2024 IEEE International Symposium on Workload Characterization (IISWC) | 979-8-3503-5603-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/IISWC63097.2024.00030

2024 IEEE International Symposium on Workload Characterization (IISWC)

Architectural Modeling and Benchmarking for
Digital DRAM PIM

Farzana Ahmed Siddique, Deyuan Guo, Zhenxing Fan, Mohammadhosein Gholamrezaei, Morteza Baradaran,
Alif Ahmed, Hugo Abbot, Kyle Durrer, Kumaresh Nandagopal, Ethan Ermovick, Khyati Kiyawat,
Beenish Gul, Abdullah Mughrabi, Ashish Venkat, Kevin Skadron
Department of Computer Science, University of Virginia
{farzana, dg7vp, fjy3ws, uab9qt, rgq5aw, alifahmed, drt3sm, kmd2zjw, tsx4uc, keg9ve, vyn9mp,
bg9qq, cmvéru, venkat, skadron}@virginia.edu

Abstract—Processing In Memory (PIM) integrates computa-
tional logic units directly into the memory architecture, offer-
ing significant performance improvements for memory-bound
applications such as matrix operations, vector operations, and
database applications compared to general-purpose CPUs or
GPUs. However, the lack of a standardized benchmark suite
and simulation framework poses a challenge in exploring,
evaluating, and designing different PIM architectures. This
paper addresses this gap by introducing a comprehensive
benchmark suite, PIMbench, along with a performance and en-
ergy modeling framework, PIMeval, both designed to support
a wide range of PIM architectures for DRAM. This paper also
proposes a set of PIM APIs for writing PIM programs, enabling
benchmarks to be executed across different PIM architectures,
and allowing for comparing the performance of bit-serial and
bit-parallel subarray-level PIM and bank-level PIM. PIMbench
and PIMeval have been open-sourced and can be accessed at:
https://github.com/UVA-LavaLab/PIMeval-PIMbench

Index Terms—Processing in memory, benchmarks

I. INTRODUCTION

DRAM [29] is a widely used memory technology consisting
of multiple banks, each with multiple subarrays, each with a
wide local row buffer. All of these locations can host some
processing capability; however, due to pinout and signaling
constraints, the channel’s I/O interface is quite narrow, hiding
this massive parallelism from the host CPU or GPU. Processing
in Memory (PIM) integrates computation within memory,
eliminating unnecessary data movement overhead between
memory and the host, and also enabling high degrees of
parallel processing by leveraging the inherent parallelism of
the memory architecture. The concept of PIM has existed
for decades [67], but recent developments, particularly the
slowing of Moore’s Law [46], have renewed interest in PIM.
These architectures have demonstrated significant potential in
enhancing performance and energy efficiency across various
computing domains, leading to numerous proposed PIM
architectures [9], [16], [26], [36], [37], [59], [62], [72]. However,
the absence of a PIM-specific, generalized benchmark suite
and modeling framework that are portable across different

This work was supported in part by PRISM, one of seven centers in JUMP
2.0, an SRC program sponsored by DARPA; the NSF under grant PPoSS-
2217071 and the NSF I/UCRC MIST Center, grants ITP-1439644, IIP-1439680,
1IP-1738752, [IP-1939009, IP-1939050, and [TP-1939012; Booz Allen Hamilton
under contract FA-8075-18-D-0004; and SRC contract 2019-NM-2875.

PIM architectures makes comparisons challenging and inhibits
innovations in this promising architectural design space. This
paper addresses these challenges by proposing a flexible
PIM modeling framework, PIMeval, accompanied by a PIM
benchmark suite, PIMbench, and a programming framework,
the PIM AFPL

PIMeval. Evaluating PIM architectures is difficult due to the
lack of flexible modeling tools. Prior PIM studies introduce
their own custom simulation or modeling techniques. These
include: i) coarse-grained analytical models, [64] ii) trace-
driven simulations, e.g., [14] and iii) extending full-system
simulators such as gem5 [4] to model-specific PIM architec-
tures [56]. While these methods are effective for the particular
architecture they target, they are not designed for portability.
This paper introduces PIMeval, which supports modeling
both performance and energy for a diverse range of PIM
architectures. This paper demonstrates PIMeval’s versatility by
modeling three potential placement options at different levels
of the DRAM hierarchy, as shown in Figure 2: at the bank
level, a single processing element at the side of each subarray,
as in Fulcrum [37]; and digital bit-serial processing capability
associated with each sense amplifier across the width of each
row buffer, similar to DRISA [38] and Micron’s digital In-
Memory Intelligence (IMI) [17]. Although prior work has
explored the capabilities of analog bit-serial [26], [62], digital
bit-serial techniques are less vulnerable to variations due to
manufacturing and aging. Therefore, for modeling bit-serial
PIM, we explore a digital technique that supports Boolean
operations for general computation, and also incorporates
native support for comparisons, similar to DRAM-CAM [73],
an architecture we call DRAM-AP.

PIMbench. This paper also introduces a new benchmark
suite for PIM, which we call PIMbench. It incorporates a
diverse set of applications (Figure 1), each implemented using
a high-level PIM API designed to be portable across varying
PIM architectures. While prior PIM benchmark suites, such
as PrIM [24] and InSituBench [37] exist, they are specifically
built for a single architecture and cannot be easily ported to
evaluate other PIM architectures. Our proposed PIMbench
suite, shown in Table I, adapts some benchmarks from
these previous suites but also introduces a wider variety

of applications and domains. This includes benchmarks with

2835-2238/24/$31.00 ©2024 IEEE 247

DOI 10.1109/IISWC63097.2024.00030

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

Image Down Sampling

TABLE I: PIMbench Suite.

Memory Access Pattern

Domain Application Name - o Tand Execution Type | Input
Vector Addition v PIM 2,035,544,320 32-bit INT

Linear Algebra AXPY e PIM 16,777,216 32-bit INT
Matrix-Vector Mult. (GEMV) v PIM 2,352,160 x 8,192 32-bit INT
Matrix-Matrix Mult. (GEMM) v PIM 73,521 % 4,096 and 4,096 = 512 32-bit INT

Sort Radix Sort e v PIM + Host 67,108,864 32-bit INT

Crvot I AES-Encryption v v PIM 1,035,544,320 Bytes

Typtography AES Decryption 7 7 PIM 1,035,544,320 Bytes

Graph Triangle Count v v PIM 227,320 nodes and 1,628,268 edges

Database Filter-By-Key e PIM + Host 1,073,741,824 key-value pairs
Histogram e PIM

Image Processing Brightness v PIM 1.4 % 10° 24-bit .bmp
Image Down Sampling e PIM

. . K-nearest neighbors (KNN) v v PIM + Host 6,710,886 2D data points

Supervised Learning Linear Regression v PIM 1,500,000,000 2D points

Unsupervised Learning | K-means v PIM 67,108,864 2D data, k= 20
VGG-13 v PIM + Host

Neural Network VGG-16 e PIM + Host 64, 224X224X3 image matrix and 3X3X64 weight matrix
VGG-19 v PIM + Host

102 102 1071 10° 10°

Linear

Traingle Count

K

Brightness

Vector Addition

GEMVI——
L —

GEMM

VGG-19
VGG-16
VGG-13
AES-Decrypti
AES-Encrypti
Filter-By-Key
Radix Sort

KNM

Fig. 1: Dendogram showing similarity between benchmarks
in PIMbench. X-axis shows linkage distance in log scale.

more complex execution patterns, such as AES [51], and those
involving PIM-host communication, such as radix sort and
VGG [65]. Importantly, our benchmark suite does not focus
on highlighting a single architecture, but rather showcases
the strengths and weaknesses of each architecture explored.

In summary, this paper proposes an evaluation framework
and benchmark suite that provide a common ground for
evaluating and comparing PIM architectures, with the goal
of making it easier for the architecture research community
to explore the PIM design space.

II. RELATED WORK

PIM Modeling and Simulation. DRAMsim3 [39] and
Ramulator [33] are cycle-accurate DRAM simulators that
focus on DRAM protocols and do not support PIM-specific
simulation, limiting their use for PIM architecture evaluations—
although both can be used to help model the timing of the
DRAM read/write operations involved in PIM [14], [27]. In
contrast, PIMSim [74] allows a program to be annotated
with PIM instructions, which invoke a PIM performance
model. The PIM performance models are based on the
processor types modeled in gem5 [4], such as CPU and GPU

cores. However, such heavyweight cores likely only make
sense at the bank interface or outside the DRAM chip in a
near-memory configuration, thus rendering them unsuitable
for modeling subarray-level PIM architectures. gem5 is a
versatile and widely used simulation infrastructure for CPU
and GPU modeling, and provides a detailed model of the
memory system for conventional reads and writes. While some
PIM research, such as MIMDRAM [56], utilizes gemb5, their
approach lacks flexibility and extensibility for diverse PIM
architectures. Incorporating PIMeval into gem5 is a valuable
direction for future research.

PiMulator [47] is an FPGA-based platform for prototyping
and evaluating PIM architectures. It offers detailed memory
configuration but does not support diverse PIM functionality,
due to which mapping a new PIM architecture to PiMulator
is often a Herculean effort requiring extensive modifications
within the FPGA framework.

MultiPIM [76] is intended to be a flexible PIM simulation
framework, but assumes the same instruction set architecture
(ISA) for both PIM and host cores, which limits its ability to
explore PIM architectures with a different instruction set.

In all the existing frameworks, adding a new application
requires coding the new application at an assembly level or
similar low-level representation. In contrast, our PIM API
allows applications to be written in a high-level language,
abstracting away low-level hardware details and ensuring
portability across different PIM architectures. Targeting this
API as an intermediate representation with a compiler would
be an interesting direction for future work.

Several DRAM power models have been proposed.
PIMeval’s approach is primarily based on the Micron power
model [45] because it is based on vendor data and is
straightforward to incorporate into PIMeval and derive
energy for each PIM operation. Other open-source models
include CACTI [2], DRAMPower [31], VAMPIRE [22], and
the RAMBUS power model [68].

Benchmark Suites for PIM. PrIM [24] and InSituBench
[37] are two open-source benchmark suites for PIM ar-
chitectures. PrIM is specifically designed for UPMEM [24],
[34], and provides mostly building-block benchmarks, while

248

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

InSituBench provides some mixture in terms of benchmark
complexity, but primarily targets kernels for subarray-level
PIM [35]-[37]. Neither suite is easily modified to study
diverse PIM architectures. A previous generation of PIM
research named IRAM project, proposed a small suite of
five benchmarks [20] with diverse characteristics, but it does
not appear to have been open-sourced. A version of this
suite’s histogram benchmark was also included in the Phoenix
benchmark suite for map-reduce processing [75]. BLIMP [14]
introduces compiler analysis to map the Phoenix and SPECcpu
benchmarks to a bank-level PIM architecture a simple RISC-V
core per bank, but this approach is tied to a fully-featured
ISA such as RISC-V. Extending that compiler analysis to other
PIM architectures is a promising direction for future work.

PIMbench offers a broader range of applications, as illus-
trated in Figure 1, 8, including some adapted from PrIM,
InSituBench, and Phoenix, as well as applications used in the
evaluation of the SIMDRAM analog bit-serial [26] architecture
and the DRISA [38] hybrid analog/digital bit-serial architec-
ture. The benchmarks currently included in PIMbench, as
listed in Table I, range from simple building-block benchmarks,
like vector addition and AXPY, to benchmarks comprising
multiple building blocks that require data re-layout between
each kernel execution and PIM-host communication. Some of
PIMbench’s benchmarks were included in multiple prior suites,
such as GEMV (PrIM and InSituBench), GEMM (InSituBench,
Phoneix), filter-by-key (PrIM, InSituBench, and related to
bitweaving in SIMDRAM), histogram (PrIM, IRAM, Phoneix),
KNN (InSituBench, SIMDRAM), and VGG (SIMDRAM, DRISA).
Others only appear in one suite, such as vector addition
(PrIM), AXPY (InSituBench), radix sort (from follow-on work
to InSituBench [35]), brightness (SIMDRAM), linear regression
(Phoenix), K-means (Phoenix); and others have not been
evaluated in prior PIM work to the best of our knowledge
but we felt added significant value, namely triangle counting,
image downsampling, and AES encryption/decryption.

Overall, PIMbench provides a greater range of building
blocks used in modern applications, and is therefore better
suited to evaluate how PIM may handle more realistic
workloads, and helps illustrate pros and cons of diverse PIM
architectures on different application behaviors. Lastly, our
benchmarks are implemented using a common API, which
allows them to be portable to future PIM architectures.

We are continuing to extend PIMbench with additional
kernels, such as prefix sum (related to scan from PrIM and
InSituBench), transitive closure from the IRAM suite, Principal
Component Analysis (PCA) [42] and string match from
Phoenix, apriori from DRAM-CAM [73], additional machine-
learning algorithms, sparse algorithms such as sparse matrix-
vector multiply (not easily supported in bit-serial PIM) and
graph algorithms.

III. DRAM BACKGROUND

DDR (Double Data Rate) DRAM [29] is the dominant,
commodity memory technology in modern computing. In this
paper, we focus on PIM for DDR; our modeling approach and

Fig. 2: DDR DRAM organization showing potential locations
for PIM processing elements.

benchmarks should be easily extensible to High Bandwidth
Memory (HBM) [30], which is left for future work, although
conclusions about which PIM architecture is best might
change with HBM.

DRAM is organized hierarchically, with individual memory
bit-cells grouped into successively larger units, up to the
memory modules placed into the motherboard, called Dual In-
line Memory Modules (DIMMSs), as shown in Figure 2. Memory
access occurs through multiple channels, which operate
concurrently, and each channel has its own address, data,
and command bus, allowing channels to operate completely
independently. Multiple DIMMs can be connected to a single
channel, and a DIMM consists of one or more ranks, where
each rank comprises a set of DRAM chips that each contribute
a subset of the bits needed for a single memory fetch from
the memory controller.

Within each chip, memory is organized into banks, typically
16 or more per chip. Logically, a specific bank position in
each chip in a rank will be grouped together to form a logical
bank, so when the memory controller reads or writes to a
given rank, it specifies one of these logical banks (e.g., a
cache line fetch from bank 0 will fetch some bits from the
same position in bank 0 of chip 0, bank 0 of chip 1, etc.).
DRAM operations consist of read/write commands, which
actually move data, and other operations, such as precharging
the bitlines, or activating a row. Memory commands are
sent to the appropriate bank, and operations to these logical
banks can be interleaved, so that for example one bank can
be precharging while another is providing data. Banks in
turn are divided into subarrays, which are smaller groups
of memory cells, to reduce electrical loads and noise. Each
subarray within a bank has its own row decoder and local
sense amplifiers, and the set of local sense amplifiers forms
the subarray’s local row buffer. Subarrays are typically 512-2K
rows tall, and 4K-16K columns wide.

A subarray row activation reads an entire row and latches
these bits into the row buffer. Successive accesses to the same
row can therefore fetch data from the row buffer without the
much higher latency and energy cost of closing a row (which
requires writing back its values; row activation is destructive)
and activating a new row. These successive accesses to the
same row are called row-buffer or page hits. Reads fetch
64-256 bits from the open local row buffer over the global
data lines (GDL) into the bank’s global row buffer, which

are then bursted out over the I/O pins; writes operate in the

249

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

opposite direction. For DDR, the GDL is likely 64-128 bits,
while for HBM it is wider. Note that this narrow GDL limits
the potential PIM bandwidth at the bank interface.

Subarrays in turn consist of MATs, which are roughly
square, e.g. 512x512; and each MAT contributes one or more
bits to the read. This means logically adjacent bits in a word
of data (assuming traditional horizontal, row-oriented data
layout) are not adjacent; they are scattered across MATs and
only reunited in the global row buffer at the bank interface.
Each MAT has its own subwordline driver, to boost the
wordline signal, so that the overall subararay wordline does
not need a single, large driver. MATs also allow the logic for
column selection for reads and writes to be distributed. At this
point in time, and for purposes of this paper, PIMeval only
models subarrays as monolithic arrays, without the added
detail of MATs, which is left for future work. However, as
shown in the MIMDRAM [56] project, MATs can play an
important role in PIM architecture. The Fulcrum [37] project
also noted that the non-adjacency of a word’s individual bits
in the row buffer was a motivation for its architecture.

For a more in-depth overview of DRAM architecture, see
Vogelsang [68], Zhang [77], Seshadri [63] or Marazzi [44].
Jacob [29] and the DRAMsim3 memory model [39] are also
excellent resources, although they do not discuss subarrays.

For this study, we assume each rank consists of 8 chips with
an 8-bit interface (“x8”). Each chip has 16 banks, and each
bank is divided into 32 subarrays per chip, for a total of 4K
subarrays per rank. Within one chip, each subarray consists of
a matrix of memory cells organized into 1,024 rows and 8,192
columns. We also assume that DRAM used for PIM operation
is dedicated for that purpose and physically separate, so that
PIM does not interfere with regular memory read and write in
the main memory, and simplifies memory management. This
PIM module can be assigned to a specific memory controller
or accessible over CXL system interconnect, similar to the
way GPUs are attached via PCI Express. In this paper, we
assume a DDR interface with 25.6 GB/s rank bandwidth.

We chose to separate the PIM memory module(s) because
many PIM architectures require data to be laid out differently
than in conventional memory. For example, bit-serial PIM
architectures require data to be laid out vertically [20],
instead of the usual horizontal layout, where all the bits
are in the same row. Even PIM architectures that use a
more conventional horizontal data orientation require all
the bytes of each word to be together, and may need data
placed carefully to spread it across all banks and subarrays
to maximize parallelism. This may necessitate a different
layout than the typical address interleaving. Therefore, many
prior PIM architectures require some data movement to place
the data into the proper layout for PIM operations. Using
a separate memory module provides a location to place the
data in the desired layout and to work around the memory
system’s address interleaving.

Frocessor|(& ywordiine | =) M TTTTTTTTT
%\-.._I_ '%:gg:gg o Vector A
ZaalL Bl
(3 (3 [\ _epacior : (IE
= 1 -Q - Row bufier BlIE B
O [et || |7
Pl
S Vector Results
y BLLLL L]
I/O Logic ‘ 5
o

Fig. 3: Generic bit-serial PIM architecture.

IV. PIM VARIANTS

PIM can be categorized into Processing in Memory (PIM)
and Processing Near Memory (PNM). PIM performs computa-
tion inside the DRAM chips themselves, while PNM places
computation at the DRAM interface, such as on the DIMM
module (e.g., AX-DIMM [66]) or in the logic layer of a stacked
DRAM such as HBM. Within the category of PIM, this paper
compares three potential locations for integrating digital logic
within DRAM, as shown in Figure 2.

%
AddressLess Procesing Unit (ALPU)

¢

it
8

g
B
|

(a) Overall of each (b} AddressLess Processing Unit (ALPUY

Fig. 4: Bit-parallel subarray-level PIM, based on Fulcrum. [37]

Subarray-level Bit-Serial. The first option, shown as (1) in
Figure 2, places the computation at the subarray level, with a
simple bit processing element attached to each sense amplifier,
with the bits of each data element laid out vertically up the
bitlines. This allows a bit-serial computation on each bit in
the entire subarray local row buffer to happen in unison,
ie. a bitslice computation. This architecture is shown in
more detail in Figure 3. This configuration offers subarray
parallelism as well as row-wide bit-slice parallelism, and
is sometimes also referred to as Processing Using Memory
(PUM) [49]. The resulting bit-serial computation must perform
at least n row accesses to operate on n-bit datatypes, and
most compose more complex functionality (e.g., arithmetic)
out of a few basic Boolean micro-operations, to minimize
area overhead for the bit-level processing units attached to
the sense amps, but makes up for this with the massive
parallelism of operating simultaneously on the wide bit-slices.
We model a digital subarray-level bit-serial PIM architecture
inspired by previous works [17], [38], [73]. Previous bit-
serial PIM proposals, such as Ambit and SIMDRAM [26],
[62], utilized analog computation based on charge sharing on
the bitlines, implemented with triple row activation (TRA).
TRA implements the MAJority function, but also requires dual-

250

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

contact rows for NOT operations, which are costly [44]. TRA
has the additional drawback that, to avoid large decoders for
its functionality, only a small subset of rows support TRA, and
operand rows must first be copied into these TRA rows. Due
to process variation, aging, and area overheads for DCCs [44],
DRAM vendors have expressed a preference for digital PIM
approaches. DRISA [38] introduces a hybrid analog-digital
model, extending the analog approach by adding digital gates
to the sense amplifiers. This provides a richer set of Boolean
operations, allowing arithmetic operations to be composed
more efficiently. In this paper, we model a purely digital bit-
serial PIM architecture (shown in Figure 3), modeled after
Micron’s digital IMI architecture [17], with a few additional
logic gates to implement associative (conditional match-
update) processing, inspired by prior work on associative
processing [10], [73]. This architecture, which we call DRAM-
AP, features digital bit-serial logic connected to the sense
amplifiers in each subarray, capable of performing XNOR,
AND, and SEL (2:1 mux), supporting bit-serial arithmetic as
well as associative processing. Additionally, it includes four
extra bit registers to store intermediate values and condition
bits, to achieve the conditional read and write needed for
associative processing and the carry bit for arithmetic.

For high-level operations such as integer addition, bit-
serial PIM runs a microprogram, i.e., a sequence of bit-serial
operations, to achieve the desired computation. We assume
the microprogram is executed by the memory controller,
broadcasting each operation to all banks and subarrays. The
complexity of the microprograms ranges from linear in terms
of operand bitlength, e.g., for integer addition/subtraction, to
quadratic, e.g., for integer multiplication and floating point.

Subarray-level Bit Parallel. The second option, which is
another variation of subarray-level PIM, not shown in Figure
2, was introduced in the Fulcrum [37] work, and involves
placing a more conventional bit-parallel, scalar ALU at the
edge of the row buffer This architecture is shown in Figure 4.
While Fulcrum was originally designed for 3D stacked Hybrid
Memory Cube (HMC) [28], we have adapted its design for
DDR to fit within the scope of our paper. The only change
is that the original Fulcrum assumed that some operations
could be offloaded to simple cores in the logic layer of the
HMC, our DDR version offloads computation to the CPU if
it cannot be performed locally at the subarray. The essence
of this architecture is a 32-bit, 164MHz ALU shared between
two consecutive subarrays, providing parallel processing
capabilities. Figure 4 presents the overall architecture of
Fulcrum, consisting of two primary components: (i) Walkers
and (ii) the AddressLess Processing Unit (ALPU). The Walkers
feature three rows of latches. These Walkers either capture
input operands read from the subarray or store target variables
before writing them back to the subarray. The read/write
operations are carried out sequentially, using a one-hot-
encoded value to determine the selected column for bus
placement. The ALPU, integral to the architecture, includes
four components: (i) a controller, (ii) three temporary registers,
(iii) an ALU, and (iv) an instruction buffer. Unlike bit-serial

architecture described in section IV, Fulcrum assumes that
two consecutive subarrays can communicate with each other
using the LISA technique [11], but we do not use that feature
in these benchmarks—that is left for future work. The ALPU
can be 32 or 64 bits wide; in this study, we model 32-bit
ALPUs, able to perform SIMD operations if needed, so that
the entire 32 bits can be processed in one step.

Bank-level PIM. The third option, shown as (2) in Figure
2, is to place a processing element at the bank interface,
enabling bank parallelism, inspired by the BLIMP project [14].
BLIMP integrates a simple, in-order-issue 200 MHz RISC-V
RV64GC processor without caches directly into each memory
bank. BLIMP is designed so that banks operate independently,
with each core associated with a bank only able to access
data within that bank, and can operate fully in parallel, i.e. all-
bank mode. The PIMeval bank-level model also assumes banks
operate independently and support all-bank computation, but
so far model only a simplified bank-level processing element,
similar to the Fulecrum ALPU, featuring three Walkers, and a
128-bit processing unit attached to each bank, with datatypes
smaller than 128 bits processed in SIMD fashion. We assume
a 128-bit GDL here to be generous to bank-level PIM. The
walkers are as wide as the subarray local row buffer, which
allows some pipelining for fetching data into the walkers
and computation. Since banks cannot communicate with each
other, any computation requiring inter-bank communication

is offloaded to the host CPU.

V. PIMEvAL

PIMeval is a versatile and highly extensible simulator
designed to model various PIM architectures, including those
with vertical or horizontal data layouts [21]. It includes
built-in performance and energy models for three different
PIM architectures (Section IV). Moreover, benchmarks can
be written using high-level PIM APIs that will work on all
supported PIM architectures without any code modification.
Once a simulation target (i.e. PIM device) is specified, the
PIM simulator automatically determines the data layout and
provides comprehensive performance and energy statistics for
data movement and PIM operations. This section demonstrates
the design of PIMeval as well as how the functionality,

performance, and energy is modeled.

A. Architecture

PIMeval has been developed as a C++ library to facilitate the
development of benchmarks for PIM. The library can be linked
with benchmark programs to generate executable capable of
performing PIM simulations. It offers a comprehensive set of
APIs (Section V-B), supporting the creation of PIM devices,
resource management, data transfer, and a wide array of
high- and low-level PIM operations. ThePIMeval framework
is illustrated in Figure 5.

We abstract the basic processing unit, depending on the
computational capability of each PIM architecture, as a PIM
core. This PIM core can represent either a processing unit

251

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

Device Creation PIM Processing Unit

Data Copying PIM Commands

2
=
2 || 2 —
Resource % = PIM Processing Unit
Allocation 1 ?
= 8
=4
Data Copying ‘g PIM Processing Unit
Q
PIM Computation * PIM Resource Mgr Perf
% Energy

PIM C++ App

Fig. 5: PIMeval framework.

PIMeval Simulator C++ Library

attached to subarray or bank (other options, such as module-
level near-memory processing, are future work). Various high-
and low-level PIM operations are then abstracted as PIM
commands that can be executed on a PIM core. Benchmarks
can utilize the same high-level operations for performance
and energy measurement across different PIM architectures.
PIMeval currently only supports digital techniques, but sup-
port for analog bit-serial techniques would be straightforward
to add, and this is left for future work.

A PIM resource manager is implemented to handle data
object allocation, deallocation, and tracking. A PIM data object
can span multiple 2D memory regions across multiple PIM
cores, leveraging subarray-level or bank-level parallelism.
Depending on the PIM architecture, the data may be laid
out horizontally or vertically within a memory subarray. PIM
operations use object IDs as operands and can retrieve object
information from the resource manager.

B. PIM APl

PIMeval presents a high-level API set that supports func-
tional behavior, performance and energy modeling across
multiple PIM architectures, ensuring that the same benchmark
implementation can be applied to different architectures. The
API set includes common SIMD logical operations, integer
arithmetic, comparisons, as well as broadcasting, popcount,
and reduction sum operations. These APIs utilize PIM data
object IDs as operands, with the assumption that a software
runtime manager handles resource allocation and address
mapping. The simulator’s API set is easily extendable to
accommodate additional PIM operations and data types. An
example program, AXPY, implemented using these APIs, is
shown in Listing 1.

| void axpy(uinté4 t vectorLength, const vector<int> &X, const vector<int> &Y, int A)

unsigned bitsPerElement = sizeof(int) * §;
// Allocate device memory
PimObiId obiX = pimAlloc(PIM_ALLOC_AUTO, vectorLength, bitsPerElement, PIM_INT32)

PimObiId objY = pimaAllocAssociated(bitsPerElement, objX, PIM INT32);
assert((objX != -1) && (objY != -1));
// Copy inputs, perform operations, copy back results

i pimCopyHostToDevice(X.data(), obiX):
9 pimCopyHostToDevice(Y.data(), objY);

pimScaledAdd(objX, objY, objY, A)

1 pimCopyDeviceToHost (objY, Y.data(});
// Free allocated memory
pimFree{objX) ;

pimFree(objY);

Listing 1: AXPY implementation using PIMeval API set.

C. Performance Modeling

Performance modeling is divided into two components: (i)
data movement latency and (ii) kernel execution latency.

i. Data Movement Latency: This is modeled based on
the number of bytes transferred and the available memory
bandwidth. For more precise modeling, integration with
DRAMSsim3 [39] has been left as future work. PIMeval cur-
rently does not differentiate between channels and ranks; this
distinction will be rectified via integration wtih DRAMsim3.
This means that all ranks are treated as independent channels,
which amplifies data transfer bandwidth. Overhead of large
data transfers will increase once modeling accounts for
multiple ranks sharing a channel.

ii. Kernel Execution: Each PIM benchmark consists of
multiple PIM APIs, with some benchmarks including kernels
executed on the host either due to random access or expensive
inter-bank communication. The performance of the host
portion is measured using C++ STL’s high-resolution clock.
PIMeval models the performance of each PIM API based on
the characteristics of the PIM device and DRAM parameters
obtained from DDR data sheet.

Performance of subarray-level bit-serial PIM is determined
by factors such as the command type (e.g., arithmetic, logical)
and data type (e.g., int32, int8). These operations often require
a bit-serial microprogram using simpler, Boolean micro-ops,
with a vertical data layout, to execute SIMD operations on bit-
slices of input vectors. To accurately model the performance
of targeted bit-serial PIM, all high-level PIM APIs are mapped
to low-level bit-serial microprograms.

The performance of subarray-level bit-parallel PIM is
modeled by including row read/write latency to the local
row buffer, as well as the latency required for subsequent
arithmetic and logical operations. Bank-level bit-parallel PIM
has been modeled by including row read/write latency to
global row buffer (through narrow GDL width) and the latency
to execute PIM command by the processing unit.

Besides SIMD PIM operations, some non-SIMD operations
require special handling when modeling performance:

(1) Reduction: This operation is essential for a few kernels
of our benchmark. Depending on PIM architectures, reduction
can be performed with subarray or bank-level accumulators,
or by the host CPU. Subarray-level bit-serial PIM can also
perform row-wide pop counts for integer reduction sums,
provided appropriate hardware support is available.

(2) Broadcasting: This involves copying the same scaler
value or a pattern to all elements of PIM objects. Bit-serial
PIM can efficiently broadcast a bit value to entire memory
row, while bit-parallel PIM can propagate the value to a
walker/register per subarray/bank.

D. Energy Modeling

Energy modeling consists of (i) data transfer energy, (ii)
application execution energy, and (iii) background energy.
PIMeval’s approach is primarily based on the Micron power
model [45] because it is based on vendor data and is
straightforward to incorporate into PIMeval.

252

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

i. Data Transfer Energy. The energy for data transfers
between the PIM and host, in both directions, is calculated
using the Micron power model. For instance, the read power
is obtained using Equation 1 which is then multiplied by the
time spent on memory read to calculate energy.

Read Power = Vpp X (Inpag — Ippan) (1)

ii. Application Execution Energy. Application execution
energy is modeled at the granularity of PIM API calls. We
aggregate the energy consumed by all the PIM APIs used
in the application, depending on the specific PIM device
executing the application. For instance, when PIMAdd is
executed on a subarray-level PIM, it involves energy for
row activation, precharging, data movement between the
local sense amplifier, and ALU operations. However, when
executed on a bank-level PIM, the energy associated with
GDL transfers is also included. The energy for simultaneously
activating or precharging multiple subarrays within a bank is
derived using Equation 2. The GDL energy for transferring
data within a bank, is scaled based on data from LISA [11]. To
account for the ALU operation energy, we use values derived
from RTL models for bit-serial and Fulcrum architectures, with
the latter provided by the Fulcrum authors. We assume that
the bank-level processing element consumes similar power
as the Fulcrum ALU.

AP = Vpp x (Ippp x (tras +trp) —(Ippan % tras +Ippan X trp)) (2)

Energy for applications that has host execution, is modeled by
multiplying the host execution runtime with the TDP listed in
table II. Using TDP is pessimistic; incorporating actual CPU
energy for the host portion is left for future work.

iii. Background Energy. The Micron power model does not
account for the background energy of DDR when multiple
subarrays or banks are active simultaneously. To address this,
we model the background power of a single subarray by
subtracting the standby power when the device is precharged
from the standby power when the device is active. We then
multiply this power by the total number of subarrays to
determine the overall background power, which is further
multiplied by the kernel execution time to calculate the
background energy. For CPU idle energy, while it is waiting
for a PIM operation to complete, we assume the cores are
idle. Idle energy varies widely according to CPU model, but
we use 10 W as a representative number. We performed a
sensitivity analysis on this value, abserved minimal impact
on most applications. For example, in vector addition, the
PIM energy consumption for bit-serial architecture is 13.26
m]J, while the CPU idle energy is only 0.14 m], accounting
for just 1% of the total energy. However, in applications with
longer PIM execution times, such as VGG-19, the CPU idle
energy increases correspondingly. For the same input size,
VGG-19 consumes 45k m] of PIM execution energy and 22k
m] of CPU idle energy, leading to a 48% increase in total
energy consumption.

TABLE II: Configuration of the Evaluated Architectures.

Architecture Parameters

CPU AMD EPYC 9124 16-core @ 3.71GHz, 200W TDP, 768GB DDRS5, 12

memory channels, peak memory BW 460.8GB/s.

GPU NVIDIA A100, 30GB HEM, 300W TDP, peak memory BW 1,935GB/s,
peak compute rate for 32-bit FP is 19.5 TFLOPs.

Bit-serial 32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,
8192-bit local row buffers. A bit-serial processing unit is attached
to each sense amplifier in local row buffer, with 4-bit registers and
move/set/and/xnor/mux operations.

Fulcrum 32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,
8192-bit local row buffers. 32-bit 167 MHz integer ALU and three
8192-bit walkers are shared between every two subarrays.

Bank-level 32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,

PIM 8192-bit local row buffers. 128-bit GDL, global row buffers, a 64-bit

Fulcrum-style ALPU, and three 8192-bit walkers for each bank.

E. Verification

i. Functional Verification. The output of each PIM application
was compared against the original CPU execution to ensure
functional correctness.

ii. Performance Modeling Validation. We validated the
performance model of PIMeval by comparing its results
for Fulcrum with those produced by the original Fulerum
simulator across four benchmarks: Vector Add, AXPY, GEMV,
and GEMM. The simulator achieved identical performance for
Vector Add and AXPY compared to the Fulcrum simulator.
However, for GEMV and GEMM, PIMeval’s results were
approximately 10% slower than those of the original Fulcrum
simulator, which we attribute to the overhead associated
with the data allocation mechanism within PIMeval. We
further performed a performance verification for Vector Add
and GEMV using UPMEM [24], and observed a 23% and
35% slowdown in our toy UPMEM model compared to the
UPMEM hardware. We attribute this slowdown, in part, to
PIMeval’s inability to accurately model the tasklets utilized
by UPMEM. Moreover, PIMeval exhibits limitations in its data
allocation strategy, particularly for horizontal data layouts,
as it assumes that the entire DRAM row is filled with valid
data and computes the latency accordingly, even if the data
are not large enough to fill the row. These limitations will be
addressed in future versions of PIMeval.

VI. METHODOLOGY

Each PIM variant employs a DRAM configuration consisting
of one or more ranks of DIMM, with each rank comprising
8 chips. Each chip contains 16 banks, and each bank is
subdivided into 32 subarrays. These subarrays are organized
as 1024x8192 matrices of memory cells. For our CPU and
GPU baselines, we use the AMD EPYC 9124 16-Core Processor
[1] and the NVIDIA A100 GPU [55], respectively. Table II
summarizes the configurations for each architecture.

The benchmarks listed in Table I are implemented for PIM
using our high-level PIM APIs, as detailed in Section V-B. For
GPU implementations, we primarily rely on libraries such as
cuBLAS [53], Thrust [54], and CUB [52]. Triangle counting on
the GPU uses Gunrock [70]. For the CPU, implementations

253

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

NMiBank=37 W#Bank=64 N #Bank=138

10
‘ ‘" I
o |I| ||
]
3
3

3 £ 3
g§ ;5 gigs
3k Ik

[=100

B
H

Latency (ms}

Latency(ms)

Eisisi

| IE i

!is

; 3z

1 h
: P

.= £ .= .=]

Bit Serial

(b) Varying #Banks

Bit-Serial Fulcnsm Bank-level Fulcrum Bank-level

(a) Varying #Columns

Fig. 6: Sensitivity Analysis of PIM devices based on different
#columns and #banks for 256M 32-bit INTs.

are based on OpenMP [12] and pthreads [50], along with
optimized libraries like OpenBLAS [71] where applicable. For
triangle counting on the CPU, we use GAPBS [3]. For the
GPU and CPU implementations of VGGs, we use PyTorch
[58]. Also, we implemented the AES CPU baseline using the
OpenSSL library [57], which utilizes Intel’s AES-NI instruction
set extensions [23] for optimized cryptographic performance.

We assume that the PIM and GPU are both attached via
PCI Express or CXL (which is based on PCle), so data transfer
bandwidth would be the same for both. We therefore factor
this out in the PIM vs. GPU comparisons. Similarly, we factor
out CPU idle energy in PIM vs. GPU comparisons.

VII. SEnsiTiviTY ANALYSIS OF PIM VARIANTS

We perform a sensitivity analysis (eg. varying #columns,
#banks) of bit-serial, Fulcrum, and bank-level PIM architec-
tures using four primitive PIM operations: addition, multipli-
cation, reduction, and popcount. These operations represent
common logical and arithmetic tasks, focusing on 32-bit
integers. The evaluation loads n-size vectors and performs a
single operation, excluding data movement latency between
the host and PIM. Figure 6 shows latency scaling of the
operations for varying #columns and #banks. Bit-serial is most
sensitive to these parameters. Fulcrum and bank-level, both
being bit-parallel, show sensitivity to bank-level parallelism.

Addition. As data is laid out vertically in bit-serial PIM
(section IV), it opens 3n DRAM rows to perform any two-
input/one output n-bit simple operations, working one bit at
a time. However, each DRAM row is processed in parallel,
allowing the same operation to be performed on the entire bit-
slice in one cycle. In contrast, Fulcrum only exploits subarray-
level parallelism but not row-wide parallelism, and bank-level
only exploits bank parallelism. Hence, bit-serial PIM achieves
highest performance for operations akin to addition, with low
complexity per bit.

Multiplication. Multiplication in bit-serial PIM is costly
due to its quadratic relationship with element bit-width [32].
In contrast, Fulcrum and bank-level, being bit-parallel, can
perform one full scalar multiplication per ALU cycle. Figure
6 shows that bit-serial still outperforms bank-level due to
narrow GDL width and limited parallelism across banks.
Fulcrum demonstrates the best performance for multiplication.

Reduction. Bit-serial PIM uses a popcount-based integer
reduction sum [73]. Both Fulcrum and bank-level PIM perform
reduction similar to addition. As bit-serial PIM has the
advantage of higher parallelism over both Fulcrum and bank-
level PIM, it shows the best performance (Figure 6).

Popcount. Fulcrum implements popcount using SWAR
[13], requiring 12 ALU cycle per popcount. On the other
hand, bit-serial popcount is log-linear with respect to element
bit-width. The bank-level PIM can perform popcount in one
CPU cycle [18], [19]. As a result, both bank-level and bit-serial
PIM outperform Fulcrum. (Figure 6).

VIII. PIMBENCH: ANALYSIS & FINDINGS

This section describes the PIMbench suite, along with
details on the adaptations made for PIM, and presents an
analysis of the performance and energy consumption of each
benchmark compared to baseline CPU and GPU architectures.
Table I presents the list of the benchmarks, chosen to
encompass a diverse range of applications, along with their
input sizes, memory access patterns, and execution types. An
execution type with the value PIM + Host denotes benchmarks
that include constituent kernels running on the host due to
either random access pattern or the need to support inter-
bank communication. Figure 1 presents a dendrogram to
quantify the diversity, based on the instruction mix, memory
access pattern, execution type, and arithmetic intensity of
each application. These parameters are then refined using
a combination of PCA and hierarchical clustering [48] to
produce the dendrogram.

A detailed breakdown of the PIM operation mix of PIM-
bench is shown in Figure 8. Figure 7 shows the execution time
breakdown for each benchmark, showing the percentage of
time spent on data movement, host execution, and PIM kernel
execution. The energy breakdown exhibits similar behavior
and is not shown.

Figure 9 shows the speedup achieved by each PIM variant,
using 32 ranks, for different benchmarks compared to the
CPU, while Figure 10a shows the speedup over the GPU. Note
that some benchmarks are not able to benefit from so many
ranks, due to data movement overhead, host interaction, or
simply because the problem sizes we chose are not large
enough. Rank scaling will be discussed in Section IX. Figure
9 shows speedup considering both data movement and kernel
execution time together, as well as speedup based solely on
kernel execution time. For Figure 10a we neither include
cudaMemCopy cost for GPU, nor PimCopyHostToDevice for
PIM, to ensure fair comparison, as both can use PCle/CXL.
Figures 11 and 10b demonstrate the energy reductions relative
to the CPU and GPU, respectively. The GPU comparison
factors out CPU idle energy during GPU/PIM execution.

Vector Addition. Vector addition [5] is an element-wise
operation on two vectors and serves as an ideal candidate
for PIM, particularly for bit-serial PIM, because addition is
efficient even wtih bit-serial, as discussed in Section VIL
Consequently, bit-serial PIM demonstrates the highest speedup

254

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

M Data Movement
100

80
60
40
“ i
0 I L | n - =
S5ZIESCISEEEEE0S0EzIfEsE
:ﬁmmmggai‘—.;axg..aag:a;mmmggg
T Ccoxs50z¥z2E 2 E E %0 x5
2 S55aLtg®s HeL>>>F S66s
5 cHE3PE2TSE & 5 = &g ¥
g AR EE E & g b & B
= A a @ = =<2 F
g 3
o
E

Bit-Serial

Fulcrum

EHost Kernel

> “ B w T = > w oo]
uEg;iS:ﬂﬁﬁSEEzaggceggci5:222"
¥ L2238 0 00 E3uE2E83YX8c2838 000
a¥E 35388“ 9&.&:-:-85‘9" 35888

E 3 - E
tEg3 BL>>>32 3558888 &e->7
£x5¢ & 5 ES3PETSC &
= 8 5 g gBE" 8 3

a 2 = < = a 2

& 3 & |

L) o

E E

Bank-level

Fig. 7: Performance Breakdown in percentage for Rank 32.

Madd @ sub @ mul mbit shift @ max @min §or Band W xor Wless Beq W Wabs
Vector Addition
AXPY

GEMV

GEMM

Radix Sort
AES-Encryption
AES-Decryption
Traingle Count
Filter-By-Key

Image Down
KNN

Linear Reg)
K-means
VGG-13
VGG-16
VGG-18

Fig. 8: PIMMop‘t?:?atigﬂ fﬁéﬁué‘%f&y “distribution, in”“terms Of
percentage of total operations in that benchmark.

compared to both CPU and GPU. Fulcrum achieves the second-
best performance, followed by bank-level PIM. A similar trend
is observed in terms of energy reduction.

AXPY. AXPY, collected from InSituBench [37], is a linear
algebra kernel [5] that scales a vector and adds it to a
second vector. This involves both multiplication and addition
(Figure 8). Fetching the second (addition) vector operand can
be pipelined with the scaling. Fulcrum offers an efficient
approach for executing multiplication, outperforming both
bit-serial, which suffers from quadratic multiplication latency,
and bank-level, which is constrained by the narrow GDL
width. Consequently, Fulcrum achieves the highest speedup
and energy reduction for AXPY compared to CPU and GPU.

Matrix-vector Multiplication (GEMV). GEMV [5] is
a fundamental operation in linear algebra. Fulcrum, with
its efficient execution of multiplication——a key operation
in GEMV—-outperforms both bit-serial and bank-level PIM,
as shown in Figures 9 and 10a. As with AXPY, bit-serial
PIM experiences a slowdown compared to the GPU due to
its quadratic multiplication latency, while bank-level PIM,
constrained by the narrow GDL width, shows a slight
slowdown relative to the GPU.

Matrix-matrix Multiplication (GEMM). We implemented
GEMM using batched GEMV. Unlike GEMV, GEMM is
compute-intensive, making it challenging for any PIM variant
to efficiently execute GEMM, resulting in poor performance.
However, Fulcrum demonstrates a speedup over the CPU if
data movement latency is excluded. None of the PIM variants
show energy savings compared to the CPU and GPU.

Radix Sort. Radix sort iteratively groups elements into
buckets based on the value of a specific digit position
(radix). This digit-by-digit sorting approach allows radix sort
to achieve favorable linear time complexity. For digit-by-
digit sorting, we use counting sort, which involves both a
counting and a sorting phase. The sorting phase requires data
reshuffling, which is not supported in these PIM architectures,
leading us to perform only the counting phase on PIM and
the sorting phase on the host CPU. This approach introduces
significant host latency, causing the PIM variants to show
only slight speedup over the CPU and significant slowdown
and energy consumption compared to the GPU.

AES—Advanced Encryption Standard. We implemented
AES-256 in ECB mode [15], which processes input in 16-
byte state buffers over 14 rounds of logical and look-up
operations.In our PIM implementation, the look-up table is
realized using logic gates [25], making it well-suited for bit-
serial processing. Similarly, since the Fulcrum and Bank-level
architectures lack the capability to store the look-up table in
a buffer, they also implement it using logic gates. Bit-serial
has higher performance compared to Fulcrum and Bank-level
as it performs well in logical operations and also has higher
parallelism. Also, Fulcrum has takes advantage of sub-array
level parallelism compared to bank-level which makes it faster.
Bit-serial implementation gains a speedup over CPU, however
the GPU outperforms all of the PIM architectures, because
AES has higher computation intensity per byte.

Triangle Count. Triangle counting is a graph algorithm
[8] that determines the number of triangles (three mutually
connected vertices) in a graph. To map the triangle counting
algorithm onto PIM, a series of AND, popcount, and reduction
sum is employed [69]. Among the three PIM variants, bit-serial
demonstrates the best execution latency for these operations
(Section VII), because AND is natively supported. However,
the popcount and reduction steps are slower, with the net
result showing only a slight speedup over the CPU and GPU
for kernel-only. In contrast, both the Fulecrum and bank-level
PIM variants fall short compared to the CPU and GPU.

Filter-By-Key. One of the most common operations in
data analytics is scanning a database table to select records
that match a specific predicate. In our implementation, we
only scan and fetch selected records from one column, and

255

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

Kernel+ Data Movement

ANy L
e ———)
o ——

KNN

Ay [—
CEMY E—
CEMM —

Brightrens e —

Radix Son E—
HIStOgam e,
Kmeans Eme——
VGG-13
VGC-16 S
VGG-19 S
Cmean Em—
Radix Sort S

Vector Addition S

AES-Decryplion —
Triangle Count

Speadup

B =

§22 .2
[T e —————
AES-Encryplion s
RES-Decry plio
Trangle Count —

Fiter-ByKey

AES-Encryption

Linear

Image

Bit-Serial

W Kernel

T E3 FPEZszgoeessEeEIEsEELPEYFEEEEIOER s
* 8 & = H S 2553 22 ¥ g2 & £ 3§ &
Fis EEERENARE R R R R R R
2 E = & E xiigg:u g

s i E: 28 F 8 3

¥ = ¥ =

E E
Fulcrum Bank-level

Fig. 9: Speedup of three different PIM variants with 32 ranks over baseline CPU.

M Bit-serial M Fulcrum @ Bank-level

10000

1000

100

10
E 1
-3 0.1
w

0.1

0.001

0.0001 |
0.00001 I'

3 L w [
AR R R EREEEEE R
§T°°§s5EsTis; Eissezgs
5 i & 2 2 £ s ¢ &

g ¢ & BT H 5
] 4 ¥ F 2 H
) 5
E
(a) Speedup over baseline GPU.
Fig. 10:
HBit-serial WFulcrum B Bank-level
1000
W00
H
2 10
&
B8 o1
3
o ”
. I
§z 2 E£Ef 55 %8 E§F3E Lo s
s3 8§zt ®1} i
08 EEsEREETiigsid
E = & 225 g &
w o BE H
2 g 2 - = 2
¥ =1
E

Fig. 11: Energy efficiency of PIM architectures vs. CPU.

1% of the records match the predicate. PIM performs the
filtering on the DRAM side and generates a bitmap of the
matched items, and this step obtains high speedup on all
three architectures, but then the host CPU must fetch the
bitmap, and only then can it iterate through the bitmap to
gather the selected items in the column. This gathering phase
is the bottleneck, constituting 31% of the runtime in the CPU
baseline and 99% for PIM (Figure 7).Consequently, none of
the PIM variants achieve a speedup over the GPU, though
they show a small speedup over the CPU, with the energy
results following a similar trend. Higher speedup would be
expected if the selected items consisted of more than a single
field, since the filtering would lead to eliminating more data
fetching.

WBit-seral mFulcrum @ Bank-level
10000
1000
100
-
H 10
§ 1
01
&
g om
&
0.001
0.0001 III
0.00001
§ 3 I:55CE8EgrEEoee s
asgﬁﬁggggﬂﬁéivﬁeeei
g c§eEsTis; Lisszos
5 s 2 P 8% 5 3
8 o & B E g 5
2 = 2 " e 2
¥ 35
E

(b) Energy efficiency of PIM architectures vs. GPU.

Comparison of performance and energy of three different PIM architectures with 32 ranks over GPU.

Histogram. Histogram computes the distribution of RGB
values in a 24-bit bitmap file [6], which is modeled after
Phoenix [61]. To mitigate the challenges of random access
to maximize PIM execution, we extract the pixels for each
color channel and sequentially traverse the key-value pairs
(0-255), using the equality operation to group together all
instances for an individual channel and perform a reduction.
Reduction is in PIM and becomes the limiting factor, especially
for bit-serial. While all PIM variants demonstrate speedup
and energy-reduction over the CPU, all variants experience
slowdown and energy-inefficiency compared to the GPU.

Brightness. Brightness, modeled after the SIMDRAM
benchmark [26], increments each of the RGB values for every
pixel of a 24-bit bitmap file by a set parameter [6]. Given
an input coefficient, each pixel of image data is processed
with a saturating addition, ensuring the result stays within
valid pixel value bounds through min and max operations.
PIM, exploiting the available subarray parallelism, achieves
speedup both with and without data movement over CPU and
over GPU. For a similar reason, PIM is much more energy
efficient compared to both CPU and GPU.

Image Downsampling. PIMbench adapts box filtering for
uncompressed bitmap images [40] as an image downsampling
candidate. Box filtering sets each pixel in the output image to
the average of a box of input pixels [6]. In our implementation,
the image is scaled to half its size by applying addition and bit

256

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

shifting operations (Figure 8). Since PIM can execute both of
these operations optimally, all three PIM variants outperform
the CPU and GPU in runtime, while also demonstrating
significant energy reductions.

KNN. K-nearest neighbors (KNN) is a supervised learning
algorithm which uses the Manhattan distance proximity metric
to classify individual points. Our PIM implementation adapts
an end-to-end KNN batched inference where the sorting and
classifying steps are executed on the host CPU, since PIM
lacks support for shuffle. Distance computation, on the other
hand, is executed in PIM. As shown in Figure 7 the sorting
and classification phase contributes a significant percentage of
the PIM execution latency. Despite this, we observed modest
speedups and improved energy efficiency over CPU and GPU
implementations.

Linear Regression. PIMbench implements a 2D variant of
the linear regression statistical technique [60]. The method
involves a single independent variable and is represented
by the equation y = 3y + 51x + €, where y is the dependent
variable, x is the independent variable, 3y is the intercept, /51
is the slope, and ¢ is the error term. The slope and intercept
are calculated using the least squares method. While bit-serial
PIM is the most efficient for integer reduction, Fulcrum excels
at multiplication. Considering that the ratio of reduction
to multiplication is higher (as shown in Figure 8), Fulcrum
and bit-serial exhibit similar performance, and all three PIM
variants achieve speedup over both the CPU and GPU.

K-means. K-means [41], [43] is a widely used clustering
algorithm that partitions a dataset into k distinct, non-
overlapping clusters. Each data point is assigned to the nearest
distance cluster, known as the cluster centroid. The algorithm
iteratively refines the placement of centroids to minimize
the within-cluster variance. The process involves assigning
each data point to the nearest centroid and recalculating the
centroids as the mean of all points with minimum distance
to them. This iterative assignment phase entails a random
access pattern, which is not well-suited for PIM. To address
this, a bitmask is used to group data points belonging to
each centroid. The mean of these grouped data points is
calculated, updating the respective centroid. Given that our
implementation uses simple PIM operations (e.g., subtract,
add, equal), all three PIM variants show significant speedup
and energy efficieny gains over both CPU and GPU.

VGG. VGG [65] is a convolutional neural network variant
[7], consisting of an input layer, several hidden layers
(including convolution, ReLU, max-pooling, and dense layers),
and a softmax output layer. We present three different VGG
variants: VGG-13, VGG-16, and VGG-19. The difference among
these variants lies in the depth of the network, specifically the
number of convolution layers. Running an end-to-end VGG
network in PIM is challenging because each layer requires
some data preprocessing, such as padding. To address this,
we decompose the VGG networks into smaller kernels that
correspond to each hidden layer. To maximize parallelism,
the input images are processed in batches in the PIM.

PIM can support ReLU, max-pooling, and dense layers,

the softmax layer is executed on the host CPU because
it requires floating-point operations, which PIMeval does
not support yet. Additionally, parts of the convolution layer,
such as aggregating the final results, are also executed on
the host, as these involve strided access patterns, which
are costly in PIM due to the need for inter-bank or inter-
subarray communication. As a result, PIM execution is
bottlenecked by host execution, leading to moderate speedups
and energy efficiency improvements over the CPU for all
three VGG variants and across architectures. However, the
GPU outperforms PIM significantly in terms of performance
and also energy for all PIM architectures.

IX. DiscussioN & FUTURE WORK

We use the same benchmark implementation to evaluate
all three PIM architectures modeled here. This approach was
chosen to demonstrate the portability of a single implemen-
tation across different PIM variants. However, this comes
with a limitation: the implementation may not fully exploit
architecture-specific optimizations. This limitation could be
partially addressed with further optimization of the operation
sequence, data layout, or algorithm for each architecture,
and architecture-specific PIM API calls may help. Ultimately,
a compiler capable of generating device-specific operations
using our high-level APIs, or directly generating low-level
opcodes for the target architecture will be most helpful.
Exploring this direction has been left as a future work.

Another observation is that, even though memory capacity
is same (Figure 13), increasing rank count has huge impact
on the performance of bit-parallel PIM architectures (Fulcrum,
bank-level) because parallel processing unit increases (in-
creased #subarrays and #banks). Bit-serial on the other hand
does not benefit as much if the input size is not large enough
to fill all the columns of the DRAM rows, because either
way it needs to open multiple rows. Fulecrum and bank-level,
being bit-parallel, greatly benefits from increased parallelism.
However, some benchmarks are unable to realize the benefits
of more ranks. In some cases, such as with Radix Sort, the
bottleneck is the host interaction. In other cases, such as with
GEMV on bit-serial and Fulcrum, the problem size we chose
is too small to realize the benefits of more ranks - the vectors
are not long enough to utilize all the available subarrays.
For the input size used in the experiments in the preceding
section, Fulcrum utilizes only 56% of the active subarrays
with 8 ranks. As a result, in Figure 12, as we keep increasing
the number of ranks, Fulcrum’s GEMV performance does
not scale beyond 8. Furthermore, bit-serial uses only 15% of
the available subarrays, even with only 1 rank, because the
vertical layout requires data to be laid out in batches of rows
corresponding to the data type’s bitwidth. Hence, bit-serial
does not exhibit any rank scaling for GEMV. (Figure 12, 13).
This is a shortcoming that we unfortunately did not realize
in time to correct it for this paper, but the results for AXPY
give an approximate sense of the scalability that could be
obtained for larger problem sizes. For GEMM, increasing the
rank count from 32 to 64, which increases the bank-level

257

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

m#Rank=8 m#Rank=16 m#Rank=32

4
-
[~

%10
28
bl
@
3 4
22 H il Wl dlabd ol il il sl ol
% o wn o I v o v I o o 0 o 00 e OO R0 L0 M e DA ul T
@ EEETEESEEFESEZEEV e EEETEESEETESEZEEVRREEEEESEEFEaEEsEENe?
LY B R L BPE Y 200 0 i LN B R L PE Y2000 R EYEEgLpEaegee
T2 00 x E L0308 x E O = L0308 x E = R
=2 seL @2 s 2Es3353%2 2o @2 s 2Es3353%2 20 &8ss gEZ==
< BoggsEpg w= < BoggsEpg w= < BoggsEPg w=
5 33887 °§ ¢ s 338 °§ ¢ s 3387 °§ ¢
g = 5 B [g -
§ ﬁé" a @ § ﬁé" a @ § ﬁé" a ®
¥ - ¥ - ¥ -
E E E
Bit-Serial Fulcrum Bank-level
Fig. 12: Rank sensitivity analysis across benchmarks, excluding data movement latency, with capacity scaling by ranks.
= 35
= 30
2 25
* 20
§15
g oo lo-wwnnhBRRR _Nu.o.. 1 tes
& SZFZIESSETE 8225 PRS2 EZES5ETE8 P25 5E2ZESS5EgE8EZ5ene?
E R UGN EE ol BERX L0000 EFULPEELS T SEX 3000 ERUWULNEELT REa= 2 [LELE"]
TT0ox S50 FEE JEQOOST0CoxZz0F88EE JEQOOZST0OoxE 088 E S EOOO
2 =] s D=5 SE53333 =] P SE353353 =] s P e H S>3
<L m e Lo I om B <L m 2o Lo I om B < m @ o N — T
P m:mﬁ:mxn_fn @ P n::mﬁ:m:hfn @ P n::mﬁ:m:ht [
=] wo c = @ s = =] wo e = @ s = =] wo e = @ s o
g 2285 F % g 2285 F % g 2255 "} 3
2 <<" s g = <3 a g = <2 a g
& = & = & S
@ @ @
E E E
Bit-Serial Fulcrum Bank-level

Fig. 13: Rank (1 vs. 32) sensitivity analysis
parallelism, improves the performance of bank-level PIM,
making it more competitive with the GPU. Notably, all three
PIM variants achieve energy reductions compared to both
CPU and GPU. A comprehensive exploration of problem size is
an essential direction for future work. A further consideration
is that many use cases call for smaller problem sizes, requiring

batching to utilize the full PIM computation bandwidth.

It is also worth mentioning that the benchmark diversity
analysis (Figure 1) indicates that some benchmarks are quite
similar, and could likely be excluded. Examples include vector-
add/image-downsampling, three VGG benchmarks, and AES

encryption/decryption. This repetition also skews Gmean
results toward those benchmarks’ behaviors.

PIMeval is already being extended to support various forms
of analog bit-serial PIM. Interesting areas for future work
include modeling 3D memories such as HBM and modeling
wider SIMD operation in the Fulcrum-style and bank-level
approaches, both of which will likely change the tradeoffs
observed here; exploration of problem sizes and batching;
gem5 integration; a flexible area modeling approach that
supports diverse PIM architectures, and further extension
and analysis of the benchmark suite. We are continuing to
extend PIMbench with additional kernels, such as prefix sum,
transitive closure, PCA and string match, additional machine-
learning and graph algorithms, and sparse algorithms (which
are not easily supported in bit-serial PIM).

across different benchmarks excluding data movement latency, with same capacity.

X. CONCLUSIONS

This paper introduces PIMbench- a new benchmark suite,
PIMeval- a flexible simulation and energy modeling framework,
and a new PIM API The paper uses PIMbench and PIMeval to
compare the performance of three different PIM architecture:
DRAM-AP, a subarray-level bit-serial PIM leveraging row-
wide bit-slice operation and supporting associative processing;
Fulcrum, a scalar subarray-level PIM; and a bank-level version
based on Fulcrum. Our results show that subarray-level
Fulcrum provides the best balance of parallelism (via subarray-
level parallelism) and flexibility (excelling in multiplication
and other more complex operations), and achieves the highest
geometric mean performance among the three architectures,
outperforming the CPU by about 5.2X (including data transfer
overheads). In contrast, for many benchmarks, none of the
PIM architectures consistently outperform an A100 GPU, due
to various overheads, such as data movement to change
data layout for PIM processing. In terms of energy, most
benchmarks do show energy reduction compared to the CPU,
with a Gmean of 5-10X energy reduction, but results are
more mixed for the GPU, with a Gmean of about 2X energy
reduction for both subarray-level techniques, but the bank-
level approach unable to beat the GPU.

ACKNOWLEDGEMENTS

We extend our gratitude to the anonymous reviewers for
their valuable feedback. We also thank Marzieh Lenjani for

her suggestions in modeling Fulcrum.

258

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

(1

[2]

[3]
[4]

[5]

(6]
(7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

AMD, “AMD EPYC 9124 16-core processor, 2023, accessed: 2024-
06-02. [Online]. Available: https://www.amd.com/en/products/cpu/
amd-epyc-9124

R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architure and Code
Optimization (TACO), vol. 14, no. 2, pp. 1-25, June 2017.

S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite;” arXiv, vol. arXiv:1508.03619, Aug. 2015.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
]. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al, “The gem5 sim-
ulator] ACM Special Interest Group on Computer Architecture (SSGARCH)
Computer Architecture News, vol. 39, no. 2, pp. 1-7, May 2011.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel,]J. Dongarra, I. Duff, S. Hammarling, G. Henry et al,
“An updated set of basic linear algebra subprograms (BLAS)” ACM
Transactions on Mathematical Software (TOMS), vol. 28, no. 2, pp. 135-
151, 2002.

I Blow, “Mipmapping,
none.com/product/Mipmapping,
M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang ef al., “End to end learning
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
vol. 16, no. 3, pp. 157-166, 2017. [Online]. Available: https:
//doi.org/10.1177/1473871616666393

H. Caminal, Y. Chronis, T. Wu, J. M. Patel, and J. E. Martinez,
“Accelerating database analytic query workloads using an associative
processor,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), June 2022, pp. 623-637.

H. Caminal, K. Yang, S. Srinivasa, A. K. Ramanathan, K. Al-Hawaj,
T. Wu, V. Narayanan, C. Batten, and J. F. Martinez, “CAPE: A content-
addressable processing engine,” in Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA), Feb.
2021, pp. 557-569.

K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi,
and O. Mutlu, “Low-Cost Inter-Linked Subarrays (LISA): Enabling
fast inter-subarray data movement in DRAM. in Proceedings of
the IEEE International Sympostum on High Performance Computer
Architecture (HPCA), Mar. 2016, pp. 568-580. [Online]. Available:
http://ieeexplore.ieee.org/document/7446095/

L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,” IEEE Computational Science and Engi-
neering (CSE), vol. 5, no. 1, pp. 4655, 1998.

S. Das. (2013) A SWAR algorithm for popcount. Accessed: 2024-06-02.
[Online]. Available: https://www.playingwithpointers.com/blog/swar.
himl

A. Devic, S. B. Rai, A. Sivasubramaniam, A. Akel, S. Eilert, and J. Eno, “To
PIM or not for emerging general purpose processing in DDR memory
systems,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), June 2022, pp. 231-244.

M. J. Dworkin, “Recommendation for block cipher modes of operation:
Methods and techniques,” in NIST Special Publication 800-38A, 2001.
D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie,
“Computational RAM: Implementing processors in memory;” IEEE Design
& Test of Computers, vol. 16, no. 1, pp. 32-41, 1999.

T. Finkbeiner, G. Hush, T. Larsen, P. Lea,]. Leidel, and T. Manning,
“In-memory intelligence,” IEEE Micro, vol. 37, no. 4, pp. 30-38, 2017.
R.-V. Foundation. (2019) The RISC-V instruction set manual. Accessed:
2024-06-02. [Online]. Available: https://riscv.org/wp-content/uploads/
2019/12/riscv-spec-20191213.pdf

——. (2021) RISC-V bit-manipulation ISA specification. Accessed:
2024-06-02. [Online]. Available: https://github.com/riscv/riscv-bitmanip/
blob/main/bitmanip/_popcount.adoc

B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and R. Biswas,
“Memory-intensive benchmarks: IRAM vs. cache-based machines,” in
Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), Apr. 2002, p. 7 pp.

F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-memory
compute using off-the-shelf DRAMs,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct.
2019, pp. 100-113.

part 17 http://number-

259

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Ghose, A. G. Yaglikci, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu,
H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal, M. O’Connor,
and O. Mutlu, “What your DRAM power models are not telling you:
Lessons from a detailed experimental study” Proceedings of the ACM
on Measurement and Analysis of Computer Systemns, vol. 2, no. 3, pp.
1-41, Dec 2018.

S. Gueron, “Intel advanced encryption standard (AES) new instructions
set.” Intel Corporation, vol. 128, 2010.

J. Gomez-Luna, I. El Hajj, L. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking memory-centric computing systems:
Analysis of real processing-in-memory hardware,” in Proceedings of the
International Green and Sustainable Computing Conference (IGSC), Oct.
2021, pp. 1-7.

O. Hajihassani, S. K. Monfared, S. H. Khasteh, and S. Gorgin, “Fast
AES implementation: A high-throughput bitsliced approach,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 30, no. 10,
pp. 2211-2222, 2019,

N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi,
M. Patel, M. Alser, S. Ghose, J. Gomez-Luna, and O. Mutlu, “SIMDRAM:
a framework for bit-serial SIMD processing using DRAM,” in Proceedings
of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr. 2021,
Pp. 329-345.

M. He, C. Song, L. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. N. Vijaykumar, “Newton: A DRAM-maker’s accelerator-in-memory
(AiM) architecture for machine learning.” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct.
2020, pp. 372-385.

Hybrid Memory Cube Consortium (HMCC), Hybrid Memory Cube
Specification 2.1, Nov. 2015, https://www.hybridmemorycube.org/.

B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

JEDEC Solid State Technology Association, High Bandwidth Memory
(HBM) Specification, 2023, https://www.jedec.org/standards-documents/
docs/jesd235b.

M. Jung, D. M. Mathew, F. Zulian, C. Weis, and N. Wehn, “A new bank
sensitive DRAMPower model for efficient design space exploration,” in
Proceedings of the International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Sep. 2016, pp. 283-288.

A. A, Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol.
145, no. 2. Russian Academy of Sciences, 1962, pp. 293-294.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM
simulator,” IEEE Computer Architecture Letters (CAL), vol. 15, no. 1, pp.
45-49, 2015.

D. Lee, B. Hyun, T. Kim, and M. Rhu, “Analysis of data transfer
bottlenecks in commercial PIM systems: A study with UPMEM-PIM.”
IEEE Computer Architecture Letters (CAL), to appear, 2024.

M. Lenjani, A. Ahmed, and K. Skadron, “Pulley: An algorithm/hardware
co-optimization for in-memory sorting,” IEEE Computer Architecture
Letters (CAL), vol. 21, no. 2, pp. 109-112, 2022.

M. Lenjani, A. Ahmed, M. Stan, and K. Skadron, “Gearbox: A case for
supporting accumulation dispatching and hybrid partitioning in PIM-
based accelerators,” in Proceedings of the Annual International Sympostum
on Computer Architecture (ISCA), June 2022, pp. 218-230.

M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. R. Stan, and K. Skadron, “Fulcrum: A simplified control and
access mechanism toward flexible and practical in-situ accelerators,” in
Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2020, pp. 556-569.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in Proceedings of
the Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct. 2017, pp. 288-301.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3:
A cycle-accurate, thermal-capable DRAM simulator,” IEEE Computer
Architecture Letters (CAL), vol. 19, no. 2, pp. 106-109, 2020.

N. Liesch, “The bmp file format,” https://www.ece.ualberta.ca/~elliott/
ee552/studentAppNotes/2003_w/misc/bmp_file format/bmp file
format.htm.

S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory (TIT), vol. 28, no. 2, pp. 129-137, 1982.

A. Mackiewicz and W. Ratajczak, “Principal components analysis (pca),”
Computers & Geosciences, vol. 19, no. 3, pp. 303342, 1993.

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

[43]]. MacQueen et al, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley Sympostum
on Mathematical Statistics and Probability, vol. 1, no. 14. Oakland, CA,
USA, 1967, pp. 281-297.

M. Marazzi, T. Sachsenweger, F. Solt, P. Zeng, K. Takashi, M. Yarema,
and K. Razavi, “Hifi-DRAM: Enabling high-fideltiy DRAM research by
uncovering sense amplifiers with IC imaging” in Proceedings of the
ACM/IEEE International Symposium on Computer Architecture (ISCA),
June 2024.

Micron, “TN-40-07: Calculating Memory Power for DDR4 SDRAM,”
2017.

G. E. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE (Proc. IEEE), vol. 86, no. 1, pp. 82-85, 1998.

S. Mosanu, M. Z. Sakib, T. Tracy, E. Cukurtas, A. Ahmed, P. Ivanov,
S. Khan, K. Skadron, and M. Stan, “PiMulator: A fast and flexible
processing-in-memory emulation platform.” in Proceedings of the Design,
Automation & Test in Europe Conference (DATE), 2022, pp. 1473-1478.
F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering:
an overview, Wiley Interdisciplinary Reviews (WIREs): Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 86-97, 2012.

O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” in Emerging Computing: From Devices
to Systems: Looking Beyond Moore and Von Neumann. Springer, 2022,
pp. 171-243.

B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming. O'Reilly
Media, Inc., 1996.

NIST, “Advanced encryption standard (AES), Federal Information
Processing Standards Publication, p. 0311, 2001, accessed: 2024-08-14.
[Online]. Available: https://csrc.nist.gov/pubs/fips/197/final

NVIDIA Corporation, NVIDIA CUB Library, accessed: 2024-06-03.
[Online]. Available: https://nvlabs.github.io/cub/

——, NVIDIA cuBLAS Library, accessed: 2024-06-03. [Online]. Available:
https://developer.nvidia.com/cublas

——, NVIDIA Thrust Library, accessed: 2024-06-03. [Online]. Available:
https://developer.nvidia.com/thrust

——, “Nvidia A100 tensor core GPU 2020, accessed: 2024-06-02.
[Online]. Available: https://www.nvidia.com/en-us/data-center/a100/
G. F. Oliveira, A. Olgun, A. G. Yaghkci, F. Bostanci, J. Gomez-Luna,
S. Ghose, and O. Mutlu, “"MIMDRAM: An end-to-end processing-using-
DRAM system for high-throughput, energy-efficient and programmer-
transparent multiple-instruction multiple-data processing,” in Proceed-
ings of the IEEE International Symposium on Computer Architecture
(HPCA), 2024, pp. 186-203.

OpenSSL Project, “OpenSSL: Cryptography and SSL/TLS Toolkit,” https:
/Iwww.opensslorg, accessed: 2024-08-14.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, 2019.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM:
IRAM,” IEEE Micro, vol. 17, no. 2, pp. 34-44, Mar./Apr. 1997.

K. Pearson, “Vii. mathematical contributions to the theory of evolu-
tion—iii. regression, heredity, and panmixia;” Philosophical Transactions
of the Royal Society of London. Series A, containing papers of a
mathematical or physical character, no. 187, pp. 253-318, 1896.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,” in
Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2007, pp. 13-24.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
DRAM technology; in Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct. 2017, pp. 273-287.

V. Seshadri and O. Mutlu, “In-DREAM bulk bitwise execution
engine, arXiv, vol abs/1905.09822, 2019. [Online]. Available:
http://arxiv.org/abs/1905.09822

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2016, pp. 14-26.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[66] SK hynix Inc., AXDIMM: Acceleration DIMM Specification, 2023, https:
/www.skhynix.com/.
H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on
Computers (TC), vol. 100, no. 1, pp. 73-78, 1970.
T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO)), Dec. 2010, pp.
363-374.
X. Wang, J. Yang, Y. Zhao, X. Jia, R. Yin, X. Chen, G. Qu,
and W. Zhao, “Triangle counting accelerations: From algorithm to
in-memory computing architecture” IEEE Transactions on Computers,
vol 71, mno. 10, p. 2462-2472, Oct 2022. [Online]. Available:
https://doi.org/10.1109/TC.2021.3131049
Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU;" in
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), Mar. 2016, pp. 1-12.
Z. Wang, X. Zhang, Y. Zhang, and S. Qing, “OpenBLAS: An optimized
BLAS library,” ACM Transactions on Mathematical Software (TOMS),
vol. 39, no. 3, pp. 1-14, 2013.
L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, “Sieve:
Scalable in-situ DRAM-based accelerator designs for massively parallel
k-mer matching,” in Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), June 2021, pp. 251-264.
L. Wu, R. Sharifi, A. Venkat, and K. Skadron, “DRAM-CAM: General-
purpose bit-serial exact pattern matching,” IEEE Computer Architecture
Letters (CAL), vol. 21, no. 2, pp. 89-92, 2022.
S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “PIMSim: A
flexible and detailed processing-in-memory simulator, IEEE Computer
Architecture Letters (CAL), vol. 18, no. 1, pp. 6-9, 2018.
R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
MapReduce on a large-scale shared-memory system,” in Proceedings of
the IEEE International Sympostum on Workload Characterization (IISWC),
Oct. 2009, pp. 198-207.
C. Yu, S. Liu, and S. Khan, “Multipim: A detailed and configurable multi-
stack processing-in-memory simulator,” IEEE Computer Architecture
Letters (CAL), vol. 20, no. 1, pp. 54-57, 2021.
T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-
DRAM: A high-bandwidth and low-power DRAM architecture from the
rethinking of fine-grained activation.” in Proceedings of the ACM/IEEE
41st International Sympostum on Computer Architecture (ISCA), June
2014, pp. 349-360.

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

APPENDIX A
ARTIFACT APPENDIX

This paper presents a PIM benchmark suite along with a
PIM modeling framework, both implemented in C++. The
artifact requires an AMD or Intel x86 CPU with at least
256GB of memory, running Ubuntu version 22.04 or later, and
a minimum of 2GB disk space. The software requirements
are Python3 and g++ 11.4 or newer. There are no external
data dependencies. Each benchmark can be executed with
default parameters, producing output similar to Listing 3,
which demonstrates the metrics used in the paper. The default
parameters are selected to ensure each benchmark runs with
a manageable data size and completes within a reasonable
time. The data size used for each benchmark can be found in
the Table L

A. Artifact check-list (meta-information)

o Binary: Binaries are not included; they need to be built using
the approach mentioned.

o Hardware: AMD or Intel X86 CPU having at least 256GB
memory with Ubuntu versions greater than or equal 22.04.

e Metrics: Estimated runtimes for: i) kernel execution, ii) host
execution, and iii) data copy overhead between host and device.

260

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

How much disk space required (approximately)?: At least
2GB.

How much time is needed to complete experiments
(approximately)?: 168 Hrs

Publicly available?: Yes (https://github.com/UVA-LavalLab/
PIMeval-PIMbench)

Code licenses: MIT License

Archived (provide DOI)?: 10.5281/zenodo.13243685

B. Description

1) How to access: The repository can be cloned from: https:

5 PIM-Info: Config: #ranks = 4, #bankPerflank = 128, #subarrayPerBank = 32, #

//github.com/UVA-LavaLab/PIMeval-PIMbench.

or later.
3) Software dependencies: python3, g++ 11.4 or newer.

C. Installation

User should clone the repository from Github. The directory |

structure is as follows:

PIMBench suite.
bit-serial: Contains bit-serial microcode implementation.

tests: Contains test files for testing PIMeval functionality.

does not use any third-party libraries.

.gitignore: Prevents including executables and similar files in
the git repository.

LICENSE: Contains the license information.

Makefile: A common makefile that builds both the simulator
and benchmarks.

README.md: Provides detailed instructions to build and run
the simulator and benchmarks.

build_run.sh: A shell script that sequentially builds the
simulator for three different PIM variants mentioned in the
paper, navigates to each benchmark directory, and executes
each benchmark.

Listing 2 provides instructions for running and testing
individual benchmarks for the three different PIM devices
discussed in this paper. For users who wish to execute all
benchmarks across the three PIM devices, the build run.sh
script can be used. It is important to note that this process
may take several days to complete.

git clone https://github.com/UVA-Lavalab/PIMeval-PIMbench
cd PIMeval-PIMbench/

i #make and test for bit-serial

4 make -j PIM_SIM TARGET=PIM DEVICE BITSIMD V_AP

5 cd PIMbench/<app directory=/PIM
. /<executable_names .out
7 #make and test for fulcrum

make clean

make -j PIM_SIM TARGET-PIM DEVICE FULCRUM
cd PIMbench/<app_directorys/PIM

. f<executable_names .out

2 #make and test for bank-level

i make clean

4 make -j PIM_SIM TARGET=PIM DEVICE_BANK_LEVEL

5 cd PIMbench/<app directory=/PIM
. /<executable_names .out

Listing 2: Getting Started

D. Evaluation and expected resulis

Upon executing each benchmark for each PIM device, the
output displays PIM statistics, including the runtime for the
PIM kernel and the runtime for data movement. Listing
3 provides an example output for the vector addition. For

third_party: Stores third-party code. Currently, the simulator

benchmarks involving host execution, the output also includes
the host elapsed time. When comparing each benchmark with
the CPU baseline, we sum these three runtimes to obtain the
total benchmark runtime, which is then used to calculate the
speedup. For comparisons with the GPU baseline, we add the
PIM kernel runtime and the host elapsed time, and use this
combined time to calculate the speedup against the GPU.

. /vec-add. out

2 Running Vector Add on PIM for vector length: 2048

PIMBench: Contains benchmark implementations of the

261

PIM-Info: Current Device = PIM_FUNCTIONAL, Simulation Target = PIM DEVICE FULCRUM

rowsPerSubarray = 1024, #colsPerRow = 8192

i PIM-Info: Aggregate every two subarrays as a single core

2) Hardware dependencies: AMD or Intel x86 CPU with a -
minimum of 256GB memory running Ubuntu version 22.04

PIM-Info: Created PIM device with 8192 cores of 2048 rows and 8192 columns.
PIM-Info: Created thread pool with 11 threads.

PIM Params:
PIM Device Type Enum :
PIM Simulation Target :
Rank, Bank, Subarray, Row, Col :
Number of PIM Cores :
Number of Rows per Core :
Number of Cols per Core :
Typical Rank BW :
Row Read (ns) :
Row Write (ns) :
tCCD (ns) =

PIM_FUNCTIONAL

PIM_DEVICE FULCRUM

4, 128, 32, 1024, 8192

8192

2048

8192

25.600000 GB/s

28.500000

43. 500000

3.000000

Data Copy Stats:
Host to Device
Device to Host
Device to Device
TOTAL

: 16384 bytes
: 8192 bytes
: 0 bytes
: 24576 bytes 0.000224ms Runtime 0.001602mj Energy

libpimeval: Contains the PIMeval simulator implementation. ;, *™ Stats:

PIM-CMD : CNT EstimatedRuntime({ms) EstimatedEnergyConsumption(mJ)
add.int32.h : 1 0.001660 0.004197
TOTAL -——-- 1 0.001660 0.004197

Listing 3: Example Output for Vector Add Benchmark

E. Notes

Running all the benchmarks for the three different PIM
architectures may take several days. To expedite the process,
users can opt to run only the benchmarks mentioned in the
paper with very small data sizes. In this case, users will need
to manually navigate to each benchmark directory and refer
to the help text to provide the different input parameters for
each benchmark.

This project is in under active development. Please check
our github for the most recent updates.

Authonized licensed use limited to: University of Florida. Downloaded on February 03,2025 at 19:11:43 UTC from IEEE Xplore. Restrictions apply.

