h(zo)| = 0.
Then there exists a subsequence zj, such that

(1) h(zk,) = h(zo) for all n, or (2) h(zk,) < h(zo) for all n.
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We will only prove (1) since the proof of (2) is similar. For (1), we have
|h(zk,) — h(z0)| = 80 = h(zk,) > h(zo) + €o.
Hence, by Lemma 4.2 (1)(a),
h(zk, )
/ W WAGHR 2y 5 o~ IVAR P2 /
h

(20) h(zo)
h(zo)+eo

h(zky)
e~ IWAIPIYE2 gy

. e*||\/x||2\zkn\2/2/ VAP,
h(zo)

Taking n — oo,

h(zky) h(zo)+e
0= tim [ " e WACYHP 24y > fim e—ll«/ZIV\an\zﬂ/ O WVARDE 2,
=09 Jh(z0) =00 h(z0)
h(zo)+e
> e—ll«/Xllzlzol2/2/ T ARy < o,
hzo)

This gives us a contradiction. Therefore, h € C 0(Q).
Step 2: Now we assume that v € CY(Q). Our goal is to show that & € clQ).
Define

VAP h(2) ,
0(z) = e (V’v(z)—/ V’(e*‘ﬁw”z/z)dy .

—00
We show that £ is differentiable and
V'h(z) = £(2).

Using the mean value theorem, we have

1 !
—{vE+k) —v(@) — V'u() -k

||
h(z+k) k@
_ % / T VAR gy, /1 e WVAGYER gy 'y (z) ~k}
—00 —o0
h(z+k) > h@@)
_ L / e~ VAGHE/2 gy +/ Z (ef‘ﬂ(”"w"ﬁ/z - e*'ﬁ(z’”‘z/z) dy —V'u(z) - k}
Ikl U Jhezy —co
1 k. y
= | e+ = e VAR
h(z) JA 2 JAGC )2
+/ (64 AGH)P/2 _ = IVAGY) /2> dy —V'vu(z) ~k}
—00

1 1
_ E*Ix/Z(z+l<,,V(1<))I2/2m (h(z 1 k) — h(z) — €2) ,k) + me*\ﬂ(wk,y(k))ﬁﬂg(z) Lk

h(z)
n ‘%{ / (E—\ﬁ(z+k,y>\2/z _ e—m(z,ynz/z) dy — V'v(z) - k}

—00

where y (k) lies between /(z) and h(z + k), and the continuity of & (Step 1) implies that

ly(k) — h(z)| < |h(z +k) — h(z)] = y(k) — h(z) ask — 0.
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By using the definition of £(z) and (4.5), we have

h@+k) —h@) = @) -k _ | acrkywps (V@K —v@) = V@) -k !
] =e ’ K| - mg(Z)'k
h(2)
_ elﬁ(z+k,)’(k>)\2/2%{ /1 ) (e—‘ﬁ@*"v-‘”'z/z - e"ﬂ(z’”‘z/z) dy —V'v(z) -k}
—00
_ JWVAGH P2 (V@K —v() — Viv@) -k _ ielﬁ@’h(z))'z/zv’v(z) -k
19 |k|
h
+ %dﬁ(z,h(z))lzﬂ/ ! v (e—lﬂxlzﬂ) dy -k
—00
WaeHy@r2 L[ "D acrkonre _ a2 :
—e ' m (e e —e ’ )a’y—Vv(z)-k
—00
— VA ()2 (v(z +k) —v(z) = V'u(z) - k)
Ik|
n % (e|ﬁ(z+k.y<k>>|2/2 _ e\ﬂ@,h(z))\Z/Z) Vo) -k
WGy 1 e WAGHIIE — VAT — v (eflﬂxlz/z) K
s [ ’
- k] g
, LG
_ (e|ﬁ<z+k,)<k>>|2/2 _ e\ﬁmh(zmz/z) m/ v/ (e—\ﬂxlz/Z) dy k-0
—0Q

as k — 0. Therefore, h is differentiable and

h(z
V) = o (V/U(Z) _ / © o (e-WAGP) dy> .

—00

Now we claim that V'h € C%(2). Since V'v € C°(Q2) and h € C%(R2), we just need to show
that

h(z)
z r—>/ v/ (e*'ﬂ<z’>’>'2/2) dy isin CO(Q). (4.13)
)

Without loss of generality, we may assume that |z — zg| < 1 and let K = B(zq, 1).

h) h(z0)
/ z v/ (e—\«/X(z,y)Izﬂ) dy B / <0 V/ (6—\x/X(z,y)|2/2) dy
. 0o =20
h(z) h(z0)
= / VAR A ) dy + / eTWACIER A (3, y) dy
—o00 —00
hez) o)
_ / e WAGYR2 () dy_/ e WA (g, y) dy
h) hzo)
_ —A/|: / : e—l«/Z(z,y)\zﬁ(Z, ) dy — / ? e_lﬂ(z’y)‘z/z(& y)dy
—00 —00
h(zo) h(zo)
N (/ WAL ) dy _/ e WAGNPE2 (70 1) dy)] = (D) + (ID).
—00 —00

(4.14)
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(i) We first estimate (II).

h(z0) h(zo)
‘/ e WAGYE2 A1 (2 3y dy — / e WA 7 (75 y) dy
—o0

—0
h(z0)
=/
—o0

h(z0) )12
+/ e~ WAGoIP/2 |A'(z — 20, 0)| dy

—00

o~ WA@NP/2 _ e*lﬂ(zo’”'z/z‘ Az, )| dy

o0 2 Z1y=2y,2
fkmax(A/TA,)/ (r(K)+|y|) e NIDNP2), _ dy
—00

o S ATAD /Oo VAR |
-0
=C(K, A) |z — zol

where we have used (4.6) and recall that r(K) = sup, g |¢].
(ii) We now estimate (I). By the mean value theorem,

W) he)
@ y) dy| = / e WAGYI/2, d%/ WAy gy
h(zo) h(zo)

h(z)
/ : e~ VAGYIP/2
h

(z0)

ho) )
- / T VAR, gy 4 / e WAGIP2, gy
hzo) hzo)
— ‘e—\ﬂ(z,yz)l2/2z‘ Ih(z) — h(zo)]
o
+ | VACIP2S | 1h(z) — hzo)| = 0 @.15)

where y, and y, lies between %(z) and h(zp), and by the continuity of &, y,, y, — h(zp) as
z — z0. Thus, (I) = 0 and (II) — 0. Therefore, h € C1().
Step 3: Finally, we claim that if V'v is locally Lipschitz on €2,

V'h is also locally Lipschitz on Q.

By Lemma 4.2 (2)(c), we just need to show that (4.13) is locally Lipschitz on Q. Let z* € Q.
Since € is open, there exists B(z*,r) C Q s.t. B(z*,r) C Q. Then K := B(z*,r) is a
convex compact set. Thanks to the estimates in Step 2, we are left to estimate (4.15) with
2,20 € B(z*,r) C K. Since h € C1(Q) and |,| < ||hll L~ k),

4.15) < r(K) VAl Lox)lz — zol + Il Lex) I VAl L k) |z — 2ol
i.e., (4.13) is Lipschitz on B(z*, r). o

By Lemma 4.3, we know that vg € BV(R”_] ). Now we are ready to show that i(z) =
o Lvg(2)) is £"~!-measurable and E* is a set of locally finite perimeter in R". The key
idea is to approximate vy € BV (R"~!) by C! functions. Then we can apply Lemma 4.4 on
each C! function.

Theorem 4.5 (Approximation theorem for the map z — ¢, Ywe(2) Letn > 2 and let E

be a set of finite A-anisotropic Gaussian perimeter in R". Define h : R" ! — [—o0, 00] as
h(z) = ¢ (vE(2) and let g(2) = ¢(00). Then
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(1) for any bounded open set Q2 C R* ' with smooth boundary, there exists a sequence of
functions v, € CY(Q) with 0 < v, < g, such that vy — vg in LY(Q) and a.e. in Q,

ka—*\DvE in Q, and

V/
limsup/ |V’vk|dz§|DvE|(Q)+2/ (' g')vEdz.
Q Q 8

k—00

Moreover,
hiy — hae inQ, xp — xgsaeinQ xR
where hi(z) := ¢Z_1(vk(z)) and
Foo={(y) e Qx Ry < (@) = ¢ (@)}

In particular;, h is £~ -measurable and the set ES is L"-measurable.
(2) E° = E is a set of locally finite perimeter in R".

s —€n

Proof (1) Step 1: Since E is a set of finite anisotropic Gaussian perimeter, according to
Lemma 4.3, vg € BV(R"™). Let g(z) = ¢.(00) > 0 (see definition (4.2)) and define

Fot) = —— .00, T = ——vg(a).
8(2) g2
Notice that 0 < Vg(z) < 1 and az_' :(0,1) - R. By Lemma 4.2 (2) and the estimates in
(5.1), g € CY(R" ). Therefore, é e CY(R") since V’(é) = _ZT/zg eCland g > 0.In
particular, both g and é are locally Lipschitz on R"L Thus, Vg = évE IS BVIOC(R”_I) and
Duvg = D(gVr) = gDVk + (V@)U L™ (4.16)

(see [3, Proposition 3.2]). Let 2 be abounded open smooth setin R*'. We have Vg € BV(RQ)
and 0 < Tg < 1. Hence there exists a sequence of functions 7 € C'() N BV () with

0 < Vk < 1, such that 3y — 7 in L1 () and a.e. in , Dﬁk—*\D'JE in , and
lim / |V (2)| dz = | DVE| () (4.17)
k—o00 Jo

(see [3, Theorem 3.9 and Proposition 3.13]). Now we let

ve = g%, hr = ¢ @) = ¢ (w),

where 0 < vk (2) < g(z) = ¢;(c0) and v € CYHQ)NBV(Q).In particular, by the definition
of vy and ||g||Loo(Rn_1) < 00, we have vy — vg in L1() and a.e. in Q. Moreover,

Dvg = D(g%) = gDV + (V)0 L. (4.18)
By (4.16), (4.18), and the fact that 7y — Vg in L'(2) and D’ifk—*\DEE in 2, we obtain
Dui—~Duvg in Q, (4.19)
|Dv|(2) < gDV |(Q)+]V/g [0k L~ (R).and g| DVE|(Q) < [Dve|()+|V'g[Te L ().

Applying [3, Theorem 2.39] (Reshetnyak continuity) with the bounded continuous function
g and (4.17),

limsup [ |V'v|dz < limsup/ gdlDﬁicl—Himsup/ |V'g|0k dz
Q Q

k—oo JQ k—o00 k—o00
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=/ngDFEI+/ |V'g|VE dz
Q Q

~ v
< IDvEI(Q)-i—Z/ |V'glUp dz = |DUE|(Q)+2/ IV/gI?Edz,
Q Q

where we have used 7y — Vg in L!(Q) and IV gll oo gn-1y < 0.

Step 2: Since vy — vg a.e. in 2, there exists a measure zero set Z C 2 such that for any

7€ Q\ Z, vk (z) = ve(z). Notice that

h h L

a e VAGIP2gy / v e VAGYIP2g, — / a ~WACHE2y
h

vk(z)—vE(z)=/ o
V4

—00 —0o0

As k — 00, we have

hi(z)
lim e WACYHIP24y — 0 forany z € @\ Z.

k— o0 h(z)
By using the same argument as in Lemma 4.4 Step 1, we have forany z € Q\ Z, hi(z) — h(z)
as k — oo. By Lemma 4.4, h; € C'(Q) since vy € C'(RQ). In particular, i is £~ L Q
-measurable on  and hence the limit function /| is also £" ~!L Q -measurable on 2. Since
2 is arbitrary, & is also £"~!_measurable. Next we show that

XF, — XEs ae.in Q2 x R,

Let I'(h) be the graph of i, let Z' = (Z x R)UT'(h; Q) C Q x R, where Z is the measure
zero set from above and I' (h; 2) is the graph of & over Q, i.e.,

Fh; Q) ={(z,y) € xR:y=h(z)}=T(h)N(Q xR).

We first check that £"(Z’) = 0. Notice that £"(Z x R) = 0. It is enough to show that
L"(T'(h)) = 0. Since & is £"~!-measurable, we define

g(z,y):= fro filz,y) =h(z) =y

where f : (z, y) = (h(z), y) is L"-measurable, f> : (x, y) = x — y is continuous. There-
fore, g is also £"-measurable and hence I'(h) = g_l({O}) is £"-measurable. By Fubini’s
theorem, £ (" (h)) = 0. Next, forany x = (z, y) € QxR\Z',wehavez ¢ Z.If ygs(x) = 1,
then y < h(z) and hence there exists k such that y < hy(z) since hx(z) — h(z). That is,
x =(z,y) € F,ie., xp,(x) =land xp, — xgs. If xps(x) =0, then y > h(z). However,
x ¢ I'(h; Q),s0 y # h(z) and there exists k such that y > hy(z). Thatis, x = (z, y) ¢ F,
ie, xp(x) = 0and xp, — xgs. Therefore, xp, — xps ae. in @ x R. In particular,
ES = {g > 0} is £"-measurable.

(2) Now we claim that £ is a set of locally finite perimeter in R". Since E* is £ -measurable,
we have xgs € L}OC (R™). In order to show xgs € BVjpe(R*™1), by Proposition 2.9 and 2.8,
we just need to prove that for any open set V CC R”,

sup {/ div(x) — (p(x), Ax) dya(x) 1 ¢ € C (Vi R"), Jg| < 1} < 0.
ES

Since V' C R” is a compact set, there exists an open bounded set @ C R"~! such that
V C @ x R. In fact, we claim that

sup {/ divp(x) — (p(x), Ax) dya(x) 1 ¢ € CL (2 x R;R") | Jo| < 1} < o00. (4.20)
ES
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For convenience, let ¢, = (¢1, ¢2, ..., ¢,—1) and

[ dive =g ax) dya = [ dive -+t V-V /2) dyato

Ay a — |V Ax|?/2
_2/ 8€0 (—|vAx|?/ )dyA(x)
Es 0Zi 0z;

9 A(—|vAx|?/2
+/ ﬂ+(pn7| |/ )dyA(x)

= (I) + (II). 4.21)

Step 1: We estimate (I) using approximation of vz by C!(£2) functions. Consider 7 € C1()
with0 <7 < gandlet ¢ € C} (2 x R; R") such that || < 1. Let

Fi={x=(y) e QxR:y <y@} y@ =0¢"@@).
Since y(z) = ¢; ' (V(2)), i.e.,

y(2)
32) = 62 (v(2)) = / WAy,

—0o0

and by Lemma 4.4, the mapping z — y(z) is in C'(£2). Hence

~ _ WAGy) 2 y(2) - 2
VIU(Z) =e fv/y(z) +/ \v4 (E |v/Ax| /2) dy,
—00

v WAG.y)2 9 Y@ g
U _ Al (@) +/ 2 (e,wz(”)‘z/z) dy.

37Z,' - d9z; s 0Zi

We now compute the equivalent of (I).

n—1 8, 8 2
Zthﬂ (IfXI/) YA ()

n—1
S det VA / / y@(% DCIVALP/2) )e‘@'z/zdydz

(27'[)"/2 9z 9z

L det VA o ( ) ) .
Z Q)2 (az‘/ gie WA 2gy, y <p,(z y(2))e WAGYQP2) 4,
tJ—00

n—1
det A
_ —Z et VA By(z) 01 (20 y(@)e WAGYQP2 g,

@y Jg
d o @) g
_ Z (;;;nr/z oy <3Z” _[ 2 (e dy) dz
y(@)
:_% (/9 0:(2, y(2) - V'3(2) dz—/Q/ ¢:(z, y(2) - V' (e*'*@”)'z”) dde)

(4.22)

where we have used the divergence theorem and ¢ has compact support in 2 x R.
Now we approximate vg by Theorem 4.5 (1), i.e., there exists a sequence of functions

Vi € Cl(Q) with 0 < v; < g, such that vy — vg in LI(SZ) and a.e. in €2, ka—*\DvE in €2,
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and

v/
limsup/ Vvl dz < |DvE|(Q)+2/ (' g')vEdz.
k—oo JQ Q 8

Moreover, xr, — xgs a.e.in  x Rand Ay (z) — h(z) := qb;l(vE (z)) a.e. in 2, where
Foi={G@y) e xRy <h():=¢- " ()}
Replacing F as F and y(z) as hi(z) in Eq. (4.22), we have the following estimate

aga, a<—|ﬁx|2/2>
M = Z / b 7@

. 99i a<—|ﬂx|2/2>
= hm Z/Fk 8Zl T dVA()C))

k—00

d
(;ﬁ i ([ oV

hi(z)
- / / ' (—wz(z,hk@))-V/(e*'“”z/z)dydz)
Qj —0Q0

det /A
< (Zen) 7 llmsup/ |V’vk(z)|dz
det /A h(z) e
+W/Q/ 0.z, h(2)) - V' (e IVAx] /2)dydz
—00
detf 2det /A |V/g|
< (2 ),1/2|DUE|(Q)+ a2 ( P )vEdz
n detc / /00 ’e—h/zx‘z/zA’x
Q)" Jre-1 ) —eo
det VA 2detv/A
< W|DUE|(Q)+W/ |V'gldz
de“f/ / —|fx\ 2aly
(2;T)n/2 RA-1
det /A 3detv/A _ 2,02
< Gy \PoEl @ + 5V Amax (ATA) / IWAIZRE2 x| dx < o0,

where we have used 0 < vg < g and Lemma 4.2.
Step 2: Now we estimate (II).

d¢n A(—|vVAx|?/2) det /A 9 WA
m = STV T2 _eva g9 WA@P2Y 4
) / 3y +on By ra(x) Q2 | By (wne ) x

det\F lim d (90 e*lﬁ(z,mzﬂ) dx
(27'[)”/2 k=00 |, dy

h
detf (@) 8 —|ﬂ(z,y)\2/2> dydz
(27‘[)"/2 k—>oo

detv/A lim
(27'[)"/2 k—

(pn(z i (2))e VAGIEE2 4
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_ det VA
- (27‘[)”/2

- det VA
- (271’)”/2

onl(z, h(z))efl«/z(z,h(z))lz/z dz
Q

£7HQ) < 0o

since ¢ is C I with compact support, |¢| < 1, and recall that iy — h a.e. in Q2 by Theorem
4.4 (1). O

4.3 Ehrhard symmetrization in 1D and an example in 2D

In this section, we show that the Ehrhard symmetrization preserves the mass under any one-
dimensional slices in the y-direction, and hence it preserves the total mass. Moreover, the
anisotropic Gaussian perimeters of the one-dimensional sections decrease under Ehrhard
symmetrization. Geometrically, we will rearrange the mass in each one-dimensional sec-
tion of E to a half-line with the same mass. The resulting new shape E® is the Ehrhard
symmetrization of E.

Proposition 4.6 Letn > 2 and let E be a set of finite anisotropic Gaussian perimeter in R".
(1) (Properties for E*)
ves(2) = ve(2), ez ((E®);) = uz (E2),
forall 7 € R*'. Hence 74+ (E%) = 4 (E) and
V'vg(2) = V'vgs (2)
fora.e. 7 € Bg N Bgs, where

dD,‘vE LBE

V'vg(2) i= (D1ve(2), -+ Du1vE(2)), Divg = A LBy

Moreover, yA(E) = ya(E®) and
Ya(E1AE2) > ya(EVAES).

In particular, for any sequence of sets of finite anisotropic Gaussian perimeter Ey with
xE, — xe in L' (R", y4), we have

XES = XEs in L (R", ya) .
and

P, (E5;U) < likm inf P, (E,i, U) for any open set U C R".
—00

(2) (Cross terms estimate)
For any z € R"™1,

/ yduz(y)z/ yduz(y),
E, Ez

z

[ v |
E. E

and

V’elﬂxzﬂdy’

s
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= (/ yduz(y) —/ yduz(y)) |Ae, — (Aey,, en)enll.
E. ES

(3) (Ehrhard symmetrization in 1D)
The anisotropic Gaussian perimeter of almost every one-dimensional section in y-
direction decreases under Ehrhard symmetrization, i.e.,

PEs(2) < pE(2),
forall z € Bg N Bgs, where pg - R* = [0, 00] is defined as
pE@) =H [0 E).].
Proof (1) Notice that
(B, ={y:y< ¢z_1 We@) } = (= oo, ¢z_1 (vE(2)) ) is a measurable set.
Therefore, for any z € R" ™!,

¢ (vE(2)
vee(2) = iz ((E*)2) = piz (—00, 67! (vg(2)) = / WAL g

=¢. (¢ (VE()) = vE(2).
Thus,
mi(E)={zeR" " ivp() > 0) = {z e R"" 1 vps(2) > 0} = m (EY).

Moreover, for any measurable set A,
Divp L Bg(A) = /A Divg(2) dL" 'L B (2),
and
Djvgs L Bps (A) = /A Divgs(2) dL""' L Bps (2).

Therefore, for any measurable set B C Bg N Bgs, setting A = B in the above equations, we
have

/ Divg(z) dL"'(2) = Dive(B) = Djves(B) = / Divgs(2) dL"'(2)
B B

where the second equality holds since vg = vgs. By the arbitrariness of B, for a.e. z €
Bg N Bgs,

Divg(z) = D;ivEs(2).

By Fubini’s theorem,

ya(E) = VAL [ gy g, deLVAl / | / VAL gy g
R~ E.

Q"% Jg S Qun?
| det v/A| | det v/A|
= W - UE(Z) dZ = W - VEs (Z)dz
det\/Z 1A s
- |(27T)n/2| /]Rn—l / ¢ W dy dz = ya(E").
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Similarly, we have

det/ A
Ya(E1AEy) = leﬂ/ / e WAPI2 gy gy
R J(E|AE),

2m)n/2
= |det\/22|/ / e_lﬂx‘Z/z dy dz
(27'[)”/ Rr-1 (ED):A(E2),
det A
> |267\’{7/2| ‘/ e_l\/zx‘z/zdy_/ e_l\/zx‘Z/z dy dZ
2m) ro-1 gy, &,
| det v/A|
A [ o ol
| det /Al
T Qo Jgee vy () = vy ()] dz

det v A
= |(26n)f/2| / : / e VAT dy dz = ya(EJAES).
R*"™ J(ED)A(ES),

For any sequence of measurable sets £ with xg, — xg in L! (]R”, )/A), we have

/.

By Theorem 4.5 and Proposition 2.9, E} and E* are sets of locally finite perimeter and hence

XE; — Xgs|dya = YA(ERAE") < ya(EXAE) =/ |xe, — xe|dya — 0.
Rn
P, (E*;U) < 1ikminf Py, (E}; U) forany openset U C R".
— 00
(2) Notice that

/'LZ(E; \ E)+ le(Eg NE; = MZ(E‘ZY) = vgs(z2) = vE(2)
= g (Ey) = p(E; \ E;) + p(E; N Eg)

Thatis, u (Ej \ E;) = juz(E; \ EY). Let y(2) = d)z_l(vE(z)), we have
y—y() <0 ifyeE, y—y@) =0 ify¢E;.

Now we are ready to show that

/yduz(y)f/ ydu(y).
ES E.

Notice that

/ ydpz(y) —/ ydu(y) = (/ ydp(y) +/ yduz(y)>
E7 E; EN\E; ESNE.
- (/ ydu(y) +/ y duz(y))
E\E} E.NES

=/ yduz(y) —/ ydp(y)
ES\E, E\ES

z

= (/ y = y(@) duz(y) +/ y(2) duz(y))
E3\E; EI\E,
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T ( / (@) — v diz(y) — / ) duzm)
E.\ES E.\ES

< ( / (@) dps(y) — / @) duzm)
ES\E. E\ES

= Y@ (B2 \ ED) = (B, \ E) = 0.
On the other hand, by Lemma 4.2 (1), we have

3, (e—lﬁxwz/z) = —e WA (rowi (A), x),

and hence
n—1
/ 0z, (e"ﬂ)"z/z) dy = —/ eIWARP /2 ZAij_/ + Agpy | dy
E. E. =
n—1
= - ZAijjUE(Z) — A (/E y dﬂz(Y)) .
j=1 :

Similarly, we have

n—1

/E: 0z (e"*@"z/z) dy == Akjzjves (2) — Ak (/E y duz(y)> ~
z j=1 z

Since vg(z) = ves(2),

/ s (eTVAF2) ay / iy (eTVAER) dy = (/ v du(y) —/ y duz(y)) Ak,
E; E% E} E;

Therefore,

E; JEs

= ’/ yduz(y)—/ ydu(y)
E, E$

= ’/ yduz(y)—/ ydu(y)
E. ES

=(/ ydmy)—/ yd/my)) I Aen — (Aen, en)enl.
E, Es

(3) In order to work with probability measures, we first normalize our definitions of u, and
¢, as

”(Alns A2ns Tt A(n—l)n)”

|Ae, — (Aey, en)enll

o ! L -Waeyrn oy L [" -VAcyrn
J(F) = Z(F):/ e WACYIERgy and ¢, (s) := / e WACYIE2gy
g ®" r e () yoand 0= T® ’

Notice that

@) F(F)) = ¢ (e (F)).
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Now we claim that i, is a log-concave measure on R. We just need to show that
1 ' 1 . Lo
log <7e_|ﬂ(“)‘2/2) = —log(u,(R)) — fI\/Z(z, y)|2 is a concave function in y.
wz(R) 2
Applying Lemma 4.2 (1), we have

o5y (— log(p: (R)) — %NK(Z, y>|2> <0.

Thus, [, is a log-concave measure on R. Let F be a Borel set in R with p := j1,(F) € (0, 1).
Since i, (F*) = i,(F) = p,and F° = (—o0, d)z_](uz(F))) is a half-line, with the help
of the one-dimensional log-concave isoperimetric inequality (see [6, Proposition 2.1]), we
have

_inf  [(A+ By) = [ (F° + Byp)
Hz(A)=p

for all & > 0, where By, = [—h, h]. In particular, for any Borel set F C R,

o (F + Bp) > u,(F* + Bp) forallh > 0. (4.23)

Let z € Bg N Bgs, by Vol’pert Theorem (Theorem 4.1), E, is a set of locally finite perimeter
in R. Moreover, by [23, Lemma 15.12], E, N (—R, R) is also a set of locally finite perimeter
in R for any R > 0. Applying [23, Proposition 12.13] on E,; N (—R, R), we may assume
that E; N (—R, R) is a disjoint union of open intervals with positive distance, i.e.,a; < b; <
aj4+1 < biyq foralli and

E.N (=R, R) = | (@b, (4.24)
ieSR
where Sk is a countable set. First we claim that S is a finite set. By using equation (4.24),

00 > pp(2) + e WAGRIE2 | o= WAG=RI/2 _ p (F ) 4 o WAGRI/2 4 o~ IVAG-RIP/2

> P.(E.N (=R, R)) = P; (U (ai,b») =Y P.((a, b))

ieSp i€SR
2 _ b2
- Z e WARaP/2 | VAP /2
ieSg
> 3 e IVAPGPHR)/2 o mIVARGPHRD2 5 oo IVARGPHR)/2 g
ieSg
i.e., |Sr| < 0o, where we have used

WA, a)* < IVAIR(z]* +a?) < IVAIP(z]* + RY).

Moreover, by the definition of i, and the fundamental theorem of calculus, for any —oco <
a <b < oo,

lim nz((a, b) + B;;l) — 1@ b)) _ \VAcawr, 1 e WAGDIP/2, (4.25)

Next we claim that

P.(E.N(=R,R)) > e—lx/Z(Zq.VR(Z))\Z/Z’
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where

VR(2) = ¢;1(uz((E N®"™" x (-R, RD)Z))-
Notice that
(EN®R"™" x (=R, R))_ = E:N (=R, R), (EN®R"" x (=R, R))). = (=00, yr(2)),
(BN @ (=R R))Y) = (BN R x (=R, R)).).
VR(D) = ¢;1<MZ(EZ N (=R, R))) — ¥ 1= 67 (ue(E), as R — oo,

and

limsup P,(E, N (—R, R)) < lim sup (PZ(EZ) + e~ WAGRIE2 + e_“/z(z’_R)‘z/z) = pe(2).
R—o0 R—o0
By using equation (4.25), and the fact that the intervals (a;, b;) are disjoint,

PE.N(-R.R) =Y e WARaP/2 | ~IVAGb)P/2

iESR
_ m wz((ai, bi) + Bp) — u (i, b;))
icsn h—0t h
i»bi) + Bp) — is i .
— lim wz((ai, bi) + Bp) — puz((ai, b)) (Sgis finite)
h—0t h

1
> hl_ig)L W Mz< U ((a;, bi) + Bh)) - Mz( U (a;, bi))

iESR iESR

= lim % (o(Bn (=R B+ By) — o (B0 (=R, B)))

h—

= lim % (,uz<(E MR x (=R R)). + Bh) _ ,uz<(E N @R x (=R, R)))Z>>
> i (1 (B @ xR )4 8) —e((EN G x R )

R
~ lim l/”z VACHR 2y _ o= WAG RGP/

Yr(2)

in which we have used (4.23) where F = (E N@R"! x (=R, R)))Z in the last inequality.
Taking R — oo, we have pg(z) = e~ VAGYOIP/2 = pri(7). o

We have seen that the anisotropic Gaussian perimeter of the one-dimensional sec-
tion decreases by Ehrhard symmetrization. Intuitively, this gives us hope that the higher
dimensional anisotropic Gaussian perimeter might also decrease after doing the Ehrhard
symmetrization. However, our next example shows that this is not true in general. The main
idea is to understand the asymptotic behavior of the quantity 2(z) = ¢ Lvg(z)) via the
equation vgs (z) = ve(2).
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Example 4.1 Letn = 2 and

with b # 0. Consider
E, =[—a, a] x (0, c0).
Then there exists some § > 0 such that for any 0 < « < §, we have
Py, (Eq) < Py, (E,)
and
Py (ES) < Py, (Eq) + V27| Aey — (Aea, e2)esll(by, (E) — by, (E*). €2).

Proof Notice that both a and c are positive since A is a positive definite matrix. Additionally,
notice that

e WAGIIP/2 _ = (AL (32 _ pmax?=2bxy—cy®

Let K = [—1, 1] and €2 be an open set in R! suchthat K C Q. Let E = Q x (0, 00). Then
Ex = (07 OO)
for all x € . By Lemma 4.2 (2)(b),

o
vE(x) = / e~ IWVAGE2 dy = / ¢—ax?=2bxy—cy? dy is differentiable on €.
E, 0

By Lemma4.4,h : x — ¢x‘1 (ve(x)) is also differentiable on 2. Notice that

[ee) h(x)
/ e 2= gy (x) = vgs (x) = / eI gy (4.26)
0 —00
Setting x = 0 in equation (4.26), we have
00 ) h(0) 2
vE(0) = vEs (0) = / ™Y dy = / e Y dy = h()=0.
0 —00

Taking derivative on equation (4.26), we also have

00
/ P —2bxy Ly ( 2ax — 2by)dy —ax2—2bxh(x)—ch2(x)h/(x)
0

hx)
+ / e~ 200’ (Logx — 2by)dy.

—0o0

In particular for x = 0,

o 2 0 2 ®© 2 2b
h'(0) :/ e~V (=2by)dy —/ eV (=2by)dy = —4b/ e Y ydy = ——.
0 —00 0 ¢
That is,
2b
h(0) =0, h(0) = 4.27)
c
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Notice that the Ehrhard symmetrization of E, has the form
S={x,y):xe[-a,al,y <h(x)} for0<a <Ll

We now claim that

. Vdet A 4p?
Py, (Eq) — Py, (ES) =2 N =14 = |ato@. (4.28)

By using the Taylor expansion, we have

Var P)/A (E(x) _ /DO e—aaz—Zbay—cyz dy+/oo e—au2+2bay—cyz dy+ /O( e—ax2 dx
/det A 0 0 J—a

_ /OO E—cyz dy + i /oo e—aot2—2boty—cy2 dy
0 da Jo =0
o0 d o0 o
+ / e’ dy + —/ et +2bay—cy? dy a+o(a) | + 2/ e~ dx
0 da Jo «=0 0

(G (2)rne) (o () v
N

= ~— 4+ 20+ o(a).

Je
Moreover, by (4.27), we have

/ h h(—

27 SN @ —aa?—2bay—cy? o —aa?+2bay—cy?

Jaera D= ) e et ¢ w
€ -0

. /“ et =2bthO=ch>®) /T T (2 dy
—a

hoy d [h@
— / e dy + — / P 2 _2bay—cy? dy
o0 da J_ w0

h(0) ) d [ ) )
+ e Y dy + — / P +2bay—cy d
(/—oo Y da J o g

+ (d /a efa1272bth(t)fch2(t) /1 TR dt
—a

da w0

(T 2 b Jr 2 b

= (el T e t]row) s GR e T -t o)
| 4p?

+ | 2 1+ +0(Ol)

74_2”1_‘_74_0(“)

where the third term is the anisotropic Gaussian perimeter of the graph of /. Therefore,

Jdet A 4b?
=1+ 5 | a+ o).
N2 c

o +o(oc)>

—0o0

o+ 0(0{))

o+ 0(a)>

a=0

o+ 0(a)>

Pyy(Eq) = Py, (E3) =2
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Next we show that

VdetA_(2b
V27 || Aes — (Aey, e2)enll(by, (E) — by, (E®), e2) = \/% 2 <7> a+o(a). (4.29)

Notice that
|[Aes — (Aea, ex)ez|| = 21b].

Now we compute the barycenter of E, and EJ, i.e.,

JdetA [ [ ,
by, (Eq) = o5 //O(x,y)e*‘mx’”'z/zdydx,
—a

2
and
VdetA [ [h® _ 2
ba(E = 5o [ [ ey VAR Ry,
—a J—00
Then
JdetA [« [ [ _ N2
by, (Eq) — by, (EY) = 5 / (/ (x, y)e VAGIP/24y,
0 —a 0
h(x)
_/ ’ (x,y)e'ﬂ(x’y)lz/zdy) dx
—00
and hence
(b)/A (Eot) - bj/A (Eé), eZ)
h(
44 —a 0 —00
_ vdetAfd [T ([T VA P2y
2w |da ) \Jo 7 Y
h(x)
_/ ye—lﬂ(%}')lz/?dy> dx ot+0(ot):|
—o0 a=0
_ v/det A 5 /ooye—\ﬂ(oh")‘z/zdy
2 0
h(0)
_/ ye—ﬂ<o,y)|2/2dy>a+0(a)}
—00
vdet A o WdetA (2
_ Ve 4 / yefcyzdy a+o(a)| = ° - )a+o(a).
2w 0 27 c
Thus,
det A [ 2]b
Varl Aez — (Aex, ex)enll by, (B) — by, (B), e2) = 202 (2P1) ¢ 4 ()
V2
Thanks to (4.28) and (4.29), we have
P, (Ey) — P, (ES det A 4b2
tim D) = Blle) _pvdet A,y 407
a—0t o 27 c
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and
[ V2Tl Aes — (Ae, ex)enlltby, (E) = by, (E°). e2) + Py, (Ea) = Py, (E3)
a—0t o
Jdet A 21b 4ph2
— ¥ TR D PO Y
27 c c?

Since b # 0, let

.| /det A - 4p? ] Vdet A (1 N 2|b|> - 4b2 0
£ = min — 1], ) - Z |t o.
V21 c? 2 c c?

There exists § > 0 such that forall0 < a < 4,

P, (Eq) — Py, (E} det A 41?2 det A 4b?
na(Fa) = Py (Be) ) VaetA [ 1+ — <l \/:_1
o V2 c Nord ¢

and

‘«/EllAez — (Aez, ed)erll{by, (E) — by, (E?), e2) + Py, (Ea) — Py, (Ep)
o

Jdet A 2|b| 4p2
-2 1+ —)—,/1+ —
/27_[ c c
Jdet A 2|b 4p2
<e< Y 1 2PNy A
V2r c c?
Therefore, for any 0 < o < 4,
, Vdet A 4p2
Py, (Ey) — Py, (E}) < N3 1- l—i-c—2 a<0
and
V2| Aey — (Aey, e2)esll(by, (E) — by, (E*), e2) + Py, (Eq) — Py, (E)
Vdet A 2|b| 4p2
> l1+— ) —/1+— |a >0,
V2r c c?
ie.,

Py (EY) < Py, (Eo) + V21| Aes — (Aea, e2)er]|(by, (E) — by, (E¥), e2).

Remark From Example 4.1, we see that there exists some E such that
P,,(E) < Py, (E").
Although the anisotropic Gaussian perimeter does not always decrease under Ehrhard sym-

metrization, a natural question to ask here is whether there still exists an upper bound for
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P, (E®) in terms of P, (E). In our next subsection, we will show that there exists an upper
bound and

Py, (E®) < Py, (E) + V27 || Aey — (Aen, en)enll(by, (E) — by, (E*), ey),

for any set of finite anisotropic Gaussian perimeter E in R" (see Theorem 4.10).

4.4 Ehrhard symmetrization on anisotropic Gaussian measures

Our next goal is to show that the perimeter of a Ehrhard symmetrization set E* can still be
controlled by the perimeter of E plus an error term with a form like A — A1I,,. In particular,
the Ehrhard symmetrization along the eigendirections decreases the anisotropic Gaussian
perimeter. We will break this into several lemmas. Our next three lemmas are modifications
of Cianchi-Fusco-Maggi-Pratelli’s paper [10, Lemma 4.5 and Lemma 4.6]. We will prove the
“dust estimate”, “cylindrical estimate”, and “graphical estimate”. Starting from this section,
the notation C means a constant that depends only on n and A, which may change from line

to line.

Lemma 4.7 (Dust estimate for E) Let E be a set of finite anisotropic Gaussian perimeter in
R" and B be a Borel set such that

vg(z) =0 forallz € B.
Then
P, (E°; BxR) <P, (E; BxR).
In particular, if we assume that B is open with smooth boundary, then
P, (E°; B xR) =0.

Proof Without loss of generality, we may assume that B is bounded since we can consider
B N B(0, R). Given ¢ > 0 and let 2 be an open set with 2 D B such that

L£YQ\B) <e.
By [12, Proposition 8.2.1], there exists a sequence of bounded open smooth sets 2; 7 €,
ie,RQ; CC Q41 CC Qand Uj Q; = Q. Then
P, (E*;Q; xR) /1 P, (E°; 2 xR)
and
P, (E°; BxR) <P, (E’ QxR)

since B C €. Recall from Proposition 2.9 that in order to compute P, (E*, Q; x R) it
is enough to look at (4.20) and equation (4.21) as we have seen in Theorem 4.5, i.e., let
Y€ CC1 (2; x R; R") with |p| < 1 and let ¢, = (@1, 2, ..., ¢p—1), We estimate integrals
(D) and (II) from (4.21).

Applying Theorem4.50n Q2; and y(z) := ¢ Lvg(2)), there exists a sequence of functions

v] € C1(Q)) with 0 < v] < g and g(z) := ¢.(00), such that v} — vg in L'(Q;) and a.e.

in Q;, Dv,i—\DvE in Q;, and

I ., [V'gl
im sup Vv (2)|dz < |Dvg| (2;) +2 v dz.
Q; Q; g

k— 00
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Moreover,
Xp) =~ XEs ae.inQj x Rand ¥l (@) = y(@) = ¢ (WE(2)) ae. in Q;
where y,{ (z) == ¢;1(v,{ (z)) and
ij = {(z, Ve xR:y< y,{(z) = ¢;1(v,{(z))}.
Since vg(z) = 0 for all z € B, we have
v,{(z) — vg(z) =0ae. inQ; N B,

y,{(z) — y(2) = ¢, '(vE(2)) = —c0 ae.in Q; N B,

and
pEs(z) = e 97 CE@P/2 g op B.

Therefore, by Eq. (4.22) where F as F,‘!, y(z) as y,{ (z),and Q as 2,

n—1

a, A(=IVAx|*/2
(I)—Z/ Y dex)

o0 a<—|ﬂx|2/2>
k—)oo Z/FJ 81, 0z; d)/A(x))

_detva ( / (—¢ea 3 @) - Vv @)z
Q./

(27‘[)”/2 k— o0

_/Q./_ykm (—wz(z,y'k’(z))) v (e—\ﬂnz/z) dydz>

det/ A .
< er;f/:limsup/ ‘v’vg(z)‘dz

k—00
det /A yk (2) WEsE
Rz IRYY;) Q)2 k—>oo/9 \B/ ¥(z, yk(z)) %4 ( )dydz
det VA i@ W
Ry Q22 k%oo/g mB/ @ (z, yk(Z)) \% ( )a’ydz
_ detv/A 2det VA V'g|
< G IDuE| (@) + 5t ( )vEdz

det VA yG) R
+7/ / 0:(z, (@) -V (e IVAx| /2) dydsz
Qj\B J—c0

(2ﬂ)n/2
detf 2det /A <|v’g|)

< Dvg| () + ——= vEpdz
= oy PO o o\ )Y
detf

f|fx| /2

t a2 /Q \B/ )‘dydz
detf 2detﬁ ,

= o2 |Dvg| () + —— 7 22 B|V gldz
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det /A
+Ce < Sy

[Dvg| (R2;) + Ce

where we have used [Z"_I(Qj \B) <e,vg =00nB,0 <vg < g,and Lemma4.2 (3),i.e.,

oo
sup /
zeR" 1/ —o00

v/ (e—‘ﬂxlzﬂ)‘dy <m-1)C.

Therefore,

det /A
IO < (;}T;Q|DUE|(Q]~)+C8.

Now we estimate (IT). Recalling that H"~' (0™ ES \ 9*E*) = 0 and (d™ E*), = dM ((E*).)
for £ ae. z e R we get

_ 2
= / dgn d( |Ja7;x| /D 4 ) = detv/A 9 (wnefmxm) dz

ay ¥ = @07 Jp oy
det\/X _ 2 s _
=T Joug € WAE2UE 43— (x)
det /A
o detva [V [ VAR gy ()

T Qm)"? JaM psne; xR)

det«/A/ / CWAR/2 10 det /A
= e WA dH () dz = ——— s(2) dz
Qm)"2 Ja; Jmes). ’ @ny? Jo, 7

B det /A

= San pes(2) dz < Ce
Q)2 Jo,\B

where we have used the co-area formula (4.4), the definition of pgs(z), pes(z) = 0if z € B,
and

PEs(2) = e*[¢;1(v5(z))]2/2 <1
Combining (I) and (II) together,

etf

. det A
/ divg — (¢, Ax) dya(x) = () + D) < Gy |Dvg|(§2)) + Ce.

Taking the sup over ¢ gives us

\/%TTP“ (E°;Qj xR) < m |Dvg| (2)) + Ce.

Applying Lemma 4.3 on Q;,

Py, (E°:Qj xR) < % |Dvg| (2)) + Ce
< Py, (E:2; xR) + M/Qj /E V' (7 VAE2) dy) dz + ce
<Py, (E:Q; xR) + 7(2:6;,{?)/2/3 /E v/ (e7VAER) dy) az
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N det VA / /V/<e_|\/;x‘z/2)dy
@m)n=D72 o\ |/E,

det’\/z —IJ/A 2 2
< Py, (E;Q; XR)+7(2”)(n—1)/2/B /E v/ (e AP/ )dy

dz+Ce

dz+ Ce

=Py, (E:Qj xR) +Ce

where we have used vg = O on B, i.e., L(E;) = 0if z € B, and Lemma 4.2 (3)(a), i.e.,

o0
/ / ( —IVAx]? /2) dy‘dz < / ‘v’ (e—WXV/Z)‘dydz < (n—1)Ce.
Qj\B Q\B J—

Taking j — oo on both sides,

P, (E*:BxR) <Py, (E;QxR) <P, (E;QxR)+Ce.

Taking the inf over 2 D B with £"~1(Q\ B) < &,
P, (E';BxR) <P, (E;BxR)+Ce.
Taking ¢ — 0,
P, (E°;BxR) <P, (E;BxR).
Now we claim that
Py, (ES; B x R) =0, if B is open with smooth boundary and vg(z) = 0 forall z € B.
In this situation, we can just appl_y all the previqus estimates on B instead of €2, which means
that we can replace v,i as vy, y,g as yx, and ij as Fj in the previous calculation and notice
that
yi(z) = y(2) = ¢, ' (vE(2)) = —c0 ae. in B,

and

©; (2, yk(2)) = (0, ..., 0) for a.e. z € B and large enough k,
since ¢ has compact support and y;(z) — —oo. Now (I) and (II) become

i A((=IVA 22
(1)_2 / et Wafm(x)

o o0 I(—I1vVAx*/2))
- klggo (Z /Fk 9z 3—ZidyA (X))

d Yk (2)
VA ( / (=02 (2 (D)) - Vo (2)dz / / (—g: (2 @)

= Qo2 Jm

. (V’e“ﬂxlzﬂ) dydz) =0

and

det /A 1 2
= 55 / p @) dz = SN [ o i gz
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Thus, we conclude that
P,,(E°; BxR) =0.

[m}

Lemma 4.8 (Cylindrical estimate for E) Let E be a set of finite anisotropic Gaussian perime-
ter in R" and B be a Borel set in R"~" with £~ (B) = 0. Then

P, (E°; BxR) <P, (E; BxR).
Proof Given ¢ > 0 and let Q2 be an open set with D B such that
£ Q) <e.

The proof of this lemma is similar to Lemma 4.7, i.e., we approximate our set 2 by a sequence
of bounded open smooth subsets 2;. Hence, we keep the same notation as we have seen in

Lemma4.7, Q;, vk , and yk etc. The only difference here is the estimates of (I) and (II) from
Lemma 4.7.

i (= Ax|2/2
“)—Z/S 3‘2 g VA7) 'Ja;x' 2ty )

i d(—|VAx[%/2)
hm Z /F R e dyA(x))

k—)oo

= —M lim ( / 0. (2, ¥ (2) - V'] (2)dz
Q)

Q)12 ko0

y,f (2) . 2
— / / 0:(z, 5[ (@) - V' (e*‘ﬂxl /2) dydz)
Q,‘ —00

det /A ; det /A ¥@
< ilimsup/ ‘V/v,ﬁ(z)‘dz—i— etvVA / / 0. (z,¥(@) -V’ (e"ﬂxlz/z) dydz
Q; Qj J—o0

T M e 2m)n/2

detf 2det VA (|V/g|)
VE dZ
Q 8

(2 )11/2 |Dv| (Q )+ (zn)n/z
det /A
(;ﬂ)n/z/ / ‘V PNz /2)‘dydz
detf e det /A
= Gy |Dvg| () + CL Q) < G |Dvg| () + Ce

where we have used £~! () <&,0 <vg < g,and Lemma 4.2 (3)(a). Moreover, applying
Lemma 4.3 on 2; and Lemma 4.2 (3)(a),

det VA

Therefore,

D < P, (E;Q; xR)+ Ce.

1
V21
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The estimate of (II) is the same as Lemma 4.7, i.e.,

detv/A

I = 7(270”/2

pes(z)dz < Ce
2

where we have used the definition of pgs(z), and £l (2j) < e. Combining (I) and (II)
together,

/_divgo (0, Ax) dya(x) = (I) + (II) < P, (E;:Q; x R) + Cs.

f

Taking the sup over ¢, j — oo, inf over Q2 D B with L71(Q) < e, ande — 0, we get
Py, (E’; BxR) < P,,(E; B x R).

]

Lemma 4.9 (Graphical estimate for E) Let E be a set of finite anisotropic Gaussian perimeter
inR" n > 2. Then

det VA 2
24 |v _ 1 (e~ VA |2/2)
Py(E; B X R) 2 o ])/Z/B\/pE(Z) +‘v vE(2) /Ezv (e *2) dy| ds,
for every Borel set B C B,
2

det VA
Py, (E°; BxR) = W pEs ()2 + |V'vgs (2) —/ v’ (e—|ﬂx|2/2) dy| dz,
or every Borel set B C Bgs, and
fe ry

detvA

P, (E:B xR) < P, (E: B xR) + Ve VA2

(27.[)(;1—1)/2

_/ V/e—|«/2x‘2/2dy‘dz’
ES

E;

for every Borel set B C Bg N BEs.
Proof By the co-area formula (4.4) and Vol’pert Theorem (Theorem 4.1),

det VA |” | e WAXP/2 gy =1
Qr)=D/2 9*EN(B xR) |UE|

det
VA / / — dH? dz.
~ em)D2 [ 9*E, |vf| '
Applying Jensen’s inequality to the convex function ¢ : (x1,...,X,—1) = x — /1 + |x|3,
we have
0 ’ vi 0 0
I+ ][ dH; | =¢ ][ —dH,---,][ dH,
Z OE. |vE| ok, [VE| “E,
E E E E
Vi V-1 0 Vi Vn 0
—o(f o)) < f (e
( 0E, (|Vf Vf|> Z) g\ | f|

P, (E; BxR) =
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SEE
= 1+ L dH’. (4.30)
7[ 2 ogF

By Lemma 4.3, (4.30), and the definition of pg(z),

det VA T e
P, (E;BXR)= ——F——+ = dH. d
va(E; B x R) (27T)(”1)/2/B/3*EZ PIE H; dz
2

det\/X UiE} 0

(27_[)(",1)/2 pE(Z) . JE ) dHZ dz

det /A @ 1+”Xl, ][ vF ” 2d

Z Gmen [, PEC e o] T )

2
det
(27_:;(;/?)/2 \ PE(Z) + Z (ﬁ*E ) PE(Z)2 dZ

2
det /A
= )02 \pE(Z) +Z</ ) dz

detf / \/PE(Z)2 + ‘V/UE(Z) _ / \V (ef\\/KxP/Z) dy
B E.

(271)(" D/2

2
dz,

where V'vg(z) = (D1vg(2), -+, Dy—1vE(2)), B C B and

vF (. y) ) [ |V
D<v5(z)=/ ’*d?’(o(y)—i-/ — (e VA2 gy fori=1,2,...,n—1.
l @b, VE@ | F E, 0% ( )

Applying the same calculation on E* with E7 = (—00, y(2)), y(2) = </>;1(UE (2)), and

pEs(2) = e*|ﬂ(z,y(z))\2/2,

we have for any B C Bgs,

2
det /A
s. — ()2 0 s _ 1 o=V Ax|2)2
PVA (E ) B x R) (27_[)(”_1)/2 B J PE (Z) + |V VE (Z) \/Ev'5 \% (e . )dy dz.
Notice that we have the following inequality
Va2 —Va> + ¢t <|b—c|, ifb,c>0. (4.31)

Plugging

a=pp), b= d

V'ur() — / V' (e VAF2) gy an

V'vg(z) — / v’ (e—|ﬂx\2/2) dy‘
E

Cc =
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into (4.31), we have for any B C Bg N Bgs,

P, (E°; BxR)— P, (E; BxR)

< m PEs ()2 4 [V'vEs (2) — /ES 4 (8_“/Z"'2/2> dy de
(2i€;t(’?/;/2 / \/pE(Z)z V’vE(z) / \V (e |fx\2/2> iy 2dZ

< m pE@? + |Vug(2) — / v (eVAER) dyzdz
(ziit(ﬂ/z/\/n(z)z V’vE(z) / \% (e"ﬁx‘m)dyzdz
= amen 1)/2 Ve - /(e_lﬂxm) @ ‘

- V’UE(z)—/EV/ (e*'ﬂxlz/z) dy|| dz

< m ’ /E V! (eTVAER) —/g V' (eTVAER) dy) dz,

where we have used Proposition 4.6 (1) and (3), i.e., V'vg(z) = V'vg:(2) and pg(z) >

pEes(z) fora.e.z € B C Bg N Bgs.

m}

Although the perimeter might not decrease in every direction when we do the Ehrhard
Symmetrization, we are still able to give an upper bound for the perimeter of the Ehrhard
Symmetrization with an error term involving A — A, and barycenters. Combining Lemma
4.7, Lemma 4.8, and Lemma 4.9, we have the following estimate which tells us how the

direction of Ehrhard Symmetrization affects the anisotropic Gaussian perimeter.

Theorem 4.10 (Anisotropic Gaussian Perimeter Inequality under Ehrhard Symmetrization)
Let n > 2 and let E be a set of finite A-anisotropic Gaussian perimeter in R". Then, for

every Borel set B C R"! we have
P, (E';BxR) <P, (E; BxR)
det /A

(27.[)(;1—1)/2

E.

Moreover,

P,, (E*; B xR) < P, (E; B xR) 4+ 27 ||Aey, — (Aen, en)en|l(by, (E N (B x R))

— by, (E° N (B x R)), e,),

where

by, (E) ::/xdyA(x).
E

V’eilﬂx‘z/zdy—/ V/eflﬂxlz/zdy dz.
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Proof Step 1: For any Borel set B,

= (BN (Bg N BEs)) U (BNr(E)\ (BE N Bes)) U (B \ m4.(E))
= B UBy U Bj.

Recall that: 74 (E) = n4 (E®) and

Br C n4(E), Bps Cmi(EY) = n(E), L' '(ni(E)\ Bp) =0,
LN (E) \ Bgs) = 0.

Then
B, C w4 (E)\ (Bp N Bgs) = (74 (E) \ Bp) U (74(E) \ Bps) —> L' (By) = 0.

Moreover, for any z € B3z, vg(z) = 0. Thus, applying the dust estimate (Lemma 4.7) on
B3, the cylindrical estimate (Lemma 4.8) on Bj, the graphical estimate (Lemma 4.9) on
B C Br N Bgs, we have

P,,(E°; BxR)= P, (E*; Bl xR)+ P,,(E*; B x R) + P,,(E; B3 x R)
=< PyA(E; B x R)‘l'PyA(E; B XR)+PyA(E; B3 XR)

)= BiUB,UB; | JE H
va (E; B x R)
det VA

. V/ef\«/zx‘z/zdy _/ V/ef\ﬂx‘z/zdy‘ dZ.

Qm)n=0/2 Jp | [,

Step 2: Now we claim that

det /A

(2x)n=0/2 dz

V/e—wa\z/zdy_/ Ve~ VA2,
E. s

= V27 ||Aey — (Aey, en)enll(by, (E N (B X R)) — by, (E° N (B x R)), e,).

By Proposition 4.6 (2) and recall that x = (z, y), i.e., y = (x, e,), we have

% /V/e—\ﬂxlz/zdy_/ v’e—lﬁxlz/zdy‘dz
)T JBI|JE; H

det /A
(/ yduz(y)—/E ydm(y)) |Ae, — (Aep, en)e,|l dz
B \JE. s

= 2n)n-n/2

det
— llAen — (Aen. en)enl e)(,,fwz ( / / viuiz— [ [ yduz(y)dz>

det e
= ||Ae, — (Aey, en)e, || _detva JA ye‘|‘/AX|2/2 dx — ye~! AP/2 g
1)/2
Qm)n=b/ EN(ExR) ESN(BxR)

= 21| Ae, — <Aen,en>en||<(/ deA(X)—/ xdyA(x)> ,en>
EN(BxR) ESN(BxR)
= \/E”Aen — (Aep, en)en ”(byA (EN(B xR)) - b)/A (E°N (B x R)), ey).
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Our main goal here is to define the Ehrhard symmetrization to any direction u € "~ and
then extend the result of Theorem 4.10 to this new definition. We will start by recalling that
Vol’pert theorem (Theorem 4.1) actually holds for every direction (see [3, Theorem 3.108]
and [17, Theorem 3.21]). That s, if E is a set of locally finite perimeter, the one-dimensional
slice of E through z in direction u defined as

E.n={x=z4+tuecE:teR}

is also a set of locally finite perimeter. Moreover, (8" E)_ = M (E..) = 9* (E.u) =
(0*E), , and vE(x) := (vE(x), u) # 0 for every ¢ such that x = z + fu € 3*E where

x:z—i-tue(u)l@wf

The Ehrhard symmetrization £, , of E with respect to the u-direction and matrix A is
defined as

B, = {x —tmeR 1> ) (MA(EM))} : (4.32)

and the essential projection of £ with respect to the u-direction and matrix A is defined
as

Traa(E) = [z € @ wa (Eea) = 0],

where
pa(F) = / VA3 (), Dpzuls) = / " e WVAGH0R 2,
F K

It is not hard to see that w4 (E; ) = “A((Eix,u)z,u) and w4 4 ,(E) = 7T+.A,u(Ei;,M)~ Notice
that the definition (4.32) agrees with the definition (4.3) in Sect.4.1, i.e., if u = —e,, we
have

T4 A —e,(E) =7 (E), E) _, =E°.

»—€n

Moreover, Theorem 4.10 says that

P, (Ei’_en; B x R) < Py, (E: B xR)

+ V27 || A(=epn) — (A(—en), (—en)) (—en)| (byA(ESA)
— by, (EN (B x R)), —ep).

N (B x R))

—ey,

Our next goal is to extend this result to the Ehrhard symmetrization EY . Before doing that,
we need a lemma that helps us handle the rotation of the Ehrhard symmetrlzatlon EY - The
proof of it can be easily deduced by the change of variables and set theory and hence we omit
the verification.

Lemma4.11 Let O be an orthogonal matrix such that u = O(—ey,). Then

(o—lE)SOTAOﬁEn =07"E} . (4.33)

@ Springer



211 Page 60 of 73 K-T.Yeh

4.5 Proof of Theorem 1.2

We can always find an orthogonal matrix O such that u = O(—e,). By equation (4.33), we
have

(O EVyrpo o = O7'E} .
Now we claim that

E,,=0 [(0O'E)S is a set of locally finite perimeter in R". (4.34)

0TAO,~ ]
By Proposition 2.8, E is a set of locally finite perimeter. Applying Proposition 2.11 (3),

(07'E)y=P,,(E) < o0,

VoTAo

i.e., O7E is a set of finite OT A O-anisotropic Gaussian perimeter. Then Theorem 4.5 tells
us that (O~'E)* 0TAO.— is also a set of locally finite perimeter. By [23, Exercise 15.10],

= O[(07'E)S OTAO.— ] is a set of locally finite perimeter.
Next we prove the second part of the theorem. By Eq. (4.33), Proposition 2.11 (3), and
O~ 'B c R"!, we have

Py, (E} ,: B® () =Py, (E}: O(07'B)® O(—ey)) = P, (B3 . 0(07'B xR))
= Pryry (07'EL i O BxR) =P, ((07'EVyryy 507 B XR).

Since O~ E is a set of finite O A O-anisotropic Gaussian perimeter, we can apply Theorem
4.10 with E as O"'E, Bas O~'B, and A as OTAO. Hence,

Py (B3t B W) = Py, ((07'EYyr 4, 07 B xR)
<Py, (0'E;0O7'BxR)+ «/TTIIOTAOe,, —(0TAOep, ey)enll

(07 'E) N0~ 'B x R))

< YoTao OTAO,—ey

~ byyr,o (0T'EN(07'B X R), —e,)
= Py, (E; B® (1)) + ~2m | Au — (Au, u)ul|(by, (E% , N (B & (1))
— by (EN(B® (), u)

where we have used (O~ lE)oTAo = O’lEfw andbyoTAo(E) = O’lb),A(OE). ]
Our next result tells us that the amsotropic Gaussian perimeter decreases when the Ehrhard
symmetrization is done along an eigenvector direction of A.

Corollary 4.12 Let n > 2 and let E be a set of finite A-anisotropic Gaussian perimeter in
R". Assume that

ueVi(Ans!

where V (A) is the eigenspace of A associated with eigenvalue ). Then, for every Borel set
B C (u)L, we have

Py, (E} ,; B® () < Py, (E; B (u)), (4.35)
and in particular Py, (E‘jw) < Py, (E). Moreover, if P, (E) = P,,A(EA 4)» then

for H' ae z € (u)l, the slice E  is H! -equivalent to either & or (u) or a half-line.
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Proof Since foru € V; (A) NS"!,
Au=ru — (Au,u) =2 — Au — (Au,u)u =0.

Then Theorem 1.2 shows that P, (Efw; B & (u)) < Py, (E; B ® (u)). For the second

part, we may assume that u = —e, since we can always rotate the coordinate system. Thus,
by assumption,

W (E) =Py, (EY),  u=—e,eVi(A)NS"
By (4.35), we have
Py, (E°; BxR) < P,,(E; BxR)
for every Borel set B C R"~!. We claim that
P, (E; B xR) =P, (E*; BxR) forevery Borel set B C R
Suppose not, Py, (E; B x R) > P,, (E*; B x R) for some Borel set B. Then

P, (E) = P,,(E: B x R) + P, (E: B° x R)
> P, (E*; B xR)+ P,,(E*; B xR) = P, (E"),

which contradicts our assumption. Now we plug in the Borel set Bg N Bgs from Vol pert
Theorem (Theorem 4.1), i.e., we have

P,, (E;(BE N Bgs) x R) = P, (E*; (Bg N Bps) x R). (4.36)

Notice that Ae, = e, and let A = d2 withd > 0, x = (z, y),and z = (z1, ..., 2n—1)- Then

n—1 n—1
I\Fx\ = (Ax, x) <Zz Ae,+y)»e,1,ZZje,+yen>

=1 j=1

n—1 n— n— n—1
= < ziAei, Zz;ej> + <ZZiAei, yen> + <y>»en, Zz,-ej> + (yAen, yen)
= j=1

i=1

n—1 n—1
<AZZ,e,, Zzte,> + <Zziei, yAe,,> —i—O—i—)Ly2

i=1

e
+ <Z zie;, y)\en> + Ayz =
i=1

since e, is an eigenvector of A and A is symmetric. Therefore,

vE(2) =/ TWAE2gy = ¢ ‘Zt /A / —d*/2 4
E

/ 7d2)2/2d
/ 2 gy :/ 2 gy
E. Es

2 2

-
= VAY zie; +d*y* (4.37)
i=1

n—1
ZZi\/Xei
i=1

vEs (2) :/ e*lx/zx\z/Zdy _ e*‘Z?;ll z,-«/ze,

and hence
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since vg(z) = vgs(z). Moreover,

/ V/ (ef‘ﬂx|2/2) dy:/ V/ e_‘z;l:—ll Zi\/Ze,- 2/2
E. .
(‘Zl lzlfei‘2/2>/ e—d2y2/2dy
E;
( ‘ lzlfe" /2>/ e_d2y2/2dy
:/ES \ (e—lﬂx|2/2> dy. (4.38)

By Lemma 4.9, Proposition 4.6 (1)(3), (4.36), and (4.38),

) eidzyz/zdy

det 2
= (ZN)(::fl)/z / \/PE(Z)2 + Ve () — / \4 (e‘“/z"‘z/z) dy| dz
BENBgs
2
det A
St @2+ Vg @ — | V(e WAPR)dy| d
= @02 Jp g, pEes(2)° + [V'vgs (2) /E‘ e y| dz
= P,, (E*; (Bg N Bg:) x R) = P, (E; (Bg N Bs) x R). (4.39)
Therefore, (4.39) implies that
pE(Z) = pps(z) for " -ae.z € Bp N Bs. (4.40)

Moreover, let z € Bg N Bgs,

n=1 sz,
PE(2) =/ VA2 g0y _ o |Ti a A /2/ 2 g10(y),  (4.41)
I*E; O*E;

t
6.0 = [ Ry
—00

n— 2 t
_ e—|Zi:1] Zi\/xei) /2/ efdzyz/2 dy
—00

V2 67)2?;11 wvAel 2

¢(dr),

and hence
o7 (0B (D) = ~¢~! (i / e‘dzyz/zdy> = L e ) (4.42)
W=\ a? et

where y,;2 is the dz—anisotropic Gaussian measure, 1.€.,

g2 (F) = e gy

Vo
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By Eq. (4.42),

_ 2 e 2
PES (Z) — 67\2,311 ziﬂei‘ /2/ e—d2y2/2 dHO(y) _ ef)zl&ll z;«/ﬁe,- /2 e_d2[¢;1(v5(z))]2/2

I*ES
_ 2
P S N WL G TR (4.43)
where E} = (—oo, ¢Z_1 (vg (z))). Therefore, (4.40), (4.41), and (4.43) implies that

/ 2 gHO(y) = o197 EDP 2
IE,

for H"'-a.e. z € By N Bps. Since H'l_](n+(E) \ Bg N Bgs) = 0, we have

P, (E.) = d/ 2410 (y) = o 2 EDP2
2 (Ez
9E,

for H" '-a.e. z € m,(E). Thanks to the equality case of the one-dimensional anisotropic
Gaussian isoperimetric inequality (see Theorem 1.1), for H"~!-a.e. z € 7, (E), E, is either
H! -equivalent to @ or R or a half-line. Notice that for any z € 74 (E)¢,

vE(z) =0 = HY(E.) =0 = E. is H'-equivalent to @.
In other words,
for H" '-ae. z € (—e,)t, theslice E, _,, is H'-equivalent to either @ or R or a half-line.

[m}

From Theorem 1.2, we see that
Py, (E} ) < Py, (E) +V2rl|Au — (Au, uhull{by, (E} ) — by, (E), u),
for any set of finite anisotropic Gaussian perimeter in R”. A natural question here is whether
| Py (EY ) — Pyy (E)| < M| Au — (Au, w)u||(by, (EY ) — by, (E), u)
for some constant M. Our final example shows that this is not the case.

Example 4.2 We give an example to show that the following statement is not true: for any
0 < A1 < A, there exists M > 0 such that for any A(A) C [A1, A2], forany u € S"!, and
for any set of finite anisotropic Gaussian perimeter E in R",

| Py (EY ) — Pyy (E)| < M| Au — (Au, w)u||(by, (E} ) — by, (E), u),
where A(A) is the set of all eigenvalues of A, i.e., the spectrum of A.
1

Proof Consider A; = 5 < % = A2. Suppose there exists M > 0 such that for any A(A) C
n—1

[A1, A2], for any u € S"7', and for any set of finite anisotropic Gaussian perimeter E in R”,
|Pyy(ES ) — Pyy (B)| < M| Au — (Au, uyu||(by, (E}) ) — by, (E), u).

Take

n=2, A:(l?), u=—e, E=I[-11
03
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Then clearly, A(A) C [A1, A2] and Au — (Au, u)u = 0. That is,
P, (E°) =P, (E),

where E = E _, . By Corollary 4.12, for H'-ae.z € R, the slice E, is H'-equivalent to
either @ or R or a half line. However, for all z € [—1, 1], the slice E; is an interval [—1, 1].
This gives us a contradiction. O

5 Characterization of Ehrhard symmetrizable measures
5.1 Aregularity lemma for Ehrhard symmetrization sets

The anisotropic Gaussian perimeter always decreases if u € V, (A) N S"!, where V; (A)
is the eigenspace of A associated with eigenvalue X (see Corollary 4.12). In fact, this is a
necessary and sufficient condition for the anisotropic Gaussian perimeter to be decreasing.
We say that the measure y,4 is Ehrhard symmetrizable if

Pyy(E ) < Pyy(E)

forallu € S"~!, and for all measurable set E C R”. We show that y4 is Ehrhard symmetriz-
able if and only if A is a multiple of the identity matrix (see Theorem 1.3).

Lemma 5.1 (A regularity lemma for E°) Let A = (A;;) € M,(R) be a symmetric positive

definite matrix. Suppose E = Q x (0, 0c0) with an open set Q2 C R"~! that contains the
origin. Then

E'=E) _,, =lt=@yeR " xR:zeQy<h@)

where h(z) := d)z_l (ve(2))is CHQ) and V'h is locally Lipschitz on Q. In particular, h(0) =
0,

V/h(o) = -2 (/Oo ye*‘\/g(o,Y)‘z/Z dy) A’e,,,
0

where V' = (31, ..., 0,—1) and A" € M(y_1yxn(R) is the first n — 1 rows of matrix from A.
Also,

VhO)=0 < Ay =Asy=...=Ap1,=0 < e, € Vs, (A).

Moreover,
1
h(z) = £(z) +/ (V'h(tz) — V'h(0),z) dt forall 7z € Q
0
where
o0 \/, 2
() = h(0) + (V'h(0), 2) = —2 ( / ye WAONE/2 dy) Aley -z
0

Proof Recall that

=@ eR"xR:izeQ,y<h(@)=¢." (ve2))}
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where

t
UE(Z):/ WA 2gy, ¢>z(t)=/ e WA 2y,
E

N —00

Since E = Q x (0, 00), E; = (0, 0o) for all z € Q2. By Lemma 4.2 (2)(a)(b),

(o)
vE(zZ) = / WA 2y / e~ WAS/24y s differentiable on €2
E 0

Z

and
o0
Ve = —/ e~ IWAXP/2 g7y dy.
0

Now we claim that V'vg is locally Lipschitz on €2 and hence, by Lemma 4.4,
h:z+— ¢;1(vE(z)) is in CI(Q)

and V' is locally Lipschitz on . Let K be any compact set in € and let z1, zo € K. Then

o0 o0
IV'vE(21) — Vv (22)] = / e WAGLYP2 4/ (o) yydy — / e“m“v”'z/zA’(a,y)dy‘
0 0

IA

) “00
/ e*l«/z(zl,y)\z/zA/(Zl’ y)dy — / e*\ﬁ(zlﬁy)lz/ZA/(Zzy y)dy‘
0 0

+

o0 o0
/ e WACIFR L (25, y)dy — / e VAGIE2 A 2y, y)dy‘
0 0

o0
< / e—lﬂ(zl,y')\z/ZA/(Zl —Zz,O)dy‘
0
| ~WVAGP2 _ —WA@P2] | A
+ ’e 1 —e 2> ‘IA (z2, y)|dy
0
X IWD IR
< / e P2 e AT AN 21 — 2aldy
0

0 2 -
[ hm ATA (B - 131) e IO )y
JO
=C(K, A)lz1 - 2], 6.1

where we have used the estimate (4.6), r(K) = SUP; ek |¢], and

O A i= Vi ATA ([ (1 Vi ATAN (1) 4131 ) 171022 ),
0

Next, notice that

00 h(z)
/ e_l*/lez/zdy =vg(2) = vEs(2) = / e_“/gxlzﬂdy. (5.2)
0 —00
Setting z = 0, we have
0 h(0)
/ ~VAOYP2gy _ /°° ~VAOYP2gy / ~VAODP2,
—00 0 —00

Therefore,

h(0) =0. (5.3)
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Taking the derivative on both sides with respect to z of equation (5.2), by Lemma 4.2 (1),

he)
- /OO e WAL 4/x dy = (V'h(z))e WAGRI/2 _ / VAR g1y gy

0 —00

Setting z = 0 again,

%) 0
V'h(0) = — / e VAONE2 40, ) dy + / e VAOIIE2 410, y) dy
0

—0Q
- /oo e WAOIP2 410, yy dy = —2 (/OO ye~ IVAOP/2 dy> Aey. (5.4)
0 0

Thus,
Vh0)=0 & Ale,=0 e A=Ay =...= A1, =0 & e, € Vu,,(A)

since A is symmetric and

/Oo e WAOR2 gy /oo ye WA, - L g
0 0 Iv/AlI2

Applying [13, Theorem 1.14] with (5.3) and (5.4), we have

1
h(z) =L(z) + / (V'h(tz) — V'h(0), z) dt
0
where

2(z) == h(0) + (V'h(0),z) = =2 (/ ye~IVAOYIE/2 dy> Aley - z.
0

O
5.2 Proof of Theorem 1.3
For the first part, we just need to show that
Py, (ij) < Py, (E) for all finite A-anisotropic Gaussian perimeter set E in R"
— u e V5(A)NS"! for some A > 0 (5.5)

since Corollary 4.12 gives us the converse of the statement.
Step 1: Assume that u = —e,, and we have P, (E*) < P, (E) for all finite A-anisotropic
Gaussian perimeter set E in R", where E* = Ef, _ ¢, Our goal is to show that

en € Vai(A)ns'!
forsome A > 0.Let K = [—1, 17" and Q be an open convex set that contains K. Consider
E=Qx(0,00), Eq=[-aa]""x(0,00)
fora € (0, 1). By Lemma 5.1, the Ehrhard symmetrization of E has the form
EE={x=(yeR" T"xR:zeQ,y <h(2)}

where h(z) = c/)z_l(vE(z)) is C1(Q) and V'h is locally Lipschitz on . Hence V'h is
Lipschitz on K. Also, the Ehrhard symmetrization of E, has the form

ES={x=(z,y) eR" ! xR:ze [—a, "',y < h(2)}.

@ Springer



The anisotropic Gaussian isoperimetric inequality and Ehrhard... Page 67 0of 73 211

We claim that

VEA

Qm)n=D/2 1+ [V’h(o)]Z) o+ o(a).

Pyy(Ea) = Py, (Eg) =

Let Sy = Cr x (0,00) (k > 1) be hypersurfaces in R", where {Ck}z(” D are faces of the
(n — 1) dimension cube [—a, «]*~! ¢ R"~!, and

So = [—a, """ x {0}.

For example,

Si= (- a, a2 x {— a})x(O 00),
Sy = ([—a, "~ 2 x {a}) x (0, 00),
S5 = (=, @' x (=} x [~a, a]) x (0, 00),
S4 ([aa]"Sx{a}x[aa])x(Ooo)
Ss = ([—a. a]"™ x {—a} x [, a]?) x (0, c0),
Se = ([—a. @™ x {a} x [—a, @]?) x (0, 00),
and
2(n—1) 2(n—1)
VEa= | SkUSo = Py(Ea)= D HL S+ Hy (So).

k=1 =

For E}, we also have
SS={x=(@y el-aal" ' xR:y="h@)}

= ([~ a]"” 2 x - a}) x (—oo, h([—a, a2 x {—a})).

([ o, a2 x {a}) x (=00, h ([—ot,oz]"_2 X {a})),

83 = ([ o, o' x {—a) x [~a, ot]) X (—oo,h ([—a o] 3 x {—a} x [—a, a])),
= ([~a. a]"” 3 x {a) x [—a, a]) x (=00, h ([—a, ]~ 3 x {a} x [—a, al)).
= ( 1" x {—a} x [—a, a]z) x (—o0, h ([—a, a]"” 5 {—a) x [~a, ] )),
=

[—a, o™ x {a} x [—a, @]?) x (=00, h ([, "™ x {a} x [~ @]?))

[—a, a

and
2(n—1) 2(n—1)
VEy= | SUS) = PL(EN =D HLNSH+HLSY.
k=1 k=1
Therefore,
2(n—1)
Poa(Ea) = Py () = 37 (M (50 = Mo (5D) + (M7 S0 = Hi ' 59))
k=1

(5.6)

@ Springer



211 Page 68 of 73 K-T.Yeh

(a) First we claim that

IH” L(Sk) — H;ﬁ;l =1y forallk > 1.

Fork = 1, we have S| = [—a, ]2 x {—a} x (0, 00) and

51 = ([—e, o] 7% x {—a}) x (—o0, h ([—a, al" % x {—05}))-

Letr(u,v) = (u, —a, v) € [—a, a2 x {—a}x (0, 00). Then J (r) = /det(Dr)T(Dr) =1

and

J/det A
Hy I = o )(i—l)/Z/ e~ WAXP 2 =1

detA —|\/7(M —a, U)| /2d d
T @R J g e

Similarly, we have

det A
H” 1(51) — (27T)(i_1)/2/ e*|\/Xx|2/2dHn71

h(u,—a)
Jaet A T VAWl 2 gy gy,
3 (Ll

Let z = (u, —a). We now estimate the following two quantities:
h(z)
@) /oo e_“/X(Z’")P/zdv, (ii)/ : e IWAGVIP2 4,
0 —00
For (i), using the Taylor expansion on the map
. /°° VA2,
0

we have

o0 o0

V// WAV, =/ e WAGIE2 (—A/(Z, v)) dv
0 0

and

o0 o0
/ e WAGOP2 gy — / o WAOE/2,4,
0 0

oo
" / ¢ WVAOIER (A0, v)) dv - 2 + o(2)).
0

For (ii), using the Taylor expansion on the map

h(z)
7= / e—\ﬂ(z,v)lz/QdU,
—00

we have
h(z) h(z)
v// e WAGVIE2 4, — V/h(z)e—\ﬂ(z,h(z))lzﬂ + / e~ WAGIP2 (—A'(z,v)) dv
—00 —00
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and
h(z) 0
/ ) e—|ﬂ(z,v>\2/2dv=/ o~ WAOE/2,4,
—00 —00
0 2
+ (V/h(O)—i—/ e~ VAOIE2(_ 410, vy) dv) -z +o(lz])
—00
:/Ooe—|ﬂ(o,v)|2/2dv
0

+ (v/h(0)+/ e~ WAOE2 51 ) dv) 2+ o(z)).
0

since £(0) = 0. Therefore,

(i) — (i) = —V'A(0) - 2 + (—2/ e WAODIE2 410, ) dv) -2+ o(z))
0

[e.¢]
=—V'h(0) -z + (—2/ pe VA2 dv) Aley -2+ o(lz])
0

where we have used Lemma 5.1, i.e.,
[e.¢]
V/h(()) N _2 (/ ye—‘\/X(O’y)‘Z/z dy) A/en.
0
Since u € [—a, a]" 72, |z| = |(u, —a)| < +/n — la, by equation (5.7),

00 h(u,—a)
/ e—\JK(u,—a,v)\z/zdv_/ T VAW 2y — o)
0

—00

and hence

Hy (S0 = Hy (S

h(u,—
= ﬂf‘/z > e WA —av)/2 4, “ a)e_|‘/z(“’_°"”)‘2/2dv du
Q)= Jigap-2 \Jo -

o
Vdet A
= L/ o(@) du = o(a" 1.
(277)0171)/2 [—a,a]?—2
That is,
[P S0 = L (SH| = 0@ .
Similarly for all £ > 1, we have
[P S0 = SD| = 0@,

(b) Next we claim that

Py, (Eq) = Py, (Eg) = _/detd (/S e~ VA2 ggyn—1 _/
0

—IVAx|?)2 34 m—1 n—1
am) D72 Sée dH )+0(a )

Vet A
- er)(%l)/z (1= VI+IVEOP) )" + o).
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Let #(z) = (z, h(z)). Then J (r) = y/det(Dr)T(Dr) = /1 + |V'h(z)|? and

Vdet A
n—1,qsy _ 7‘\/> Fr2 !
HVA (Sp) = Q)= 7\ (n—1)/2 s o
JadetA o WAGR)P/2 1+ |V'h(z)|? dz.

(27.[)(11 /2 [~
Define f : Q@ — R as
f(2) = e WAGOP/2 _ (= WAGKIP2 [T W h(o) 2.
Since h € C'(Q), f is continuous on € and hence
lim ——— dz = f(0).
(Xi)0+ (20{)”*1 /[70(,0[];1—1 f(2)dz S0

Therefore,

/ e—|ﬂx|2/2dHn—1 _/ e—\JXx|2/2dHn—1
So Sa
=/ e—lﬁ(z,0)|2/2dz_/ o~ IWAGR@)I?/2 /1+[V'h(z)]? dz
[—a,a]?! [—a,a]?!
:/ (e AGOR2 _ - WAGHPR T VRGP ds
[—O[,OZJ”_I
=/[ ]7lf(0)+(f(z)—f(0))dz
_ / (1= T+ IVAOP) dz + / (f(2) — F(O)dz
[—0(,0(]”’1 [—O(,Ot]”’l
:(1— 1+[V’h(0)]2) Qa)"! + 0@ ). (5.8)

By equation (5.6) and (a),
PVA(EQ)_PyA(E;)—i /S e |*/ZX\ /den l_/S
0

-2 ;
2m)n=b/ :

e—|ﬂx|2/2dﬂn—1>‘

2(n—1)

= Y o - ", (5.9)
k=1

Combining (5.8) and (5.9), we have

VEA

va(Ea) — Py, (Eg) = (2m)n=D/2

T [V/h(O)]Z) Qo) + 0@ ).

(c) We claim that

Ayp=4y=...=A_1,=0.
By our assumption and (b),
Jdet A
— 2 -1 -1
0= Pyu(Ea) = Pu(EQ) = ey (1= VIHIVROPR) 2" + o).
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Dividing (2e)"~! on both sides and taking « — 0%, by Lemma 5.1,
0= (1-VI+IVAOP) = Vh0) =0 = A=Az =... = Ay_1,n =0.

Hence, e, € Vi (A) NS"~! for some A > 0.

Step 2: For general u € S"~!, there exists an orthogonal matrix O such that O(—e,) = u.
Let B = OTAO. Given any finite B-anisotropic Gaussian perimeter set Eandlet E = OE.
By Proposition 2.8, E is a set of locally finite perimeter. Applying Proposition 2.11 (3) with
E as E, Aas B,and O as O,

Py (E) =P, (OE)= P, (E) < oo,

i.e., E is a set of finite A-anisotropic Gaussian perimeter. Then Theorem 1.2 tells us that
E}, , is also a set of locally finite perimeter. Since y4 is Ehrhard symmetrizable and E is a
set of finite A-anisotropic Gaussian perimeter, Proposition 2.11 (3) and equation (4.33) give
us

ot -1 —1
PVB (ESB,—e,l) = P)/OTAO <(0 E)SoTAO,_en) = PJ/OTAO(O Ei,u)

= Py, (E%,) < Py, (E)="P, . (07'E) = P, (E).

oTa0

Applying Step 1 on yp and E, we conclude that ¢, € V;(B) N S"~! for some eigenvalue A,
i.e., Be, = Ae,, and hence

Au=A0(—e,) = OB(—e,) = —0OXe, = 1O (—e,) = Aut.

Thus, if P, (ES ) < Py, (E) for all finite A-anisotropic Gaussian perimeter set E in R",
we have

u € V,(A) forsome A > 0. (5.10)

This finishes the first part of the theorem.
For the second part, it is enough to prove that

ya is Ehrhard symmetrizable — A = al, for some constant a > 0

since we can apply Corollary 4.12 again, and conclude the converse of the statement. Suppose
now we have two distinct eigenvalues A1, Ao of A with eigenvectors u1, us in S"~1 Notice
that (11, up) = 0 since A is symmetric and 1| # A,. Consider

_uptu

V2

Since y4 is Ehrhard symmetrizable, by (5.5), we have u € V; (A) N S"~! for some A > 0.
However,

c Sn—l

A A
A(”H_M):Au:Au: 11+ Aau
V2 V2

— A —MNur+X—MNuy =0 = A1 = A = A.

This contradicts the assumption that A; # A,. Therefore, all the eigenvalues of A are the
same and hence A = al, for some a > 0. O
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