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Abstract
In this paper, we prove the isoperimetric inequality for the anisotropic Gaussian measure and
characterize the cases of equality.We alsofind an example that showsEhrhard symmetrization
fails to decrease for the anisotropic Gaussian perimeter and gives a new inequality that
includes an error term. This new inequality, in particular, gives us a hint to prove a uniqueness
result for the anisotropic Ehrhard symmetrization.
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1 Introduction

The Euclidean isoperimetric problem says that the minimizers of the perimeter among sets
with fixed volume are Euclidean balls. More precisely: for any (Lebesgue) measurable set
E ⊂ R

n with |E | < ∞,

P(E) ≥ nω
1/n
n |E |(n−1)/n,

where ωn is the volume of the unit ball, P(E) the perimeter of E and |E | its n-dimension
Lebesgue measure. Moreover, equality holds if and only if E is equivalent to a ball, i.e.,
|E�B(x, r)| = 0 for some x ∈ R

n , r > 0. One is also interested in a similar problem where
volume and perimeter are replaced by Gaussian measure and Gaussian perimeter, which are
defined as

γ (E) = 1

(2π)n/2

ˆ
E
e−|x |2/2 dx,

and

Pγ (E) = 1

(2π)
n−1
2

ˆ
∂∗E

e−|x |2/2 dHn−1(x),

respectively. The resulting inequality is called the Gaussian isoperimetric inequality. It states
that for any measurable set E ⊂ R

n ,

Pγ (E) ≥ e−[φ−1(γ (E))]2/2,

where

φ(x) = 1√
2π

ˆ x

−∞
e−t2/2 dt .

Moreover, equality holds if and only if E is equivalent to a half-space. The Gaussian isoperi-
metric problem was first studied by Sudakov, Tsirel’son and Borell via Paul Levy’s spherical
isoperimetric inequality (see, for example, [7, 20, 26]). In addition, using the Ornstein-
Uhlenbeck semigroup techniques, Carlen-Kerce [11] characterized half-spaces as the unique
minimizers in the Gaussian isoperimetric problem. A geometric approach using Ehrhard
symmetrization has been provided by Cianchi-Fusco-Maggi-Pratelli [10]. A natural gener-
alization of the Gaussian isoperimetric problem is to study the following question:

inf
{
PγA (E) : γA(E) = r

}
,

where γA is called the A-anisotropic Gaussian measure (mass)

γA(E) =
 
E
e−〈Ax,x〉/2 dx =

√
det A

(2π)
n
2

ˆ
E
e−〈Ax,x〉/2 dx,

and the perimeter with respect to γA is called the A-anisotropic Gaussian perimeter

PγA (E) =
√
det A

(2π)
n−1
2

ˆ
∂ME

e−〈Ax,x〉/2 dHn−1(x).

Here A is a positive definite matrix, and ∂ME is the (n−1)-dimensional essential boundary of
E (we will define this in Sect. 2). We may assume without loss of generality that our positive
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definite matrix A is symmetric as

〈Ax, x〉 =
〈
1

2

(
A + AT

)
x, x

〉

and 1
2

(
A + AT

)
is a symmetric positive definite matrix. We will assume that A is symmetric

throughout the rest of this paper. Our first result is the following:

Theorem 1.1 Let A be a symmetric positive definite matrix and E be a measurable set in R
n.

Then

PγA (E) ≥ e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ . (1.1)

Here ‖ · ‖ is the matrix norm induced by the Euclidean norm. Moreover,

(1) if n = 1, equality holds if and only if either γA(E) = 0 or γA(E) = 1, or E is equivalent
to a half-line of the form

(
−∞,

φ−1(γA(E))√
A

)
or

(
−φ−1(γA(E))√

A
, +∞

)
.

(2) if n ≥ 2, equality holds if and only if either γA(E) = 0 or γA(E) = 1, or E is equivalent
to a half-space of the form

H

(
ω,

φ−1(γA(E))

dmin

)
for some unit vector ω ∈ Vdmin (

√
A),

where dmin is the smallest eigenvalue of
√
A and Vdmin (

√
A) is the eigenspace of

√
A

associated with dmin.

The anisotropic Gaussian isoperimetric inequality (1.1) is a special case of the Bakry-
Ledoux isoperimetric inequality for log-concave measures if we consider the log-concave
measure e−〈Ax,x〉/2dx and use the ε-enlargement definition for the perimeter (see [21, Theo-
rem 1.1] and [5]). The main contribution here is to characterize the cases of equality in (1.1)
for the anisotropic Gaussian measure.
One of the most important properties in the Lebesgue measure is that the (Euclidean) perime-
ter decreases under Steiner symmetrization (see, for example, [23, Theorem 14.4]). A similar
result in the Gaussian measure was first mentioned by Ehrhard [15], where he introduced
another way to symmetrize sets, now called the Ehrhard symmetrization. One of the key
properties in his setting is that the Gaussian measure has a product structure, so that the prob-
lem can be reduced to the one-dimensional case. Based on this, we also want to generalize
this result to the anisotropic Gaussian measure. The main difficulty in our setting is that the
measure γA doesn’t have the product structure, i.e., it has cross terms, whichmeans new ideas
will need to be developed to address this issue. In fact, the anisotropic Gaussian perimeter
does not behave monotonously under Ehrhard symmetrization (see Example 4.1). Our sec-
ond result shows that we are still able to find an upper bound for the perimeter of Ehrhard
symmetrization set in terms of the original perimeter plus a term involving the deviation of A
from the identity in the direction of the symmetrization times a term involving the differences
of the anisotropic Gaussian barycenters. To be more precise, we have the following:

Theorem 1.2 Let n ≥ 2, A be a symmetric positive definite matrix, and let E be a set of finite
A-anisotropic Gaussian perimeter in R

n and u ∈ S
n−1. Then, Es

A,u is a set of locally finite
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perimeter in R
n. Moreover, for every Borel set B ⊆ 〈u〉⊥ with |u| = 1 we have

PγA

(
Es
A,u; B ⊕ 〈u〉) ≤ PγA (E; B ⊕ 〈u〉)

+ √
2π‖Au − 〈Au, u〉u‖〈bγA (E

s
A,u ∩ (B ⊕ 〈u〉))

− bγA (E ∩ (B ⊕ 〈u〉)), u〉.
Here B ⊕ 〈u〉 := {z + tu : z ∈ B, t ∈ R} and Es

A,u is the Ehrhard symmetrization of E
with respect to the u-direction and matrix A (see definition (4.32)) and

bγA (E) =
ˆ
E
x dγA(x)

is called the A-anisotropic Gaussian barycenter of E.

Theorem 1.2 ensures that the anisotropic Gaussian perimeter decreases if we do the
Ehrhard symmetrization with respect to any eigenvector direction of A. Our final result
says that the converse of it is also true, i.e., the only situation in which the anisotropic Gaus-
sian perimeter decreases is when the Ehrhard symmetrization occurs along an eigenvector
direction of A.

Theorem 1.3 Let n ≥ 2, A be a symmetric positive definite matrix, and let u ∈ S
n−1. Then,

PγA (E
s
A,u) ≤ PγA (E) for all finite A-anisotropic Gaussian perimeter set E in R

n

⇐⇒ u ∈ Vλ(A) ∩ S
n−1 for some λ > 0

where Vλ(A) is the eigenspace of A associated with eigenvalue λ. Moreover,

γA is Ehrhard symmetrizable ⇐⇒ A = aIn for some constant a > 0.

Here γA is called Ehrhard symmetrizable if

PγA (E
s
A,u) ≤ PγA (E)

for all u ∈ S
n−1, and for all measurable set E ⊂ R

n.

Now we describe the structure of this paper. We first collect some important definitions
and theorems about sets of locally finite perimeter and finite anisotropic Gaussian perimeter
in Sect. 2. In Sect. 3, we provide a proof for the anisotropic Gaussian isoperimetric inequality
using an approximation argument and characterize the cases of equality (Theorem 1.1). We
introduce the Ehrhard symmetrization in Sect. 4 with other essential tools and apply those
tools to prove Theorem 1.2. Finally, in Sect. 5, we discuss some regularity results for Ehrhard
symmetrization sets and prove Theorem 1.3.

2 Background and notation

2.1 Sets of locally finite perimeter

In this section, we will recall some useful definitions and theorems from Maggi’s book [23]
and Evans-Gariepy’s book [14].
Let U be an open subset in R

n . A function f ∈ L1(U ) has bounded variation in U if

sup
{ˆ

U
f div ϕ dx : ϕ ∈ C1

c (U ; R
n), |ϕ| ≤ 1

}
< ∞.
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We write BV (U ) to denote the space of such functions. A function f ∈ L1
loc(U ) has locally

bounded variation in U if for every open set V ⊂⊂ U ,

sup

{ˆ
V

f div ϕ dx : ϕ ∈ C1
c

(
V ; R

n) , |ϕ| ≤ 1

}
< ∞.

We write BVloc(U ) to denote the space of such functions. A Ln-measurable subset E ⊂ R
n

has finite perimeter in U if χE ∈ BV (U ). A Ln-measurable subset E ⊂ R
n has locally

finite perimeter in U if χE ∈ BVloc(U ).
We recall the following theorem from [14, Chapter 5.1, Theorem 1].

Theorem 2.1 Let f ∈ BVloc(U ). Then there exists a Radon measure μ on U and a μ-
measurable function σ : U → R

n such that

(1) |σ(x)| = 1 μ-a.e.;
(2) For any ϕ ∈ C1

c (U ; R
n),

ˆ
U

f div ϕ dx = −
ˆ
U

ϕ · σ dμ.

We write |Df | for μ, D f := σ |Df |, and Di f := σi |Df |. Moreover,

|Df |(V ) = sup

{ˆ
V

f div ϕ dx : ϕ ∈ C1
c

(
V ; R

n) , |ϕ| ≤ 1

}

= sup

{ˆ
V

ϕ · dD f : ϕ ∈ C1
c

(
V ; R

n) , |ϕ| ≤ 1

}

for any V ⊂⊂ U, i.e., the total variation of D f is |Df |. Also,
E is a set of locally finite perimeter ⇐⇒ |DχE |(K ) < ∞ for every compact set K ⊂ R

n .

Remark If f = χE , and E is a set of locally finite perimeter in U , we will write

νE := σ, νE := −σ, μE := νE |DχE |,
where νE (x) (νE (x)) is called the generalized inner (outer) unit normal of E at x and the
R
n-valued Radon measure μE on R

n is called the Gauss-Green measure of E . Let E be a
set of locally finite perimeter. The reduced boundary ∂∗E of E is the set of those x ∈ sptμE

such that

νE (x) = dμE

d|μE | (x) := lim
r→0+

μE (B(x, r))

|μE |(B(x, r))
exists and is in S

n−1, (2.1)

where sptμE := {x : μE (B(x, r)) > 0 for all r > 0}. In fact, we have

∂∗E ⊂ sptμE ⊂ ∂E

and sptμE = {x : 0 < |E ∩ B(x, r)| < |B(x, r)| for all r > 0}. Moreover, the De Giorgi
structure theorem states that ∂∗E is (n − 1)-rectifiable and that

μE = νEHn−1 ∂∗E, |μE | = Hn−1 ∂∗E, (2.2)

or equivalently,
DχE = νEHn−1 ∂∗E, |DχE | = Hn−1 ∂∗E, (2.3)
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whereHn−1 denotes the (n − 1)-dimensional Hausdorff measure. Hence, we have the diver-
gence theorem in the following form:ˆ

∂∗E
F · νE dHn−1(x) =

ˆ
R
n
F · dμE =

ˆ
E
div F, for any F ∈ C1

c (R
n; R

n), (2.4)

where · is the Euclidean dot product (see [23, Proposition 12.19, Theorem 15.9]).

Let E be any measurable subset in R
n and 0 ≤ d ≤ 1. The set of points of density d of E is

defined as

E (d) =
{

x ∈ R
n : θn(E)(x) := lim

ρ→0

Ln (E ∩ Qρ(x)
)

Ln (Qρ(x)
) = d

}

where Qρ(x) is the cube centered at x , whose sides are parallel to the coordinate axes with
length 2ρ. We will use | · | or Ln for Lebesgue measure on R

n . By Lebesgue points theorem,

θn(E) = 1 a.e. on E, θn(E) = 0 a.e. on R
n \ E .

Therefore, |E�E (1)| = 0, i.e., every Lebesgue measurable set E is equivalent to E (1). Now
we introduce the essential boundary ∂M E of a measurable set E defined as

∂M E := R
n \
(
E (0) ∪ E (1)

)
.

Then Federer’s theorem tells us that for any set of locally finite perimeter E ,

∂∗E ⊂ E (1/2) ⊂ ∂M E, Hn−1(∂M E \ ∂∗E) = 0.

Moreover,

E is a set of locally finite perimeter ⇐⇒ Hn−1(∂M E ∩ K ) < ∞, ∀K compact in R
n .

(2.5)

We also define the (relative) perimeter of E in F as

P(E; F) = Hn−1(∂M E ∩ F),

for any Borel set F ⊂ R
n (see [23, Corollary 15.8, Theorem 16.2] and [16, Theorem 4.5.11]).

2.2 Important background results

In this subsection, we collect some significant results that will be used in the later sections.

Proposition 2.2 [23, Proposition 4.29] If μk and μ are vector-valued Radon measures with

μk
∗
⇀μ, then for every open set A ⊂ R

n we have

|μ|(A) ≤ lim inf
k→∞ |μk | (A).

Proposition 2.3 (Diffeomorphic images of sets of finite perimeter [23, Proposition 17.1]) If
E is a set of locally finite perimeter in R

n and f is a diffeomorphism of R
n with g = f −1,

then f (E) is a set of locally finite perimeter in R
n withHn−1 ( f (∂∗E)�∂∗ f (E)) = 0, andˆ

∂∗ f (E)

ϕν f (E) dHn−1 =
ˆ

∂∗E
(ϕ ◦ f )J f (Dg ◦ f )∗νE dHn−1

for every ϕ ∈ Cc
(
R
n), where J f = | det(Df )| is the Jacobian of f on R

n.

123



The anisotropic Gaussian isoperimetric inequality and Ehrhard… Page 7 of 73 211

Theorem 2.4 (Ehrhard’s Inequality [8, Theorem 1.1]) If A, B are Borel sets in R
n, then

φ−1(γ (λA + (1 − λ)B)) ≥ λφ−1(γ (A)) + (1 − λ)φ−1(γ (B)), for λ ∈ (0, 1),

where

γ (E) = 1

(2π)n/2

ˆ
E
e−|x |2/2 dx, φ(x) = 1√

2π

ˆ x

−∞
e−t2/2 dt .

Recall that we defineR
m-valued Radon measureμ onR

n as the bounded linear functional
on Cc(R

n, R
m) and set

〈μ, ϕ〉 :=
ˆ

R
n
ϕ · dμ, ϕ ∈ Cc(R

n; R
m).

The following three propositions are useful when we calculate the total variation. The first
one can be found in [23, Remark 4.8], and the rest are straightforward applications of the
results in [23, Chapter 4].

Proposition 2.5 [23, Remark 4.8] Let μ be a Radon measure on R
n and let f : R

n → R
m

be a R
m-valued function with f ∈ L1

loc(R
n, μ; R

m). Then we may define a bounded linear
functional f μ : Cc(R

n; R
m) → R as

〈 f μ, ϕ〉 :=
ˆ

R
n
f · ϕ dμ

for any ϕ ∈ Cc(R
n; R

m), i.e., f μ is a R
m-valued Radon measure on R

n. Moreover, the total
variation of f μ is | f μ| = | f |μ, where

| f |μ(E) :=
ˆ
E

| f | dμ, E ∈ B(Rn).

Proposition 2.6 Let μ be a R
m-valued Radon measure on R

n and let h : R
n → R be

a real-valued bounded Borel function. Then we may define a bounded linear functional
hμ : Cc(R

n; R
m) → R as

〈hμ, ϕ〉 :=
ˆ

R
n
hϕ · dμ

for any ϕ ∈ Cc(R
n; R

m), i.e., hμ is a R
m-valued Radon measure on R

n. Moreover, the total
variation of hμ is |hμ| = |h||μ|, where

|h||μ|(E) :=
ˆ
E

|h| d|μ|, E ∈ B(Rn).

Proposition 2.7 Let μ be a R
m-valued Radon measure on R

n and let f : R
n → R

n be a
homeomorphism. Then we may define a bounded linear functional f#μ : Cc(R

n; R
m) → R

as

〈 f#μ, ϕ〉 :=
ˆ

R
n
(ϕ ◦ f ) · dμ

for any ϕ ∈ Cc(R
n; R

m), i.e., f#μ is aR
m-valued Radon measure onR

n. Moreover, the total
variation of f#μ is | f#μ| = f#|μ|, where

f#|μ|(E) := |μ|( f −1(E)), E ∈ B(Rn)

is called the push-forward of |μ| through f .
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2.3 Anisotropic Gaussian Hausdorff measure and anisotropic Gaussian perimeter

Let A ∈ Mn(R) be a symmetric positive definite matrix. There exists a unique symmetric
positive definite matrix

√
A such that

A = (
√
A)2

(see [18, Theorem 7.2.6]). We will use the notation A � 0 (A � 0) to mean the matrix A
is symmetric positive definite (symmetric positive semi-definite). Notice that we have the
following equalities:

e−〈Ax,x〉/2 = e−〈√Ax,
√
Ax〉/2 = e−|√Ax |2/2,

√
det A = det

√
A.

Thematrix norm induced by the Euclidean norm is defined as

‖A‖ := max‖x‖2=1
‖Ax‖2 = max‖x‖2=‖y‖2=1

〈Ax, y〉.

Notice that

‖A‖ = ‖√
A

√
A‖ =

∥∥∥
√
A
T√

A
∥∥∥ = ‖√

A‖2 �⇒ ‖A‖ 1
2 = ‖√

A‖.

In addition,
√
A−1 = (

√
A)−1 and hence

‖A−1‖ 1
2 = ‖(

√
A)−1‖.

Now we define the A-anisotropic Gaussian measure (mass) as

γA(E) =
 
E
e−〈Ax,x〉/2 dx =

√
det A

(2π)
n
2

ˆ
E
e−〈Ax,x〉/2 dx,

for any (Lebesgue) measurable set E ⊂ R
n . The connection between γA and γ is

γA(E) = γ (
√
A(E)),

where γ := γIn is the (standard) Gaussian measure on R
n , i.e.,

γ (E) = 1

(2π)n/2

ˆ
E
e−|x |2/2 dx .

Given any k ∈ N with 0 ≤ k ≤ n, we define the k-dimensional A-anisotropic Gaussian
Hausdorff measureHk

γA
by

Hk
γA

(B) =
√
det A

(2π)
k
2

ˆ
B
e−〈Ax,x〉/2 dHk(x), for any Borel set B. (2.6)

Let E be a measurable set in R
n and F be a Borel set in R

n . The (relative) A-anisotropic
Gaussian perimeter of E in F is defined by

PγA (E; F) = Hn−1
γA

(
∂ME ∩ F

)
,

and we say E is a set of locally finite A-anisotropic Gaussian perimeter if PγA (E; K ) =
Hn−1

γA
(∂ME ∩ K ) < ∞ for every compact set K ⊂ R

n . In particular, E is a set of finite
A-anisotropic Gaussian perimeter if PγA (E) < ∞. Wewill omit the notation A and simply
say E is a set of finite anisotropic Gaussian perimeter if there is no confusion.
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Proposition 2.8 E is a set of locally finite perimeter if and only if E is a set of locally finite
anisotropic Gaussian perimeter, that is, PγA (E; K ) = Hn−1

γA
(∂ME ∩ K ) < ∞ for every

compact set K ⊂ R
n.

Proof (⇒) For any compact set K ,

PγA (E; K ) =
√
det A

(2π)
n−1
2

ˆ
∂ME∩K

e−|√Ax |2/2dHn−1(x) ≤
√
det A

(2π)
n−1
2

ˆ
∂ME∩K

1 dHn−1(x)

=
√
det A

(2π)
n−1
2

P(E; K ) < ∞.

(⇐) For any compact set K , let

mK := min
x∈K e−|√Ax |2/2 ≥ min

x∈K e−d2max|x |2/2 > 0,

where dmax is the largest eigenvalue of
√
A. Then

∞ > PγA (E; K ) =
√
det A

(2π)
n−1
2

ˆ
∂ME∩K

e−|√Ax |2/2dHn−1(x) ≥
√
det A

(2π)
n−1
2

mK P(E; K ).

��

Remark It is clear that

E is a set of finite perimeter �⇒ E is a set of finite anisotropic Gaussian perimeter.

However, the converse is not true. For example, let n = 2, Eα = [−α, α] × (0, ∞), and

A = 2

[
a b
b c

]
� 0

with a, c > 0 and b > 0. Then

e−ax2−2bxy−cy2 = e−〈A(x,y),(x,y)〉/2 = e−|√A(x,y)|2/2

≤ e−‖(
√
A)−1‖−2(x2+y2)/2 ≤ e−‖(

√
A)−1‖−2 y2/2

and

PγA (Eα) =
√
det A√
2π

(ˆ ∞

0
e−aα2−2bαy−cy2 dy +

ˆ ∞

0
e−aα2+2bαy−cy2 dy +

ˆ α

−α

e−ax2 dx

)

≤
√
det A√
2π

(
2
ˆ ∞

0
e−‖(

√
A)−1‖−2 y2/2dy + 2

ˆ α

0
e−ax2 dx

)
< ∞.

That is, Eα is a set of finite anisotropic Gaussian perimeter and clearly P(Eα) = ∞, i.e., Eα

is not a set of finite perimeter.

Now we establish the lower semicontinuity, locality, complementation, and subadditivity
for the anisotropic Gaussian perimeter. Proposition 2.9 is a straightforward consequence
of Proposition 2.8. The locality, complementation, and subadditivity can be deduced by
Proposition 2.9 with results in [23, Chapter 16].
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Proposition 2.9 (Lower semicontinuity) If E is a set of locally finite anisotropic Gaussian
perimeter and U ⊆ R

n is an open set, then

PγA (E;U ) = √
2π sup

{ˆ
E
div ϕ(x) − 〈ϕ(x), Ax〉 dγA(x) : ϕ ∈ C1

c
(
U ; R

n) , sup
U

|ϕ| ≤ 1

}

.

Moreover, for any sequence of sets of locally finite perimeter Ek with χEk → χE in
L1
loc

(
R
n, γA

)
,

PγA (E;U ) ≤ lim inf
k→∞ PγA (Ek;U ) .

Conversely, if E is a measurable set, U is an open set, and for any open set V ⊂⊂ U,

sup

{ˆ
E
div ϕ(x) − 〈ϕ(x), Ax〉 dγA(x) : ϕ ∈ C1

c

(
V ; R

n) , sup
V

|ϕ| ≤ 1

}
< ∞,

then E is a set of locally finite anisotropic Gaussian perimeter in U.

Proposition 2.10 (Properties of perimeter)

(1) (Locality) Let E be a set of locally finite perimeter. If F is equivalent to E in some open
set U ⊂ R

n, i.e., |(E�F) ∩ U | = 0, then

PγA (E;U ) = PγA (F;U ).

(2) (Complementation) Let E be a set of locally finite perimeter and U be an open set in
R
n. Then Ec is also a set of locally finite perimeter and

PγA (E;U ) = PγA (E
c;U ).

(3) (Subadditivity) If E, F are sets of locally finite perimeter and U is an open set in R
n,

PγA (E ∪ F;U ) + PγA (E ∩ F;U ) ≤ PγA (E;U ) + PγA (F;U ).

Although the anisotropic Gaussian measure satisfies γA(E) = γIn (
√
AE), this kind of

relation doesn’t hold in the anisotropic Gaussian perimeter, i.e.,

PγA (E) �= PγIn
(
√
AE).

In fact, we have the following formula:

Proposition 2.11 If E is a set of locally finite perimeter, thenˆ
F∩∂∗(

√
AE)

ν√
AE (y) dHn−1

γ (y) =
ˆ
(
(
√
A)−1F

)
∩∂∗E

[
(
√
A)−1νE (x)

]
dHn−1

γA
(x),

equivalently,ˆ
F∩∂∗(

√
AE)

[√
Aν√

AE (y)
]
dHn−1

γ (y) =
ˆ
(
(
√
A)−1F

)
∩∂∗E

νE (x) dHn−1
γA

(x),

and hence

PγIn
(
√
AE; F) =

ˆ
(
(
√
A)−1F

)
∩∂∗E

∣∣∣(
√
A)−1νE (x)

∣∣∣ dHn−1
γA

(x),

PγA (E; (
√
A)−1F) =

ˆ
F∩∂∗(

√
AE)

∣∣∣
√
Aν√

AE (x)
∣∣∣ dHn−1

γ (x),

for any Borel set F ⊂ R
n. Moreover,
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(1) if F = R
n, then

‖√
A‖−1PγA (E) ≤ PγIn

(
√
AE) ≤ ‖(

√
A)−1‖PγA (E).

(2) if O is an orthogonal matrix and A = In, then

PγIn
(OE) = PγIn

(E).

(3) if O is an orthogonal matrix, then

PγA (E; OF) = PγOT AO
(O−1E; F).

In particular, E is a set of finite A-anisotropic Gaussian perimeter if and only if O−1E
is a set of finite OTAO-anisotropic Gaussian perimeter.

Proof Since E is a set of locally finite perimeter and x �→ √
Ax is a diffeomorphism, by

Proposition 2.3, for any ϕ ∈ Cc(R
n),

ˆ
∂∗(

√
AE)

ϕ(y)ν√
AE (y) dHn−1(y) = | det(√A)|

ˆ
∂∗E

ϕ(
√
Ax)
[
[(√A)−1]TνE (x)

]
dHn−1(x)

= | det(√A)|
ˆ
∂∗E

ϕ(
√
Ax)
[
(
√
A)−1νE (x)

]
dHn−1(x),

(2.7)

where
√
A is symmetric. Let F be a Borel set. We can set

ϕ(y) = 1

(2π)(n−1)/2
e−|y|2/2χF (y)

in (2.7) since we can first approximate open sets then Borel sets. Hence,ˆ
F∩∂∗(

√
AE)

ν√
AE (y) dHn−1

γ (y) =
ˆ
(
(
√
A)−1F

)
∩∂∗E

[
(
√
A)−1νE (x)

]
dHn−1

γA
(x). (2.8)

Since F is an arbitrary Borel set, the following two measures are the same:

ν√
AEHn−1

γ ∂∗(
√
AE) = (

√
A)#

([
(
√
A)−1νE

]
Hn−1

γA
∂∗E
)

.

Taking total variation on both sides, by Proposition 2.5 and 2.7, we have

Hn−1
γ ∂∗(

√
AE) = (

√
A)#

(∣∣∣(
√
A)−1νE

∣∣∣Hn−1
γA

∂∗E
)

.

That is,

Pγ (
√
AE; F) =

ˆ
(
(
√
A)−1F

)
∩∂∗E

∣∣∣(
√
A)−1νE (x)

∣∣∣ dHn−1
γA

(x). (2.9)

Applying
√
A on both sides of equation (2.8),ˆ

F∩∂∗(
√
AE)

[√
Aν√

AE (y)
]
dHn−1

γ (y) =
ˆ
(
(
√
A)−1F

)
∩∂∗E

νE (x) dHn−1
γA

(x).

Taking total variation on both sides, by Proposition 2.5 and 2.7, we have

PγA (E; (
√
A)−1F) =

ˆ
F∩∂∗(

√
AE)

∣∣∣
√
Aν√

AE (x)
∣∣∣ dHn−1

γ (x). (2.10)
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In fact, by using the same argument in (2.8) with any diffeomorphism f on R
n , we haveˆ

F∩∂∗ f (E)

ν f (E)(y) dHn−1
γ (y)

= 1

(2π)(n−1)/2

ˆ
f −1(F)∩∂∗E

e−| f (x)|2/2[J f (∇g ◦ f )∗νE (x)
]
dHn−1(x), (2.11)

where g = f −1.
(1) Let F = R

n in (2.9). Then

Pγ (
√
AE) =

ˆ
∂∗E

∣∣∣(
√
A)−1νE (x)

∣∣∣ dHn−1
γA

(x) ≤ ‖(
√
A)−1‖PγA (E).

On the other hand,

1 =
∣∣∣νE (x)

∣∣∣ =
∣∣∣
√
A(

√
A)−1νE (x)

∣∣∣ ≤ ‖√
A‖
∣∣∣(

√
A)−1νE (x)

∣∣∣ �⇒
∣∣∣(

√
A)−1νE (x)

∣∣∣ ≥ ‖√
A‖−1.

Thus,

Pγ (
√
AE) =

ˆ
∂∗E

∣∣∣(
√
A)−1νE (x)

∣∣∣ dHn−1
γA

(x) ≥ ‖√
A‖−1PγA (E).

(2) Let O be a positive definite orthogonal matrix. Applying (2.11) to the map f : x �→ Ox ,
we have

Pγ (OE) =
ˆ

∂∗E

∣∣∣OνE (x)
∣∣∣ dHn−1

γ (x) = Pγ (E).

(3) Replacing F as
√
AOF in (2.10), we have

PγA (E; OF) =
ˆ

(
√
AOF)∩∂∗(

√
AE)

∣∣∣
√
Aν√

AE

∣∣∣ dHγ . (2.12)

On the other hand, by replacing F as
√
OTAOF in (2.10) again, we have

PγOT AO
(O−1E; F) =

ˆ
(OT

√
AOF)∩∂∗(OT

√
AO(O−1E))

∣∣∣OT
√
AOνOT

√
AO(O−1E)

∣∣∣ dHγ

=
ˆ

(OT
√
AOF)∩∂∗(OT

√
AE)

∣∣∣
√
AOνOT

√
AE

∣∣∣ dHγ , (2.13)

where
√
OTAO = OT

√
AO . Applying

√
AO on both sides of equation (2.11) with f (x) =

OTx , E as
√
AE , and F as OT

√
AOF , we haveˆ

(OT
√
AOF)∩∂∗(OT

√
AE)

√
AOνOT

√
AE dHγ =

ˆ
(
√
AOF)∩∂∗(

√
AE)

√
Aν√

AE dHγ .

Taking total variation on both sides, we haveˆ
(OT

√
AOF)∩∂∗(OT

√
AE)

∣∣∣
√
AOνOT

√
AE

∣∣∣ dHγ =
ˆ

(
√
AOF)∩∂∗(

√
AE)

∣∣∣
√
Aν√

AE

∣∣∣ dHγ .

(2.14)

Therefore, by (2.12), (2.13), and (2.14),

PγA (E; OF) = PγOT AO
(O−1E; F).

��
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2.4 Approximation for the finite anisotropic Gaussian perimeter

Proposition 2.12 For any measurable set E with PγA (E) < ∞, there exists a sequence {Ek}
of bounded open sets with smooth boundary such that

χEk → χE in L1(Rn, γA) and PγA (Ek) → PγA (E).

Proof For any measurable set E with PγA (E) < ∞, by Proposition 2.8, E is a set of locally
finite perimeter. Hence, E ∩ BR is also a set of finite perimeter, where BR := B(0, R) is an
open ball (see [23, Lemma 15.12]).
Step 1: We first claim that, as R → ∞,

χE∩BR → χE in L1(Rn, γA) and PγA (E ∩ BR) → PγA (E).

To begin, by the dominated convergence theorem and γA(Rn) = 1 < ∞,ˆ
R
n

∣∣χE − χE∩BR

∣∣ dγA → 0 as R → ∞.

For the second part, since PγA (E) < ∞,

lim
R→∞ PγA (E; R

n \ BR) = 0.

Moreover, by [23, Lemma 15.12], for a.e. R > 0,

|μE∩BR | = Hn−1 (E ∩ ∂BR) + |μE | BR .

That is,

PγA (E ∩ BR) = Hn−1
γA

(∂∗(E ∩ BR)) =
√
det A

(2π)(n−1)/2

ˆ
∂∗(E∩BR)

e−|√Ax |2/2 dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
R
n
e−|√Ax |2/2 d|μE∩BR |

=
√
det A

(2π)(n−1)/2

(ˆ
BR

e−|√Ax |2/2 d|μE | +
ˆ
E∩∂BR

e−|√Ax |2/2dHn−1(x)

)

=
√
det A

(2π)(n−1)/2

ˆ
(∂∗E)∩BR

e−|√Ax |2/2 dHn−1 + Hn−1
γA

(E ∩ ∂BR)

= Hn−1
γA

((∂∗E) ∩ BR) + Hn−1
γA

(E ∩ ∂BR) = PγA (E; BR) + Hn−1
γA

(E ∩ ∂BR).

(2.15)

Notice that since

|x | = |(√A)−1
√
Ax | ≤ ‖(

√
A)−1‖|√Ax | �⇒ |√Ax | ≥ 1

‖(
√
A)−1‖ |x |,

we have

Hn−1
γA

(E ∩ ∂BR) ≤ Hn−1
γA

(∂BR) =
√
det A

(2π)(n−1)/2

ˆ
∂BR

e−|√Ax |2/2dHn−1(x)

≤
√
det A

(2π)(n−1)/2

ˆ
∂BR

e
− 1

‖(
√
A)−1‖2 |x |2/2

dHn−1(x)

=
√
det A

(2π)(n−1)/2
e

− 1
‖(

√
A)−1‖2 R

2/2Hn−1(∂BR)
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=
√
det A

(2π)(n−1)/2
e

− 1
‖(

√
A)−1‖2 R

2/2
αn R

n−1 → 0 as R → ∞,

(2.16)

where αn is the surface area of the unit ball in R
n . Combining (2.15) and (2.16) together, we

have

PγA (E) = PγA (E; R
n \ BR) + PγA (E; BR)

= PγA (E; R
n \ BR) + (PγA (E ∩ BR) − Hn−1

γA
(E ∩ ∂BR)),

and hence, as R → ∞,

|PγA (E) − PγA (E ∩ BR)| ≤ PγA (E; R
n \ BR) + Hn−1

γA
(E ∩ ∂BR) → 0.

Step 2: Consider

ER := E ∩ BR .

Fix R > 0. Applying [23, Theorem 13.8] on ER , there exists a sequence {ER
k }∞

k=1 of bounded
open sets with smooth boundary such that ER

k ⊂ BR+1 for all k,

χER
k

→ χER as k → ∞ in L1(Rn) (and hence in L1(Rn, γA)), (2.17)

and

|μER
k

| ∗
⇀|μER |.

Let ηε ∈ C∞
c (Rn) be a smooth cutoff function with ηε = 1 on BR+1 and ηε → χBL with

L > R + 1. Applying the weak-star convergence, as k → ∞,

PγA (E
R
k ) =

√
det A

(2π)(n−1)/2

ˆ
∂ER

k

e−|√Ax |2/2 dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
∂ER

k

e−|√Ax |2/2ηε(x) dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
R
n
e−|√Ax |2/2ηε(x)d|μER

k
|

→
k→∞

√
det A

(2π)(n−1)/2

ˆ
∂∗ER

e−|√Ax |2/2ηε(x)dHn−1.

Taking ε → 0+ and L → ∞ on both sides, we have

lim
k→∞ PγA (E

R
k ) = lim

L→∞

√
det A

(2π)(n−1)/2

ˆ
∂∗ER

e−|√Ax |2/2χBL (x)dHn−1 = PγA (E
R). (2.18)

By Step 1, we can let {Rk} be a sequence with Rk ↗ ∞ such that

χERk → χE in L1(Rn, γA) and lim
k→∞ PγA (E

Rk ) = PγA (E).

Now we use a diagonal argument with (2.17), (2.18) to finish the proof. By a diagonal
argument, there exists a sequence {ERk

Nk
}∞
k=1 of bounded open sets with smooth boundary

such that

χ
E
Rk
Nk

→ χE in L1(Rn, γA) and PγA (E
Rk
Nk

) → PγA (E).

��
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3 Anisotropic Gaussian isoperimetric inequality

Define the function φ : R → (0, 1) as

φ(x) = 1√
2π

ˆ x

−∞
e−t2/2 dt,

and notice that φ is strictly increasing from 0 to 1. The inverse function φ−1 : [0, 1] →
[−∞, +∞] is also strictly increasing with φ−1(0) = −∞ and φ−1(1) = +∞. Moreover,
we have

lim
t→∞

φ−1(γ (t B(0, 1)))

t
= 1 (3.1)

(See [22, Section 3.3] and [25, Lemma 9]). We define the (nonrenormalized) A-anisotropic
Gaussian barycenter of the set E as

bγA (E) :=
ˆ
E
x dγA(x).

Let H(ω, t) be the half-space of the form H(ω, t) = {x : 〈x, ω〉 < t}, where ω ∈ S
n−1,

t ∈ R, and 〈·, ·〉 is the Euclidean inner product. Since γ = γIn is rotation invariant, we can
compute the following quantities directly:

γ (H(ω, t)) = φ(t), Pγ (H(ω, t)) = e−t2/2, bγ (H(ω, t)) = −1√
2π

e−t2/2ω. (3.2)

Moreover, we have the following for half-spaces under γA:

Proposition 3.1 Let H(ω, t) be the half-space with ω ∈ S
n−1 and t ∈ R.

(1) If M is an invertible n × n matrix, then

M (H(ω, t)) = H

(
(MT)−1ω

|(MT)−1ω| ,
t

|(MT)−1ω|
)

.

(2) The anisotropic Gaussian mass of the half-space is

γA(H(ω, t)) = φ

(
t

|(√A)−1ω|
)

.

(3) The anisotropic Gaussian perimeter of the half-space is

PγA (H(ω, t)) = e
− 1

2
t2

|(√A)−1ω|2 1

|(√A)−1ω| .

Moreover,

PγA (H1) = PγA (H2) for any half-spaces H1, H2 with γA(H1) = γA(H2)

⇐⇒ A = aIn for some constant a > 0.

(4) The anisotropic Gaussian barycenter of the half-space is

bγA (H(ω, t)) = −1√
2π

e
− 1

2
t2

|(√A)−1ω|2
(

A−1ω

|(√A)−1ω|
)

.

Moreover,
∣∣bγA (H1)

∣∣ = ∣∣bγA (H2)
∣∣ for any half-spaces H1, H2 with γA(H1) = γA(H2)
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⇐⇒ A = aIn for some constant a > 0.

Proof (1) Given any point y = Mx ∈ M(H(ω, t)), we have 〈x, ω〉 < t . Then
〈
y,

(MT)−1ω

|(MT)−1ω|
〉

=
〈
Mx,

(MT)−1ω

|(MT)−1ω|
〉

=
〈
x,

ω

|(MT)−1ω|
〉

<
t

|(MT)−1ω| .

Conversely, for any y ∈ H
(

(MT)−1ω

|(MT)−1ω| ,
t

|(MT )−1ω|
)
, let x = M−1y. Notice that

〈
x,

ω

|(MT)−1ω|
〉

=
〈
M−1y,

ω

|(MT)−1ω|
〉

=
〈
y,

(MT)−1ω

|(MT)−1ω|
〉

<
t

|(MT)−1ω| .

Thus, 〈x, ω〉 < t , i.e., x ∈ H(ω, t).
(2) Observe that γA(E) = γ (

√
A(E)) for any Borel set E , and by (1),

√
A(H(ω, t)) = H

(
((

√
A)T)−1ω

|((√A)T)−1ω| ,
t

|((√A)T)−1ω|

)

= H

(
(
√
A)−1ω

|(√A)−1ω| ,
t

|(√A)−1ω|

)

,

since
√
A is symmetric. Applying Eq. (3.2), we have

γA(H(ω, t)) = φ

(
t

|(√A)−1ω|
)

.

(3) Notice that

PγA (H(ω, t)) =
√
det A

(2π)(n−1)/2

ˆ
∂∗H(ω,t)

e−|√Ax |2/2 dHn−1(x)

=
√
det A

(2π)(n−1)/2

ˆ
∂∗H(ω,t)

(
e−|√Ax |2/2ω

)
· ω dHn−1(x)

=
√
det A

(2π)(n−1)/2

ˆ
H(ω,t)

div
(
e−|√Ax |2/2ω

)
dx

=
√
det A

(2π)(n−1)/2

ˆ
H(ω,t)

− 〈Ax, ω〉 e−|√Ax |2/2 dx

=
√
det A

(2π)(n−1)/2

ˆ
H
(

(
√
A)−1ω

|(√A)−1ω| ,
t

|(√A)−1ω|
)−
〈
y,

√
Aω
〉
e−|y|2/2 1

| det √
A|dy

= −√
2π

〈ˆ
H
(

(
√
A)−1ω

|(√A)−1ω| ,
t

|(√A)−1ω|
) y dγ (y),

√
Aω

〉

= −√
2π

〈

bγ

(

H

(
(
√
A)−1ω

|(√A)−1ω| ,
t

|(√A)−1ω|

))

,
√
Aω

〉

= −√
2π

〈
−1√
2π

e
− 1

2
t2

|(√A)−1ω|2
(

(
√
A)−1ω

|(√A)−1ω|

)

,
√
Aω

〉

= e
− 1

2
t2

|(√A)−1ω|2 1

|(√A)−1ω| ,

where we used the change of variables y = √
Ax and the fact that the outer unit normal

of H(ω, t) is νH(ω,t) = ω. Next, we prove the second part. Let H1 = H(ω1, t1) and
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H2 = H(ω2, t2). Suppose that A = aIn . Then

γA(H1) = γA(H2) �⇒ t1 = t2.

Therefore,

PγA (H(ω1, t1)) = e−at21
√
a = e−at22

√
a = PγA (H(ω2, t2)).

Conversely, for any H1 = H(ω1, t1) and H2 = H(ω2, t2) with γA(H1) = γA(H2), i.e.,
t1

|(√A)−1ω1| = t2
|(√A)−1ω2| , we have

PγA (H(ω1, t1)) = PγA (H(ω2, t2)) �⇒ 1

|(√A)−1ω1| = 1

|(√A)−1ω2| .

That is, |(√A)−1ω| is a constant for all ω ∈ S
n−1. Since

√
A is orthogonally diago-

nalizable, say
√
A = ODO−1, where the orthogonal matrix O = (v1 v2 · · · vn) and

D = diag(d1, d2, · · · dn), i.e., for j = 1, · · · , n, we have |v j | = 1 and
√
Av j = d jv j (i.e. (

√
A)−1v j = d−1

j v j ).

Therefore, d1 = d2 · · · = dn > 0 and hence A = OD2O−1 = O(d21 In)O
−1 = d21 In .

(4) Notice that

bγA (E) =
√
det A

(2π)n/2

ˆ
E
xe−|√Ax |2/2 dx

= 1

(2π)n/2

ˆ
√
AE

(
√
A)−1ye−|y|2/2dy = (

√
A)−1bγ (

√
AE),

where we used the change of variables y = √
Ax . In particular, using the calculation above

and (3.2), we have

bγA (H(ω, t)) = (
√
A)−1bγ (

√
AH(ω, t)) = (

√
A)−1 −1√

2π
e

− 1
2

t2

|(√A)−1ω|2
(

(
√
A)−1ω

|(√A)−1ω|

)

= −1√
2π

e
− 1

2
t2

|(√A)−1ω|2
(

A−1ω

|(√A)−1ω|
)

.

The proof of the second part is the same as (3); hence, we omit the proof. ��

3.1 Two anisotropic Gaussian isoperimetric inequalities

We are ready to prove the anisotropic Gaussian isoperimetric inequality (ε-enlargement
version). As mentioned in the introduction, Bakry and Ledoux proved a general result about
isoperimetric inequality for log-concave measures (see [21, Theorem 1.1] and [5]). However,
for completeness, we provide a proof for the case of anisotropic Gaussian measure using an
argument inspired by Latała paper [19, Section 3]. The proof is based on Ehrhard’s inequality
and the regularity of Radon measures.

Theorem 3.2 (Anisotropic Gaussian Isoperimetric Inequality (ε-enlargement version))

(1) For any measurable set E in R
n,

φ−1(γA(Eε)) ≥ φ−1(γA(E)) + ε

‖(
√
A)−1‖ ,
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where ‖ · ‖ is the matrix norm induced by the Euclidean norm. The set

Eε := E + εB(0, 1) = {x ∈ R
n : dist(x, E) ≤ ε}

is called the ε-(Minkowski) enlargement of E. Here B(0, 1) is the closed unit ball in
R
n.

(2) Let E be a measurable set in R
n and let H(ω, t) be a half-space such that

γA(E) ≥ γA(H(ω, t)).

Then, for every ε > 0,

γA (Eε) ≥ γA

(

H

(

ω, t + ε
|(√A)−1ω|
‖(

√
A)−1‖

))

.

Proof (1) Let E be a Borel set. Applying Ehrhard’s inequality (see Theorem 2.4) with
γA(E) = γ (

√
A(E)), we have the following: if B,C are Borel sets in R

n , then

φ−1(γA(λC + (1 − λ)B)) ≥ λφ−1(γA(C)) + (1 − λ)φ−1(γA(B)), for λ ∈ (0, 1),

where

φ(x) = 1√
2π

ˆ x

−∞
e−t2/2 dt .

Let C = E and B = B(0, 1). Then we have

φ−1(γA(Eε)) = φ−1(γA(E + εB)) = φ−1
[
γA

(
λ
( E

λ

)
+ (1 − λ)

( ε

1 − λ
B
))]

≥ λφ−1
[
γA

( E
λ

)]
+ (1 − λ)φ−1

[
γA

( ε

1 − λ
B
)]

= λφ−1
[
γA

( E
λ

)]
+ (1 − λ)φ−1

[
γ
( ε

1 − λ

√
A(B)

)]

≥ λφ−1
[
γA

( E
λ

)]
+ (1 − λ)φ−1

[
γ
( ε

1 − λ

1

‖(
√
A)−1‖ B

)]
,

using that φ−1 is increasing and
√
A(B) ⊃ 1

‖(
√
A)−1‖ B. Taking λ → 1−, by (3.1), we have

(1 − λ)φ−1
[
γ
( ε

1 − λ

1

‖(
√
A)−1‖ B

)]

=
⎛

⎝
φ−1

[
γ
(

ε
1−λ

1
‖(

√
A)−1‖ B

)]

ε
1−λ

1
‖(

√
A)−1‖

⎞

⎠ ε

‖(
√
A)−1‖ → ε

‖(
√
A)−1‖ .

That is, for any Borel set E ,

φ−1(γA(Eε)) ≥ φ−1(γA(E)) + ε

‖(
√
A)−1‖ .

A standard regularity argument ensures the above is true for all Lebesgue measurable sets.
(2) Using (1) with our assumption, we have

φ−1(γA(Eε)) ≥ φ−1(γA(E)) + ε

‖(
√
A)−1‖

≥ φ−1(γA(H(ω, t)))
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+ ε

‖(
√
A)−1‖ = t

|(√A)−1ω| + ε

‖(
√
A)−1‖ ,

since φ−1 is increasing. Applying φ on both sides and using Proposition 3.1,

γA(Eε) ≥ φ

(
t

|(√A)−1ω| + ε

‖(
√
A)−1‖

)
= φ

⎛

⎜
⎝
t + ε

|(√A)−1ω|
‖(

√
A)−1‖

|(√A)−1ω|

⎞

⎟
⎠

= γA

(

H

(

ω, t + ε
|(√A)−1ω|
‖(

√
A)−1‖

))

.

��
Suppose the boundary of E is “nice” enough. Intuitively, we have the following

γA(Eε) − γA(E)

ε
→ 1√

2π
PγA (E),

where the extra factor 1√
2π

appears in front of PγA since we define PγA with coefficient
1

(2π)(n−1)/2 . In order to use this idea, we need to introduce the signed distance function. Let

E be a subset of R
n . Define dE : R

n → R to be the signed distance function from E :

dE (x) := dist(x, E) − dist
(
x, Ec) =

{
−dist(x, ∂E), x ∈ E

dist(x, ∂E), x /∈ E
.

Moreover, dEc (x) = −dE (x),

dE (x) = 0 ⇐⇒ x ∈ ∂E,

and
{
x ∈ R

n : x ∈ (∂E)ε
} = {x ∈ R

n : |dE (x)| ≤ ε
}
.

In particular, dE is Lipschitz, and by Rademacher’s theorem, dE is differentiable a.e. Fur-
thermore, |∇dE | = 1 a.e. if E is a bounded open smooth set (see [4, Theorem 1 and Remark
3], as well as the discussion in [1, Section 3], and [24, Lemma 4]).

Theorem 3.3 (Anisotropic Gaussian Isoperimetric Inequality (perimeter version)) Let E be
a measurable set in R

n. Then

PγA (E) ≥ e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ .

In particular, if A = In, we have the standard Gaussian isoperimetric inequality,

PγIn
(E) ≥ e−[φ−1(γIn (E))]2/2.

Proof Step 1: We first assume that E is a bounded open set with smooth boundary in R
n and

PγA (E) < ∞. Since E is a set of finite anisotropic Gaussian perimeter, by Proposition 2.8,
E is a set of locally finite perimeter. Moreover, since E is bounded and open with smooth
boundary,

dE is smooth in a tubular neighborhood of ∂E and νE = ∇dE on ∂E
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(see [4, Theorem 2]). By co-area formula, for any Borel function g : R
n → [0, ∞] and

Lipschitz function u : R
n → R, we have

ˆ
R
n
g(x) |∇u(x)| dx =

ˆ ∞

−∞

(ˆ
{u=t}

g(y) dHn−1(y)

)
dt

(see [3, Remark 2.94]). Consider u = dE ,

g =
√
det A

(2π)n/2 e−|√Ax |2/2χ{0≤dE≤ε},

and define the smooth function ψt as

ψt (x) = x + t∇dE (x) in the tubular neighborhood of ∂E .

Then we have

γA(Eε) − γA(E)

ε
= 1

ε

ˆ
Eε\E

√
det A

(2π)n/2 e
−|√Ax |2/2 dx

= 1

ε

ˆ ε

0

ˆ
{dE=t}

√
det A

(2π)n/2 e
−|√Ax |2/2 dHn−1(x) dt

=
√
det A

(2π)n/2

1

ε

ˆ ε

0

ˆ
ψt (∂E)

e−|√Ax |2/2 dHn−1(x) dt .

Taking ε → 0+ on both sides, by the fundamental theorem of calculus,

lim
ε→0+

γA(Eε) − γA(E)

ε
=

√
det A

(2π)n/2

ˆ
∂E

e−|√Ax |2/2 dHn−1(x) = 1√
2π

PγA (E),

where ψ0(∂E) = ∂E . On the other hand, by Theorem 3.2, we have

γA(Eε) − γA(E)

ε
≥

φ
(
φ−1(γA(E)) + ε

‖(
√
A)−1‖

)
− γA(E)

ε

→ φ′ (φ−1(γA(E))
) 1

‖(
√
A)−1‖ = 1√

2π
e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ ,

as ε → 0+. That is,

PγA (E) ≥ e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ .

Step 2: Now for any measurable set E , we may again assume that PγA (E) < ∞. By Propo-
sition 2.12, there exists a sequence {Ek} of bounded open sets with smooth boundary such
that

χEk → χE in L1(Rn, γA), PγA (Ek) → PγA (E).

Applying (1) on Ek , we have

PγA (Ek) ≥ e−[φ−1(γA(Ek ))]2/2 1

‖(
√
A)−1‖ .

Taking k → ∞, we have finished the proof. ��
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In the paper of Cianchi-Fusco-Maggi-Pratelli [10, Proposition 3.1 and Theorem 4.1], they
have characterized the equality cases for the standard Gaussian measure γIn . The result reads
as follows: let E be a measurable subset of R

n . Then

PγIn
(E) ≥ e−[φ−1(γIn (E))]2/2. (3.3)

Moreover,

(1) if n = 1, equality holds if and only if either γ1(E) = 0 or γ1(E) = 1, or up to a set of
measure zero and for some σ ∈ R, E = (−∞, −σ) or E = (σ, ∞).

(2) if n ≥ 2, equality holds if and only if either γIn (E) = 0 or γIn (E) = 1, or E is equivalent
to a half-space.

Notice that we can also derive Theorem 3.3 from Proposition 2.11 and equation (3.3),

PγA (E) ≥ PγIn
(
√
AE)

1

‖(
√
A)−1‖ ≥ e−[φ−1(γIn (

√
AE))]2/2 1

‖(
√
A)−1‖

= e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ . (3.4)

3.2 Proof of Theorem 1.1 (cases of equality)

Notice that (1) follows directly fromCianchi-Fusco-Maggi-Pratelli [10, Proposition 3.1]. We
just need to prove (2) here. Suppose the equality holds and assume thatγA(E) = γIn (

√
AE) ∈

(0, 1). By equation (3.4), we have

PγA (E) = PγIn
(
√
AE)

1

‖(
√
A)−1‖ = e−[φ−1(γIn (

√
AE))]2/2 1

‖(
√
A)−1‖

= e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ .

That is,

PγIn
(
√
AE) = e−[φ−1(γIn (

√
AE))]2/2.

By [10, Theorem 4.1],
√
AE is equivalent to a half-space, say H(ω, t), where ω ∈ S

n−1.
Then

E is equivalent to (
√
A)−1(H(ω, t)) = H

( √
Aω

|√Aω| ,
t

|√Aω|

)

.

Moreover, by Proposition 3.1,

γA(E) = γA

(

H

( √
Aω

|√Aω| ,
t

|√Aω|

))

= φ (t) �⇒ t = φ−1(γA(E))

and

PγA (E) = PγA

(

H

( √
Aω

|√Aω| ,
t

|√Aω|

))

= e− 1
2 t

2 |√Aω| = e−[φ−1(γA(E))]2/2|√Aω|.
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By our assumption, we have

e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ = PγA (E) = e−[φ−1(γA(E))]2/2|√Aω|

�⇒ |√Aω| = 1

‖(
√
A)−1‖ = dmin, (3.5)

where dmin is the smallest eigenvalue of
√
A and we have used

‖(
√
A)−1‖ = the largest eigenvalue of (

√
A)−1 = 1

dmin
.

Now we claim that

ω ∈ Vdmin (
√
A) ∩ S

n−1.

Notice that we can decompose A into

A = OTDO,

with an orthogonal matrix O and a diagonal matrix D. If all eignevalues of D are the same,
i.e., D = d2min In , then

√
A = dmin In and ω ∈ Vdmin (

√
A) ∩ S

n−1. Hence, we may assume
that D has the following form:

D =
[
D1 0
0 D2

]
, D1 = λmin I1, and D2 has eigenvalues strictly greater than λmin,

where λmin = d2min is the smallest eigenvalue of A. Let

O =
[
O1 O2

O3 O4

]
,

then
√
A = OTD1/2O and

|√Aω|2 = |OTD1/2Oω|2 = |D1/2y|2 = |D1/2
1 y1|2 + |D1/2

2 y2|2 = d2min|y1|2 + |D1/2
2 y2|2

(3.6)

where
[
y1
y2

]
= y := Oω.

On the other hand,

d2min = d2min|ω|2 = d2min|y|2 = d2min|y1|2 + d2min|y2|2. (3.7)

Therefore, by (3.5), (3.6), and (3.7),

|D1/2
2 y2|2 = d2min|y2|2 �⇒ y2 = 0

since D2 has eigenvalues strictly greater than λmin = d2min. Thus,

√
Aω = OTD1/2Oω = OTD1/2y =

[
OT
1 OT

3

OT
2 OT

4

][
dmin I1 0

0 D1/2
2

][
y1
0

]

=
[
dminOT

1 y1

dminOT
2 y1

]

,

and

dminω = dminO
T y = dmin

[
OT
1 OT

3

OT
2 OT

4

][
y1
0

]

=
[
dminOT

1 y1

dminOT
2 y1

]

= √
Aω.
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Hence,
√
Aω − dminω = 0 �⇒ ω ∈ Vdmin (

√
A).

We conclude that

E is equivalent to (
√
A)−1(H(ω, t)) = H

( √
Aω

|√Aω| ,
t

|√Aω|

)

= H

(
ω,

φ−1(γA(E))

dmin

)
.

Now we prove the converse of (2) in Theorem 1.1. It is clear that the equality holds when
γA(E) = 0orγA(E) = 1.Hence,wemayassume thatγA(E) ∈ (0, 1), i.e.,φ−1(γA(E)) ∈ R.
Since ω ∈ Vdmin (

√
A) ∩ S

n−1,
√
Aω = dminω. By Proposition 3.1, we have

PγA (E) = PγA

(
H

(
ω,

φ−1(γA(E))

dmin

))
= e

− 1
2

[φ−1(γA(E))]2
d2min

|(√A)−1ω|2 1

|(√A)−1ω|
= e−[φ−1(γA(E))]2/2dmin = e−[φ−1(γA(E))]2/2 1

‖(
√
A)−1‖ .

��

4 Anisotropic Gaussian perimeter inequality under Ehrhard
symmetrization

4.1 Ehrhard symmetrization

In this section, we will use the following notations:

x = (z, y) for x ∈ R
n, z ∈ R

n−1 and y ∈ R.

Similar to (2.6), we define two (outer) measures μz and H0
z on R

1 such that

μz(F1) =
ˆ
F1

e−|√Ax |2/2dy, ∀F1 ∈ L(R1), H0
z (F2) =

ˆ
F2

e−|√Ax |2/2dH0(y), ∀F2 ⊂ R
1,

(4.1)

where H0 is the counting measure. Moreover, we define

Pz(F) = H0
z (∂

M F), F ⊂ R
1,

where ∂M F is the essential boundary of F . We also define an auxiliary function φz as

φz(t) =
ˆ t

−∞
e−|√Ax |2/2dy, φz(∞) =

ˆ ∞

−∞
e−|√Ax |2/2dy, (4.2)

and φz(−∞) = 0, where z ∈ R
n−1. Let E be a measurable set inR

n with n ≥ 2. The section
Ez ⊆ R of E is defined as

Ez = {y ∈ R : (z, y) ∈ E}, where z ∈ R
n−1.

Define vE : R
n−1 → R as

vE (z) = μz (Ez) , ∀z ∈ R
n−1.
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Notice that e−|√Ax |2/2 ≤ e−‖(
√
A)−1‖−2|x |2/2 and x �→ e−‖(

√
A)−1‖−2|x |2/2 ∈ L1(Rn). By

Fubini theorem, we have

vE ∈ L1(Rn−1).

The Ehrhard symmetrization of E with respect to the y-direction is defined as

Es := Es
A,−en := {(z, y) ∈ R

n : y < φ−1
z (vE (z))

}
, (4.3)

and the essential projection of E with respect to the y-direction is defined as

π+(E) := π+,A,−en (E) := {z ∈ R
n−1 : vE (z) = μz (Ez) > 0

}
.

We now define

pE (z) = H0
z

[
(∂M E)z

]
.

Roughly speaking, the set π+(E) captures the set in R
n−1 over which the one-dimensional

vertical slices in E havepositivemass.We recall the co-area formula for sets of finite perimeter
(see [10, equation (4.1)]): for any non-negative Borel function g : R

n → [0, ∞], we haveˆ
∂M E

g(x)
∣∣∣νE

n (x)
∣∣∣ dHn−1(x) =

ˆ
R
n−1

ˆ
(∂M E)z

g(z, y) dH0(y) dz, (4.4)

where νE
n means 〈νE , en〉. We also recall the following theorem by Vol’port from [27] (see

also [3, Theorem 3.108], [9, Theorem G], and [10, Theorem 4.2]):

Theorem 4.1 (Vol’pert Theorem) Let E ⊆ R
n be a set of locally finite perimeter with n ≥ 2.

Then there exists a Borel set BE ⊆ π+(E) with Ln−1 (π+(E) \ BE ) = 0 such that for every
z ∈ BE ,

(i) Ez is a set of locally finite perimeter in R;
(ii)

(
∂M E

)
z = ∂M (Ez) = ∂∗ (Ez) = (∂∗E)z;

(iii) νE
n (z, y) �= 0 for every y such that (z, y) ∈ ∂∗E.

We will call BE the Vol’pert set.

In order to understand the Ehrhard symmetrization set Es , our first goal is to analyze the
regularities of the mappings z �→ vE (z) and z �→ φ−1

z (vE (z)). For the isotropic Gaussian
case, the mapping z �→ φ−1(γ1(Ez)) is in BVloc(Rn−1) since z �→ γ1(Ez) is in BV (Rn−1)

and ω �→ φ−1(ω) is C1(R). Here we have used a fact proven by Vol’pert [27] that the
composition of a C1 map with a BV function is again a BV function. In fact, Ambrosio-Dal
Maso [2] showed that this is also true if we compose a BV function with a Lipschitz map.
However, in our setting, the function φ−1

z is also depending on the variable z ∈ R
n−1 which

required a different proof for the regularity of z �→ φ−1
z (vE (z)).

4.2 A regularity result for themap z �→ �−1
z (vE(z))

Our first goal is to show that vE ∈ BV (Rn−1) if E is a set of finite anisotropic Gaussian
perimeter. The proof is similar to Chlebík-Cianchi-Fusco’s paper [9, Lemma 3.1 and Lemma
3.2]. Before doing that, we need the following preliminary result for the integrand e−|√A|2/2.
The cross term ai j xi x j in 〈Ax, x〉 = |√Ax |2 also plays an important role in the calculation.
We will need those estimates throughout this section.
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Lemma 4.2 (Computational lemma) Let n ≥ 2 and let
√
A be a symmetric positive definite

matrix. Then

(1) (Derivative for the integrand)
Let ∇′ = (∂1, . . . , ∂n−1) and x = (z, y). Then

∂zk e
−|√Ax |2/2 = −e−|√Ax |2/2〈rowk(A), x〉, ∂2yy |

√
Ax |2 = 2

n∑

i=1

a2in,

∇′ (e−|√Ax |2/2) = −e−|√Ax |2/2A′x, and ∇
(
e−|√Ax |2/2) = −e−|√Ax |2/2Ax,

where
√
A = (ai j ) and A′ ∈ M(n−1)×n(R) is the first n − 1 rows of matrix from A.

(2) (Regularity estimates)

(a) For any z0 ∈ R
n−1 and for any measurable set F,

lim
z→z0

ˆ
F

(
e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2

)
dy = 0.

In particular, the mapping

v : z �→
ˆ ∞

0
e−|√A(z,y)|2/2 dy is continuous.

(b) For any z ∈ R
n−1 and for any measurable set F,

lim
k→0

ˆ
F

(e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2 − ∇′
(
e−|√A(z,y)|2/2

)
· k

|k|
)
dy = 0.

(4.5)

In particular, the mapping v in (a) is differentiable and

∇′v(z) =
ˆ ∞

0
∇′ (e−|√A(z,y)|2/2) dy.

(c) Let K be a convex compact set in R
n−1 and h ∈ C1(K ). Then for any z0, z ∈ K,

∣∣∣e|√A(z,h(z))|2/2 − e|√A(z0,h(z0))|2/2
∣∣∣ ≤ C(K , h, A) |z − z0|

for some constant C(K , h, A) > 0.

(3) (Integral bounds)

(a) There exists a constant C1(A) > 0 such that

sup
1≤k≤n−1

sup
z∈R

n−1

(ˆ ∞

−∞

∣∣∣∣
∂

∂zk

(
e−|√Ax |2/2)

∣∣∣∣ dy
)

≤ C1(A) < ∞.

(b) There exists a constant C2(A) > 0 such that

sup
1≤k≤n−1

ˆ
R
n

∣∣∣∣
∂

∂zk

(
e−|√Ax |2/2)

∣∣∣∣ dx ≤ C2(A) < ∞.

Proof We will denote x = (z, y) in the following calculations. When we do matrix multipli-
cation, the notation Ax = A(z, y) means

A(z, y)T ∈ Mn×1(R).
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(1) (Derivative for the integrand)
Let A = (Ai j ),

√
A = (ai j ). Then

|√Ax |2 =
n∑

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠

2

=
n∑

i=1

⎛

⎝
n−1∑

j=1

ai j z j + ain y

⎞

⎠

2

,

∂2yy |
√
Ax |2 = ∂y

⎛

⎝
n∑

i=1

2

⎛

⎝
n−1∑

j=1

ai j z j + ain y

⎞

⎠ ain

⎞

⎠ = 2
n∑

i=1

a2in,

and

∂zk |
√
Ax |2 =

n∑

i=1

n−1∑

j=1

2aikai j z j +
n∑

i=1

2aikain y

for k = 1, 2, · · · , n − 1. Since
√
A is symmetric, i.e., aik = aki , we have

∂zk

(
e−|√Ax |2/2) = −e−|√Ax |2/2

⎛

⎝
n∑

i=1

n−1∑

j=1

aikai j z j +
n∑

i=1

aikain y

⎞

⎠

= −e−|√Ax |2/2
⎛

⎝
n−1∑

j=1

Akj z j + Akn y

⎞

⎠ = −e−|√Ax |2/2〈rowk(A), x〉

Therefore,

∇′ (e−|√Ax |2/2) = −e−|√Ax |2/2

⎛

⎜
⎝

〈row1(A), x〉
...

〈rown−1(A), x〉

⎞

⎟
⎠ = −e−|√Ax |2/2A′x

and ∇
(
e−|√Ax |2/2

)
= −e−|√Ax |2/2Ax .

(2) (Regularity estimates)

(a) Let K be a compact set with z0, z ∈ K . By using (1) and the mean value theorem,
∣∣∣e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2

∣∣∣ ≤ |z − z0|
∣∣∣e−|√A(ζ,y)|2/2A′(ζ, y)

∣∣∣

≤ ∣∣A′(ζ, y)
∣∣ e−‖(

√
A)−1‖−2|y|2/2|z − z0|

≤
√

λmax(A′TA′)
(

|ζ | + |y|
)
e−‖(

√
A)−1‖−2|y|2/2|z − z0|

≤
√

λmax(A′TA′)
(
r(K ) + |y|

)
e−‖(

√
A)−1‖−2|y|2/2|z − z0| (4.6)

where ζ lies between z and z0, λmax(A′TA′) is the largest eigenvalue of A′TA′, and
r(K ) = sup

ζ∈K
|ζ |. We now claim that

lim
z→z0

ˆ
F
e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2dy = 0.
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Since z → z0, we may assume that z ∈ K := B(z0, 1). Thus, as z → z0,ˆ
F

∣∣∣e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2
∣∣∣ dy

≤
ˆ
F

√
λmax(A′TA′)

(
r(K ) + |y|

)
e−‖(

√
A)−1‖−2|y|2/2|z − z0| dy

= |z − z0|
√

λmax(A′TA′)
ˆ
F

(
r(K ) + |y|

)
e−‖(

√
A)−1‖−2|y|2/2dy → 0.

(b) By Taylor expansion, if f ∈ C1(Rn−1) and x1, x2 ∈ R
n−1,

f (x2) = f (x1) + 〈∇′ f (x1), x2 − x1〉

+
ˆ 1

0
〈∇′ f (x1 + t(x2 − x1)) − ∇′ f (x1), x2 − x1〉 dt

(see, for example, [13, Theorem 1.14]). Fix y ∈ R, k ∈ R
n−1, and set

f (z) = e−|√A(z,y)|2/2.

Let K be a convex compact set with z, z + k ∈ K . Then by a similar argument as
(4.6),
∣∣∣e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2 − ∇′ (e−|√A(z,y)|2/2) · k

∣∣∣

=
∣∣∣∣

ˆ 1

0

(
−e−|√A(z+tk,y)|2/2A′(z + tk, y) + e−|√A(z,y)|2/2A′(z, y)

)
· k dt

∣∣∣∣

≤
ˆ 1

0

∣∣∣
(

−e−|√A(z+tk,y)|2/2A′(z + tk, y) + e−|√A(z+tk,y)|2/2A′(z, y)
)

· k
∣∣∣ dt

+
ˆ 1

0

∣∣∣
(

−e−|√A(z+tk,y)|2/2A′(z, y) + e−|√A(z,y)|2/2A′(z, y)
)

· k
∣∣∣ dt

≤ 1

2
|k|2e−‖(

√
A)−1‖−2|y|2/2√λmax(A′TA′)

+ 1

2
|k|2e−‖(

√
A)−1‖−2|y|2/2λmax(A

′TA′)
(
r(K ) + |y|

)
(|z| + |y|)

where z + tk ∈ K since K is convex. In particular, for any z ∈ R
n−1 and for any

measurable set F , we have the following

lim
k→0

ˆ
F

(e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2 − ∇′
(
e−|√A(z,y)|2/2

)
· k

|k|
)
dy = 0.

(c) Recall that
∣∣ex − 1

∣∣ ≤ e|x | − 1 ≤ |x |e|x | for all x ∈ R.

Then by h ∈ C1(K ), the convexity of K , and a similar argument as (4.6),
∣∣∣e|√A(z,h(z))|2/2 − e|√A(z0,h(z0))|2/2

∣∣∣

= e
|√A(z0,h(z0))|2

2

∣∣∣∣e
|√A(z,h(z))|2−|√A(z0,h(z0))|2

2 − 1

∣∣∣∣
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≤ e
|√A(z0,h(z0))|2

2

∣∣∣∣∣
|√A(z, h(z))|2 − |√A(z0, h(z0))|2

2

∣∣∣∣∣
e

∣∣∣∣
|√A(z,h(z))|2−|√A(z0,h(z0))|2

2

∣∣∣∣

≤ C(K , h, A)|z − z0|
for some constant C(K , h, A) > 0.

(3) (Integral bounds)
We will only prove (3)(a) since the proof of (3)(b) is similar. By (1), we have

∣∣∣∣
∂

∂zk

(
e−|√Ax |2/2)

∣∣∣∣ =
∣∣∣e−|√Ax |2/2〈rowk(A), x〉

∣∣∣ =
∣∣∣e−|√Ax |2/2〈ATek, x〉

∣∣∣

≤ e−|√Ax |2/2‖A‖|x | ≤ ‖A‖e−‖(
√
A)−1‖−2|x |2/2|x |

≤ ‖A‖e−‖(
√
A)−1‖−2|z|2/2e−‖(

√
A)−1‖−2|y|2/2 (|z| + |y|) .

Hence,ˆ ∞

−∞

∣∣∣∣
∂

∂zk

(
e−|√Ax |2/2)

∣∣∣∣ dy ≤ ‖A‖e−‖(
√
A)−1‖−2|z|2/2|z|

ˆ ∞

−∞
e−‖(

√
A)−1‖−2|y|2/2dy

+ ‖A‖e−‖(
√
A)−1‖−2|z|2/2

ˆ ∞

−∞
e−‖(

√
A)−1‖−2|y|2/2|y|dy.

Therefore, there exists a constant C1(A) > 0 such that

sup
1≤k≤n−1

sup
z∈R

n−1

(ˆ ∞

−∞

∣∣∣∣
∂

∂zk

(
e−|√Ax |2/2)

∣∣∣∣ dy
)

≤ C1(A) < ∞.

��
We are now ready to show that vE is in BV (Rn−1). Moreover, we prove a relation between

|DvE | and PγA (E; · × R) and a weak derivative formula for DivE . These two ingredients
play an important role in proving our main result (see Theorem 4.10).

Lemma 4.3 (Regularity of vE and its distributional derivative formula) Let n ≥ 2 and let
E be a set of finite anisotropic Gaussian perimeter in R

n. Then vE ∈ BV
(
R
n−1), i.e.,

|DvE |(Rn−1) < ∞, and

det
√
A

(2π)(n−1)/2
|DvE |(G) ≤ PγA (E;G × R) + det

√
A

(2π)(n−1)/2

ˆ
G

∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣ dz

for every open set G ⊆ R
n−1. Moreover, let DivE (z) := dDivE BE

dLn−1 BE
(z),

DivE (z) =
ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣dH

0
z (y) +

ˆ
Ez

∂

∂xi

(
e−|√Ax |2/2) dy for i = 1, 2, . . . , n − 1,

for Ln−1-a.e. z ∈ BE , where BE is the set appearing in Vol’pert Theorem.

Proof Since vE ∈ L1(Rn−1), our goal is to show that vE ∈ BV (Rn−1).
Step 1: Let ϕ ∈ C1

c

(
R
n−1) and ψ j ∈ C1

c (R) with 0 ≤ ψ j (y) ≤ 1 for y ∈ R, j ∈ N, and
such that lim j→∞ ψ j (y) = 1 for every y ∈ R. For any i = 1, . . . , n − 1, by the dominated
convergence theorem,
ˆ

R
n−1

∂ϕ

∂zi
(z) vE (z) dz =

ˆ
R
n−1

∂ϕ

∂zi
(z)

ˆ
Ez

e−|√Ax |2/2dy dz
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=
ˆ

R
n−1

(ˆ
R

∂ϕ

∂zi
(z) χE (z, y) e−|√Ax |2/2dy

)
dz

= lim
j→∞

ˆ
R
n

∂ϕ

∂zi
(z) ψ j (y)χE (z, y) e−|√Ax |2/2dzdy (insert lim j ψ j = 1)

= lim
j→∞

{ˆ
R
n
div
(
ϕ (z) ψ j (y)e

−|√Ax |2/2ei
)

χE (z, y) dzdy

−
ˆ

R
n

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y)χE (z, y) dydz

}

= lim
j→∞

{ˆ
E
div
(
ϕ (z) ψ j (y)e

−|√Ax |2/2ei
)
dzdy −

ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y) dydz

}

= − lim
j→∞

{ˆ
∂∗E

ϕ (z) ψ j (y)e
−|√Ax |2/2ei · νE dHn−1(z, y)

+
ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y) dydz

}

= − lim
j→∞

{ˆ
R
n
ϕ (z) ψ j (y)e

−|√Ax |2/2dDiχE

+
ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y) dydz

}
(by (2.3))

= −
ˆ

R
n
ϕ (z) e−|√Ax |2/2dDiχE −

ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z) dydz.

(a) Notice that for |ϕ| ≤ 1,ˆ
R
n

(−ϕ (z) ψ j (y)
)
e−|√Ax |2/2dDiχE ≤

ˆ
∂∗E

e−|√Ax |2/2 dHn−1(x) = PγA (E),

and hence

− lim
j→∞

ˆ
R
n
ϕ (z) ψ j (y)e

−|√Ax |2/2dDiχE ≤ PγA (E) < ∞.

(b) By Lemma 4.2, there exists a constant C > 0 such that

−
ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y) dydz ≤

ˆ
R
n

∣∣∣∣
∂

∂zi

(
e−|√Ax |2/2)

∣∣∣∣ dydz ≤ C

and hence

− lim
j→∞

ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z)ψ j (y) dydz ≤ C < ∞.

Taking the sup over ϕ ∈ C1
c

(
R
n−1) with |ϕ| ≤ 1, (a), and (b), we conclude that vE ∈

BV
(
R
n−1) since for any vector function ϕ = (ϕ1, .., ϕn−1) ∈ C1

c

(
R
n−1; R

n−1) with |ϕ| ≤
1, the above argument works for each ϕi , i = 1, . . . , n − 1. Moreover, we haveˆ

R
n−1

ϕ(z) dDivE (z) =
ˆ

R
n
ϕ (z) e−|√Ax |2/2dDiχE +

ˆ
E

∂

∂zi

(
e−|√Ax |2/2)ϕ(z) dydz

(4.7)
for every ϕ ∈ C1

c (R
n−1).

Now we consider η = (η1, . . . , ηn−1) ∈ C1
c (G; R

n−1) with |η| ≤ 1, where G is open in
R
n−1. By an approximation argument, we may set ϕ in (4.7) as

ϕ(z) = ηi (z)χG(z).
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That is, for i = 1, . . . , n − 1,
ˆ
G

ηi (z) dDivE (z) =
ˆ
G×R

e−|√Ax |2/2ηi (z) dDiχE (x)

+
ˆ
E∩(G×R)

∂

∂zi

(
e−|√Ax |2/2) ηi (z) dydz.

Therefore,
ˆ
G

η(z) · dDvE (z) =
ˆ
G×R

e−|√Ax |2/2η(z) · d (D1χE , D2χE , . . . , Dn−1χE ) (x)

+
ˆ
E∩(G×R)

η(z) · ∇′ (e−|√Ax |2/2) dydz (4.8)

for any η ∈ C1
c (G; R

n−1) with |η| ≤ 1. Let ψ j ∈ C1
c (R) with 0 ≤ ψ j (y) ≤ 1 for y ∈ R,

j ∈ N, and such that lim j→∞ ψ j (y) = 1 for every y ∈ R. By the dominated convergence
theorem and Proposition 2.6,

ˆ
G

η(z) · dDvE (z) −
ˆ
E∩(G×R)

η(z) · ∇′ (e−|√Ax |2/2) dydz

= lim
j→∞

ˆ
G×R

e−|√Ax |2/2 (η(z)ψ j (y)
) · d (D1χE , D2χE , . . . , Dn−1χE ) (x)

≤ sup

{ˆ
G×R

e−|√Ax |2/2η̃(x) · d (D1χE , D2χE , . . . , Dn−1χE ) (x)

: η̃ ∈ Cc(G × R; R
n−1), |η̃| ≤ 1

}

=
ˆ
G×R

e−|√Ax |2/2 d |(D1χE , D2χE , . . . , Dn−1χE )| (x)

≤
ˆ
G×R

e−|√Ax |2/2 d |DχE | (x) =
ˆ
G×R

e−|√Ax |2/2 dHn−1 ∂∗E(x)

= (2π)(n−1)/2

det
√
A

PγA (E;G × R).

Thus,
ˆ
G

η(z) · dDvE (z) ≤ (2π)(n−1)/2

det
√
A

PγA (E;G × R) +
ˆ
E∩(G×R)

η(z) · ∇′ (e−|√Ax |2/2) dydz

= (2π)(n−1)/2

det
√
A

PγA (E;G × R) +
ˆ
G

η(z) ·
ˆ
Ez

∇′ (e−|√Ax |2/2) dy dz

≤ (2π)(n−1)/2

det
√
A

PγA (E;G × R) +
ˆ
G

∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy

∣∣∣∣ dz.

Taking the sup over η on both sides, we have

|DvE |(G) ≤ (2π)(n−1)/2

det
√
A

PγA (E;G × R) +
ˆ
G

∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy

∣∣∣∣ dz

for every open set G ⊆ R
n−1.

123



The anisotropic Gaussian isoperimetric inequality and Ehrhard… Page 31 of 73 211

Step 2: Let BE be the set given by Vol’pert (Theorem 4.1). Applying equation (2.1), we have

νE
i (z, y)
∣∣νE

n (z, y)
∣∣ = lim

r→0

DiχE (Br (z, y))

|DnχE | (Br (z, y))
,

for every z ∈ BE and every y such that (z, y) ∈ ∂∗E . By the Besicovitch differentiation
theorem,

DiχE (BE × R) = νE
i∣∣νE
n

∣∣ |DnχE | (BE × R) .

Now, let g be any function in Cc
(
R
n−1). We can set ϕ (z) = g (z) χBE (z) in (4.7) since we

can first approximate opens sets then Borel sets. Therefore,ˆ
BE

g (z) dDivE =
ˆ
BE×R

g (z) e−|√Ax |2/2dDiχE (x)

+
ˆ
E∩(BE×R)

∂

∂zi

(
e−|√Ax |2/2) g(z) dydz

=
ˆ
BE×R

νE
i (z, y)
∣∣νE

n (z, y)
∣∣g (z) e−|√Ax |2/2d |DnχE |

+
ˆ
BE

g(z)

(ˆ
Ez

∂

∂zi

(
e−|√Ax |2/2) dy

)
dz. (4.9)

Moreover, by |DnχE | = |νE
n |Hn−1 ∂∗E and co-area formula (4.4),

ˆ
BE×R

νE
i (z, y)
∣∣νE

n (z, y)
∣∣g (z) e−|√Ax |2/2d |DnχE |

=
ˆ

∂∗E∩(BE×R)

g (z) e−|√Ax |2/2νE
i (z, y) dHn−1

=
ˆ
BE

g (z)
ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣e

−|√Ax |2/2dH0(y) dz

=
ˆ
BE

g (z)
ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣ dH

0
z (y) dz (4.10)

(see (4.1) for the definition ofH0
z ). Combining (4.9) and (4.10) together,

ˆ
BE

g (z) dDivE =
ˆ
BE

g (z)

(ˆ
(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣ dH

0
z (y) +

ˆ
Ez

∂

∂zi

(
e−|√Ax |2/2) dy

)
dz.

Since g is arbitrary, we have

DivE BE =
(ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣ dH

0
z (y) +

ˆ
Ez

∂

∂zi

(
e−|√Ax |2/2) dy

)

Ln−1 BE .

That is,

DivE (z) =
ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣ dH

0
z (y) +

ˆ
Ez

∂

∂zi

(
e−|√Ax |2/2) dy, (4.11)

for Ln−1-a.e. z ∈ BE . ��
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With Lemma 4.2 in hand, we first show that h : z �→ φ−1
z (vE (z)) is C1 when vE is C1.

The key idea is to use the integral equation (4.12) and the lower bound estimate of e−|√Ax |2/2.
We will prove the general case of vE in Theorem 4.5.

Lemma 4.4 (Regularity Estimates for the map z �→ φ−1
z (v(z))) Let x = (z, y) ∈ R

n−1 × R

and

φz(t) =
ˆ t

−∞
e−|√Ax |2/2dy.

Let � be an open set in R
n−1 and v ∈ C1(�) with 0 < v < g, where g(z) = φz(∞). Then

the map h : z �→ φ−1
z (v(z)) is also C1(�), and for all z ∈ �, we have

∇′h(z) = e
|√A(z,h(z))|2

2

(

∇′v(z) −
ˆ h(z)

−∞
∇′ (e−|√A(z,y)|2/2) dy

)

.

Moreover, if we assume that ∇′v is locally Lipschitz on �. Then

z �→ ∇′h(z) is also locally Lipschitz on �.

Proof Since h(z) = φ−1
z (v(z)), i.e., φz(h(z)) = v(z), we have

ˆ h(z)

−∞
e−|√A(z,y)|2/2dy = v(z). (4.12)

Step 1: Assume that v ∈ C0(�). We first show that h ∈ C0(�). For any z0 ∈ �,

v(z) − v(z0) =
ˆ h(z)

−∞
e−|√A(z,y)|2/2dy −

ˆ h(z0)

−∞
e−|√A(z0,y)|2/2dy

=
ˆ h(z)

−∞
e−|√A(z,y)|2/2dy −

ˆ h(z0)

−∞
e−|√A(z,y)|2/2dy +

ˆ h(z0)

−∞
e−|√A(z,y)|2/2dy

−
ˆ h(z0)

−∞
e−|√A(z0,y)|2/2dy

=
ˆ h(z)

h(z0)
e−|√A(z,y)|2/2dy +

ˆ h(z0)

−∞
e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2dy.

By Lemma 4.2 (2)(a) and v ∈ C0(�), as z → z0 in �,

lim
z→z0

ˆ h(z)

h(z0)
e−|√A(z,y)|2/2dy = 0

Now we claim that

h(z) → h(z0) as z → z0.

Suppose not, there exists ε0 > 0 and a sequence zk → z0 in � such that

|h(zk) − h(z0)| ≥ ε0.

Then there exists a subsequence zkn such that

(1) h(zkn ) ≥ h(z0) for all n, or (2) h(zkn ) < h(z0) for all n.
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We will only prove (1) since the proof of (2) is similar. For (1), we have

|h(zkn ) − h(z0)| ≥ ε0 �⇒ h(zkn ) ≥ h(z0) + ε0.

Hence, by Lemma 4.2 (1)(a),

ˆ h(zkn )

h(z0)
e−|√A(z,y)|2/2dy ≥ e−‖√

A‖2|zkn |2/2
ˆ h(zkn )

h(z0)
e−‖√

A‖2|y|2/2dy

≥ e−‖√
A‖2|zkn |2/2

ˆ h(z0)+ε0

h(z0)
e−‖√

A‖2|y|2/2dy.

Taking n → ∞,

0 = lim
n→∞

ˆ h(zkn )

h(z0)
e−|√A(z,y)|2/2dy ≥ lim

n→∞ e−‖√
A‖2|zkn |2/2

ˆ h(z0)+ε0

h(z0)
e−‖√

A‖2|y|2/2dy

≥ e−‖√
A‖2|z0|2/2

ˆ h(z0)+ε0

h(z0)
e−‖√

A‖2|y|2/2dy > 0.

This gives us a contradiction. Therefore, h ∈ C0(�).
Step 2: Now we assume that v ∈ C1(�). Our goal is to show that h ∈ C1(�).
Define

�(z) = e
|√A(z,h(z))|2

2

(

∇′v(z) −
ˆ h(z)

−∞
∇′ (e−|√A(z,y)|2/2) dy

)

.

We show that h is differentiable and

∇′h(z) = �(z).

Using the mean value theorem, we have

1

|k|
{
v(z + k) − v(z) − ∇′v(z) · k}

= 1

|k|
{ˆ h(z+k)

−∞
e−|√A(z+k,y)|2/2dy −

ˆ h(z)

−∞
e−|√A(z,y)|2/2dy − ∇′v(z) · k

}

= 1

|k|
{ˆ h(z+k)

h(z)
e−|√A(z+k,y)|2/2dy +

ˆ h(z)

−∞

(
e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2) dy − ∇′v(z) · k

}

= 1

|k|
{

(h(z + k) − h(z)) e−|√A(z+k,y(k))|2/2

+
ˆ h(z)

−∞

(
e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2) dy − ∇′v(z) · k

}

= e−|√A(z+k,y(k))|2/2 1

|k|
(
h(z + k) − h(z) − �(z) · k

)
+ 1

|k| e
−|√A(z+k,y(k))|2/2�(z) · k

+ 1

|k|
{ˆ h(z)

−∞

(
e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2) dy − ∇′v(z) · k

}

where y(k) lies between h(z) and h(z + k), and the continuity of h (Step 1) implies that

|y(k) − h(z)| ≤ |h(z + k) − h(z)| �⇒ y(k) → h(z) as k → 0.
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By using the definition of �(z) and (4.5), we have

h(z + k) − h(z) − �(z) · k
|k| = e|√A(z+k,y(k))|2/2

(
v(z + k) − v(z) − ∇′v(z) · k

|k|
)

− 1

|k|�(z) · k

− e|√A(z+k,y(k))|2/2 1

|k|
{ ˆ h(z)

−∞

(
e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2) dy − ∇′v(z) · k

}

= e|√A(z+k,y(k))|2/2
(

v(z + k) − v(z) − ∇′v(z) · k
|k|

)
− 1

|k|e
|√A(z,h(z))|2/2∇′v(z) · k

+ 1

|k|e
|√A(z,h(z))|2/2

ˆ h(z)

−∞
∇′ (e−|√Ax |2/2) dy · k

− e|√A(z+k,y(k))|2/2 1

|k|
{ ˆ h(z)

−∞

(
e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2) dy − ∇′v(z) · k

}

= e|√A(z+k,y(k))|2/2
(

v(z + k) − v(z) − ∇′v(z) · k
|k|

)

+ 1

|k|
(
e|√A(z+k,y(k))|2/2 − e|√A(z,h(z))|2/2)∇′v(z) · k

− e|√A(z+k,y(k))|2/2
ˆ h(z)

−∞

(e−|√A(z+k,y)|2/2 − e−|√A(z,y)|2/2 − ∇′
(
e−|√Ax |2/2

)
· k

|k|
)
dy

−
(
e|√A(z+k,y(k))|2/2 − e|√A(z,h(z))|2/2) 1

|k|
ˆ h(z)

−∞
∇′ (e−|√Ax |2/2) dy · k → 0

as k → 0. Therefore, h is differentiable and

∇′h(z) = e
|√A(z,h(z))|2

2

(

∇′v(z) −
ˆ h(z)

−∞
∇′ (e−|√A(z,y)|2/2) dy

)

.

Now we claim that ∇′h ∈ C0(�). Since ∇′v ∈ C0(�) and h ∈ C0(�), we just need to show
that

z �→
ˆ h(z)

−∞
∇′ (e−|√A(z,y)|2/2) dy is in C0(�). (4.13)

Without loss of generality, we may assume that |z − z0| ≤ 1 and let K = B(z0, 1).ˆ h(z)

−∞
∇′ (e−|√A(z,y)|2/2) dy −

ˆ h(z0)

−∞
∇′ (e−|√A(z,y)|2/2)

∣∣∣
z=z0

dy

= −
ˆ h(z)

−∞
e−|√Ax |2/2A′(z, y) dy +

ˆ h(z0)

−∞
e−|√A(z0,y)|2/2A′(z0, y) dy

= −A′
(ˆ h(z)

−∞
e−|√A(z,y)|2/2(z, y) dy −

ˆ h(z0)

−∞
e−|√A(z0,y)|2/2(z0, y) dy

)

= −A′
[(ˆ h(z)

−∞
e−|√A(z,y)|2/2(z, y) dy −

ˆ h(z0)

−∞
e−|√A(z,y)|2/2(z, y) dy

)

+
(ˆ h(z0)

−∞
e−|√A(z,y)|2/2(z, y) dy −

ˆ h(z0)

−∞
e−|√A(z0,y)|2/2(z0, y) dy

)]
:= (I) + (II).

(4.14)
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(i) We first estimate (II).
∣∣∣∣∣

ˆ h(z0)

−∞
e−|√A(z,y)|2/2A′(z, y) dy −

ˆ h(z0)

−∞
e−|√A(z0,y)|2/2A′(z0, y) dy

∣∣∣∣∣

≤
ˆ h(z0)

−∞

∣∣∣e−|√A(z,y)|2/2 − e−|√A(z0,y)|2/2
∣∣∣
∣∣A′(z, y)

∣∣ dy

+
ˆ h(z0)

−∞
e−|√A(z0,y)|2/2 ∣∣A′(z − z0, 0)

∣∣ dy

≤ λmax(A
′TA′)

ˆ ∞

−∞

(
r(K ) + |y|

)2
e−‖(

√
A)−1‖−2|y|2/2|z − z0|dy

+
√

λmax(A′TA′)
ˆ ∞

−∞
e−‖(

√
A)−1‖−2|y|2/2 |z − z0| dy

= C(K , A) |z − z0|
where we have used (4.6) and recall that r(K ) = supζ∈K |ζ |.
(ii) We now estimate (I). By the mean value theorem,
∣∣∣∣∣

ˆ h(z)

h(z0)
e−|√A(z,y)|2/2(z, y) dy

∣∣∣∣∣
=
∣∣∣∣∣

(ˆ h(z)

h(z0)
e−|√A(z,y)|2/2z dy,

ˆ h(z)

h(z0)
e−|√A(z,y)|2/2y dy

)∣∣∣∣∣

≤
∣∣∣∣∣

ˆ h(z)

h(z0)
e−|√A(z,y)|2/2z dy

∣∣∣∣∣
+
∣∣∣∣∣

ˆ h(z)

h(z0)
e−|√A(z,y)|2/2y dy

∣∣∣∣∣

=
∣∣∣e−|√A(z,yz)|2/2z

∣∣∣ |h(z) − h(z0)|
+
∣∣∣e−|√A(z,ỹz)|2/2 ỹz

∣∣∣ |h(z) − h(z0)| → 0 (4.15)

where yz and ỹz lies between h(z) and h(z0), and by the continuity of h, yz, ỹz → h(z0) as
z → z0. Thus, (I) → 0 and (II) → 0. Therefore, h ∈ C1(�).

Step 3: Finally, we claim that if ∇′v is locally Lipschitz on �,

∇′h is also locally Lipschitz on �.

By Lemma 4.2 (2)(c), we just need to show that (4.13) is locally Lipschitz on �. Let z∗ ∈ �.
Since � is open, there exists B(z∗, r) ⊂ � s.t. B(z∗, r) ⊂ �. Then K := B(z∗, r) is a
convex compact set. Thanks to the estimates in Step 2, we are left to estimate (4.15) with
z, z0 ∈ B(z∗, r) ⊂ K . Since h ∈ C1(�) and |ỹz | ≤ ‖h‖L∞(K ),

(4.15) ≤ r(K )‖∇h‖L∞(K )|z − z0| + ‖h‖L∞(K )‖∇h‖L∞(K )|z − z0|,
i.e., (4.13) is Lipschitz on B(z∗, r). ��

By Lemma 4.3, we know that vE ∈ BV (Rn−1). Now we are ready to show that h(z) =
φ−1
z (vE (z)) is Ln−1-measurable and Es is a set of locally finite perimeter in R

n . The key
idea is to approximate vE ∈ BV (Rn−1) by C1 functions. Then we can apply Lemma 4.4 on
each C1 function.

Theorem 4.5 (Approximation theorem for the map z �→ φ−1
z (vE (z))) Let n ≥ 2 and let E

be a set of finite A-anisotropic Gaussian perimeter in R
n. Define h : R

n−1 → [−∞, ∞] as
h(z) = φ−1

z (vE (z)) and let g(z) = φz(∞). Then
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(1) for any bounded open set � ⊂ R
n−1 with smooth boundary, there exists a sequence of

functions vk ∈ C1(�) with 0 < vk < g, such that vk → vE in L1(�) and a.e. in �,

Dvk
∗
⇀DvE in �, and

lim sup
k→∞

ˆ
�

|∇′vk | dz ≤ |DvE |(�) + 2
ˆ

�

( |∇′g|
g

)
vE dz.

Moreover,

hk → h a.e. in �, χFk → χEs a.e. in � × R

where hk(z) := φ−1
z (vk(z)) and

Fk := {(z, y) ∈ � × R : y < hk(z) := φ−1
z (vk(z))

}
.

In particular, h is Ln−1-measurable and the set Es is Ln-measurable.
(2) Es = Es

A,−en
is a set of locally finite perimeter in R

n.

Proof (1) Step 1: Since E is a set of finite anisotropic Gaussian perimeter, according to
Lemma 4.3, vE ∈ BV (Rn−1). Let g(z) = φz(∞) > 0 (see definition (4.2)) and define

φ̃z(t) = 1

g(z)
φz(t), ṽE (z) = 1

g(z)
vE (z).

Notice that 0 ≤ ṽE (z) ≤ 1 and φ̃−1
z : (0, 1) → R. By Lemma 4.2 (2) and the estimates in

(5.1), g ∈ C1(Rn−1). Therefore, 1
g ∈ C1(Rn−1) since ∇′( 1g ) = − ∇′g

g2
∈ C0 and g > 0. In

particular, both g and 1
g are locally Lipschitz on R

n−1. Thus, ṽE = 1
g vE ∈ BVloc(Rn−1) and

DvE = D(gṽE ) = gDṽE + (∇′g)̃vELn−1 (4.16)

(see [3, Proposition 3.2]). Let� be a bounded open smooth set inR
n−1.Wehave ṽE ∈ BV (�)

and 0 ≤ ṽE ≤ 1. Hence there exists a sequence of functions ṽk ∈ C1(�) ∩ BV (�) with

0 < ṽk < 1, such that ṽk → ṽE in L1(�) and a.e. in �, Dṽk
∗
⇀DṽE in �, and

lim
k→∞

ˆ
�

∣∣∇′ṽk(z)
∣∣ dz = |DṽE | (�) (4.17)

(see [3, Theorem 3.9 and Proposition 3.13]). Now we let

vk = gṽk, hk = φ̃−1
z (̃vk) = φ−1

z (vk),

where 0 < vk(z) < g(z) = φz(∞) and vk ∈ C1(�)∩ BV (�). In particular, by the definition
of vk and ‖g‖L∞(Rn−1) < ∞, we have vk → vE in L1(�) and a.e. in �. Moreover,

Dvk = D(gṽk) = gDṽk + (∇′g)̃vkLn−1. (4.18)

By (4.16), (4.18), and the fact that ṽk → ṽE in L1(�) and Dṽk
∗
⇀DṽE in �, we obtain

Dvk
∗
⇀DvE in �, (4.19)

|Dvk |(�) ≤ g|Dṽk |(�)+|∇′g|̃vkLn−1(�), and g|DṽE |(�) ≤ |DvE |(�)+|∇′g|̃vELn−1(�).
Applying [3, Theorem 2.39] (Reshetnyak continuity) with the bounded continuous function
g and (4.17),

lim sup
k→∞

ˆ
�

|∇′vk | dz ≤ lim sup
k→∞

ˆ
�

g d|Dṽk | + lim sup
k→∞

ˆ
�

|∇′g|ṽk dz
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=
ˆ

�

g d|DṽE | +
ˆ

�

|∇′g|̃vE dz

≤ |DvE |(�) + 2
ˆ

�

|∇′g|̃vE dz = |DvE |(�) + 2
ˆ

�

|∇′g|vE
g

dz,

where we have used ṽk → ṽE in L1(�) and ‖∇′g‖L∞(Rn−1) < ∞.
Step 2: Since vk → vE a.e. in �, there exists a measure zero set Z ⊂ � such that for any
z ∈ � \ Z , vk(z) → vE (z). Notice that

vk(z) − vE (z) =
ˆ hk(z)

−∞
e−|√A(z,y)|2/2dy −

ˆ h(z)

−∞
e−|√A(z,y)|2/2dy =

ˆ hk (z)

h(z)
e−|√A(z,y)|2/2dy.

As k → ∞, we have

lim
k→∞

ˆ hk (z)

h(z)
e−|√A(z,y)|2/2dy = 0 for any z ∈ � \ Z .

Byusing the same argument as in Lemma4.4 Step 1,we have for any z ∈ �\Z , hk(z) → h(z)
as k → ∞. By Lemma 4.4, hk ∈ C1(�) since vk ∈ C1(�). In particular, hk is Ln−1 �

-measurable on� and hence the limit function h|� is alsoLn−1 � -measurable on�. Since
� is arbitrary, h is also Ln−1-measurable. Next we show that

χFk → χEs a.e. in � × R.

Let �(h) be the graph of h, let Z ′ = (Z × R) ∪ �(h; �) ⊂ � × R, where Z is the measure
zero set from above and �(h; �) is the graph of h over �, i.e.,

�(h; �) = {(z, y) ∈ � × R : y = h(z)} = �(h) ∩ (� × R).

We first check that Ln(Z ′) = 0. Notice that Ln(Z × R) = 0. It is enough to show that
Ln(�(h)) = 0. Since h is Ln−1-measurable, we define

g(z, y) := f2 ◦ f1(z, y) = h(z) − y

where f1 : (z, y) �→ (h(z), y) is Ln-measurable, f2 : (x, y) �→ x − y is continuous. There-
fore, g is also Ln-measurable and hence �(h) = g−1({0}) is Ln-measurable. By Fubini’s
theorem,Ln(�(h)) = 0.Next, for any x = (z, y) ∈ �×R\Z ′, we have z /∈ Z . IfχEs (x) = 1,
then y < h(z) and hence there exists k such that y < hk(z) since hk(z) → h(z). That is,
x = (z, y) ∈ Fk , i.e., χFk (x) = 1 and χFk → χEs . If χEs (x) = 0, then y ≥ h(z). However,
x /∈ �(h; �), so y �= h(z) and there exists k such that y > hk(z). That is, x = (z, y) /∈ Fk ,
i.e., χFk (x) = 0 and χFk → χEs . Therefore, χFk → χEs a.e. in � × R. In particular,
Es = {g > 0} is Ln-measurable.
(2) Nowwe claim that Es is a set of locally finite perimeter inR

n . Since Es isLn-measurable,
we have χEs ∈ L1

loc(R
n). In order to show χEs ∈ BVloc(Rn−1), by Proposition 2.9 and 2.8,

we just need to prove that for any open set V ⊂⊂ R
n ,

sup

{ˆ
Es

div ϕ(x) − 〈ϕ(x), Ax〉 dγA(x) : ϕ ∈ C1
c

(
V ; R

n) , |ϕ| ≤ 1

}
< ∞.

Since V ⊂ R
n is a compact set, there exists an open bounded set � ⊂ R

n−1 such that
V ⊂ � × R. In fact, we claim that

sup

{ˆ
Es

div ϕ(x) − 〈ϕ(x), Ax〉 dγA(x) : ϕ ∈ C1
c

(
� × R; R

n) , |ϕ| ≤ 1

}
< ∞. (4.20)
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For convenience, let ϕz = (ϕ1, ϕ2, . . . , ϕn−1) andˆ
Es

div ϕ − 〈ϕ, Ax〉 dγA(x) =
ˆ
Es

div ϕ + 〈ϕ, ∇(−|√Ax |2/2)〉 dγA(x)

=
n−1∑

i=1

ˆ
Es

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)

+
ˆ
Es

∂ϕn

∂ y
+ ϕn

∂(−|√Ax |2/2)
∂ y

dγA(x)

:= (I) + (II). (4.21)

Step 1: We estimate (I) using approximation of vE byC1(�) functions. Consider ṽ ∈ C1(�)

with 0 < ṽ < g and let ϕ ∈ C1
c (� × R; R

n) such that |ϕ| ≤ 1. Let

F := {x = (z, y) ∈ � × R : y < y(z)}, y(z) = φ−1
z (̃v(z)).

Since y(z) = φ−1
z (̃v(z)), i.e.,

ṽ(z) = φz(y(z)) =
ˆ y(z)

−∞
e−|√Ax |2/2dy,

and by Lemma 4.4, the mapping z �→ y(z) is in C1(�). Hence

∇′ṽ(z) = e− |√A(z,y(z))|2
2 ∇′y(z) +

ˆ y(z)

−∞
∇′ (e−|√Ax |2/2) dy,

∂ṽ

∂zi
= e− |√A(z,y(z))|2

2
∂ y(z)

∂zi
+
ˆ y(z)

−∞
∂

∂zi

(
e−|√A(z,y)|2/2) dy.

We now compute the equivalent of (I).

n−1∑

i=1

ˆ
F

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)

=
n−1∑

i=1

det
√
A

(2π)n/2

ˆ
�

ˆ y(z)

−∞

(
∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

)

e−|√Ax |2/2dy dz

=
n−1∑

i=1

det
√
A

(2π)n/2

ˆ
�

(
∂

∂zi

ˆ y(z)

−∞
ϕi e

−|√Ax |2/2dy − ∂ y(z)

∂zi
ϕi (z, y(z))e

−|√A(z,y(z)|2/2
)

dz

= −
n−1∑

i=1

det
√
A

(2π)n/2

ˆ
�

∂ y(z)

∂zi
ϕi (z, y(z))e

−|√A(z,y(z)|2/2 dz

= −
n−1∑

i=1

det
√
A

(2π)n/2

ˆ
�

ϕi (z, y(z))

(
∂ṽ

∂zi
−
ˆ y(z)

−∞
∂

∂zi

(
e−|√A(z,y)|2/2) dy

)

dz

= − det
√
A

(2π)n/2

(ˆ
�

ϕz(z, y(z)) · ∇′ṽ(z) dz −
ˆ

�

ˆ y(z)

−∞
ϕz(z, y(z)) · ∇′ (e−|√A(z,y)|2/2) dydz

)

(4.22)

where we have used the divergence theorem and ϕ has compact support in � × R.
Now we approximate vE by Theorem 4.5 (1), i.e., there exists a sequence of functions

vk ∈ C1(�) with 0 < vk < g, such that vk → vE in L1(�) and a.e. in �, Dvk
∗
⇀DvE in �,
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and

lim sup
k→∞

ˆ
�

|∇′vk | dz ≤ |DvE |(�) + 2
ˆ

�

( |∇′g|
g

)
vE dz.

Moreover, χFk → χEs a.e. in � × R and hk(z) → h(z) := φ−1
z (vE (z)) a.e. in �, where

Fk := {(z, y) ∈ � × R : y < hk(z) := φ−1
z (vk(z))

}
.

Replacing F as Fk and y(z) as hk(z) in Eq. (4.22), we have the following estimate

(I) =
n−1∑

i=1

ˆ
Es

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)

= lim
k→∞

( n−1∑

i=1

ˆ
Fk

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)
)

= det
√
A

(2π)n/2 lim
k→∞

(ˆ
�

(−ϕz(z, hk(z))) · ∇′vk(z)dz

−
ˆ

� j

ˆ hk (z)

−∞
(−ϕz(z, hk(z))) · ∇′ (e−|√Ax |2/2) dydz

)

≤ det
√
A

(2π)n/2 lim sup
k→∞

ˆ
�

∣∣∇′vk(z)
∣∣ dz

+ det
√
A

(2π)n/2

ˆ
�

ˆ h(z)

−∞
ϕz(z, h(z)) · ∇′ (e−|√Ax |2/2) dydz

≤ det
√
A

(2π)n/2
|DvE | (�) + 2 det

√
A

(2π)n/2

ˆ
�

( |∇′g|
g

)
vE dz

+ det
√
A

(2π)n/2

ˆ
R
n−1

ˆ ∞

−∞

∣∣∣e−|√Ax |2/2A′x
∣∣∣ dydz

≤ det
√
A

(2π)n/2
|DvE | (�) + 2 det

√
A

(2π)n/2

ˆ
�

|∇′g| dz

+ det
√
A

(2π)n/2

ˆ
R
n−1

ˆ ∞

−∞

∣∣∣e−|√Ax |2/2A′x
∣∣∣ dydz

≤ det
√
A

(2π)n/2
|DvE | (�) + 3 det

√
A

(2π)n/2

√
λmax(A′TA′)

ˆ
R
n
e−‖√

A‖−2|x |2/2|x | dx < ∞,

where we have used 0 ≤ vE ≤ g and Lemma 4.2.
Step 2: Now we estimate (II).

(II) =
ˆ
Es

∂ϕn

∂ y
+ ϕn

∂(−|√Ax |2/2)
∂ y

dγA(x) = det
√
A

(2π)n/2

ˆ
Es

∂

∂ y

(
ϕne

−|√A(z,y)|2/2) dx

= det
√
A

(2π)n/2 lim
k→∞

ˆ
Fk

∂

∂ y

(
ϕne

−|√A(z,y)|2/2) dx

= det
√
A

(2π)n/2 lim
k→∞

ˆ
�

ˆ hk (z)

−∞
∂

∂ y

(
ϕne

−|√A(z,y)|2/2) dydz

= det
√
A

(2π)n/2 lim
k→∞

ˆ
�

ϕn(z, hk(z))e
−|√A(z,hk (z))|2/2 dz
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= det
√
A

(2π)n/2

ˆ
�

ϕn(z, h(z))e−|√A(z,h(z))|2/2 dz

≤ det
√
A

(2π)n/2Ln−1(�) < ∞

since ϕ is C1 with compact support, |ϕ| ≤ 1, and recall that hk → h a.e. in � by Theorem
4.4 (1). ��

4.3 Ehrhard symmetrization in 1D and an example in 2D

In this section, we show that the Ehrhard symmetrization preserves the mass under any one-
dimensional slices in the y-direction, and hence it preserves the total mass. Moreover, the
anisotropic Gaussian perimeters of the one-dimensional sections decrease under Ehrhard
symmetrization. Geometrically, we will rearrange the mass in each one-dimensional sec-
tion of E to a half-line with the same mass. The resulting new shape Es is the Ehrhard
symmetrization of E .

Proposition 4.6 Let n ≥ 2 and let E be a set of finite anisotropic Gaussian perimeter in R
n.

(1) (Properties for Es)

vEs (z) = vE (z), μz
(
(Es)z

) = μz (Ez) ,

for all z ∈ R
n−1. Hence π+(Es) = π+(E) and

∇′vE (z) = ∇′vEs (z)

for a.e. z ∈ BE ∩ BEs , where

∇′vE (z) := (D1vE (z), · · · , Dn−1vE (z)) , DivE := dDivE BE

dLn−1 BE
.

Moreover, γA(E) = γA(Es) and

γA(E1�E2) ≥ γA(Es
1�Es

2).

In particular, for any sequence of sets of finite anisotropic Gaussian perimeter Ek with
χEk → χE in L1

(
R
n, γA

)
, we have

χEs
k

→ χEs in L1 (
R
n, γA

)
,

and

PγA (E
s;U ) ≤ lim inf

k→∞ PγA

(
Es
k;U) for any open set U ⊂ R

n .

(2) (Cross terms estimate)
For any z ∈ R

n−1, ˆ
Ez

y dμz(y) ≥
ˆ
Es
z

y dμz(y),

and
∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣
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=
(ˆ

Ez

y dμz(y) −
ˆ
Es
z

y dμz(y)

)

‖Aen − 〈Aen, en〉en‖.

(3) (Ehrhard symmetrization in 1D)
The anisotropic Gaussian perimeter of almost every one-dimensional section in y-
direction decreases under Ehrhard symmetrization, i.e.,

pEs (z) ≤ pE (z),

for all z ∈ BE ∩ BEs , where pE : R
n−1 → [0, ∞] is defined as

pE (z) = H0
z

[
(∂M E)z

]
.

Proof (1) Notice that

(Es)z = {y : y < φ−1
z (vE (z))

} = (− ∞, φ−1
z (vE (z))

)
is a measurable set.

Therefore, for any z ∈ R
n−1,

vEs (z) = μz
(
(Es)z

) = μz
(−∞, φ−1

z (vE (z))
) =

ˆ φ−1
z (vE (z))

−∞
e−|√Ax |2/2 dy

= φz
(
φ−1
z (vE (z))

) = vE (z).

Thus,

π+(E) = {z ∈ R
n−1 : vE (z) > 0} = {z ∈ R

n−1 : vEs (z) > 0} = π+(Es).

Moreover, for any measurable set A,

DivE BE (A) =
ˆ
A
DivE (z) dLn−1 BE (z),

and

DivEs BEs (A) =
ˆ
A
DivEs (z) dLn−1 BEs (z).

Therefore, for any measurable set B ⊂ BE ∩ BEs , setting A = B in the above equations, we
have ˆ

B
DivE (z) dLn−1(z) = DivE (B) = DivEs (B) =

ˆ
B
DivEs (z) dLn−1(z)

where the second equality holds since vE = vEs . By the arbitrariness of B, for a.e. z ∈
BE ∩ BEs ,

DivE (z) = DivEs (z).

By Fubini’s theorem,

γA(E) = | det √
A|

(2π)n/2

ˆ
E
e−|√Ax |2/2 dx = | det √

A|
(2π)n/2

ˆ
R
n−1

ˆ
Ez

e−|√Ax |2/2 dy dz

= | det √
A|

(2π)n/2

ˆ
R
n−1

vE (z) dz = | det √
A|

(2π)n/2

ˆ
R
n−1

vEs (z)dz

= | det √
A|

(2π)n/2

ˆ
R
n−1

ˆ
Es
z

e−|√Ax |2/2 dy dz = γA(Es).
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Similarly, we have

γA(E1�E2) = | det √
A|

(2π)n/2

ˆ
R
n−1

ˆ
(E1�E2)z

e−|√Ax |2/2 dydz

= | det √
A|

(2π)n/2

ˆ
R
n−1

ˆ
(E1)z�(E2)z

e−|√Ax |2/2 dy dz

≥ | det √
A|

(2π)n/2

ˆ
R
n−1

∣∣∣∣

ˆ
(E1)z

e−|√Ax |2/2dy −
ˆ

(E2)z

e−|√Ax |2/2 dy
∣∣∣∣ dz

= | det √
A|

(2π)n/2

ˆ
R
n−1

∣∣vE1(z) − vE2(z)
∣∣ dz

= | det √
A|

(2π)n/2

ˆ
R
n−1

∣∣v(E1)s (z) − v(E2)s (z)
∣∣ dz

= | det √
A|

(2π)n/2

ˆ
R
n−1

ˆ
(Es

1)z�(Es
2)z

e−|√Ax |2/2 dy dz = γA(Es
1�Es

2).

For any sequence of measurable sets Ek with χEk → χE in L1
(
R
n, γA

)
, we have

ˆ
R
n

∣∣∣χEs
k

− χEs

∣∣∣ dγA = γA(Es
k�Es) ≤ γA(Ek�E) =

ˆ
R
n

∣∣χEk − χE
∣∣ dγA → 0.

By Theorem 4.5 and Proposition 2.9, Es
k and Es are sets of locally finite perimeter and hence

PγA (E
s;U ) ≤ lim inf

k→∞ PγA

(
Es
k;U) for any open set U ⊂ R

n .

(2) Notice that

μz(E
s
z \ Ez) + μz(E

s
z ∩ Ez) = μz(E

s
z ) = vEs (z) = vE (z)

= μz(Ez) = μz(Ez \ Es
z ) + μz(Ez ∩ Es

z ).

That is, μz(Es
z \ Ez) = μz(Ez \ Es

z ). Let y(z) = φ−1
z (vE (z)), we have

y − y(z) < 0 if y ∈ Es
z , y − y(z) ≥ 0 if y /∈ Es

z .

Now we are ready to show thatˆ
Es
z

y dμz(y) ≤
ˆ
Ez

y dμz(y).

Notice that
ˆ
Es
z

y dμz(y) −
ˆ
Ez

y dμz(y) =
(ˆ

Es
z \Ez

y dμz(y) +
ˆ
Es
z∩Ez

y dμz(y)

)

−
(ˆ

Ez\Es
z

y dμz(y) +
ˆ
Ez∩Es

z

y dμz(y)

)

=
ˆ
Es
z \Ez

y dμz(y) −
ˆ
Ez\Es

z

y dμz(y)

=
(ˆ

Es
z \Ez

y − y(z) dμz(y) +
ˆ
Es
z \Ez

y(z) dμz(y)

)
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+
(ˆ

Ez\Es
z

y(z) − y dμz(y) −
ˆ
Ez\Es

z

y(z) dμz(y)

)

≤
(ˆ

Es
z \Ez

y(z) dμz(y) −
ˆ
Ez\Es

z

y(z) dμz(y)

)

= y(z)
(
μz(E

s
z \ Ez) − μz(Ez \ Es

z )
)

= 0.

On the other hand, by Lemma 4.2 (1), we have

∂zk

(
e−|√Ax |2/2) = −e−|√Ax |2/2〈rowk(A), x〉,

and hence

ˆ
Ez

∂zk

(
e−|√Ax |2/2) dy = −

ˆ
Ez

e−|√Ax |2/2
⎛

⎝
n−1∑

j=1

Akj z j + Akn y

⎞

⎠ dy

= −
n−1∑

j=1

Akj z jvE (z) − Akn

(ˆ
Ez

y dμz(y)

)
.

Similarly, we have

ˆ
Es
z

∂zk

(
e−|√Ax |2/2) dy = −

n−1∑

j=1

Akj z jvEs (z) − Akn

(ˆ
Es
z

y dμz(y)

)

.

Since vE (z) = vEs (z),
ˆ
Ez

∂zk

(
e−|√Ax |2/2) dy −

ˆ
Es
z

∂zk

(
e−|√Ax |2/2) dy =

(ˆ
Es
z

y dμz(y) −
ˆ
Ez

y dμz(y)

)

Akn.

Therefore,
∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣

=
∣∣∣∣∣

ˆ
Ez

y dμz(y) −
ˆ
Es
z

y dμz(y)

∣∣∣∣∣
‖(A1n, A2n, · · · , A(n−1)n)‖

=
∣∣∣∣∣

ˆ
Ez

y dμz(y) −
ˆ
Es
z

y dμz(y)

∣∣∣∣∣
‖Aen − 〈Aen, en〉en‖

=
(ˆ

Ez

y dμz(y) −
ˆ
Es
z

y dμz(y)

)

‖Aen − 〈Aen, en〉en‖.

(3) In order to work with probability measures, we first normalize our definitions of μz and
φz as

μ̃z(F) := 1

μz(R)
μz(F) =

ˆ
F

1

μz(R)
e−|√A(z,y)|2/2dy and φ̃z(s) := 1

μz(R)

ˆ s

−∞
e−|√A(z,y)|2/2dy.

Notice that

(φ̃z)
−1(μ̃z(F)) = φ−1

z (μz(F)).
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Now we claim that μ̃z is a log-concave measure on R. We just need to show that

log

(
1

μz(R)
e−|√A(z,y)|2/2

)
= − log(μz(R)) − 1

2
|√A(z, y)|2 is a concave function in y.

Applying Lemma 4.2 (1), we have

∂2yy

(
− log(μz(R)) − 1

2
|√A(z, y)|2

)
≤ 0.

Thus, μ̃z is a log-concave measure onR. Let F be a Borel set inRwith p := μ̃z(F) ∈ (0, 1).
Since μ̃z(Fs) = μ̃z(F) = p, and Fs = (−∞, φ−1

z (μz(F))) is a half-line, with the help
of the one-dimensional log-concave isoperimetric inequality (see [6, Proposition 2.1]), we
have

inf
μ̃z(A)≥p

μ̃z(A + Bh) = μ̃z(F
s + Bh)

for all h > 0, where Bh = [−h, h]. In particular, for any Borel set F ⊂ R,

μz(F + Bh) ≥ μz(F
s + Bh) for all h > 0. (4.23)

Let z ∈ BE ∩ BEs , by Vol’pert Theorem (Theorem 4.1), Ez is a set of locally finite perimeter
in R. Moreover, by [23, Lemma 15.12], Ez ∩ (−R, R) is also a set of locally finite perimeter
in R for any R > 0. Applying [23, Proposition 12.13] on Ez ∩ (−R, R), we may assume
that Ez ∩ (−R, R) is a disjoint union of open intervals with positive distance, i.e., ai < bi <

ai+1 < bi+1 for all i and

Ez ∩ (−R, R) =
⋃

i∈SR
(ai , bi ), (4.24)

where SR is a countable set. First we claim that SR is a finite set. By using equation (4.24),

∞ > pE (z) + e−|√A(z,R)|2/2 + e−|√A(z,−R)|2/2 = Pz(Ez) + e−|√A(z,R)|2/2 + e−|√A(z,−R)|2/2

≥ Pz(Ez ∩ (−R, R)) = Pz

⎛

⎝
⋃

i∈SR
(ai , bi )

⎞

⎠ =
∑

i∈SR
Pz ((ai , bi ))

=
∑

i∈SR
e−|√A(z,ai )|2/2 + e−|√A(z,bi )|2/2

≥
∑

i∈SR
e−‖√

A‖2(|z|2+R2)/2 + e−‖√
A‖2(|z|2+R2)/2 ≥ 2e−‖√

A‖2(|z|2+R2)/2|SR |,

i.e., |SR | < ∞, where we have used

|√A(z, ai )|2 ≤ ‖√
A‖2(|z|2 + a2i ) ≤ ‖√

A‖2(|z|2 + R2).

Moreover, by the definition of μz and the fundamental theorem of calculus, for any −∞ ≤
a < b ≤ ∞,

lim
h→0

μz((a, b) + Bh) − μz((a, b))

h
= e−|√A(z,a)|2/2 + e−|√A(z,b)|2/2. (4.25)

Next we claim that

Pz(Ez ∩ (−R, R)) ≥ e−|√A(z,yR(z))|2/2,
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where

yR(z) := φ−1
z

(
μz

((
E ∩ (Rn−1 × (−R, R))

)
z

))
.

Notice that
(
E ∩ (Rn−1 × (−R, R))

)
z = Ez ∩ (−R, R),

(
E ∩ (Rn−1 × (−R, R))

)s
z = (−∞, yR(z)),

μz

((
E ∩ (Rn−1 × (−R, R))

)s
z

)
= μz

((
E ∩ (Rn−1 × (−R, R))

)
z

)
,

yR(z) = φ−1
z

(
μz

(
Ez ∩ (−R, R)

))
→ y(z) := φ−1

z (μz(Ez)), as R → ∞,

and

lim sup
R→∞

Pz(Ez ∩ (−R, R)) ≤ lim sup
R→∞

(
Pz(Ez) + e−|√A(z,R)|2/2 + e−|√A(z,−R)|2/2) = pE (z).

By using equation (4.25), and the fact that the intervals (ai , bi ) are disjoint,

Pz(Ez ∩ (−R, R)) =
∑

i∈SR
e−|√A(z,ai )|2/2 + e−|√A(z,bi )|2/2

=
∑

i∈SR
lim

h→0+
μz((ai , bi ) + Bh) − μz((ai , bi ))

h

= lim
h→0+

∑

i∈SR

μz((ai , bi ) + Bh) − μz((ai , bi ))

h
(SR is finite)

≥ lim
h→0+

1

h

⎛

⎝μz

( ⋃

i∈SR
((ai , bi ) + Bh)

)
− μz

( ⋃

i∈SR
(ai , bi )

)⎞

⎠

≥ lim
h→0+

1

h

(
μz

(
Ez ∩ (−R, R) + Bh

)
− μz

(
Ez ∩ (−R, R)

))

= lim
h→0+

1

h

(
μz

((
E ∩ (Rn−1 × (−R, R))

)
z + Bh

)
− μz

((
E ∩ (Rn−1 × (−R, R))

)
z

))

≥ lim
h→0+

1

h

(
μz

((
E ∩ (Rn−1 × (−R, R))

)s
z + Bh

)
− μz

((
E ∩ (Rn−1 × (−R, R))

)s
z

))

= lim
h→0+

1

h

ˆ yR(z)+h

yR(z)
e−|√A(z,y)|2/2dy = e−|√A(z,yR(z))|2/2

in which we have used (4.23) where F = (
E ∩ (Rn−1 × (−R, R))

)
z in the last inequality.

Taking R → ∞, we have pE (z) ≥ e−|√A(z,y(z))|2/2 = pEs (z). ��

We have seen that the anisotropic Gaussian perimeter of the one-dimensional sec-
tion decreases by Ehrhard symmetrization. Intuitively, this gives us hope that the higher
dimensional anisotropic Gaussian perimeter might also decrease after doing the Ehrhard
symmetrization. However, our next example shows that this is not true in general. The main
idea is to understand the asymptotic behavior of the quantity h(z) = φ−1

z (vE (z)) via the
equation vEs (z) = vE (z).
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Example 4.1 Let n = 2 and

A = 2

[
a b
b c

]
� 0

with b �= 0. Consider

Eα = [−α, α] × (0, ∞).

Then there exists some δ > 0 such that for any 0 < α < δ, we have

PγA (Eα) < PγA (E
s
α)

and

PγA (E
s
α) < PγA (Eα) + √

2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E
s), e2〉.

Proof Notice that both a and c are positive since A is a positive definite matrix. Additionally,
notice that

e−|√A(x,y)|2/2 = e−〈A(x,y),(x,y)〉/2 = e−ax2−2bxy−cy2 .

Let K = [−1, 1] and � be an open set in R
1 such that K ⊂ �. Let E = � × (0, ∞). Then

Ex = (0, ∞)

for all x ∈ �. By Lemma 4.2 (2)(b),

vE (x) =
ˆ
Ex

e−|√A(x,y)|2/2 dy =
ˆ ∞

0
e−ax2−2bxy−cy2 dy is differentiable on �.

By Lemma 4.4, h : x �→ φ−1
x (vE (x)) is also differentiable on �. Notice that

ˆ ∞

0
e−ax2−2bxy−cy2 dy = vE (x) = vEs (x) =

ˆ h(x)

−∞
e−ax2−2bxy−cy2 dy. (4.26)

Setting x = 0 in equation (4.26), we have

vE (0) = vEs (0) �⇒
ˆ ∞

0
e−cy2 dy =

ˆ h(0)

−∞
e−cy2 dy �⇒ h(0) = 0.

Taking derivative on equation (4.26), we also have
ˆ ∞

0
e−ax2−2bxy−cy2(−2ax − 2by)dy = e−ax2−2bxh(x)−ch2(x)h′(x)

+
ˆ h(x)

−∞
e−ax2−2bxy−cy2(−2ax − 2by)dy.

In particular for x = 0,

h′(0) =
ˆ ∞

0
e−cy2(−2by)dy −

ˆ 0

−∞
e−cy2(−2by)dy = −4b

ˆ ∞

0
e−cy2 ydy = −2b

c
.

That is,

h(0) = 0, h′(0) = −2b

c
. (4.27)
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Notice that the Ehrhard symmetrization of Eα has the form

Es
α = {(x, y) : x ∈ [−α, α], y < h(x)} for 0 < α < 1.

We now claim that

PγA (Eα) − PγA (E
s
α) = 2

√
det A√
2π

⎛

⎝1 −
√

1 + 4b2

c2

⎞

⎠α + o(α). (4.28)

By using the Taylor expansion, we have
√
2π√
det A

PγA (Eα) =
ˆ ∞

0
e−aα2−2bαy−cy2 dy +

ˆ ∞

0
e−aα2+2bαy−cy2 dy +

ˆ α

−α

e−ax2 dx

=
(ˆ ∞

0
e−cy2 dy + d

dα

ˆ ∞

0
e−aα2−2bαy−cy2 dy

∣∣∣∣
α=0

α + o(α)

)

+
(ˆ ∞

0
e−cy2 dy + d

dα

ˆ ∞

0
e−aα2+2bαy−cy2 dy

∣∣∣∣
α=0

α + o(α)

)

+ 2
ˆ α

0
e−ax2 dx

=
( √

π

2
√
c

+
(−b

c

)
α + o(α)

)
+
( √

π

2
√
c

+
(
b

c

)
α + o(α)

)
+ (2α + o(α))

=
√

π√
c

+ 2α + o(α).

Moreover, by (4.27), we have
√
2π√
det A

PγA (E
s
α) =

ˆ h(α)

−∞
e−aα2−2bαy−cy2 dy +

ˆ h(−α)

−∞
e−aα2+2bαy−cy2 dy

+
ˆ α

−α

e−at2−2bth(t)−ch2(t)
√
1 + h′(t)2 dt

=
(ˆ h(0)

−∞
e−cy2 dy + d

dα

ˆ h(α)

−∞
e−aα2−2bαy−cy2 dy

∣∣∣∣
α=0

α + o(α)

)

+
(ˆ h(0)

−∞
e−cy2 dy + d

dα

ˆ h(−α)

−∞
e−aα2+2bαy−cy2 dy

∣∣∣∣
α=0

α + o(α)

)

+
(

d

dα

ˆ α

−α

e−at2−2bth(t)−ch2(t)
√
1 + h′(t)2 dt

∣∣∣∣
α=0

α + o(α)

)

=
( √

π

2
√
c

+ α

[
−2b

c
+ b

c

]
+ o(α)

)
+
( √

π

2
√
c

+ α

[
2b

c
− b

c

]
+ o(α)

)

+
⎛

⎝2α

√

1 + 4b2

c2
+ o(α)

⎞

⎠

=
√

π√
c

+ 2α

√

1 + 4b2

c2
+ o(α),

where the third term is the anisotropic Gaussian perimeter of the graph of h. Therefore,

PγA (Eα) − PγA (E
s
α) = 2

√
det A√
2π

⎛

⎝1 −
√

1 + 4b2

c2

⎞

⎠α + o(α).
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Next we show that

√
2π‖Ae2 − 〈Ae2, e2〉en‖〈bγA (E) − bγA (E

s), e2〉 =
√
det A√
2π

2

(
2b

c

)
α + o(α). (4.29)

Notice that

‖Ae2 − 〈Ae2, e2〉e2‖ = 2|b|.
Now we compute the barycenter of Eα and Es

α , i.e.,

bγA (Eα) =
√
det A

2π

ˆ α

−α

ˆ ∞

0
(x, y)e−|√A(x,y)|2/2dydx,

and

bγA (E
s
α) =

√
det A

2π

ˆ α

−α

ˆ h(x)

−∞
(x, y)e−|√A(x,y)|2/2dydx .

Then

bγA (Eα) − bγA (E
s
α) =

√
det A

2π

ˆ α

−α

(ˆ ∞

0
(x, y)e−|√A(x,y)|2/2dy

−
ˆ h(x)

−∞
(x, y)e−|√A(x,y)|2/2dy

)

dx

and hence

〈bγA (Eα) − bγA (E
s
α), e2〉

=
√
det A

2π

ˆ α

−α

(ˆ ∞

0
ye−|√A(x,y)|2/2dy −

ˆ h(x)

−∞
ye−|√A(x,y)|2/2dy

)

dx

=
√
det A

2π

[
d

dα

ˆ α

−α

(ˆ ∞

0
ye−|√A(x,y)|2/2dy

−
ˆ h(x)

−∞
ye−|√A(x,y)|2/2dy

)

dx

∣∣∣∣
α=0

α + o(α)

]

=
√
det A

2π

[
2

(ˆ ∞

0
ye−|√A(0,y)|2/2dy

−
ˆ h(0)

−∞
ye−|√A(0,y)|2/2dy

)

α + o(α)

]

=
√
det A

2π

[
4

(ˆ ∞

0
ye−cy2dy

)
α + o(α)

]
=

√
det A

2π

(
2

c

)
α + o(α).

Thus,

√
2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E

s), e2〉 = 2

√
det A√
2π

(
2|b|
c

)
α + o(α).

Thanks to (4.28) and (4.29), we have

lim
α→0+

PγA (Eα) − PγA (E
s
α)

α
= 2

√
det A√
2π

⎛

⎝1 −
√

1 + 4b2

c2

⎞

⎠ < 0
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and

lim
α→0+

√
2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E

s), e2〉 + PγA (Eα) − PγA (E
s
α)

α

= 2

√
det A√
2π

⎛

⎝
(
1 + 2|b|

c

)
−
√

1 + 4b2

c2

⎞

⎠ > 0.

Since b �= 0, let

ε = min

⎧
⎨

⎩

√
det A√
2π

⎛

⎝

√

1 + 4b2

c2
− 1

⎞

⎠ ,

√
det A√
2π

⎛

⎝
(
1 + 2|b|

c

)
−
√

1 + 4b2

c2

⎞

⎠

⎫
⎬

⎭
> 0.

There exists δ > 0 such that for all 0 < α < δ,
∣∣∣∣∣∣

PγA (Eα) − PγA (E
s
α)

α
− 2

√
det A√
2π

⎛

⎝1 −
√

1 + 4b2

c2

⎞

⎠

∣∣∣∣∣∣
< ε ≤

√
det A√
2π

⎛

⎝

√

1 + 4b2

c2
− 1

⎞

⎠

and
∣∣∣∣∣

√
2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E

s), e2〉 + PγA (Eα) − PγA (E
s
α)

α

−2

√
det A√
2π

⎛

⎝
(
1 + 2|b|

c

)
−
√

1 + 4b2

c2

⎞

⎠

∣∣∣∣∣∣

< ε ≤
√
det A√
2π

⎛

⎝
(
1 + 2|b|

c

)
−
√

1 + 4b2

c2

⎞

⎠ .

Therefore, for any 0 < α < δ,

PγA (Eα) − PγA (E
s
α) <

√
det A√
2π

⎛

⎝1 −
√

1 + 4b2

c2

⎞

⎠α < 0

and
√
2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E

s), e2〉 + PγA (Eα) − PγA (E
s
α)

>

√
det A√
2π

⎛

⎝
(
1 + 2|b|

c

)
−
√

1 + 4b2

c2

⎞

⎠α > 0,

i.e.,

PγA (E
s
α) < PγA (Eα) + √

2π‖Ae2 − 〈Ae2, e2〉e2‖〈bγA (E) − bγA (E
s), e2〉.

��
Remark From Example 4.1, we see that there exists some E such that

PγA (E) < PγA (E
s).

Although the anisotropic Gaussian perimeter does not always decrease under Ehrhard sym-
metrization, a natural question to ask here is whether there still exists an upper bound for
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PγA (E
s) in terms of PγA (E). In our next subsection, we will show that there exists an upper

bound and

PγA

(
Es) ≤ PγA (E) + √

2π‖Aen − 〈Aen, en〉en‖〈bγA (E) − bγA (E
s), en〉,

for any set of finite anisotropic Gaussian perimeter E in R
n (see Theorem 4.10).

4.4 Ehrhard symmetrization on anisotropic Gaussianmeasures

Our next goal is to show that the perimeter of a Ehrhard symmetrization set Es can still be
controlled by the perimeter of E plus an error term with a form like A − λIn . In particular,
the Ehrhard symmetrization along the eigendirections decreases the anisotropic Gaussian
perimeter. We will break this into several lemmas. Our next three lemmas are modifications
of Cianchi-Fusco-Maggi-Pratelli’s paper [10, Lemma 4.5 and Lemma 4.6].Wewill prove the
“dust estimate”, “cylindrical estimate”, and “graphical estimate”. Starting from this section,
the notation C means a constant that depends only on n and A, which may change from line
to line.

Lemma 4.7 (Dust estimate for E) Let E be a set of finite anisotropic Gaussian perimeter in
R
n and B be a Borel set such that

vE (z) = 0 for all z ∈ B.

Then

PγA (E
s; B × R) ≤ PγA (E; B × R) .

In particular, if we assume that B is open with smooth boundary, then

PγA (E
s; B × R) = 0.

Proof Without loss of generality, we may assume that B is bounded since we can consider
B ∩ B(0, R). Given ε > 0 and let � be an open set with � ⊃ B such that

Ln−1(� \ B) < ε.

By [12, Proposition 8.2.1], there exists a sequence of bounded open smooth sets � j ↗ �,
i.e., � j ⊂⊂ � j+1 ⊂⊂ � and

⋃
j � j = �. Then

PγA (E
s; � j × R) ↗ PγA (E

s; � × R)

and

PγA (E
s; B × R) ≤ PγA (E

s; � × R)

since B ⊂ �. Recall from Proposition 2.9 that in order to compute PγA (E
s,� j × R) it

is enough to look at (4.20) and equation (4.21) as we have seen in Theorem 4.5, i.e., let
ϕ ∈ C1

c (� j × R; R
n) with |ϕ| ≤ 1 and let ϕz = (ϕ1, ϕ2, . . . , ϕn−1), we estimate integrals

(I) and (II) from (4.21).
ApplyingTheorem4.5 on� j and y(z) := φ−1

z (vE (z)), there exists a sequence of functions

v
j
k ∈ C1(� j ) with 0 < v

j
k < g and g(z) := φz(∞), such that v j

k → vE in L1(� j ) and a.e.

in � j , Dv
j
k

∗
⇀DvE in � j , and

lim sup
k→∞

ˆ
� j

∣∣∣∇′v j
k (z)

∣∣∣ dz ≤ |DvE | (� j ) + 2
ˆ

� j

( |∇′g|
g

)
vE dz.
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Moreover,

χ
F j
k

→ χEs a.e. in � j × R and y j
k (z) → y(z) = φ−1

z (vE (z)) a.e. in � j

where y j
k (z) := φ−1

z (v
j
k (z)) and

F j
k :=

{
(z, y) ∈ � j × R : y < y j

k (z) := φ−1
z (v

j
k (z))

}
.

Since vE (z) = 0 for all z ∈ B, we have

v
j
k (z) → vE (z) = 0 a.e. in � j ∩ B,

y j
k (z) → y(z) = φ−1

z (vE (z)) = −∞ a.e. in � j ∩ B,

and

pEs (z) = e−[φ−1
z (vE (z))]2/2 = 0 on B.

Therefore, by Eq. (4.22) where F as F j
k , y(z) as y

j
k (z), and � as � j ,

(I) =
n−1∑

i=1

ˆ
Es

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)

= lim
k→∞

( n−1∑

i=1

ˆ
F j
k

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)
)

= det
√
A

(2π)n/2 lim
k→∞

(ˆ
� j

(
−ϕz(z, y

j
k (z))

)
· ∇′v j

k (z)dz

−
ˆ

� j

ˆ y j
k (z)

−∞

(
−ϕz(z, y

j
k (z))

)
· ∇′ (e−|√Ax |2/2) dydz

)

≤ det
√
A

(2π)n/2 lim sup
k→∞

ˆ
� j

∣∣∣∇′v j
k (z)

∣∣∣ dz

+ det
√
A

(2π)n/2 lim
k→∞

ˆ
� j \B

ˆ y j
k (z)

−∞
ϕz(z, y

j
k (z)) · ∇′ (e−|√Ax |2/2) dydz

+ det
√
A

(2π)n/2 lim
k→∞

ˆ
� j∩B

ˆ y j
k (z)

−∞
ϕz(z, y

j
k (z)) · ∇′ (e−|√Ax |2/2) dydz

≤ det
√
A

(2π)n/2
|DvE | (� j ) + 2 det

√
A

(2π)n/2

ˆ
� j

( |∇′g|
g

)
vE dz

+ det
√
A

(2π)n/2

ˆ
� j \B

ˆ y(z)

−∞
ϕz(z, y(z)) · ∇′ (e−|√Ax |2/2) dydz

≤ det
√
A

(2π)n/2
|DvE | (� j ) + 2 det

√
A

(2π)n/2

ˆ
� j \B

( |∇′g|
g

)
vE dz

+ det
√
A

(2π)n/2

ˆ
� j \B

ˆ ∞

−∞

∣∣∣∇′ (e−|√Ax |2/2)
∣∣∣ dydz

≤ det
√
A

(2π)n/2
|DvE | (� j ) + 2 det

√
A

(2π)n/2

ˆ
� j \B

|∇′g| dz
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+ Cε ≤ det
√
A

(2π)n/2
|DvE | (� j ) + Cε

where we have used Ln−1(� j \ B) < ε, vE = 0 on B, 0 ≤ vE ≤ g, and Lemma 4.2 (3), i.e.,

sup
z∈R

n−1

ˆ ∞

−∞

∣∣∣∇′ (e−|√Ax |2/2)
∣∣∣ dy ≤ (n − 1)C .

Therefore,

(I) ≤ det
√
A

(2π)n/2
|DvE | (� j ) + Cε.

Now we estimate (II). Recalling that Hn−1(∂M Es \ ∂∗Es) = 0 and (∂M Es)z = ∂M ((Es)z)

for Ln−1-a.e. z ∈ R
n−1, we get

(II) =
ˆ
Es

∂ϕn

∂ y
+ ϕn

∂(−|√Ax |2/2)
∂ y

dγA(x) = det
√
A

(2π)n/2

ˆ
Es

∂

∂ y

(
ϕne

−|√Ax |2/2) dz

= − det
√
A

(2π)n/2

ˆ
∂M Es

ϕne
−|√Ax |2/2νEs

n dHn−1(x)

≤ det
√
A

(2π)n/2

ˆ
∂M Es∩(� j×R)

∣∣∣νEs

n

∣∣∣ e−|√Ax |2/2 dHn−1(x)

= det
√
A

(2π)n/2

ˆ
� j

ˆ
(∂M Es)z

e−|√Ax |2/2 dH0(y) dz = det
√
A

(2π)n/2

ˆ
� j

pEs (z) dz

= det
√
A

(2π)n/2

ˆ
� j \B

pEs (z) dz ≤ Cε

where we have used the co-area formula (4.4), the definition of pEs (z), pEs (z) = 0 if z ∈ B,
and

pEs (z) = e−[φ−1
z (vE (z))]2/2 ≤ 1.

Combining (I) and (II) together,
ˆ
Es

div ϕ − 〈ϕ, Ax〉 dγA(x) = (I) + (II) ≤ det
√
A

(2π)n/2
|DvE | (� j ) + Cε.

Taking the sup over ϕ gives us

1√
2π

PγA

(
Es; � j × R

) ≤ det
√
A

(2π)n/2
|DvE | (� j ) + Cε.

Applying Lemma 4.3 on � j ,

PγA

(
Es; � j × R

) ≤ det
√
A

(2π)(n−1)/2
|DvE | (� j ) + Cε

≤ PγA

(
E; � j × R

)+ det
√
A

(2π)(n−1)/2

ˆ
� j

∣∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
dz + Cε

≤ PγA

(
E; � j × R

)+ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
dz
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+ det
√
A

(2π)(n−1)/2

ˆ
� j\B

∣∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
dz + Cε

≤ PγA

(
E; � j × R

)+ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
dz + Cε

= PγA

(
E; � j × R

)+ Cε

where we have used vE = 0 on B, i.e., L(Ez) = 0 if z ∈ B, and Lemma 4.2 (3)(a), i.e.,
ˆ

� j \B

∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣ dz ≤

ˆ
� j \B

ˆ ∞

−∞

∣∣∣∇′ (e−|√Ax |2/2)
∣∣∣ dydz ≤ (n − 1)Cε.

Taking j → ∞ on both sides,

PγA

(
Es; B × R

) ≤ PγA

(
Es; � × R

) ≤ PγA (E; � × R) + Cε.

Taking the inf over � ⊃ B with Ln−1(� \ B) < ε,

PγA

(
Es; B × R

) ≤ PγA (E; B × R) + Cε.

Taking ε → 0,

PγA

(
Es; B × R

) ≤ PγA (E; B × R) .

Now we claim that

PγA

(
Es; B × R

) = 0, if B is open with smooth boundary and vE (z) = 0 for all z ∈ B.

In this situation, we can just apply all the previous estimates on B instead of� j , whichmeans

that we can replace v
j
k as vk , y

j
k as yk , and F j

k as Fk in the previous calculation and notice
that

yk(z) → y(z) = φ−1
z (vE (z)) = −∞ a.e. in B,

and

ϕz (z, yk(z)) = (0, . . . , 0) for a.e. z ∈ B and large enough k,

since ϕ has compact support and yk(z) → −∞. Now (I) and (II) become

(I) =
n−1∑

i=1

ˆ
Es

∂ϕi

∂zi
+ ϕi

∂((−|√Ax |2/2))
∂zi

dγA(x)

= lim
k→∞

(
n−1∑

i=1

ˆ
Fk

∂ϕi

∂zi
+ ϕi

∂((−|√Ax |2/2))
∂zi

dγA(x)

)

= det
√
A

(2π)n/2 lim
k→∞

(ˆ
B

(−ϕz (z, yk(z))) · ∇′vk(z)dz −
ˆ
B

ˆ yk (z)

−∞
(−ϕz (z, yk(z)))

·
(

∇′e−|√Ax |2/2) dydz
)

= 0

and

(II) ≤ det
√
A

(2π)n/2

ˆ
B
pEs (z) dz = det

√
A

(2π)n/2

ˆ
B
e−[φ−1

z (vE (z))]2/2 dz = 0.
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Thus, we conclude that

PγA (E
s; B × R) = 0.

��

Lemma 4.8 (Cylindrical estimate for E) Let E be a set of finite anisotropic Gaussian perime-
ter in R

n and B be a Borel set in R
n−1 with Ln−1(B) = 0. Then

PγA (E
s; B × R) ≤ PγA (E; B × R).

Proof Given ε > 0 and let � be an open set with � ⊃ B such that

Ln−1(�) < ε.

The proof of this lemma is similar to Lemma 4.7, i.e., we approximate our set� by a sequence
of bounded open smooth subsets � j . Hence, we keep the same notation as we have seen in

Lemma 4.7, � j , v
j
k , and y j

k etc. The only difference here is the estimates of (I) and (II) from
Lemma 4.7.

(I) =
n−1∑

i=1

ˆ
Es

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)

= lim
k→∞

( n−1∑

i=1

ˆ
Fk

∂ϕi

∂zi
+ ϕi

∂(−|√Ax |2/2)
∂zi

dγA(x)
)

= − det
√
A

(2π)n/2 lim
k→∞

(ˆ
� j

ϕz(z, y
j
k (z)) · ∇′v j

k (z)dz

−
ˆ

� j

ˆ y j
k (z)

−∞
ϕz(z, y

j
k (z)) · ∇′ (e−|√Ax |2/2) dydz

)

≤ det
√
A

(2π)n/2 lim sup
k→∞

ˆ
� j

∣∣∣∇′v j
k (z)

∣∣∣ dz + det
√
A

(2π)n/2

ˆ
� j

ˆ y(z)

−∞
ϕz(z, y(z)) · ∇′ (e−|√Ax |2/2) dydz

≤ det
√
A

(2π)n/2
|DvE | (� j ) + 2 det

√
A

(2π)n/2

ˆ
� j

( |∇′g|
g

)
vE dz

+ det
√
A

(2π)n/2

ˆ
� j

ˆ ∞

−∞

∣∣∣∇′ (e−|√Ax |2/2)
∣∣∣ dydz

≤ det
√
A

(2π)n/2
|DvE | (� j ) + CLn−1(� j ) ≤ det

√
A

(2π)n/2
|DvE | (� j ) + Cε

where we have usedLn−1(� j ) < ε, 0 ≤ vE ≤ g, and Lemma 4.2 (3)(a). Moreover, applying
Lemma 4.3 on � j and Lemma 4.2 (3)(a),

det
√
A

(2π)(n−1)/2
|DvE |(� j ) ≤ PγA (E; � j × R) + Cε.

Therefore,

(I) ≤ 1√
2π

PγA (E; � j × R) + Cε.
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The estimate of (II) is the same as Lemma 4.7, i.e.,

(II) = det
√
A

(2π)n/2

ˆ
� j

pEs (z) dz ≤ Cε

where we have used the definition of pEs (z), and Ln−1(� j ) < ε. Combining (I) and (II)
together,ˆ

Es
div ϕ − 〈ϕ, Ax〉 dγA(x) = (I) + (II) ≤ 1√

2π
PγA (E; � j × R) + Cε.

Taking the sup over ϕ, j → ∞, inf over � ⊃ B with Ln−1(�) < ε, and ε → 0, we get

PγA

(
Es; B × R

) ≤ PγA (E; B × R).

��
Lemma 4.9 (Graphical estimate for E) Let E be a set of finite anisotropicGaussian perimeter
in R

n, n ≥ 2. Then

PγA (E; B × R) ≥ det
√
A

(2π)(n−1)/2

ˆ
B

√

pE (z)2 +
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣

2

dz,

for every Borel set B ⊂ BE ,

PγA (E
s; B × R) = det

√
A

(2π)(n−1)/2

ˆ
B

√√√√pEs (z)2 +
∣∣∣∣∣
∇′vEs (z) −

ˆ
Es
z

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣∣

2

dz,

for every Borel set B ⊂ BEs , and

PγA (E
s; B × R) ≤ PγA (E; B × R) + det

√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy

−
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz,

for every Borel set B ⊆ BE ∩ BEs .

Proof By the co-area formula (4.4) and Vol’pert Theorem (Theorem 4.1),

PγA (E; B × R) = det
√
A

(2π)(n−1)/2

ˆ
∂∗E∩(B×R)

∣∣νE
n

∣∣
∣∣νE

n

∣∣e
−|√Ax |2/2 dHn−1

= det
√
A

(2π)(n−1)/2

ˆ
B

ˆ
∂∗Ez

1
∣∣νE

n

∣∣ dH
0
z dz.

Applying Jensen’s inequality to the convex function ϕ : (x1, . . . , xn−1) = x �→ √
1 + |x |2,

we have
√√√√1 +

n−1∑

i=1

( 
∂∗Ez

νE
i∣∣νE
n

∣∣ dH
0
z

)2

= ϕ

( 
∂∗Ez

νE
1∣∣νE
n

∣∣ dH
0
z , · · · ,

 
∂∗Ez

νE
n−1∣∣νE
n

∣∣ dH
0
z

)

= ϕ

( 
∂∗Ez

(
νE
1∣∣νE
n

∣∣ , · · · ,
νE
n−1∣∣νE
n

∣∣

)

dH0
z

)

≤
 

∂∗Ez

ϕ

(
νE
1∣∣νE
n

∣∣ , · · · ,
νE
n−1∣∣νE
n

∣∣

)

dH0
z
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=
 

∂∗Ez

√√√√1 +
n−1∑

i=1

∣∣νE
i

∣∣2
∣∣νE

n

∣∣2
dH0

z . (4.30)

By Lemma 4.3, (4.30), and the definition of pE (z),

PγA (E; B × R) = det
√
A

(2π)(n−1)/2

ˆ
B

ˆ
∂∗Ez

√√√√1 +
∑n−1

i=1

∣∣νE
i

∣∣2
∣∣νE

n

∣∣2
dH0

z dz

= det
√
A

(2π)(n−1)/2

ˆ
B
pE (z)

 
∂∗Ez

√√√√1 +
∑n−1

i=1

∣∣νE
i

∣∣2
∣∣νE

n

∣∣2
dH0

z dz

≥ det
√
A

(2π)(n−1)/2

ˆ
B
pE (z)

√√√√1 +
n−1∑

i=1

( 
∂∗Ez

νE
i∣∣νE
n

∣∣ dH
0
z

)2

dz

= det
√
A

(2π)(n−1)/2

ˆ
B

√√√√pE (z)2 +
n−1∑

i=1

( 
∂∗Ez

νE
i∣∣νE
n

∣∣ dH
0
z

)2

pE (z)2 dz

= det
√
A

(2π)(n−1)/2

ˆ
B

√√√√pE (z)2 +
n−1∑

i=1

(ˆ
∂∗Ez

νE
i∣∣νE
n

∣∣ dH
0
z

)2

dz

= det
√
A

(2π)(n−1)/2

ˆ
B

√

pE (z)2 +
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣

2

dz,

where ∇′vE (z) = (D1vE (z), · · · , Dn−1vE (z)), B ⊂ BE and

DivE (z) =
ˆ

(∂∗E)z

νE
i (z, y)
∣∣νE

n (z, y)
∣∣dH

0
z (y) +

ˆ
Ez

∂

∂xi

(
e−|√Ax |2/2) dy for i = 1, 2, . . . , n − 1.

Applying the same calculation on Es with Es
z = (−∞, y(z)), y(z) = φ−1

z (vE (z)), and

pEs (z) = e−|√A(z,y(z))|2/2,

we have for any B ⊂ BEs ,

PγA (E
s; B × R) = det

√
A

(2π)(n−1)/2

ˆ
B

√√√√pEs (z)2 +
∣∣∣∣∣
∇′vEs (z) −

ˆ
Es
z

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣∣

2

dz.

Notice that we have the following inequality
√
a2 + b2 −

√
a2 + c2 ≤ |b − c|, if b, c ≥ 0. (4.31)

Plugging

a = pE (z), b =
∣∣∣∣∣
∇′vE (z) −

ˆ
Es
z

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
, and

c =
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣
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into (4.31), we have for any B ⊂ BE ∩ BEs ,

PγA (E
s; B × R) − PγA (E; B × R)

≤ det
√
A

(2π)(n−1)/2

ˆ
B

√√√√pEs (z)2 +
∣∣∣∣∣
∇′vEs (z) −

ˆ
Es
z

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣∣

2

dz

− det
√
A

(2π)(n−1)/2

ˆ
B

√

pE (z)2 +
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣

2

dz

≤ det
√
A

(2π)(n−1)/2

ˆ
B

√√√√pE (z)2 +
∣∣∣∣∣
∇′vE (z) −

ˆ
Es
z

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣∣

2

dz

− det
√
A

(2π)(n−1)/2

ˆ
B

√

pE (z)2 +
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣

2

dz

≤ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

∣∣∣∣∇′vE (z) −
ˆ
Ez

∇′ (e−|√Ax |2/2) dy
∣∣∣∣

−
∣∣∣∣∣
∇′vE (z) −

ˆ
Es
z

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣

∣∣∣∣∣
dz

≤ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣∣

ˆ
Ez

∇′ (e−|√Ax |2/2)−
ˆ
Es
z

∇′ (e−|√Ax |2/2) dy
∣∣∣∣∣
dz,

where we have used Proposition 4.6 (1) and (3), i.e., ∇′vE (z) = ∇′vEz (z) and pE (z) ≥
pEs (z) for a.e. z ∈ B ⊂ BE ∩ BEs . ��

Although the perimeter might not decrease in every direction when we do the Ehrhard
Symmetrization, we are still able to give an upper bound for the perimeter of the Ehrhard
Symmetrization with an error term involving A − λIn and barycenters. Combining Lemma
4.7, Lemma 4.8, and Lemma 4.9, we have the following estimate which tells us how the
direction of Ehrhard Symmetrization affects the anisotropic Gaussian perimeter.

Theorem 4.10 (Anisotropic Gaussian Perimeter Inequality under Ehrhard Symmetrization)
Let n ≥ 2 and let E be a set of finite A-anisotropic Gaussian perimeter in R

n. Then, for
every Borel set B ⊆ R

n−1 we have

PγA

(
Es; B × R

) ≤ PγA (E; B × R)

+ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz.

Moreover,

PγA

(
Es; B × R

) ≤ PγA (E; B × R) + √
2π‖Aen − 〈Aen, en〉en‖〈bγA (E ∩ (B × R))

− bγA (E
s ∩ (B × R)), en〉,

where

bγA (E) :=
ˆ
E
x dγA(x).

123



211 Page 58 of 73 K.-T. Yeh

Proof Step 1: For any Borel set B,

B = (B ∩ (BE ∩ BEs )) ∪ (B ∩ π+(E) \ (BE ∩ BEs )) ∪ (B \ π+(E))

:= B1 ∪ B2 ∪ B3.

Recall that: π+(E) = π+(Es) and

BE ⊂ π+(E), BEs ⊂ π+(Es) = π+(E), Ln−1(π+(E) \ BE ) = 0,

Ln−1(π+(E) \ BEs ) = 0.

Then

B2 ⊂ π+(E) \ (BE ∩ BEs ) = (π+(E) \ BE ) ∪ (π+(E) \ BEs ) �⇒ Ln−1(B2) = 0.

Moreover, for any z ∈ B3, vE (z) = 0. Thus, applying the dust estimate (Lemma 4.7) on
B3, the cylindrical estimate (Lemma 4.8) on B2, the graphical estimate (Lemma 4.9) on
B1 ⊂ BE ∩ BEs , we have

PγA (E
s; B × R) = PγA (E

s; B1 × R) + PγA (E
s; B2 × R) + PγA (E; B3 × R)

≤ PγA (E; B1 × R) + PγA (E; B2 × R) + PγA (E; B3 × R)

+ det
√
A

(2π)(n−1)/2

ˆ
B1∪B2∪B3

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz

= PγA (E; B × R)

+ det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz.

Step 2: Now we claim that

det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz

= √
2π‖Aen − 〈Aen, en〉en‖〈bγA (E ∩ (B × R)) − bγA (E

s ∩ (B × R)), en〉.
By Proposition 4.6 (2) and recall that x = (z, y), i.e., y = 〈x, en〉, we have

det
√
A

(2π)(n−1)/2

ˆ
B

∣∣∣∣

ˆ
Ez

∇′e−|√Ax |2/2dy −
ˆ
Es
z

∇′e−|√Ax |2/2dy
∣∣∣∣ dz

= det
√
A

(2π)(n−1)/2

ˆ
B

(ˆ
Ez

y dμz(y) −
ˆ
Es
z

y dμz(y)

)

‖Aen − 〈Aen, en〉en‖ dz

= ‖Aen − 〈Aen, en〉en‖ det
√
A

(2π)(n−1)/2

(ˆ
B

ˆ
Ez

y dμz(y)dz −
ˆ
B

ˆ
Es
z

y dμz(y)dz

)

= ‖Aen − 〈Aen, en〉en‖ det
√
A

(2π)(n−1)/2

(ˆ
E∩(E×R)

ye−|√Ax |2/2 dx −
ˆ
Es∩(B×R)

ye−|√Ax |2/2 dx
)

= √
2π‖Aen − 〈Aen, en〉en‖

〈(ˆ
E∩(B×R)

x dγA(x) −
ˆ
Es∩(B×R)

x dγA(x)

)
, en

〉

= √
2π‖Aen − 〈Aen, en〉en‖〈bγA (E ∩ (B × R)) − bγA (Es ∩ (B × R)), en〉.

��
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Our main goal here is to define the Ehrhard symmetrization to any direction u ∈ S
n−1 and

then extend the result of Theorem 4.10 to this new definition. We will start by recalling that
Vol’pert theorem (Theorem 4.1) actually holds for every direction (see [3, Theorem 3.108]
and [17, Theorem 3.21]). That is, if E is a set of locally finite perimeter, the one-dimensional
slice of E through z in direction u defined as

Ez,u := {x = z + tu ∈ E : t ∈ R}
is also a set of locally finite perimeter. Moreover,

(
∂M E

)
z,u = ∂M

(
Ez,u

) = ∂∗ (Ez,u
) =

(∂∗E)z,u and νE
u (x) := 〈νE (x), u〉 �= 0 for every t such that x = z + tu ∈ ∂∗E where

x = z + tu ∈ 〈u〉⊥ ⊕ 〈u〉.
The Ehrhard symmetrization Es

A,u of E with respect to the u-direction and matrix A is
defined as

Es
A,u :=

{
x = z + tu ∈ R

n : t > �−1
A,z,u

(
μA(Ez,u)

)}
, (4.32)

and the essential projection of E with respect to the u-direction and matrix A is defined
as

π+,A,u(E) :=
{
z ∈ 〈u〉⊥ : μA

(
Ez,u

)
> 0
}

,

where

μA(F) :=
ˆ
F
e−|√Ax |2/2dH1(x), �A,z,u(s) :=

ˆ ∞

s
e−|√A(z+tu)|2/2dt .

It is not hard to see that μA(Ez,u) = μA((Es
A,u)z,u) and π+,A,u(E) = π+,A,u(Es

A,u). Notice
that the definition (4.32) agrees with the definition (4.3) in Sect. 4.1, i.e., if u = −en , we
have

π+,A,−en (E) = π+(E), Es
A,−en = Es .

Moreover, Theorem 4.10 says that

PγA

(
Es
A,−en

; B × R

)
≤ PγA (E; B × R)

+ √
2π‖A(−en) − 〈A(−en), (−en)〉(−en)‖〈bγA (Es

A,−en
∩ (B × R))

− bγA (E ∩ (B × R)), −en〉.

Our next goal is to extend this result to the Ehrhard symmetrization Es
A,u . Before doing that,

we need a lemma that helps us handle the rotation of the Ehrhard symmetrization Es
A,u . The

proof of it can be easily deduced by the change of variables and set theory and hence we omit
the verification.

Lemma 4.11 Let O be an orthogonal matrix such that u = O(−en). Then

(O−1E)sOT AO,−en
= O−1Es

A,u . (4.33)
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4.5 Proof of Theorem 1.2

We can always find an orthogonal matrix O such that u = O(−en). By equation (4.33), we
have

(O−1E)sOT AO,−en
= O−1Es

A,u .

Now we claim that

Es
A,u = O[(O−1E)sOT AO,−en

] is a set of locally finite perimeter in R
n . (4.34)

By Proposition 2.8, E is a set of locally finite perimeter. Applying Proposition 2.11 (3),

PγOT AO
(O−1E) = PγA (E) < ∞,

i.e., O−1E is a set of finite OTAO-anisotropic Gaussian perimeter. Then Theorem 4.5 tells
us that (O−1E)s

OT AO,−en
is also a set of locally finite perimeter. By [23, Exercise 15.10],

Es
A,u = O[(O−1E)s

OT AO,−en
] is a set of locally finite perimeter.

Next we prove the second part of the theorem. By Eq. (4.33), Proposition 2.11 (3), and
O−1B ⊂ R

n−1, we have

PγA

(
Es
A,u; B ⊕ 〈u〉) = PγA

(
Es
A,u; O(O−1B) ⊕ O〈−en〉) = PγA

(
Es
A,u; O(O−1B × R)

)

= PγOT AO

(
O−1Es

A,u; O−1B × R
) = PγOT AO

(
(O−1E)sOT AO,−en

; O−1B × R

)
.

Since O−1E is a set of finite OTAO-anisotropic Gaussian perimeter, we can apply Theorem
4.10 with E as O−1E , B as O−1B, and A as OTAO . Hence,

PγA

(
Es
A,u; B ⊕ 〈u〉) = PγOT AO

(
(O−1E)sOT AO,−en

; O−1B × R

)

≤ PγOT AO
(O−1E; O−1B × R) + √

2π‖OTAOen − 〈OTAOen, en〉en‖
〈
bγOT AO

((O−1E)sOT AO,−en
∩ (O−1B × R))

− bγOT AO
(O−1E ∩ (O−1B × R)), −en

〉

= PγA (E; B ⊕ 〈u〉) + √
2π‖Au − 〈Au, u〉u‖〈bγA (E

s
A,u ∩ (B ⊕ 〈u〉))

− bγA (E ∩ (B ⊕ 〈u〉)), u〉
where we have used (O−1E)s

OT AO,−en
= O−1Es

A,u and bγOT AO
(E) = O−1bγA (OE). ��

Our next result tells us that the anisotropicGaussian perimeter decreaseswhen the Ehrhard
symmetrization is done along an eigenvector direction of A.

Corollary 4.12 Let n ≥ 2 and let E be a set of finite A-anisotropic Gaussian perimeter in
R
n. Assume that

u ∈ Vλ(A) ∩ S
n−1

where Vλ(A) is the eigenspace of A associated with eigenvalue λ. Then, for every Borel set
B ⊆ 〈u〉⊥, we have

PγA

(
Es
A,u; B ⊕ 〈u〉) ≤ PγA (E; B ⊕ 〈u〉) , (4.35)

and in particular PγA (E
s
A,u) ≤ PγA (E). Moreover, if PγA (E) = PγA (E

s
A,u), then

for Hn−1-a.e. z ∈ 〈u〉⊥, the slice Ez,u is H1-equivalent to either ∅ or 〈u〉 or a half-line.
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Proof Since for u ∈ Vλ(A) ∩ S
n−1,

Au = λu �⇒ 〈Au, u〉 = λ �⇒ Au − 〈Au, u〉u = 0.

Then Theorem 1.2 shows that PγA

(
Es
A,u; B ⊕ 〈u〉

)
≤ PγA (E; B ⊕ 〈u〉). For the second

part, we may assume that u = −en since we can always rotate the coordinate system. Thus,
by assumption,

PγA (E) = PγA

(
Es) , u = −en ∈ Vλ(A) ∩ S

n−1.

By (4.35), we have

PγA

(
Es; B × R

) ≤ PγA (E; B × R)

for every Borel set B ⊂ R
n−1. We claim that

PγA (E; B × R) = PγA

(
Es; B × R

)
for every Borel set B ⊆ R

n−1.

Suppose not, PγA (E; B × R) > PγA (Es; B × R) for some Borel set B. Then

PγA (E) = PγA (E; B × R) + PγA (E; Bc × R)

> PγA (E
s; B × R) + PγA (E

s; Bc × R) = PγA (E
s),

which contradicts our assumption. Now we plug in the Borel set BE ∩ BEs from Vol’pert
Theorem (Theorem 4.1), i.e., we have

PγA (E; (BE ∩ BEs ) × R) = PγA

(
Es; (BE ∩ BEs ) × R

)
. (4.36)

Notice that Aen = λen and let λ = d2 with d > 0, x = (z, y), and z = (z1, . . . , zn−1). Then

|√Ax |2 = 〈Ax, x〉 =
〈
n−1∑

i=1

zi Aei + yλen,
n−1∑

j=1

z j e j + yen

〉

=
〈
n−1∑

i=1

zi Aei ,
n−1∑

j=1

z j e j

〉

+
〈
n−1∑

i=1

zi Aei , yen

〉

+
〈

yλen,
n−1∑

j=1

z j e j

〉

+ 〈yλen, yen〉

=
〈

A
n−1∑

i=1

zi ei ,
n−1∑

i=1

zi ei

〉

+
〈
n−1∑

i=1

zi ei , yAen

〉

+ 0 + λy2

=
∣∣∣∣∣

√
A

n−1∑

i=1

zi ei

∣∣∣∣∣

2

+
〈
n−1∑

i=1

zi ei , yλen

〉

+ λy2 =
∣∣∣∣∣

n−1∑

i=1

zi
√
Aei

∣∣∣∣∣

2

+ d2y2 (4.37)

since en is an eigenvector of A and A is symmetric. Therefore,

vE (z) =
ˆ
Ez

e−|√Ax |2/2dy = e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
ˆ
Ez

e−d2 y2/2 dy,

vEs (z) =
ˆ
Es
z

e−|√Ax |2/2dy = e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
ˆ
Es
z

e−d2 y2/2 dy,

and hence ˆ
Ez

e−d2 y2/2 dy =
ˆ
Es
z

e−d2 y2/2 dy
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since vE (z) = vEs (z). Moreover,

ˆ
Ez

∇′ (e−|√Ax |2/2) dy =
ˆ
Ez

∇′
(

e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
)

e−d2 y2/2dy

= ∇′
(

e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
)ˆ

Ez

e−d2 y2/2dy

= ∇′
(

e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
)ˆ

Es
z

e−d2 y2/2dy

=
ˆ
Es
z

∇′ (e−|√Ax |2/2) dy. (4.38)

By Lemma 4.9, Proposition 4.6 (1)(3), (4.36), and (4.38),

PγA (E; (BE ∩ BEs ) × R)

≥ det
√
A

(2π)(n−1)/2

ˆ
BE∩BEs

√

pE (z)2 +
∣∣∣∣∇′vE (z) −

ˆ
Ez

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣

2

dz

≥ det
√
A

(2π)(n−1)/2

ˆ
BE∩BEs

√√√√pEs (z)2 +
∣∣∣∣∣
∇′vEs (z) −

ˆ
Es
z

∇′
(
e−|√Ax |2/2

)
dy

∣∣∣∣∣

2

dz

= PγA

(
Es; (BE ∩ BEs ) × R

) = PγA (E; (BE ∩ BEs ) × R). (4.39)

Therefore, (4.39) implies that

pE (z) = pEs (z) forHn−1-a.e. z ∈ BE ∩ BEs . (4.40)

Moreover, let z ∈ BE ∩ BEs ,

pE (z) =
ˆ

∂∗Ez

e−|√Ax |2/2 dH0(y) = e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
ˆ

∂∗Ez

e−d2 y2/2 dH0(y), (4.41)

φz(t) =
ˆ t

−∞
e−|√Ax |2/2dy

= e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
ˆ t

−∞
e−d2 y2/2 dy

=
√
2π

d
e

−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2

φ(dt),

and hence

φ−1
z (vE (z)) = 1

d
φ−1

(
d√
2π

ˆ
Ez

e−d2 y2/2dy

)
= 1

d
φ−1(γd2(Ez)), (4.42)

where γd2 is the d
2-anisotropic Gaussian measure, i.e.,

γd2(F) = d√
2π

ˆ
F
e−d2 y2/2dy.
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By Eq. (4.42),

pEs (z) = e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2
ˆ

∂∗Es
z

e−d2 y2/2 dH0(y) = e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2

e−d2[φ−1
z (vE (z))]2/2

= e
−
∣∣∣
∑n−1

i=1 zi
√
Aei
∣∣∣
2
/2

e−[φ−1(γd2 (Ez))]2/2 (4.43)

where Es
z = (−∞, φ−1

z (vE (z))
)
. Therefore, (4.40), (4.41), and (4.43) implies that

ˆ
∂∗Ez

e−d2 y2/2 dH0(y) = e−[φ−1(γd2 (Ez))]2/2

forHn−1-a.e. z ∈ BE ∩ BEs . SinceHn−1(π+(E) \ BE ∩ BEs ) = 0, we have

Pγd2
(Ez) = d

ˆ
∂∗Ez

e−d2 y2/2dH0(y) = e−[φ−1(γd2 (Ez))]2/2d

for Hn−1-a.e. z ∈ π+(E). Thanks to the equality case of the one-dimensional anisotropic
Gaussian isoperimetric inequality (see Theorem 1.1), forHn−1-a.e. z ∈ π+(E), Ez is either
H1-equivalent to ∅ or R or a half-line. Notice that for any z ∈ π+(E)c,

vE (z) = 0 �⇒ H1(Ez) = 0 �⇒ Ez is H1-equivalent to ∅.

In other words,

forHn−1-a.e. z ∈ 〈−en〉⊥, the slice Ez,−en isH1-equivalent to either ∅ or R or a half-line.

��
From Theorem 1.2, we see that

PγA (E
s
A,u) ≤ PγA (E) + √

2π‖Au − 〈Au, u〉u‖〈bγA (E
s
A,u) − bγA (E), u〉,

for any set of finite anisotropic Gaussian perimeter in R
n . A natural question here is whether

∣∣PγA (E
s
A,u) − PγA (E)

∣∣ ≤ M‖Au − 〈Au, u〉u‖〈bγA (E
s
A,u) − bγA (E), u〉

for some constant M . Our final example shows that this is not the case.

Example 4.2 We give an example to show that the following statement is not true: for any
0 < λ1 < λ2, there exists M > 0 such that for any λ(A) ⊂ [λ1, λ2], for any u ∈ S

n−1, and
for any set of finite anisotropic Gaussian perimeter E in R

n ,
∣∣PγA (E

s
A,u) − PγA (E)

∣∣ ≤ M‖Au − 〈Au, u〉u‖〈bγA (E
s
A,u) − bγA (E), u〉,

where λ(A) is the set of all eigenvalues of A, i.e., the spectrum of A.

Proof Consider λ1 = 1
2 < 3

2 = λ2. Suppose there exists M > 0 such that for any λ(A) ⊂
[λ1, λ2], for any u ∈ S

n−1, and for any set of finite anisotropic Gaussian perimeter E in R
n ,

∣∣PγA (E
s
A,u) − PγA (E)

∣∣ ≤ M‖Au − 〈Au, u〉u‖〈bγA (E
s
A,u) − bγA (E), u〉.

Take

n = 2, A =
(
1 0
0 1

2

)
, u = −e2, E = [−1, 1]2.
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Then clearly, λ(A) ⊂ [λ1, λ2] and Au − 〈Au, u〉u = 0. That is,

PγA

(
Es) = PγA (E) ,

where Es = Es
A,−en

. By Corollary 4.12, forH1-a.e. z ∈ R
1, the slice Ez isH1-equivalent to

either ∅ or R or a half-line. However, for all z ∈ [−1, 1], the slice Ez is an interval [−1, 1].
This gives us a contradiction. ��

5 Characterization of Ehrhard symmetrizable measures

5.1 A regularity lemma for Ehrhard symmetrization sets

The anisotropic Gaussian perimeter always decreases if u ∈ Vλ(A) ∩ S
n−1, where Vλ(A)

is the eigenspace of A associated with eigenvalue λ (see Corollary 4.12). In fact, this is a
necessary and sufficient condition for the anisotropic Gaussian perimeter to be decreasing.
We say that the measure γA is Ehrhard symmetrizable if

PγA (E
s
A,u) ≤ PγA (E)

for all u ∈ S
n−1, and for all measurable set E ⊂ R

n . We show that γA is Ehrhard symmetriz-
able if and only if A is a multiple of the identity matrix (see Theorem 1.3).

Lemma 5.1 (A regularity lemma for Es) Let A = (Ai j ) ∈ Mn(R) be a symmetric positive
definite matrix. Suppose E = � × (0, ∞) with an open set � ⊂ R

n−1 that contains the
origin. Then

Es = Es
A,−en = {x = (z, y) ∈ R

n−1 × R : z ∈ �, y < h(z)},
where h(z) := φ−1

z (vE (z)) is C1(�) and ∇′h is locally Lipschitz on�. In particular, h(0) =
0,

∇′h(0) = −2

(ˆ ∞

0
ye−|√A(0,y)|2/2 dy

)
A′en,

where ∇′ = (∂1, . . . , ∂n−1) and A′ ∈ M(n−1)×n(R) is the first n − 1 rows of matrix from A.
Also,

∇′h(0) = 0 ⇐⇒ A1n = A2n = . . . = An−1,n = 0 ⇐⇒ en ∈ VAnn (A).

Moreover,

h(z) = �(z) +
ˆ 1

0
〈∇′h(t z) − ∇′h(0), z〉 dt for all z ∈ �

where

�(z) := h(0) + 〈∇′h(0), z〉 = −2

(ˆ ∞

0
ye−|√A(0,y)|2/2 dy

)
A′en · z

Proof Recall that

Es = {(z, y) ∈ R
n−1 × R : z ∈ �, y < h(z) = φ−1

z (vE (z))
}
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where

vE (z) =
ˆ
Ez

e−|√Ax |2/2dy, φz(t) =
ˆ t

−∞
e−|√Ax |2/2dy.

Since E = � × (0, ∞), Ez = (0, ∞) for all z ∈ �. By Lemma 4.2 (2)(a)(b),

vE (z) =
ˆ
Ez

e−|√Ax |2/2dy =
ˆ ∞

0
e−|√Ax |2/2dy is differentiable on �

and

∇′vE (z) = −
ˆ ∞

0
e−|√Ax |2/2A′x dy.

Now we claim that ∇′vE is locally Lipschitz on � and hence, by Lemma 4.4,

h : z �→ φ−1
z (vE (z)) is in C1(�)

and ∇′h is locally Lipschitz on �. Let K be any compact set in � and let z1, z2 ∈ K . Then

|∇′vE (z1) − ∇′vE (z2)| =
∣∣∣∣

ˆ ∞

0
e−|√A(z1,y)|2/2A′(z1, y)dy −

ˆ ∞

0
e−|√A(z2,y)|2/2A′(z2, y)dy

∣∣∣∣

≤
∣∣∣∣

ˆ ∞

0
e−|√A(z1,y)|2/2A′(z1, y)dy −

ˆ ∞

0
e−|√A(z1,y)|2/2A′(z2, y)dy

∣∣∣∣

+
∣∣∣∣

ˆ ∞

0
e−|√A(z1,y)|2/2A′(z2, y)dy −

ˆ ∞

0
e−|√A(z2,y)|2/2A′(z2, y)dy

∣∣∣∣

≤
∣∣∣∣

ˆ ∞

0
e−|√A(z1,y)|2/2A′(z1 − z2, 0)dy

∣∣∣∣

+
ˆ ∞

0

∣∣∣e−|√A(z1,y)|2/2 − e−|√A(z2,y)|2/2
∣∣∣ |A′(z2, y)|dy

≤
ˆ ∞

0
e−‖(

√
A)−1‖−2|y|2/2√λmax(A′TA′)|z1 − z2|dy

+
ˆ ∞

0
λmax(A

′TA′)
(
r(K ) + |y|

)2
e−‖(

√
A)−1‖−2|y|2/2|z1 − z2| dy

= C(K , A′)|z1 − z2|, (5.1)

where we have used the estimate (4.6), r(K ) = supζ∈K |ζ |, and

C(K , A′) :=
√

λmax(A′TA′)
(ˆ ∞

0

(
1 +

√
λmax(A′TA′)

(
r(K ) + |y|

)2)
e−‖(

√
A)−1‖−2|y|2/2 dy

)
.

Next, notice that
ˆ ∞

0
e−|√Ax |2/2dy = vE (z) = vEs (z) =

ˆ h(z)

−∞
e−|√Ax |2/2dy. (5.2)

Setting z = 0, we have
ˆ 0

−∞
e−|√A(0,y)|2/2dy =

ˆ ∞

0
e−|√A(0,y)|2/2dy =

ˆ h(0)

−∞
e−|√A(0,y)|2/2dy.

Therefore,

h(0) = 0. (5.3)
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Taking the derivative on both sides with respect to z of equation (5.2), by Lemma 4.2 (1),

−
ˆ ∞

0
e−|√Ax |2/2A′x dy = (∇′h(z))e−|√A(z,h(z))|2/2 −

ˆ h(z)

−∞
e−|√Ax |2/2A′x dy.

Setting z = 0 again,

∇′h(0) = −
ˆ ∞

0
e−|√A(0,y)|2/2A′(0, y) dy +

ˆ 0

−∞
e−|√A(0,y)|2/2A′(0, y) dy

= −2
ˆ ∞

0
e−|√A(0,y)|2/2A′(0, y) dy = −2

(ˆ ∞

0
ye−|√A(0,y)|2/2 dy

)
A′en . (5.4)

Thus,

∇′h(0) = 0 ⇐⇒ A′en = 0 ⇐⇒ A1n = A2n = . . . = An−1,n = 0 ⇐⇒ en ∈ VAnn (A)

since A is symmetric andˆ ∞

0
ye−|√A(0,y)|2/2 dy ≥

ˆ ∞

0
ye−‖√

A‖2|y|2/2dy = 1

‖√
A‖2 > 0.

Applying [13, Theorem 1.14] with (5.3) and (5.4), we have

h(z) = �(z) +
ˆ 1

0
〈∇′h(t z) − ∇′h(0), z〉 dt

where

�(z) := h(0) + 〈∇′h(0), z〉 = −2

(ˆ ∞

0
ye−|√A(0,y)|2/2 dy

)
A′en · z.

��

5.2 Proof of Theorem 1.3

For the first part, we just need to show that

PγA (E
s
A,u) ≤ PγA (E) for all finite A-anisotropic Gaussian perimeter set E in R

n

�⇒ u ∈ Vλ(A) ∩ S
n−1 for some λ > 0 (5.5)

since Corollary 4.12 gives us the converse of the statement.
Step 1: Assume that u = −en and we have PγA (Es) ≤ PγA (E) for all finite A-anisotropic
Gaussian perimeter set E in R

n , where Es = Es
A,−en

. Our goal is to show that

en ∈ Vλ(A) ∩ S
n−1

for some λ > 0. Let K = [−1, 1]n−1 and� be an open convex set that contains K . Consider

E = � × (0, ∞), Eα = [−α, α]n−1 × (0, ∞)

for α ∈ (0, 1). By Lemma 5.1, the Ehrhard symmetrization of E has the form

Es = {x = (z, y) ∈ R
n−1 × R : z ∈ �, y < h(z)}

where h(z) := φ−1
z (vE (z)) is C1(�) and ∇′h is locally Lipschitz on �. Hence ∇′h is

Lipschitz on K . Also, the Ehrhard symmetrization of Eα has the form

Es
α = {x = (z, y) ∈ R

n−1 × R : z ∈ [−α, α]n−1, y < h(z)}.
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We claim that

PγA (Eα) − PγA (E
s
α) =

√
det A

(2π)(n−1)/2

(
1 −

√
1 + [∇′h(0)]2

)
α + o(α).

Let Sk = Ck × (0, ∞) (k ≥ 1) be hypersurfaces in R
n , where {Ck}2(n−1)

k=1 are faces of the
(n − 1) dimension cube [−α, α]n−1 ⊂ R

n−1, and

S0 = [−α, α]n−1 × {0}.
For example,

S1 = ([−α, α]n−2 × {−α})× (0, ∞),

S2 = ([−α, α]n−2 × {α})× (0, ∞),

S3 = ([−α, α]n−3 × {−α} × [−α, α])× (0, ∞),

S4 = ([−α, α]n−3 × {α} × [−α, α])× (0, ∞),

S5 = ([−α, α]n−4 × {−α} × [−α, α]2)× (0, ∞),

S6 = ([−α, α]n−4 × {α} × [−α, α]2)× (0, ∞),

...

and

∂∗Eα =
2(n−1)⋃

k=1

Sk ∪ S0 �⇒ PγA (Eα) =
2(n−1)∑

k=1

Hn−1
γA

(Sk) + Hn−1
γA

(S0).

For Es
α , we also have

Ss0 = {x = (z, y) ∈ [−α, α]n−1 × R : y = h(z)},
Ss1 = ([−α, α]n−2 × {−α})× (−∞, h

([−α, α]n−2 × {−α})) ,
Ss2 = ([−α, α]n−2 × {α})× (−∞, h

([−α, α]n−2 × {α})) ,
Ss3 = ([−α, α]n−3 × {−α} × [−α, α])× (−∞, h

([−α, α]n−3 × {−α} × [−α, α])) ,
Ss4 = ([−α, α]n−3 × {α} × [−α, α])× (−∞, h

([−α, α]n−3 × {α} × [−α, α])) ,
Ss5 = ([−α, α]n−4 × {−α} × [−α, α]2)× (−∞, h

([−α, α]n−4 × {−α} × [−α, α]2)) ,
Ss6 = ([−α, α]n−4 × {α} × [−α, α]2)× (−∞, h

([−α, α]n−4 × {α} × [−α, α]2)) ,
...

and

∂∗Es
α =

2(n−1)⋃

k=1

Ssk ∪ Ss0 �⇒ PγA (E
s
α) =

2(n−1)∑

k=1

Hn−1
γA

(Ssk ) + Hn−1
γA

(Ss0).

Therefore,

PγA (Eα) − PγA (E
s
α) =

2(n−1)∑

k=1

(
Hn−1

γA
(Sk) − Hn−1

γA
(Ssk )

)
+
(
Hn−1

γA
(S0) − Hn−1

γA
(Ss0)

)
.

(5.6)
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(a) First we claim that
∣∣∣Hn−1

γA
(Sk) − Hn−1

γA
(Ssk )

∣∣∣ = o(αn−1) for all k ≥ 1.

For k = 1, we have S1 = [−α, α]n−2 × {−α} × (0, ∞) and

Ss1 = ([−α, α]n−2 × {−α})× (−∞, h
([−α, α]n−2 × {−α})) .

Let r(u, v) = (u, −α, v) ∈ [−α, α]n−2×{−α}×(0, ∞). Then J (r) = √det(Dr)T(Dr) = 1
and

Hn−1
γA

(S1) =
√
det A

(2π)(n−1)/2

ˆ
S1
e−|√Ax |2/2dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
[−α,α]n−2

ˆ ∞

0
e−|√A(u,−α,v)|2/2 dvdu.

Similarly, we have

Hn−1
γA

(Ss1) =
√
det A

(2π)(n−1)/2

ˆ
Ss1

e−|√Ax |2/2dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
[−α,α]n−2

ˆ h(u,−α)

−∞
e−|√A(u,−α,v)|2/2 dvdu.

Let z = (u, −α). We now estimate the following two quantities:

(i)
ˆ ∞

0
e−|√A(z,v)|2/2dv, (ii)

ˆ h(z)

−∞
e−|√A(z,v)|2/2dv.

For (i), using the Taylor expansion on the map

z �→
ˆ ∞

0
e−|√A(z,v)|2/2dv,

we have

∇′
ˆ ∞

0
e−|√A(z,v)|2/2dv =

ˆ ∞

0
e−|√A(z,v)|2/2 (−A′(z, v)

)
dv

and ˆ ∞

0
e−|√A(z,v)|2/2dv =

ˆ ∞

0
e−|√A(0,v)|2/2dv

+
ˆ ∞

0
e−|√A(0,v)|2/2(−A′(0, v)) dv · z + o(|z|).

For (ii), using the Taylor expansion on the map

z �→
ˆ h(z)

−∞
e−|√A(z,v)|2/2dv,

we have

∇′
ˆ h(z)

−∞
e−|√A(z,v)|2/2dv = ∇′h(z)e−|√A(z,h(z))|2/2 +

ˆ h(z)

−∞
e−|√A(z,v)|2/2 (−A′(z, v)

)
dv
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andˆ h(z)

−∞
e−|√A(z,v)|2/2dv =

ˆ 0

−∞
e−|√A(0,v)|2/2dv

+
(

∇′h(0) +
ˆ 0

−∞
e−|√A(0,v)|2/2(−A′(0, v)) dv

)
· z + o(|z|)

=
ˆ ∞

0
e−|√A(0,v)|2/2dv

+
(

∇′h(0) +
ˆ ∞

0
e−|√A(0,v)|2/2A′(0, v) dv

)
· z + o(|z|).

since h(0) = 0. Therefore,

(i) − (ii) = −∇′h(0) · z +
(

−2
ˆ ∞

0
e−|√A(0,v)|2/2A′(0, v) dv

)
· z + o(|z|)

= −∇′h(0) · z +
(

−2
ˆ ∞

0
ve−|√A(0,v)|2/2 dv

)
A′en · z + o(|z|)

= o(|z|) (5.7)

where we have used Lemma 5.1, i.e.,

∇′h(0) = −2

(ˆ ∞

0
ye−|√A(0,y)|2/2 dy

)
A′en .

Since u ∈ [−α, α]n−2, |z| = |(u, −α)| ≤ √
n − 1α, by equation (5.7),

ˆ ∞

0
e−|√A(u,−α,v)|2/2dv −

ˆ h(u,−α)

−∞
e−|√A(u,−α,v)|2/2dv = o(α)

and hence

Hn−1
γA

(S1) − Hn−1
γA

(Ss1)

=
√
det A

(2π)(n−1)/2

ˆ
[−α,α]n−2

(ˆ ∞

0
e−|√A(u,−α,v)|2/2dv −

ˆ h(u,−α)

−∞
e−|√A(u,−α,v)|2/2dv

)

du

=
√
det A

(2π)(n−1)/2

ˆ
[−α,α]n−2

o(α) du = o(αn−1).

That is,
∣∣∣Hn−1

γA
(S1) − Hn−1

γA
(Ss1)

∣∣∣ = o(αn−1).

Similarly for all k ≥ 1, we have
∣∣∣Hn−1

γA
(Sk) − Hn−1

γA
(Ssk )

∣∣∣ = o(αn−1).

(b) Next we claim that

PγA (Eα) − PγA (Es
α) =

√
det A

(2π)(n−1)/2

(ˆ
S0
e−|√Ax |2/2dHn−1 −

ˆ
Ss0

e−|√Ax |2/2dHn−1

)

+ o(αn−1)

=
√
det A

(2π)(n−1)/2

(
1 −

√
1 + [∇′h(0)]2

)
(2α)n−1 + o(αn−1).
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Let r(z) = (z, h(z)). Then J (r) = √det(Dr)T(Dr) = √1 + |∇′h(z)|2 and

Hn−1
γA

(Ss0) =
√
det A

(2π)(n−1)/2

ˆ
Ss0

e−|√Ax |2/2dHn−1

=
√
det A

(2π)(n−1)/2

ˆ
[−α,α]n−1

e−|√A(z,h(z))|2/2√1 + |∇′h(z)|2 dz.

Define f : � → R as

f (z) = e−|√A(z,0)|2/2 − e−|√A(z,h(z))|2/2√1 + [∇′h(z)]2.
Since h ∈ C1(�), f is continuous on � and hence

lim
α→0+

1

(2α)n−1

ˆ
[−α,α]n−1

f (z)dz = f (0).

Therefore,ˆ
S0
e−|√Ax |2/2dHn−1 −

ˆ
Ss0

e−|√Ax |2/2dHn−1

=
ˆ

[−α,α]n−1
e−|√A(z,0)|2/2dz −

ˆ
[−α,α]n−1

e−|√A(z,h(z))|2/2√1 + [∇′h(z)]2 dz

=
ˆ

[−α,α]n−1

(
e−|√A(z,0)|2/2 − e−|√A(z,h(z))|2/2√1 + [∇′h(z)]2

)
dz

=
ˆ

[−α,α]n−1
f (0) + ( f (z) − f (0)) dz

=
ˆ

[−α,α]n−1

(
1 −

√
1 + [∇′h(0)]2

)
dz +

ˆ
[−α,α]n−1

( f (z) − f (0)) dz

=
(
1 −

√
1 + [∇′h(0)]2

)
(2α)n−1 + o(αn−1). (5.8)

By equation (5.6) and (a),
∣∣∣∣∣
PγA (Eα) − PγA (E

s
α) −

√
det A

(2π)(n−1)/2

(ˆ
S0
e−|√Ax |2/2dHn−1 −

ˆ
Ss0

e−|√Ax |2/2dHn−1

)∣∣∣∣∣

≤
2(n−1)∑

k=1

∣∣∣Hn−1
γA

(Sk) − Hn−1
γA

(Ssk )
∣∣∣ = o(αn−1). (5.9)

Combining (5.8) and (5.9), we have

PγA (Eα) − PγA (E
s
α) =

√
det A

(2π)(n−1)/2

(
1 −

√
1 + [∇′h(0)]2

)
(2α)n−1 + o(αn−1).

(c) We claim that

A1n = A2n = . . . = An−1,n = 0.

By our assumption and (b),

0 ≤ PγA (Eα) − PγA (E
s
α) =

√
det A

(2π)(n−1)/2

(
1 −

√
1 + [∇′h(0)]2

)
(2α)n−1 + o(αn−1).
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Dividing (2α)n−1 on both sides and taking α → 0+, by Lemma 5.1,

0 ≤
(
1 −

√
1 + [∇′h(0)]2

)
�⇒ ∇′h(0) = 0 �⇒ A1n = A2n = . . . = An−1,n = 0.

Hence, en ∈ Vλ(A) ∩ S
n−1 for some λ > 0.

Step 2: For general u ∈ S
n−1, there exists an orthogonal matrix O such that O(−en) = u.

Let B = OTAO . Given any finite B-anisotropic Gaussian perimeter set Ẽ and let E = OẼ .
By Proposition 2.8, Ẽ is a set of locally finite perimeter. Applying Proposition 2.11 (3) with
E as Ẽ, A as B, and O as O−1,

PγA (E) = PγOBOT (OẼ) = PγB (Ẽ) < ∞,

i.e., E is a set of finite A-anisotropic Gaussian perimeter. Then Theorem 1.2 tells us that
Es
A,u is also a set of locally finite perimeter. Since γA is Ehrhard symmetrizable and E is a

set of finite A-anisotropic Gaussian perimeter, Proposition 2.11 (3) and equation (4.33) give
us

PγB (Ẽs
B,−en ) = PγOT AO

(
(O−1E)sOT AO,−en

)
= PγOT AO

(O−1Es
A,u)

= PγA (E
s
A,u) ≤ PγA (E) = PγOT AO

(O−1E) = PγB (Ẽ).

Applying Step 1 on γB and Ẽ , we conclude that en ∈ Vλ(B) ∩ S
n−1 for some eigenvalue λ,

i.e., Ben = λen and hence

Au = AO(−en) = OB(−en) = −Oλen = λO(−en) = λu.

Thus, if PγA (E
s
A,u) ≤ PγA (E) for all finite A-anisotropic Gaussian perimeter set E in R

n ,
we have

u ∈ Vλ(A) for some λ > 0. (5.10)

This finishes the first part of the theorem.
For the second part, it is enough to prove that

γA is Ehrhard symmetrizable �⇒ A = aIn for some constant a > 0

sincewe can apply Corollary 4.12 again, and conclude the converse of the statement. Suppose
now we have two distinct eigenvalues λ1, λ2 of A with eigenvectors u1, u2 in S

n−1. Notice
that 〈u1, u2〉 = 0 since A is symmetric and λ1 �= λ2. Consider

u := u1 + u2√
2

∈ S
n−1.

Since γA is Ehrhard symmetrizable, by (5.5), we have u ∈ Vλ(A) ∩ S
n−1 for some λ > 0.

However,

λ

(
u1 + u2√

2

)
= λu = Au = λ1u1 + λ2u2√

2
�⇒ (λ1 − λ)u1 + (λ2 − λ)u2 = 0 �⇒ λ1 = λ = λ2.

This contradicts the assumption that λ1 �= λ2. Therefore, all the eigenvalues of A are the
same and hence A = aIn for some a > 0. ��
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