Architecture and Benchmark of an Experimental
CRAN Platform over CPRI

Tayyebeh Asgari Gashteroodkhani, Iresha Amarasekara, Aveek Dutta and Dola Saha
Department of Electrical and Computer Engineering
University at Albany SUNY, Albany, NY 12222 USA
{tasgari, iamarasekara, adutta, dsaha}@albany.edu

Abstract—Cloud Radio Access Network (CRAN) is an ar-
chitecture for wireless communication networks, particularly in
the context of WiFi, cellular networks, and beyond. The main
objective of CRAN is to centralize and virtualize the baseband
processing functions of the network to provide several benefits in
terms of scalability, efficiency, and flexibility. At first, this paper
suggests a design to enhance the core capabilities of CRAN.
As a result, two Radio Frequency Systems on Chip (RFSoCs)
devices are used to communicate between the Radio Equipment
Controller (REC) and the Radio Equipment (RE) through the
Common Public Radio Interface (CPRI). The designed flow and
the required FPGA resources are discussed. Secondly, the main
purpose of this paper is to perform the Fast Fourier Trans-
form (FFT) on the Orthogonal Frequency Division Multiplexing
(OFDM) data when the slave sends back OFDM data to the
master.

Keywords— CRAN, CPRI, RFSoC, ZCU111, RFDC.

I. INTRODUCTION

The exponential growth of networked users and devices has
led to extreme bandwidth requirements to support novel appli-
cations. At the same time, seamless user experience and ultra-
low latency have become major factors in wireless networks.
CRAN is a promising architecture that combines scalable
centralized baseband processing in a cloud environment, com-
monly referred to as the REC, and spatially distributed remote
radio equipment, or RE. This is designed to provide scalability,
flexibility, and cost savings by efficient sharing of hardware
and software resources. In order to provide bottleneck-free,
high-speed connectivity between the REC and the REs, the
CPRI protocol is used to send and receive baseband samples
over multimode optical fiber.

Current commercial CRAN implementations like Nokia Air
Scale, Ericsson Cloud RAN, Huawei Cloud RAN, ZTE Cloud
RAN, Samsung Cloud RAN, etc. are proprietary solutions
tailored to specific use cases, offering limited features and
restricted access to the public. These solutions are not designed
for experimental research. Experimental CRAN implementa-
tions such as COSMOS, POWDER, AERPAW, and ARA [1],
on the other hand, leverage Software Defined Radio (SDR)
technologies, such as Universal Software Defined Radio Pe-
ripheral (USRP) and Zynq UltraScale. One of the bottlenecks
of USRP is the latency in moving the radio samples between
the hardware and the compute node used for processing [2].
Furthermore, using coaxial cables limits the distance and
bandwidth as well. Therefore, we re-imagine a CRAN testbed

to create an experimental platform for prototyping various
algorithms that cater to the needs of the networking research
community. In the future, the testbed can be extended to
support protocols and integrated functions as mandated by
the ORAN alliance [3]. By providing general-purpose Layer 1
connectivity between the REC and RE over CPRI, the testbed
enables many research directions, such as AI/ML-based wire-
less communication, intelligent beamforming, scheduling, etc.,
that would not have been possible otherwise.

To achieve real-time operation for specific wireless stan-
dards, like WiFi, FPGA implementation or FPGA-accelerated
software becomes necessary. Even for mobile operators tran-
sitioning into the era of 6G, achieving ultra-low latency is a
priority. Exploring an architecture that combines FPGA per-
formance with software flexibility presents a more appealing
option for the next generation of wireless networks. This
approach allows us to address latency requirements while
retaining software-like flexibility, including virtualization ca-
pabilities. Our CRAN architecture leverages the Zynq Ultra
Scale (RFSoC) [4] in conjunction with fiber optic connectivity
to meet the latency demands and facilitate high-speed, long-
distance, and data transmission in the next generation of
wireless communications.

The paper is organized as follows: The CPRI protocol
is reviewed in Section II. Section III describes the overall
architecture of the CPRI Master and Slave nodes along with
their specific hardware and software components. Sections IV
and V detail the testbench, simulation, and implementation
of the combined CPRI Master-Slave configuration. Finally,
to show the generality of the testbed, we present a Python
productivity for Zynq (PYNQ) application to plot the Fourier
spectrum in section VI.

II. CoMMON PUBLIC RADIO INTERFACE (CPRI)

CPRI enables the communication between REC and RE
to carry digitized radio signals over coax or fiber, which
are linked to the fronthaul of the network. Each REC can
connect to multiple REs for wider coverage. At the REC,
baseband signals are generated or received, and subsequently
sent from and to the RE. RE translates the baseband signals to
a bandpass signal and broadcasts it over the air. The RE is also
responsible for any additional signal processing that may be
required for specific waveforms, such as analog beamforming,
synchronization of multiple front-end radios, etc. The RE

c
%
@
3

Cntrl & Mag | Sync @ne Radio Frame (10 ms): 150 Hyper Fram?
2

T T

One Hyper Frame (Z): 256 Basic Frames (X}
TTTTT 1T] T T TTT

1Q/ Vendor
Protocol

Vendor/ Ethernet/

HDLC/ L1 Inband
L1 Inband Protocol

g One Basic Frames (X) : 16 Words (W) ?

2
Time Division Multiplex

Electrical and Optical § One Word (W) : 48 Bytes (Y) ?
L Transmission L O o I I AR

Fig. 1: Overview of CPRI Protocol and Frame Format

can also decode the wireless frames locally before sending
the information bits to the REC, thus offering many flexible
CRAN architectures as required by the application.

Protocol Overview: The User data, Control and Management
data, and Synchronization data are the three types of informa-
tion flows in CPRI as shown in Figure 1. All CPRI information
flows are multiplexed onto Layer 1 and Layer 2, which are
designed to transfer data on the digital communication line [5].
I/Q data is transmitted under User data flow in the form of
in-phase (I) and quadrature (Q) baseband modulated data. Part
of vendor-specific data, also part of User data, is transmitted
on specific basic frame numbers within each Hyperframe.
Control and management data flow consist of the vendor-
specific, High-Level Data Link Control (HDLC) protocol and
Ethernet protocols that are frequently exchanged between REC
and RE, or two REs for flow management. Synchronization
information is used for timing alignment of the CPRI frame
in order to detect the beginning of CPRI Hyperframe. Time-
Division Multiplexing (TDM) is used to multiplex the different
flows on optical or electrical media.

Frame Structure Radio signals are sampled and sent or re-
ceived as frames between REC and RE. The framing struc-
ture is also shown in Figure 1, which is critical to support
interoperability between various vendors, I/Q data and other
radio parameters. CPRI supports a range of line rates, spanning
from 614.4 Mbps to 24,330.2 Mbps. A CPRI radio frame
is 10 milliseconds and is composed of 150 Hyperframes.
Each Hyperframe has 256 Basic frames spanning 66.67 ms.
Each Basic frame consists of 16 Words, which is 260.42 ns
long. In general, each word in the CPRI frame is referenced
using the format ZX.W.Y, where Z, X, W, and Y represent
the Hyperframe number, Basic frame number, Word number,
and Byte number per word respectively [5]. Therefore, to
maintain these protocol-specified times, different line rates
require different clock frequencies for the CPRI-Master and
CPRI-Slave nodes. In this implementation, we have chosen
the highest line rate supported by CPRI, 24,330.2 Mbps.

III. CRAN SYSTEM ARCHITECTURE

In this work, the REC (configured as Master node) and the
RE (configured as Slave node) are implemented on the Xilinx
RFSoC platform. The major building blocks at a system level
are shown in Figure 2-Left. The Master/Slave configuration
requires setting up the Xilinx CPRI IP in each device sepa-
rately over the AXI registers or can be hard-coded during core

generation. A fiber-optic connection is used as the fronthaul
of this architecture. As shown in Figure 2, the CPRI-Master
is connected to a client PC, which sends various commands
through a TCP socket to control various blocks in the node.
The Master-Processing System (Master-PS) filters out these
commands and executes them on the Master-Programmable
Logic (Master-PL) via the AXI communication interface.
Commands sent via the TCP connection are used to configure
the Master, send messages, or send data when required. The
commands execute specific tasks, such as enabling BRAM_Tx,
which is used to store the I/Q data, send vendor data, etc.
After enabling the BRAM_Tx, 1/Q data is transmitted from the
Master to the Slave via the CPRI IP, which is responsible for
proper framing and synchronization. The Slave is connected
to a set of antennas using DAC tiles using the Xilinx RF Data
Converter IP for over-the-air transmission. In the receive path,
ADC captures analog data from the antenna and converts it
into digital samples after direct sampling and digital down-
conversion. Subsequently, the CPRI-Slave transmits this data
to the Master, which can be stored for further processing using
Direct Memory Access (DMA), either using the PYNQ or
C/C++ in the PS or MATLAB in the host PC.

A. CPRI Master Node

Hardware Components in PL: The PL in the CPRI-Master
comprises of Zynq core instance, AXI interface, vendor mod-
ule for decoding vendor messages and interfacing with the
CPRI IP, BRAM_Tx, MMCM and other logic to manage
different clock domain crossings for data and control signals.
These functional blocks are shown in Figure 2, where the
PL fabric and the AXI interface are set to operate at 125
MHz. The reference clock frequency, management clock rate,
and free-run clock rate are 245.76 MHz, 125 MHz, and 7.2
MHz, respectively. The core utilizes the information about the
management clock rate to verify the timing accuracy of the
reset sequence for the transceiver and calibrate the channel
phase-locked loop. A MMCM is added to generate the required
clocks for the CPRI IP.

The vendor module is tasked with sending and receiving
vendor-specific data [5], with its core components being the
vendor-decode and CPRI-interface. Address decoding and reg-
istration supporting the vendor module are integral functions
within this component. It is a user-defined AXI peripheral
that contains state machines to emulate the behavior of AXI-
slave module. This allows for vendor-specific data to be
transmitted from the host to the PL and then inserted in
specific control words within the CPRI frame by the CPRI
IP. In this implementation, we have initialized the BRAM_Tx
with a stream of baseband samples for a 20 MHz bandwidth
OFDM packet. The TCP client sends the command to enable
the BRAM_Tx through the socket, and it transmits the OFDM-
modulated data to the CPRI continuously. In the receive path,
BRAM_Rx stores the samples from the slave before forwarding
them to the AXI DMA as shown in Figure 2-Left.

Software Components in PS: The Top-right inset of Figure 2
depicts the multithreading architecture comprised of three

RFSoC Master
PL Multithreading NP Tt
AXI Interconnect N . in PS Main Thread cpri_isr_msg
*| +500_axi RAM_Tx CPRI Master

m00_axi +|— GPIO1 | —[en__ 10| || [T5 0q pvndrrxp] :

m0l_axi+|—» GPIO2 = iq_rxp— ' LT

m02_axi + vndr module | | |, jo o Network Thread) CPRI Thread), ——_ (C;’T"l‘mﬂ:d)

iy - rea
e XTI o S S 1 D — 1
m! axi+
- | T & FREERT0S stxketEttcpsm echo 2“8“5) se"‘; cpri_xRespQueue
t— hires_clk . cpri_msg)
mvem [T ek i lope— = _ Thread /listen mﬁ Thread Thread) xQueucRegsi?e
AXI — (&cpri_msg)
3 - AXI4_FIFO xCmdQueve | —
2 1§ AXI DMA accept top-svr resp_msg
o T connect TCP pkt recve
id s +s_axi_lite Thread) T =
o ZYNQ PS S
(B8 - . s_axis_s2mm S
= £ Multitreading o|+m_axi_s2mm TCP pt s¢ tep_xRespQueue
Client PC El - [+ m_axi_mm2s —
| PYNQ

Clock Domain Diagram

— RFSoC Slave RFSoC Vendor Vendor_tx
nterconnect 3 PL Master Module 368 MHz N
| +500_axi CPRI Slave 1Q tx | rx | E
m00_axi +|— GPIO1 TX FIFO) vndr_rxp BRAM-Tx 3 d @
m01_axi+[—» GPIO2 1Q ’| re-ax iq_rxpt— 368 MHz 1| CPRI —
m02_axi + O | Uolrig tx Refclk Master|
! ! SI570 =
m04_axi+ . 0. > vndr_tx el - 245.76 MHz
di rxp< - -
| GT & on
! hires_clk txnp| N 368 MHz
l AXI MMCM|_ L] gtwiz_rst_clk Ltxp>
. RFSoC
d 100 MH; 1Q ¢t
™ Path stave | "PMHATXFIFO | bl 1y
—> Recived Path ADC (S:IPRI &
ave ©
Refelk :]RX
Multitreading —> Clock SIS | e 7]
RF DC Initalizat — A 400MHz
s pac MM L ey piro 1Q
368 MHz

Fig. 2: Left: High level block diagram Master-Slave CRAN configuration in PL and PS. Top-right: Multi-threading mechanism
in the PS and inter-process communication. Bottom-right: Clock domain and synchronization between various PL entities.

main threads in the application: a) the network thread, b)
the CPRI thread and c) the command thread. A thread is
spawned for each TCP connection and TCP packets are sent
to the command processor. The network thread is associated
with TCP and echo connections, which use the open-source
lightweight IP (IwIP) for the TCP/IP stack. The network
thread spawns the echo, tcpsrvr, and FREERToS threads. The
FREERToS thread invokes the function xemacif_input_thread
from the Xilinx IwIP Ethernet driver. It receives the incoming
packet from the Ethernet MAC and passes it to the IwIP stack
for processing. The tcpsrvr thread is a common TCP server
that connects to the client and accepts the packet from the
client. This creates another fcp_srvr thread, which receives
TCP packets from the socket and forwards the payload to
the command queue (xCmdQueue) and receives TCP pkt send
from the response queue (tcp_xRespQueue).

To manage the order of the operation, the design includes
several queues, such as cpri_xCmdQueue, cpri_xRespQueue,
xCmdQueue, and tcp_xRespQueue. The command queue
(xCmdQueue) receives the commands (fcp_msg or cpri_msg)
from the network thread (tcp_srvr) and CPRI thread
(CPRI_THRD). The CPRI thread is related to messages from
the vendor interface with the Interrupt Service Routine (ISR).
The command thread parses and executes the commands, in-
cluding reset, vendor data transmission and reception, enabling
the BRAM, and more. After the execution, the response is
sent to the CPRI response queue (cpri_xRespQueue) or TCP
response queue (fcp_xRespQueue). The CPRI command queue
(cpri_xCmdQueue) receives the CPRI ISR message by raising
an interrupt from the vendor module in PL.

B. CPRI Slave Node

Hardware Components in PL: The CPRI-Slave receives the
I/Q and vendor-data from the CPRI-Master over fiber and
forwards the I/Q data to the RF Data Converter for onward
transmission over the air. The #x-n/p and rx-n/p are the differ-
ential serial outputs of the GTYE4 transceiver [6], respectively.
The master’s tx-n/p connects to the slave’s rx-n/p via a generic
SFP28 transceiver and OM4 fiber. The 64-bit ig_rx in the
CPRI-Slave is stored in RX_FIFO, which is forwarded to the
RF data converter. There are two ways to configure CPRI as a
slave. The CPRI IP core can be configured as a slave core or
by setting the core_is_master port to zero in the CPRI master
IP. The CPRI-Master generates synchronization signals and
timing data to facilitate the synchronization and alignment
of the CPRI-Slave with the transmitted data. The High-
Frequency Normal SYNC (HFNSYNC) is a synchronization
signal that is used in the CPRI specification to provide precise
synchronization between the master and slave [5].

The Xilinx ZCU111 board consists of four ADC tiles and
two DAC tiles. Each ADC tile has two converters, while a
DAC tile has four converters [7], [8]. In order to convert
digital I/Q data using the RF DC, two converters in a DAC tile
(that use the same sampling clock) are enabled. In this design,
the sampling rate (DAC_S;q) of DAC is set to 6.4Gbps, and
the sampling clock is generated from the on-chip PLL. The
reference clock of this PLL is 400 MHz, and it is driven by
an onboard oscillator (see Section V-A for details). The mixer
frequency is set to 2.484 GHz for DAC. Since the size of
the ig_rx port of the CPRI IP is 64-bit and DAC has a 14-bit
resolution with a 16-bit digital signal processing path, the DAC

Master: Stat_Code

B

[eSS 0 7 7 7 [[[[|

Fig. 3: Master and Slave Combined Simulation: Top: Transmit four Vendor messages to the Master and receiving them in the
Slave. Bottom: Transmit 1Q data from BRAM_Tx in the Master to the Slave and storing in RX_FIFO

is configured to receive 4 Samples per Clock (SpC). These 4
samples contain two I and two Q data when forwarded to
the DACs via the AXI4 stream protocol by the RX_FIFO.
Therefore, the required stream clock is given by:
DAC_S;ye x IQMode 6.4 x 2
Liute X SPC - 8x4
where the interpolation rate (I;a) is 8 and IQMode is defined
as 2 for 1Q digital data mode.

Similarly, two ADCs are enabled to receive I/Q data using
RF DC. The ADC is configured to use the on-chip PLL to
generate the sampling clock required at a sampling rate of 3.2
Gbps. This sampling clock is used by all the converters in the
tile. Similar to the DAC, the on-chip PLL in the ADC uses an
external reference clock of 400 MHz. The mixer frequency of
the ADC is 2.484 GHz, and therefore, it is set to operate in the
second Nyquist zone. The digital data path of the ADC also
uses the AXI4 stream protocol, and two ADC converters send
4 samples of I and Q data for each clock cycle in parallel.
Therefore, the ADC clock rate is given by:
ADCmele X 2GIQM0de _32 x 1

Dyye X SpC - 8x4
where the decimation rate (Dry) is 8 and 2Gigmode 15 1.
Software Components in PS: Similar to Master-PS, the Xil-
inx FreeRTOS application running on Slave-PS is responsible
for configuring hardware components in Slave-PL. In addition,
Slave-PS is also responsible for initializing RF DC. This
involves initializing and verifying the state of each ADC tile
and DAC tile separately.

DAC =

=400MHz (1)

ADC =

=100MHz (2)

IV. TESTBENCH AND SIMULATION

Xilinx Verification Intellectual Property (VIP) [9] is used to
simulate the behavior of the system on the Zynq UltraScale+
by emulating the command and control over the AXI interface
to initialize the RF DC, enable BRAM_Tx to transmit the 1/Q
data, send vendor data, and interrupt handling.

A. Master and Slave Node

Figure 3 depicts the master and slave combined simulation.
The master tx-n/p and rx-n/p ports are connected to the
slave rx-n/p and tx-n/p ports in the testbench, respectively.
The master’s testbench contains GPIO reset, enabling the
BRAM_Tx and sending vendor-specific data. The slave section
includes the GPIO reset. The CPRI status alarm represents a
bit of the status and alarms interface that declares Loss of
Frame (LOS), Loss of Signal (LOS), reset bit, etc. When I/Q
data is transmitted, the CPRI status alarms are low for both
master and slave as shown in Figure 3).

In Figure 3-Top four vendor data items are sent via VIP
to the vendor_tx_data CPRI-Master port. The Slave receives
vendor data from the master via vendor_rx_data CPRI-Slave
port. Each Hyperframe consists of 256 control words, which
are organized into 64 subchannels across 4 control words.
The subchannel index is denoted as N_s and spans from 0
to 63 and the control word index X_s, ranges from 0 to 3.
Following the CPRI specification, the transfer of 128 bits of
vendor data occurs in particular subchannels 15, 16, 17, and 18
when the control word index X_s equals 0 [5]. After enabling
BRAM_Tx, 1/Q data is transmitted to the CPRI core through
ig_tx port. Since both cores are in operational mode, the
Slave receives the 1/Q data and sends it to RX_FIFO through
the ig_rx port, as shown in Figure 3-Bottom. The output of
RX FIFO is transmitted to the DAC interface of the RFDC.
The output of RX_FIFO is stored in a file and is used as input
for the RF DC to simulate the receive path.

Frame synchronization is a process that includes synchro-
nization on the transmit and receive sides. The Node-B Frame
Number (BFN) value in the nodebfn_tx_nr signal must be kept
for the duration of the Universal Mobile Telecommunications
System (UTMS) frame (10 ms) and the user logic should
generate the strobe signal, nodebfn_tx_strobe every 10 ms,
which updates the value of the Node-BFN. Similarly, the

Vout p - Vout n

i

/ AN
0 5000 15000 0 10 20 30 40 50 60 70

(a) Output of RFDC

Fig. 4: OFDM Spectrum (without carrier) in MATLAB
. PE < /¥

10000

(b) Baseband Power Spectrum

188

CPRI Master // CPRI Slave

e

Fig. 5: CPRI Master-Slave Implementation

strobe signal, nodebfn_rx_strobe must be maintained for the
chip period (T_c) on the receive side and the frame number,
nodebfn_rx_nr will get the value when the strobe signal is
asserted. Figure 3-Top shows the values of nodebfn_tx_nr
and nodebfn_tx_strobe in the Master at the beginning of
the simulation. However, at the Slave, the nodebfn_rx_nr is
updated once it is received from the CPRI-Master.

Test Data Preparation: For testing, we generated an OFDM
data packet with 10 OFDM symbols with 16QAM modulation
scheme. As the sampling frequency of the OFDM packet is 20
MHz, and RF DC expects 2Is and 2Qs within one clock cycle
of DAC,, the generated packet was up-sampled by a factor of
40 as per (1). Then, up-sampled I/Q data were arranged into
64-bit samples comprised of alternating sequences of I and
Q data. Figure 7 shows the spectrum of the OFDM packet,
which is converted to analog by the RF DC and shows the
same OFDM packet that is stored in BRAM_Tx. Figure 4a
shows the differential output of the RF DC and the baseband
power spectrum without carrier is shown in Figure 4b.

V. IMPLEMENTATION AND RESULTS

Figure 5 shows the bench setup of CPRI-Master and Slave
nodes with two RFSoCs, connected using two generic SFP28
transceivers and OM4 fiber. The external clocks are configured
for both Master and Slave as described in Section V-A. Once
the Master and the Slave are in the operational state if the
BRAM_Tx is enabled at the Master, it sends the OFDM packet
to the Slave. The Slave then transmits the received I/Q data via
RF DC. The spectrum analyzer in Figure 5 shows the power
spectrum of the OFDM packet along with the carrier.

A. External Clock Configuration

Both the Master and Slave nodes clock signals that are
driven by onboard programmable oscillators/PLLs. To pro-

Master: Clock in from USER_MGST-SI570
refclk

refelk_p (V31)
refelk_n (V32)

IBUFDS-G} CPRI Master

recclk

I clk_SI5328
recclk ok | OPDRE OBUFDS_GTE4
Jecex oK,

Salve: Clock in from SI5328 Jitter filter

refclk
IBUFDS-GT CPRI Slave

Slave: reccclk goes out of PL to SI5328 jitter filter and then comes back to PL as
MGTREFCLKIP (Ul pin Y31) and MGTREFCLKIN (U1 pin Y32) for the SPFs

clk_si5328_p (AW14)
clk_si5328_n (AW13)

MGTREFCLKIP (Y31)
MGTREFCLKIN(Y32)

Fig. 6: CPRI Reference Clocks for Master and Slave

gram these oscillators/PLLs, the Xilinx ZCU111 system con-
troller user interface (SCUI) [4] is used either by setting the
required frequencies on the GUI or using a register map.
SCUI uses the onboard system controller (MSP430) and 12C
for programming. The required connection between the host
PC and the system controller IC is established via a USB-to-
UART connection. The Master and Slave designs utilize the
onboard oscillators: USER_SI570 and USER_MGT _SI570 (for
the GTYE4 transceiver), which provide low jitter, high reso-
lution, and a wide range of clock signals. The USER_SI570
oscillator generates a 300 MHz clock to drive the reference
clock input of MMCM in both master and slave designs.

High-performance transceivers require a precise and noise-
free clock for high-speed serial communication. In particular,
for the chosen line rates of CPRI, this clock must be a 245.76
MHz clock. In Master and Slave designs, this clock is driven
by two different types of oscillators. CPRI-Master uses the
output of USER_MGT_SI570 oscillator as its reference clock,
while in the Slave this reference clock is recovered from its
received signal as shown in Figure 6. CPRI IP core outputs
a clock based on the received signal, called recclk, and the
frequency of that can be different based on the line rate of
the received signal. The slave design has a dedicated logic
to convert this clock to a fixed clock rate of 15.36 MHz for
all the line rates. This pre-scaled clock is then routed through
an external jitter-removal PLL to generate 245.76 MHz clock,
which is used in Slave as CPRI reference clock. The SI5328
is the onboard jitter-removal PLL on ZCU111 RFSoC, and
it is programmed using the SCUI and the corresponding
register map is generated using ClockBuilder Pro Software
from Skyworks.

In Slave, the required 400 MHz PLL reference clock of any
ADC/DAC tile is generated from onboard cascaded oscillators,
LMKO00304 and LMX2594. The register maps for these are
generated using Texas Instruments’s TICSPRO-SW support
software and are programmed by the SCUI tool.

B. FPGA Utilization

The FPGA utilization and power consumption of Master
and Slave are discussed in Table 1. It shows that the Master
comprises 22.3% of Block RAM (BRAM) and 5.8% of
Configurable Logic Blocks (CLB). In the Slave, 36.1% of
BRAM and 4.3% of CLBs are utilized. Additionally, the power

[Power W) [BRAM [CLB (LUTs) | MMCM |
Master 5.063 241(22.31%) | 24872(5.85%) | 1(12.5%)
STave 7.608 390(36.11%) | 18359(4.32%) | 1(12.5%)
REDC 2.192 0(0%) 3194(0.75%) | 0(0%)

TABLE I: FPGA utilization for master, slave, and RFDC.

consumption for the Master and Slave is 5 watts and 7.6 watts,
respectively.

VI. FFT APPLICATION OVER CPRI

Bi-directional communication in wireless networks enables
real-time interaction between a master and a slave. In the
transmission path, OFDM data is sent by activating BRAM_Tx
on the Master to the CPRI-Master. This information is received
by the CPRI-Slave and then stored in the RX FIFO on the
Slave before being forwarded to the DAC. A cable establishes
a connection between the ADC and DAC. In the reception
path, the storage of ADC data in the 7X_FIFO is a result of
clock domain crossing. The clock domain diagram depicted in
Figure 2 highlights the distinction between the CPRI frequency
(368 MHz) and the clock frequencies (100 MHz for ADC and
400 MHz for DAC).

By enabling the transmit bit in the CPRI-Slave, the Slave
can send data back to the Master. The received data in the
master is captured by RX_BRAM. AXI DMA and AXI FIFO
are utilized to send the DMA packet out of the PL shown
in Figure 2. PYNQ, an open-source project from Xilinx,
seamlessly integrates the simplicity of Python programming
with the capabilities of PL and PS elements in Xilinx’s Zynq
system-on-chip (SoC) devices [10]. In the context of the
PYNQ framework, a fundamental restructuring of our system
architecture into IPs is necessary. Each IP is allocated a unique
address space. The five identified IPs in this context include
AXI DMA, GPIO1, GPIO2, Vendor RTL IP, and CPRI Master
RTL IP. GPIOI and GPIO2 are specifically designated for
managing LEDs and CPRI reset, respectively. Combining the
vendor module and BRAM_Tx forms a cohesive Vendor RTL
IP, while the CPRI IP, MMCM, and BRAM_Rx collectively
serve as the RTL components within the CPRI Master IP. This
systematic approach enhances the organization and efficiency
of our system design. Figure 7a illustrates the IPs layout
diagram for the PYNQ framework.

The FFT application in PYNQ involves a series of tasks.
These tasks include loading the FPGA bitstream file, initiat-
ing the reset sequence, activating BRAM_Tx, initializing AXI
DMA, and allocating memory for each DMA packet. Fol-
lowing this, the system processes 20 DMA packets, converts
them to signed decimal numbers, and then applies FFT to
the decimated data. As a result, the received DMA packets
undergo FFT processing to visualize the OFDM data.
Implementation and Results: The transmission of OFDM
data to the CPRI-Master is continuous, with a noticeable delay
between successive packets of OFDM data. As a result of
this clock domain crossing, when the CPRI-Slave receives 1/Q
data, the corresponding OFDM data is stored in the RX_FIFO
on the Slave in the transmitted path. The TX_FIFO is utilized
to temporarily store data before its transmission back to the

Average FFT DMA Packets

MOOAXI [TeoT] LEDs T
MO1_AXI st 30

—— > GPIO2 2
o)
3 £
M02_AXI Vendor vndr x| B & |<_f
RTL IP cz =
M03_AXI = Py
g g
g

Mo+ AXI [T AXT | 1Q z U

] 20 40 60
IDM—AI Number of Sample

(a) IP layout in the PYNQ (b) Average spectrum of 20 DMA
Fig. 7: PYNQ framework for transferring OFDM waveform

Master in the received path. Figure 7b illustrates the FFT
average of 20 DMA packets within the PYNQ environment

VII. CONCLUSION

This paper presents a system architecture aimed at en-
hancing the CRAN core. The proposal involves configuring
two Zynq UltraScale+ RFSoCs as master and slave compo-
nents. The OFDM data packet is transmitted to the Master
by activating BRAM_Tx through the TCP socket or PYNQ.
Subsequently, the CPRI-Slave receives the I/Q data, directs
it to the DAC, and sends back the data from the ADC to
the master. Simulation results demonstrate the functionality
of both the Master and Slave. FPGA utilization metrics indi-
cate the number of resources employed, with an explanation
attributing the low resource usage to the expansive size of
the FPGA. Additionally, the paper explores the FFT of the
received data from the slave within the PYNQ framework.

VIII. ACKNOWLEDGMENT

This work is supported by the National Science Foundation
(NSF) Award #1823225-CRI: 1I-NEW: CHRONOS: A Cloud
based Hybrid RF-Optical Network Over Synchronous Links.

REFERENCES

[1] Platform for advanced wireless research. [Online]. Available: https:
/ladvancedwireless.org/

[2] X.Jiao, I. Moerman, W. Liu, and F. A. P. de Figueiredo, “Radio hardware
virtualization for coping with dynamic heterogeneous wireless environ-
ments,” in Cognitive Radio Oriented Wireless Networks, P. Marques,
A. Radwan, S. Mumtaz, D. Noguet, J. Rodriguez, and M. Gundlach,
Eds. Cham: Springer International Publishing, 2018, pp. 287-297.

[3] Open radio access network. [Online]. Available: https://www.o-ran.org/

[4] “ZCU111 Evaluation Board User Guide PG1271,” 2018. [Online].
Available: https://www.xilinx.com/support/documents/boards_and_kits/
zculll/ugl271-zculll-eval-bd.pdf

[5] “CPRI Specification V7.0.” [Online]. Available: http://www.cpri.info/
downloads/CPRI_v_7_0_2015-10-09.pdf

[6] “UltraScale Architecture =~ GTY Transceivers ug578)" 2021.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/user_guides/ug578-ultrascale- gty-transceivers.pdf#page=
241

[71 “Zynq UltraScale + RFSoC RF Data Converter 2.2
PG269,” 2019. [Online]. Available: https://docs.xilinx.com/r/en-US/
pg269-rf-data-converter/Introduction

[8] “Zynq UltraScale+ RFSoC RF Data Converter Evalu-
ation Tool (ZCU11l) PGI1287,” 2022. [Online]. Avail-
able: https://www.xilinx.com/content/dam/xilinx/support/documents/

boards_and_kits/zcul11/2020_2/ug1287-zcul 1 1-rfsoc-eval-tool.pdf
[91 “https://docs.xilinx.com/v/u/en-US/ds941-zyng-ultra-ps-e-vip (DS941),”
2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
ds941-zynq-ultra-ps-e-vip
Pynq introduction — python productivity for zynq (pynq). [Online].
Available: https://pynq.readthedocs.io/en/latest/

(10]

