
EFFECTS OF HIGH FREQUENCY HORIZONTAL BASE EXCITATION ON A BISTABLE SYSTEM

Pritam Ghoshal1, James M. Gibert1,∗, Anil K. Bajaj2

1Advanced Dynamics and Mechanics Lab, Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West
Lafayette, Indiana

2Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana

ABSTRACT
High frequency excitation (HFE) is known to induce vari-

ous nontrivial effects, such as system stiffening, biasing, and the
smoothing of discontinuities in dynamical systems. These effects
become increasingly pertinent in multi-stable systems, where the
system’s bias towards a certain equilibrium state can depend
heavily on the combination of forcing parameters, leading to sta-
bility in some scenarios and instability in others. In this initial
investigation, our objective is to pinpoint the specific parame-
ter ranges in which the bistable system demonstrates typical HFE
effects, both through numerical simulations and experimental ob-
servations. To accomplish this, we utilize the method of multiple
scales to analyze the interplay among different time scales. The
equation of slow dynamics reveals how the excitation parameters
lead to a change in stability of equilibrium points. Additionally,
we delineate the parameter ranges where stabilizing previously
unstable equilibrium configurations is achievable. We demon-
strate the typical positional biasing effect of high-frequency ex-
citation that leads to a shift in the equilibrium points as the
excitation parameter is varied. This kind of excitation can enable
the active shaping of potential wells. Finally, we qualitatively val-
idate our numerical findings through experimental testing using
a simplistic model made with LEGOs.
Keywords: Biasing, Bifurcation, Bistability, High Frequency
Excitation, Multiple Scales, von Mises truss

1. INTRODUCTION
The study of multi-stable systems is slowly gaining traction

because of its wide applications in metamaterials and vibration
attenuation. Typically these systems have several stable configu-
rations, hence the name multi-stable. One may draw an analogy
with several commonplace objects like an electric switch, a hair-
clip or a Venus Flytrap. The configuration attained by this kind
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of system depends on the initial perturbation provided. In this
study, we shall focus on a bistable system, that is, it has two stable
configurations and an unstable configuration. We represent this
class of systems in the form of a von Mises truss (see Figure 1a).
Although in reality the system could manifest in any form, for
example, a dome-shaped structure or an initially curved beam,
we choose to model it using the truss because it simplifies the
analysis and also captures the important dynamical behavior of
these systems. Prior research on the stability and equilibrium
paths of a von Mises truss can be found in [1–3].

The bistable truss under consideration undergoes the phe-
nomenon of snap through, in which the system rapidly transitions
from one equilibrium to another under a progressively increasing
load. This phenomenon has been studied extensively for elas-
tic systems in [4–8]. Introduction of damping, whether in the
form of simple viscous damping or viscoelastic damping, brings
in additional layers of complexity in the system. Alhadidi and
Gibert [9] showed that a proper tuning of the Deborah number
in the viscoelastic system can allow us to control the duration of
snap-through. Gomez et al. [10] studied the snap through buck-
ling of a viscoelastic von Mises truss and presented an analytical
expression for the snap through time. The delayed snap-through
behavior has been studied for both perfect and imperfect shal-
low truss/arches in [11, 12]. The snap-through dynamics in the
presence of viscoelasticity has been exploited in [13, 14].

The dynamic behavior of the von Mises truss in the presence
of external excitation is even more interesting [15]. The presence
of chaos in such externally excited system has been demonstrated
in [16]. The system can exhibit both small and large amplitude
motion and even exhibit potential well escapes. Suire and Ceder-
baum [17, 18] studied the dynamics of viscoelastic bars subjected
to harmonic forcing using numerical techniques and demonstrated
the presence of chaos. Pourtakdoust and Fazelzadeh [19] stud-
ied viscoelastic panel flutter in a supersonic flow. The chaotic
behavior in a double beam system was studied by Fang et al
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FIGURE 1: (a) Elastic von Mises truss with viscous dashpot. Inset shows the stable and unstable equilibrium configurations. (b) Total energy
curve of the unforced system. The red line represents a total energy curve for a given velocity Ẋ , which is symmetric about the saddle point.
The black line represents a high energy trajectory with ζ = 0. The blue curve represents a decaying trajectory with ζ = 0.05.

[20]. In addition, researchers [21, 22] studied the effects of
parameter changes on the inter-well and intra-well dynamics of
a bistable piezoelectric inertial generator and demonstrated the
phenomenon of escape from a potential well. Zhou et al. [23]
studied the dynamics of tristable energy harvesters and the effect
of asymmetric potential wells on the performance of the harvester.
The approximate condition for escape from a potential well using
the harmonic balance technique was determined by Virgin et al.
[24]. Orlando et al. [25] studied the permanent and transient
escape in an elastic von Mises truss and the influence of noise on
dynamic buckling load.

Under normal circumstances, the von Mises truss will not
show any oscillations about the unstable equilibrium. Although
adjustments to system parameters can influence snapping behav-
ior (refer to Figure 2), they will not induce oscillations around
the unstable equilibrium. Even when the system is harmonically
excited, it can only exhibit large-amplitude oscillations about the
unstable equilibrium. Stable low-amplitude solutions are not pos-
sible in this case because it does not lead to any changes in the
effective stiffness in the system.

The question then arises: why do we seek to stabilize the
unstable equilibrium? This interest stems from the fact that a
bistable system can exist in three states: a natural state, an in-
verted state, and an unstable state. These discrete states can
be visualized as 1 (stable or ‘active’ states) and 0 (unstable or
‘parked’ state). Representing states discretely enables tuning ex-
citation parameters to extract oscillations about a desired state.
This capability finds broad applications in the realm of mechani-
cal logic gates.

Stabilization of an unstable equilibrium using fast excitation
was demonstrated by Kapitza [26] in the context of an inverted
pendulum. This paper extends the analytical framework by intro-
ducing high-frequency base excitation to bistable systems. While

this kind of high-frequency excitation can exhibit trivial behavior,
that is, high frequency oscillations about some stable equilibrium
configuration, it can also show several non-trivial behavior. The
prominent effects of such high frequency excitation have been
demonstrated in some revolutionary papers by Thomsen and Tch-
erniak [27–29]. Typical effects of such high frequency excitation
include stiffening [30], biasing [31] and smoothing of disconti-
nuities, for example in stick-slip dynamics [32, 33], symmetry
breaking bifurcations [34] and limit cycles [35, 36]. The anal-
ysis conventionally involves partitioning slow and fast motions,
where the average effect of fast excitation leads to a fictitious
force known as the vibrational force [37]. Experimentally, this
behavior has been shown to lead to vibrational resonance as a type
of nonlinear behavior observed in a bistable system when it ex-
periences a biharmonic force, made up of a small-scale resonant
force and a larger, high-frequency force. In certain situations, this
high-frequency force enhances the resonant reaction related to the
system’s slow-moving dynamics [38]. Recently [39] has intro-
duced a method for actively altering the potential energy function
of a bistable oscillator without relying on feedback control, which
is advantageous for creating adaptive structures, switches, vibra-
tion absorbers, and energy harvesters. By nonlinearly coupling
the bistable oscillator to a stiff linear oscillator that is harmoni-
cally excited near its resonant frequency, the study demonstrates
that active control over the oscillator’s potential energy function is
possible through adjustments in the magnitude and/or frequency
of the high-frequency input, facilitating significant changes in
shape with relatively low levels of excitation.

In this paper we study the effects of horizontal high frequency
excitation on the dynamic behavior of a von Mises truss. We
demonstrate how the unstable equilibrium can be stabilized for
certain combination of excitation parameters. The method of
multiple scales, specifically the direct separation of solutions on
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FIGURE 2: Time response and their corresponding phase portrait when the unforced system is released from rest from the unstable equilib-
rium. The system gets attracted to the potential well towards which it is biased, without any oscillations about the unstable equilibrium.

slow and fast timescales, is employed to capture these intricate
dynamical behaviors.

2. MODEL DESCRIPTION
Figure 1a shows the undeformed configuration of the system.

At this instant, all springs are unstretched. The tilted springs have
a stiffness of 𝑘 and are inclined at an angle 𝛼0 to the horizontal in
the undeformed configuration. The width of the truss is 2𝑤0. The
entire mass of the system is concentrated at a single point and is
equal to 𝑚. The mass is connected to a dashpot of viscosity 𝑐 and
is constrained to move in a slot in the vertical direction only, thus
eliminating the need to introduce an additional horizontal degree
of freedom.

Let the mass be indented downward by an amount 𝑥 as shown
in Figure 1a. At the same instant, the pin joint on the left moves by
an amount 𝑦 (for simplicity, the time dependence of 𝑥(𝑡) and 𝑦(𝑡)
has been dropped from the notation). Assuming the small-angle
approximations, the change in length of the two tilted springs are
given as

𝑑𝑙1 =
𝑦2

2𝑤0
+ 𝑦 + 𝑥2

2𝑤0
− 𝛼0𝑥,

𝑑𝑙2 =
𝑥2

2𝑤0
− 𝛼0𝑥,

(1)

where the subscript 1 and 2 denote the spring which is being ex-
cited and the fixed spring respectively. The instantaneous angles
made by the springs with the horizontal are given by

𝛼1 =
𝑤0𝛼0 − 𝑥

𝑤0 + 𝑦
≈ 𝑤0𝛼0 − 𝑥

𝑤0
,

𝛼2 =
𝑤0𝛼0 − 𝑥

𝑤0
.

(2)

Here we have assumed that the amplitude of the horizontal exci-
tation is much less than the width of the truss and retained only
one term in the Taylor series expansion.

Thus the governing equation for the mass is given as

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝑘𝑑𝑙1𝛼1 + 𝑘𝑑𝑙2𝛼2 − 𝑐

𝑑𝑥

𝑑𝑡
. (3)

The horizontal components of the spring forces are balanced by
the normal forces on the slot.

3. NON-DIMENSIONALIZATION
We first re-scale time with respect to the timescale of elastic

oscillations. Thus, we have 𝑡 = 𝛼−1
0

√︁
𝑚
𝑘
𝑇 . The displacements

are scaled with respect to the initial height of the truss in the
undeformed configuration. Thus we have 𝑥 = 𝛼0𝑤0𝑋 and 𝑦0 =

𝛼0𝑤0𝑌0. Additionally we have

Ω =
𝜔

𝜔𝑛

, 𝜁 =
𝑐

2𝑚𝜔𝑛

, (4)

where 𝜔𝑛 is the natural frequency of oscillations. Note that the
restriction of the excitation amplitude being less than the width
of the truss enforces a limit on the parameter 𝑌0. We must have
𝑌0 < 1/𝛼0.

The governing equation of motion is hence given by

𝑑2𝑋

𝑑𝑇2 + 2𝜁
𝑑𝑋

𝑑𝑇
+ 𝑋3 − 3𝑋2 +

(︄
𝑌2

0
2

cos2 Ω𝑇 + 𝑌0
𝛼0

cosΩ𝑇 + 2

)︄
𝑋

−
𝑌2

0
2

cos2 Ω𝑇 − 𝑌0
𝛼0

cosΩ𝑇 = 0. (5)

The equilibrium points of the unforced system (𝑌0 = 0) are given
by 𝑋 = 0, 1, 2, with 𝑋 = 0 being the natural stable configuration,
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𝑋 = 2 being the inverted stable configuration, and 𝑋 = 1 being
the unstable configuration in between (when both springs are
horizontal).

We consider that the truss is initially indented by applying an
instantaneous displacement of 𝑋ind. The indentation force is then
removed and the base is excited immediately and our external
clock is started, i.e., we define 𝑇 = 0 at the time the indenter is
released and the base is excited.

The initial conditions for the system are hence given by

𝑋 (0+) = 𝑋ind, 𝑋̇ (0+) = 0. (6)

In this paper, unless otherwise specified, we take 𝑋ind = 2.

4. METHOD OF MULTIPLE SCALES
Since the excitation frequency is much larger as compared

to the natural frequency of the system, we will decompose the
response as a function of two time-scales: a slow time scale
of elastic oscillations and a fast time scale corresponding to the
external forcing frequency. Let the slow time scale be denoted by
𝜏1 = 𝑇 and the fast time scale be denoted by 𝜏2 = Ω𝑇 . In terms
of these new time-scales our equations of motion become

𝑑2𝑋

𝑑𝜏2
1
+ 2𝜁

𝑑𝑋

𝑑𝜏1
+ 𝑋3 − 3𝑋2 +

(︄
𝑌2

0
2

cos2 𝜏2 +
𝑌0
𝛼0

cos 𝜏2 + 2

)︄
𝑋

−
𝑌2

0
2

cos2 𝜏2 −
𝑌0
𝛼0

cos 𝜏2 = 0. (7)

We consider that Ω ∼ O(𝜖−1) where 𝜖 is a small parameter.
Using the method of direct separation of motion into slow and
fast components, we assume a solution of the form

𝑋 (𝑇) = 𝑧(𝜏1) +
1
Ω2 𝜙(𝜏1, 𝜏2) = 𝑧(𝜏1) + 𝜖2𝜙(𝜏1, 𝜏2). (8)

Note that O(𝜖) terms have been neglected. This is a consequence
of the multiple-scale approach itself and has been directly omitted
here to make the calculations simple.

The derivatives are calculated as

𝑑 (.)
𝑑𝑇

=
𝜕 (.)
𝜕𝜏1

+ 1
𝜖

𝜕 (.)
𝜕𝜏2

. (9)

Substituting Equations (8) and (9) in Equation (7) and collecting
like powers of 𝜖 together, we have

𝑧 + 𝜙′′ + 2𝜁 𝑧̇ + 𝑧3 − 3𝑧2 +
(︄
2 + 𝑌0

𝛼0
cos 𝜏2 +

𝑌2
0
2

cos2 𝜏2

)︄
𝑧

− 𝑌0
𝛼0

cos 𝜏2 −
𝑌2

0
2

cos2 𝜏2 + 𝜖
(︁
2𝜁𝜙′ + 2𝜙̇′

)︁
+ 𝜖2 (︁

𝜙 + 2𝜁 𝜙̇ + 2𝜙

+3𝜙𝑧2 − 6𝜙𝑧 + 𝑌0
𝛼0

𝜙 cos 𝜏2 +
𝑌2

0
2
𝜙 cos2 𝜏2

)︄
+ O(𝜖4) = 0. (10)

Here, the dot represents derivatives with respect to 𝜏1 and dash
represents derivatives with respect to 𝜏2.

Averaging Equation (10) over the fast time scale we obtain

𝑧 + 2𝜁 𝑧̇ + 𝑧3 − 3𝑧2 +
(︄
2 +

𝑌2
0
4

)︄
𝑧 −

𝑌2
0
4

+ 𝜖2
(︃
𝑌0
𝛼0

< 𝜙 cos 𝜏2 >

+
𝑌2

0
2

< 𝜙 cos2 𝜏2 >

)︄
+ O(𝜖4) = 0, (11)

where < . > denotes the average over the fast time scale. Note
that < 𝜙 >= 0 and < 𝑧𝑛 >= 𝑧𝑛. Now subtracting Equations
(11) from (10), and considering only the leading order terms, we
obtain

𝜙′′ + 𝑌0
𝛼0

(𝑧 − 1) cos 𝜏2 +
𝑌2

0
4
(𝑧 − 1) cos 2𝜏2 = 0. (12)
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FIGURE 3: Time response of the system under fast excitation for
α0 = 30°,Y0 = 2, Ω = 5 and ζ = 0.05.

Equation (12) is an ordinary second order differential equa-
tion in 𝜙 and can be solved exactly. We thus obtain

𝜙 =
𝑌0
𝛼0

(𝑧 − 1) cos 𝜏2 +
𝑌2

0
16

(𝑧 − 1) cos 2𝜏2. (13)

Here we have enforced the condition that there must be no
secular terms and that 𝜙 must average out on the fast time scale 𝜏2.
Equation (13) determines the fast oscillations. Now substituting
𝜙 in Equation (11) , keeping terms only up to O(𝜖2), back sub-
stituting 𝜖 = Ω−1, we obtain the equation for the slow dynamics
as

𝑧 + 2𝜁 𝑧̇ + 𝑧3 − 3𝑧2 +
(︄
2 +

𝑌2
0
4

+
𝑌2

0
128Ω2 +

𝑌2
0

2𝛼2
0Ω

2

)︄
𝑧 −

(︄
𝑌2

0
4

+
𝑌2

0

2𝛼2
0Ω

2
+

𝑌4
0

128Ω2

)︄
= 0. (14)
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FIGURE 4: Restoring force, effective stiffness and dynamic potential for α0 = 30°, Ω = 5 and (a)Y0 = 0.5 (b)Y0 = 2. Blue curve represents
restoring force. Zero crossings represent equilibrium points. Red curves represent effective stiffness. Green curves represent dynamic
potential.

Note that the correction terms are directly proportional to 𝑌0
and inversely proportional to Ω2. The time response of the sys-
tem is shown in Figure 3. The blue curve represents the response
obtained from numerical simulation. It can be seen that the sys-
tem now exhibits small amplitude oscillations about the unstable
equilibrium configuration which has now been stabilized.

5. THE SLOW EFFECTS OF FAST EXCITATION
In this section, we shall talk about the non-trivial effects of

high frequency excitation. The dynamic potential energy of the
system (𝑉𝑑) is given by

𝑉𝑑 =
𝑧4

4
− 𝑧3 +

(︄
2 +

𝑌2
0
4

+
𝑌2

0
128Ω2 +

𝑌2
0

2𝛼2
0Ω

2

)︄
𝑧2

2

−
(︄
𝑌2

0
4

+
𝑌2

0

2𝛼2
0Ω

2
+

𝑌4
0

128Ω2

)︄
𝑧. (15)

Substituting 𝑌0 = 0 gives the static potential (𝑉𝑠) of the sys-
tem. Now, when the excitation amplitude is increased, the system
transitions from a two-well potential to a single-well potential.
The nonlinear restoring force is given by

𝐹𝑟 =
𝑑𝑉𝑑

𝑑𝑧
= 𝑧3 − 3𝑧2 +

(︄
2 +

𝑌2
0
4

+
𝑌4

0
128Ω2 +

𝑌2
0

2𝛼2
0Ω

2

)︄
𝑧−(︄

𝑌2
0
4

+
𝑌2

0

2𝛼2
0Ω

2
−

𝑌4
0

128Ω2

)︄
. (16)

The effective stiffness (which now depends on the excitation pa-

rameters) is given by

𝑘𝑒 𝑓 𝑓 =
𝑑𝐹𝑟

𝑑𝑧
= 3𝑧2 − 6𝑧 + 2 +

𝑌2
0
4

+
𝑌4

0
128Ω2 +

𝑌2
0

2𝛼2
0Ω

2
. (17)

Figure 4 shows the averaged restoring force, the effective stiffness,
and the dynamic potential of the system. For 𝑌0 = 0.5, we
can see that there are three equilibrium points (points where
the restoring force curve crosses the zero line/extremes of the
dynamic potential). The corresponding value of stiffness at the
equilibrium points determines the stability of the equilibrium. For
the two stable equilibrium positions, we have positive stiffness,
while for the unstable equilibrium, we obtain negative stiffness.
If the truss is indented quasi-statically, it undergoes snap through
at the point where the stiffness becomes zero. If the direction of
the quasi-static displacement is now reversed, it once again snaps
back to its original configuration. However, the path followed
is not the same, and this leads to hysteresis. As the excitation
amplitude increases, there is a shift in the equilibrium positions.
These new equilibrium positions are termed as ‘quasi-equilibria’.
The quasi-equilibrium positions are given by

𝑧𝑒𝑞 = 1, 1 ±

⌜⎷
1 −

𝑌2
0
4

−
𝑌4

0
128Ω2 −

𝑌2
0

2𝛼2
0Ω

2
. (18)

These new equilibria are characterized by a higher stiffness
value, and hence a larger natural frequency of oscillation. For
𝑌0 = 2, we obtain only a single equilibrium that is stable as
indicated by the positive value of the stiffness in Figure 4b. At
this point, the two stable equilibria on either side of the unstable
equilibrium have coalesced, and the unstable equilibrium has

5 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2024/88438/V009T09A019/7403660/v009t09a019-detc2024-143874.pdf by Purdue U

niversity at W
est Lafayette user on 12 February 2025



0 2 4 6

0

0.5

1

1.5

2

PF

(a)

1 2 3 4 5

0.4

0.6

0.8

1

1.2

1.4

1.6

PF

(b)

FIGURE 5: Variation of quasi-equilibrium positions for α = 30° with (a) excitation amplitude Y0 for Ω = 5 (b) excitation frequency Ω for
Y0 = 1.5.

disappeared, thus suggesting that a pitchfork bifurcation might
have taken place.

The quasi-equilibrium positions have been plotted as a func-
tion of 𝑌0 in Figure 5a. We observe that when 𝑌0 = 0, the steady
state equation gives the usual equilibrium points of the unforced
system at 𝑧𝑒𝑞 = 0, 1, 2. As the excitation amplitude is increased,
we obtain a shift in the stable equilibria. This shift is termed as po-
sitional biasing. Beyond a critical value, the unstable equilibrium
at 𝑧𝑒𝑞 = 1 becomes stabilized through a supercritical pitchfork
bifurcation. For the parameter value chosen (𝛼0 = 30°,Ω = 5),
this threshold turns out to be 𝑌0𝑐𝑟 ≈ 1.758.

It can be seen from Equation (18), that if 𝑌0 ≥ 2, then
𝑧𝑒𝑞 = 1 is the only stable equilibrium. On the other hand, for
𝑌0 < 2, depending on the choice of Ω, one may have one or three
quasi-equilibria, thus suggesting a pitchfork bifurcation. The
bifurcation diagram with respect to Ω is shown in Figure 5b for
𝑌0 = 1.5. It can be seen that a supercritical pitchfork bifurcation
destabilizes the stabilized equilibrium.

Although the equilibrium at 𝑧𝑒𝑞 = 1 can be stabilized for
certain combinations of excitation amplitude and excitation fre-
quency, the system is still capable of exhibiting both large and
small amplitude oscillations about the ‘stabilized’ equilibrium.
Figures 6 and 7 show that parameter space of forcing amplitude
and forcing frequency for 𝛼0 = 30° and 𝛼0 = 5° respectively
where stabilization is possible and also identify the parameter
regimes where the system exhibits small and large amplitude os-
cillations. The red stars indicate the parameter combinations at
which our experimental model has been validated.

The small amplitude oscillations about the unstable equilib-
rium are of particular interest to us in the context of mechanical
logic gates. For a particular combination of excitation parame-
ters, the system can be parked temporarily in the unstable state

1 2 3 4 5

0

5

0

1

2

1 2 3 4 5

0

5

0

5

FIGURE 6: Mean (top) and amplitude (bottom) of excitation in the
space of excitation amplitude and excitation frequency for α = 30°.
Red star indicates parameter value chosen for experimental verifi-
cation (Ω = 0.5091,Y0 = 0.111 and Ω = 0.848,Y0 = 0.111).

allowing no transmission (in an electrical circuit this would cor-
respond to having no electrical contact). An external disturbance
to the system may then bias it to one of the stable state, thus al-
lowing transmission (analogous to establishing electrical contact
that allows flow of current) as shown in Figure 8.
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FIGURE 7: Mean (top) and amplitude (bottom) of excitation in the
space of excitation amplitude and excitation frequency for α = 5°.
Red star indicates parameter value chosen for experimental verifi-
cation (Ω = 3.05,Y0 = 0.637 and Ω = 5.092,Y0 = 0.637).

6. EXPERIMENTAL VALIDATION
The numerical simulations have been qualitatively validated

using a straightforward experimental model constructed with
LEGO components. The setup comprises a set of three springs,
two of which are in parallel to each other, connected at an angle
through a pin joint (two springs in parallel are used to avoid any
bending at the pin-joint, but their net effective stiffness adds up
to the stiffness of the spring on the other side). The springs in
parallel are fixed to the shaker at the other end, while the third
spring has its end fixed. The setup is shown in Figure 9.

6.1 Procedure
To ensure a proper comparison of the experimental and nu-

merical models, the springs were subjected to a compression test.
Within the operational range, the springs exhibit predominantly
linear behavior with minimal hysteresis, yielding a spring con-
stant of approximately 1000 𝑁/𝑚 for each side. Furthermore,
each spring weighs approximately 2𝑔.

The amplitude of excitation and frequency of excitation are
constrained by the maximum power that can be delivered to/from
the amplifier and also by the stiffness of the LEGOs. For our
purposes, we have fixed the excitation amplitude at 𝑦0 = 0.1
in and the excitation frequency at 𝜔 = 30 Hz and 𝜔 = 50 Hz.
The vibrations are tracked using a Chronos high-speed camera
at a frame rate of 10488 fps and a resolution of 640 × 240.
The images are then fed into a video tracking software to get
the position versus time data. A FFT of the displacement data
reveals the dominant frequency component in the response. These
frequency components are used to fit a periodic solution to the
experimental data. Details of the system parameters used in the
experiment and the corresponding outcomes are given in Table 1.
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0.5

1

1.5

2

2.5
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No Transmission

 State: 0

 Transmission

 State: 1

Exogenous 

Perturbation

FIGURE 8: The system temporarily parked in the unstable state
allowing no transmission. An exogenous perturbation biases it to
one of the stable state allowing transmission to occur.

(a)

(b) (c)

FIGURE 9: (a) Experimental Setup (b) LEGO springs (lego.com) (c)
Chronos High-Speed Camera (krontech.ca)

6.2 Observations
For 𝛼0 = 30°, it can be seen that the excitation amplitude

is below the critical threshold for the parameter values chosen.
The truss simply exhibits trivial low amplitude oscillations about
the inverted configuration. This can be clearly seen from the
phase portraits in Figure 11. On the other hand, for 𝛼 = 5°,
the excitation amplitude is above the required threshold for the
parameters chosen. Hence in this case we obtain oscillations
about the now stabilized unstable equilibrium. These oscillations
are of large amplitude for the parameter values chosen.

Figure 12 shows the response of the system for 𝜔 = 50 Hz. It
can be seen that for 𝛼 = 30°, the system oscillates about the stable
equilibria only. A large perturbation causes the system to snap
from one equilibrium to the other. For 𝛼 = 5°, the system remains
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TABLE 1: System and Excitation Parameters and Outcome

Experiment 𝛼0 [degree] 𝑦0 [inch] 𝜔 [Hz] Threshold 𝑌0 Supplied 𝑌0 Outcome

Run 1 30 0.1 30 0.371 0.111 No Stabilization
Run 2 30 0.1 50 0.600 0.111 No Stabilization
Run 3 5 0.1 30 0.371 0.637 Stabilization (large amplitude)
Run 4 5 0.1 50 0.600 0.637 Stabilization (small amplitude)

FIGURE 10: Two tested configurations captured using a high speed
camera. Top figure corresponds to Run 1 and 2. Bottom figure
corresponds to Run 3 and 4.

stabilized in the unstable configuration until a large perturbation
causes it go to a large orbit motion.

6.3 Sources of Error
Although the LEGOs offer a simplistic representation of our

model, there are potential pitfalls in using them to validate nu-
merical results. Firstly, our numerical model does not account
for the horizontal component of oscillations of the mass that take
place in the absence of the slot (which has not been implemented
in the experimental model). Secondly, the LEGOs themselves
lead to flexural and torsional instability in the model, which per-
turb the system from oscillating around the unstable equilibrium,
especially at high frequencies where these modes get excited.
Third, the damping in the model is not purely viscous. Ideally,
our numerical model should have some linear/nonlinear frictional
damping.

7. CONCLUSIONS
In this paper, we studied the effects of high frequency excita-

tion on the stability of a bistable system represented as a von Mises
truss. We used the method of multiple scales to study the evolu-
tion of the slow dynamics. Specifically, we used the method of
direct separation of solutions, which involves writing the solution
as a superposition of fast oscillations on the slow dynamics. We
demonstrated two primary effects of the fast excitation, stiffening
in which the natural frequency of the corresponding equilibrium
increases and biasing (more specifically positional biasing) in
which the equilibrium point itself changes as the excitation am-
plitude is varied. Parameter regimes have been identified where

stabilization of the unstable equilibrium is possible which has
also been validated through a simplistic experimental model.
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