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Microorganism motility often takes place within complex, viscoelastic fluid environments,
e.g. sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains
and stresses generated by the microorganism are stored and relax across a spectrum of
length and time scales and the complex fluid can be driven out of its linear response
regime. Phenomena not possible in viscous media thereby arise from feedback between
the swimmer and the complex fluid, making swimming efficiency co-dependent on the
propulsion mechanism and fluid properties. Here, we parameterize a flagellar motor and
filament properties together with elastic relaxation and nonlinear shear-thinning properties
of the fluid in a computational immersed boundary model. We then explore swimming
efficiency, defined as a particular flow rate divided by the torque required to spin the
motor, over this parameter space. Our findings indicate that motor efficiency (measured
by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong
shear thinning of the viscoelastic environment.
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1. Introduction

Microorganisms use a variety of techniques to swim in low Reynolds number
environments (Pelczar, Gunsalus & Stanier 1960; Berg 2003). Organisms such as
Escherichia coli use multiple rotating agellar laments that are connected to a rotary
motor by a exible short hook (Berg 2003). Spermatozoa have agellar waveforms that are
nearly planar (Simons, Fauci & Cortez 2015). Other organisms, such as Chlamydomonas
reinhardtii, use an undulating motion to propel themselves forward (Lauga & Powers
2009). Although the ef cacy of these motions is well understood in Newtonian uids,
in nature, these organisms frequently navigate viscoelastic environments composed of
biomolecular proteins and polymeric networks solvated in a viscous Newtonian solvent.
Viscoelastic dispersions induce elastic and viscous, frequency- and amplitude-dependent
responses to imposed stresses and strains. This is a completely different uid—structure
interaction system than swimming in viscous uids in which the uid response is
instantaneous: stored elastic stress and strain in the viscoelastic uid are released over
time on spatial and temporal scales dictated by the underlying structure and organization
of the macromolecular species. To avoid the expense of modelling the polymeric network
at the molecular scale, the ‘extra stress’ stored by the uid’s polymeric network is often
modelled using continuum constitutive equations (Bird, Armstrong & Hassager 1987).
One such choice is the class of upper convected Maxwell-like constitutive models such
as the Oldroyd-B model (Larson 1988; Beris & Edwards 1994; Morozov & Spagnolie
2015), which has served as an idealized testbed for numerical method development, due
to the simplicity of the material model. The Oldroyd-B model captures some features
of polymeric uids, such as the generation of normal stresses in pure shear, but it
fails to capture the prevalent viscoelastic property of shear thinning. Generalizations
of the Oldroyd-B model, such as the Giesekus model, were developed at the scale of
polymeric kinetic theory and then coarse grained via moment closure analysis to arrive
at a constitutive law for the second moment of the con gurational probability distribution,
the so-called extra-stress tensor (Larson 1988). A more sophisticated polymeric kinetic
theory is the Rouse linear entangled polymers (Rolie—Poly) model for entangled polymer
solutions, which along with the Giesekus model and other constitutive equations, resolves
shear thinning as well as other nonlinear responses (Bird et al. 1987).

The physics of locomotion of microorganisms has been extensively studied in
Newtonian uids (Lauga & Powers 2009), but a complete understanding of the motion
of microorganisms in a viscoelastic uid is still lacking. There is a deep literature for
non-Newtonian swimming, with results that heavily depend on both the uid model
and swimmer model. A comprehensive review of motility in non-Newtonian uids
was performed by Li, Lauga & Ardekani (2021). For undulating swimmers, Lauga
(2007) showed that an in nite undulating sheet is always hindered by viscoelasticity. In
contrast, a nite sheet can achieve a speed boost if its body shape and body elasticity
is tuned to the uid elasticity (Teran, Fauci & Shelley 2010; Thomases & Guy 2014).
Fu, Wolgemuth & Powers (2009) extended the analysis to three spatial dimensions
and found that, generally, nonlinear viscoelasticity decreases the swimming velocity for
small-amplitude waves. In contrast, Riley & Lauga (2015) showed that the swimming
speed can increase provided that kinematic waves travel in opposing directions along
the sheet. Li et al. (2017) and Hyakutake, Sato & Sugita (2019) found that organisms
adopt a different gait in non-Newtonian uids to enhance their swimming speed and
ef ciency, although Hyakutake et al. suggested the shear thinning provides a greater
boost than viscoelasticity. For shear-thinning uids, undulatory sheets can move more
ef ciently than in Newtonian counterparts (Vélez-Cordero & Lauga 2013; Gagnon, Keim
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& Arratia 2014), and these effects were deemed dominant over the hindrance from
viscoelasticity, which is consistent with Hyakutake et al. In contrast, Dasgupta et al.
(2013) showed that there are some regimes in which viscoelasticity and shear thinning
can enhance organism motility cooperatively, depending on the uid. Additionally, there
is also evidence that continuum models do not capture the complete story and that discrete
spring-dashpot models of viscoelasticity are needed to accurately understand the dynamics
of swimming in these regimes (Wrébel et al. 2016; Li et al. 2021; Schuech, Cortez & Fauci
2022).

The literature for helical swimmers is similarly complicated. For small pitch angle
in nite swimmers, viscoelasticity always results in a decrease in swimming speed (Fu
et al. 2009; Li & Spagnolie 2015). However, for helical swimmers with a large pitch angle,
the resulting swimming speed becomes nonlinear in the Deborah number. Liu, Powers &
Breuer (2011) found that, experimentally, helical swimmers in viscoelastic uids have an
enhanced swimming speed in uids for which the relaxation time matches that of the
rotation time of the helix. Spagnolie, Liu & Powers (2013) determined that enhanced
swimming speed depends on many complex factors, such as the helical geometry, the
material properties of the uid and the rotation rate. When considering shear-thinning

uids, Gomez et al. (2017) and Demir et al. (2020) suggested that shear thinning results
in enhanced helical swimming speeds, and that the only argument consistent with their

ndings is a con nement-like effect on the swimmer. Further, their results suggest that
shear thinning is the dominant effect in speed enhancement because of the magnitude
of speed gains over viscoelasticity. Li & Spagnolie (2015) found that the introduction
of a con ning cylindrical tube around a swimmer signi cantly enhances the swimming
speed, although the details depend on the helical pitch. Qu & Breuer (2020) determined
experimentally that shear-thinning behaviour is dominant over elasticity, at least in weakly
elastic uids in which the solvent shear thins.

Herein, we determine conditions for increased vs decreased ef ciency of a helical

agellum rotating in shear-thinning vs non-shear-thinning uids. We show that, for high
elasticity and low shear thinning, the swimmer can more effectively pump uid than
in a comparable Newtonian uid. Further, we contrast our results with prior work and
suggest that the underlying model for shear thinning is important. To understand the
ef cacy of a swimmer, one must characterize the material properties of the uid in which
they are swimming and determine an appropriate model for that particular uid. We
additionally quantify the geometric properties the swimmer takes on in these different

uids and demonstrate that the viscoelastic uid has only mild effects on the geometry of
the swimmer.

Elastic bacterial agella can be effectively modelled using Kirchhoff rod theory because
the agellum is long (10 pwm) but very thin (20 nm). Kirchhoff rod theory describes
the forces and torques generated by an elastic rod in terms of the position of the centreline
and an orthonormal set of director vectors attached to the centreline (Lim ef al. 2008).
Goldstein et al. (2000) introduced a bistable energy formulation for Kirchhoff rod theory
to permit two stable helical con gurations. Darnton & Berg (2007) used Kirchhoff rod
theory to estimate the bending rigidity of the agellum by tting a Kirchhoff rod model
to experimental data. Lim & Peskin (2012) incorporated hydrodynamic interactions by
creating a generalized immersed boundary (IB) method based on Kirchhoff rod theory.
Ko et al. (2017) incorporated a bistable energy formulation into the generalized immersed
boundary method to model polymorphic transformation.

In this study, we use the generalized IB method developed by Lim & Peskin (2012) and
Grif th & Lim (2012) to simulate a agellum in a shear-thinning viscoelastic uid. We
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assess the pumping ef ciency of the agellum and determine the shape assumed by the
agellum in different uids.

2. Mathematical model

We consider the motion of a single helical agellum immersed in an incompressible
Giesekus uid. The wuid is described by the Cauchy stress tensor o(x, ), which consists
of stress from the Newtonian solvent o,(x, ) and stress from the embedded polymers
op(x, 7). The uid equations of motion are

du(x, 1)

0 ryamie V.o, t)+f(x,1), 2.1
V. ulx,1)=0, 2.2)
o(x, ) = op(x, 1) + 0p(x, 1), (2.3)
Op(x, 1) = —p(x, H1 + w20, 24)
op = %(@ — ), 2.5)

v 1 o 5
Clx, 1) = —Z(C(x, n-10-— Z(C(x, ) — D"+ DA(C(x, 1) -1, (2.6)

in which D = %(Vu(x, )+ Vu(x, t)T) is the rate of strain tensor, u(x, ) is the Eulerian
uid velocity, p(x, f) is the pressure, f'(x, f) is the external body force density acting on the
uid, p, and p, are the Newtonian solvent and polymeric contributions to the viscosity,
respectively, A is the relaxation time of the uid, D is the diffusion coef cient of the stress

v

and C(x, ) is the upper convected derivative de ned by

IC(x, 1)
ot

(Ivj(x, 1) = +u(x, 1) VC(x, t) — ((D(x, ) - Vu@x, ) + Vu(x, 1) - Cx, t)).

2.7)
The parameter « governs the strength of the nonlinear anisotropic drag term, which
we refer to as the nonlinear parameter in the remainder of this work. This parameter
determines the degree to which the uid experiences shear thinning. Large values of
a correspond to an enhanced capacity for shear thinning. The Giesekus model reduces
to the Oldroyd-B model in the limit of « — 0. In the continuum equations of motion,
the conformation tensor C(x, #) should remain positive definite at all times during the
computation. If, during the course of the simulation, the conformation tensor loses positive
definiteness, we project the conformation tensor onto the nearest non-negative-definite
tensor (Guy & Fogelson 2008).

We note the use of the unsteady Stokes equations in (2.1) as opposed to the steady Stokes
equations. In our simulations, we utilize adaptive mesh re nement around the agellum,
which is precisely where we want to capture greater accuracy. However, our discretization
of the Stokes operator near coarse— ne interfaces limits the solver to non-zero Reynolds
numbers (Gruninger et al. 2024).

It is well established that the Oldroyd-B model exhibits instabilities near extensional
points (Renardy & Thomases 2021), such as those found around the agellum motor. For
simulations using the Oldroyd-B model, we use a small diffusion coef cient D that is
proportional to the grid spacing. While it is unclear the degree to which the Giesekus
model exhibits similar instabilities, our numerical tests indicate that stress diffusion is not
needed for the non-zero values of « used in this study.
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The agellar element is described by a version of Kirchhoff rod theory, in which the

agellum is modelled as a thin rod and stresses are applied on cross-sections along the
rod (Lim & Peskin 2012). The con guration of the agellum is described by the current
physical con guration of its centreline, x (s, ), and an orthonormal set of unit director
vectors attached to the centreline, {Dl (s, 1), D? (s, 1), D? (s, 1)}, in which s is a Lagrangian
parameter with 0 < s < L, where L is the length of the agellum and ¢ is the time.

To describe the force and torque balance along the lament, let F™ od(s 1) and N™4(s, 1)
be the force and moment, respectively, that are generated across a cross-section of the
rod at point s along the centreline. Let F(s, ) and N (s, f) be the applied force and torque
densities of the uid on the lament. Then the momentum and angular momentum balance
equations are

9 Frod (s, 1)

0=F(s,t) + ——, (2.8)
as

AN (s, 1) Ax (s, 1)
_|_
as as

0=N(s, 1)+ x Fd(s, r)). (2.9)
The constitutive relations for the force and moment are derived from a variational
argument using the elastic energy potential. In particular, we use a bistable energy
formulation that allows for two different stable helices (Ko er al. 2017). We expand
Fod(s, 1) and N"*%(s, 1) in the basis of the local director vectors:
3 3
F™ s,y =Y F"Di(s,t) and N™(s,0)=> N™Dis. 0. (2.10a,b)
i=1 i=1
Following Ko et al. (2017), we utilize a bistable energy formulation that allows for two
different stable helices:

E = Ebend + Etwist + Eshear + Eshear, (211)
1 L
Epena = 5/ (al (21(s,1) —k1)? + a2 (22(5, 1) — K2)2) ds, (2.12)
0
Lia 2 /08 s, t 2
Epyisy = / B 2a(s.1) — ) (@305, 1) — 1) + - (ZEBEDN N s 23
o \ 4 2 as
1 [L (s, ¢ 2 (s, t 2
Eghear = — f by X0 .D'(s,n)) +bs Ix(s. 1) D’s,n) )ds, (2.14)
2 Jo as as
1 (L ox(s,t 2
Eypetch = / bs ( XG0 pag i - 1) ds, (2.15)
2 0 as
which results in the forces
ax(s,t :
Frod = b,-( X;S ) DiGs. 1) — 53,), i=1,23, (2.16)
)
NP = ay(£21(s, 1) — K1), (2.17)
Ny = ax(22(s, 1) — 2), (2.18)
02823(s,
NP = a3 (23(s. 1) — 1) (23(5, 1) — f2)<93(s, H— 2 er Tz) - 2$, (2.19)
S
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in which 43; is the Kronecker delta function and y is the twist-gradient coef cient. The
coef cients a; and ay are the bending moduli and a3 is the twist modulus. In standard
Kirchhoff rod theory, D? is constrained to be the tangential vector of the structure. In
the present work, (2.16) with i = 3 instead provides a penalty force that approximately
enforces this constraint (Lim et al. 2008). The coef cients b; and b, are the shear
moduli and b3 is the stretching modulus. The strain twist vector (§21, £23, £23), in which
2;=0D/(s,1)/0s - DF (s, t) and (i, j, k) is a cyclic permutation of (1, 2, 3), determines the

geometric properties of the helical agellum. The parameter x = /K12 + K% is the intrinsic
curvature, and 7 and 7, are the intrinsic twists, which we assume are constant throughout

the simulation. Given the curvature kK = ,/.(212 + .(222 and twist T = §23 of the agellum,
the resulting helix has the radius R and pitch P with

K 2nt
R=—- and P=-——"_. 2.20a.b
P P (2.20a.0)

Although we do not denote them as such, the values of k1, k2, 71 and 1, need not be
constant along the agellum, which we exploit to set different properties to the exible
hook that separates the motor from the agellar lament. Although this work does not
consider transition between helical shapes, we retain the bistable energy formulation used
in by Ko et al. (2017) so that future studies can study the effect of polymorphic transition
in viscoelastic uids.

The force density f(x,f) is generated by the deformation of the rotating elastic

agellum:

L L
f(x9 t) - / _F(S7 [) Sw(x_X(sa [)) dS‘I‘ %V X / _N(Sv t) (SW(x_X(S7 [)) dS,
0 0

(2.21)
in which F (s, ) and N (s, t) are the force and torque applied by the uid on the agellum
and §,,(x) is a smooth, compactly supported kernel function that mediates coupling
between the Lagrangian and Eulerian variables. The linear and angular velocities at the

lament are computed by interpolating the Eulerian velocity onto the lament:

Ix(s, 0 _ / w(x, 1) 8, (x (s, 1) — x) dx, (2.22)
dt B
oD (s, t) _ l/ V x u(x,t)8,(x(s,t) —x)dx, fori=1,2,3, (2.23)
at 2 JB

in which B is the xed Eulerian domain. In this work we use a delta function based
on the three-point B-spline kernel (Lee & Grif th 2022). We remark that the smooth
kernel function §,,(x) appears in both the continuum equations as well as the discretized
equations. This is in contrast to traditional IB formulations, in which a smooth kernel
function like §,,(x) appears in the discrete equations of motion but not in the continuum
equations (Lim et al. 2008). In conventional IB methods, the width of the smoothed
delta is a numerical parameter proportional to the Eulerian mesh width that controls the
accuracy of the regularized approximation to the singular delta function. In this model, the
width of the delta function is a physical parameter of the model which can be viewed as
controlling the effective thickness of the rod. Kernels with larger width yields rods with
larger effective thickness.

999 A2-6


https://doi.org/10.1017/jfm.2024.666

SO0 MfhgenghofD é gi | ennn/0000N000/00000/00/000 0OD00/0 0MOMIN/Amo0

oo

Flagellum pumping in shear-thinning viscoelastic fluids
The initial radius of the helical lament is

0, 0<s=<1Lp
R(s) = R0<1 — e—C<S—Lh>2), Ly <s<Lp+Ly. 229

in which ¢ = 2 um™2. The helical lament is then initialized as
X (s,0) = [R(s) cos(2ms/®), R(s) sin(27s/), s]T (2.25)

in which @ = 0.468 jum is the wavenumber of the helix. The helical radius is O um for the

hook and gradually increases to a radius of Rg. The vector D (s, 7) is initially set as the
unit tangent vector to the agellum, and D! (s, 1) and D?(s, 1) are the normal and binormal
unit vectors. The agellum is driven by a rotary motor. We x the point at s = 0 in space
and specify the rotation of the director vectors as

D! 0, 1) = (cos2mwt), —sin(2nwt), 0), (2.26)
D?(0, 1) = (sin(2mwr), cos(2nwt), 0), (2.27)
D’(0,1) = (0,0, 1), (2.28)

in which o is the speci ed rotation rate. The sign of w determines the direction of the
rotation. The rotation of the motor generates a torque that is then transmitted to the

agellum through the compliant hook. The length of the hook for an E. coli bacterium
ranges from 50 to 80 nm. Here, we specify the hook’s length to be L; = 80 nm. To make
the hook exible, we specify its bending modulus to be two orders of magnitude smaller
than that of the lament (Son, Guasto & Stocker 2013; Jabbarzadeh & Fu 2018). We also
assume the hook to be intrinsically straight, so that T = x = Opum™!.

The model is implemented in the open source software IBAMR (Grif th 2023), which
is an MPI parallelized implementation of the IB method with adaptive mesh re nement
(AMR). The software uses SAMRAI (Hornung & Kohn 2002; Hornung, Wissink & Kohn
2006) for AMR and PETSc (Balay et al. 1997, 2015, 2019) for iterative linear solvers along
with custom preconditioners for AMR discretizations of the incompressible Navier—Stokes
equations.

The equations are discretized on a staggered grid in which the normal components of
velocities are stored on cell sides and the pressures and components of the conformation
tensor are stored on cell centres (Harlow & Welch 1965). We use second-order nite
differences to discretize the Laplacian, velocity gradients and stress divergence (Barrett
2019). The advective derivative is discretized with a second-order wave propagation
algorithm (Ketcheson, Parsani & LeVeque 2013).

We discretize in time using the implicit trapezoidal rule for the viscous terms and
an explicit predictor—corrector method for the conformation tensor. The resulting linear
system is solved using a GMRES algorithm with a projection method as a preconditioner
(Grif th 2009). The details of the spatial and temporal discretizations are discussed in
previous work (Barrett 2019; Gruninger ef al. 2024).

The lament is placed in a computational domain B which is a cube of length
H = ?L = 20 uwm. At the physical boundaries, we specify zero velocity and use linear
extrapolation for the stress. The computational domain is discretized such that N = 512
points in each direction would 11 the nest level of the AMR grid. We discretize the
Lagrangian structure so that the structure contains approximately one point per Eulerian
grid cell.
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3. Results

The agellum is placed in a viscoelastic uid, and the motor rotates at a prescribed rate of
o = 2m100rad s~!. We can classify the elasticity of the uid by using the non-dimensional
Deborah number, which is the ratio of the polymeric relaxation time A to a characteristic
time scale of the structure T5. We de ne T to be the time for the motor to complete one
turn, so that Ty = (2w /w) s = 0.01 s. This gives a Deborah number of De = 1/(2n/w).
The total viscosity of the uidis givenby = w, + u,. The viscosities for the viscoelastic

uids are u, = % X 10_6g (ums)~! and u, = % X 10_6g(um )~ 1, giving a viscosity
ratio of B = w,/(n + 1p) = % We also simulate a agellum in two Newtonian uids
with p, = 0: one with p, =1 x 10-6 g (pm s)~!, which we refer to as N"¢" and one
with w, = % x 1070 g (wms) ™!, which we refer to as N’ The N"¢" uid has viscosity

matching the total viscosity of the viscoelastic uids, whereas the N'°% uid has viscosity
matching only the Newtonian solvent viscosity of the viscoelastic uids. We de ne the
Reynolds number as Re = pURy/u, in which U = Ry /T is the characteristic velocity of
the system. This yields a Reynolds number of approximately Re ~ 4.27 x 10~ for N"&"
and Re ~ 6.41 x 107 for N*". Note that the Reynolds number for the Giesekus uid is
not well de ned, as the effective viscosity of the uid is shear-rate dependent. If we use the

zero shear-rate viscosity, the Reynolds number for all Giesekus uids is Re =~ 4.27 x 1079,

that of the N#¢" uid. The remaining parameters are given in table 1. For the simulations
that follow, we X the rotation rate and vary the Deborah number De by the parameter A
and the nonlinear parameter « of the polymeric uid model. Non-zero values of « tune
the quadratic nonlinearity of extra stress in the Giesekus model, which controls the degree
of shear thinning, and which we demonstrate has profound in uences, particularly on the
pumping ef ciency of the agellum. In the results that follow, a periodic steady state is
achieved after several rotations of the motor. For plots in which average values are shown,
we compute the averages after a periodic steady state has been achieved. For uids with
high Deborah numbers and low « values, more cycles are required to achieve a periodic
steady state, as the uid’s elastic energy storage capacity is increased. Figure 1(a) shows
the shape of superimposed agella rotating in uids of varying « values. Figure 1(b) shows
the trace of the conformation tensor around the agellum. The trace of the conformation
tensor is proportional to the elastic strain energy density of the polymeric material (Li et al.
2017). We observe trace values that are approximately 25 times larger for the Oldroyd-B

uid (¢ = 0.0) than for the Giesekus uid with o = 0.3. In addition, we observe that
large regions of substantial viscoelastic stress exist through the entire path the agellum
traces for « = 0.0. For @ = 0.3, the viscoelastic stresses are localized only near the current
location of the agellum.

3.1. Domain dependence

Because the model is at very low Reynolds number, the domain can have a profound impact
on the results of the simulation. We test the effect that the size of the domain has on the
ow by systematically increasing the size of the domain while keeping the grid spacing
xed. We measure the total ux through a circular disk D above the helix, as will be
described in a later section. The uxis shownin gure 2 for a Newtonian uid. We observe
an increase in  ow rates as we increase the size of the domain. We note that due to the
hyperbolic nature of the viscoelastic constitutive law, there is little transport of viscoelastic
stress towards the boundary, so we expect the boundary effects from viscoelasticity to be
comparatively minor. The simulations that follow use a domain size of L = 10 wm.
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Parameter Symbol Value

Helical Radius Ry 0.2067 wm
Flagellum Length L 6 um

Hook length Ly 80nm

Shear modulus by, by 0.8 gum §2
Stretch modulus b3 0.8gpums2
Bending modulus ay, ay 3.5 %x 1073 gpum’ 52
Twist modulus as 1.0 x 10~* gpum? s 2
Twist-gradient coef cient y 1.0 x 1073 g!/2 um3/2 s~!
Intrinsic curvature K 1.3057 pm™!
Right-hand intrinsic twist 71 —2.1475 um™!
Left-hand intrinsic twist 1%) 2.1475 pm™!
Newtonian viscosity n % x 1076 g (um s)~!
Polymeric viscosity Hp % x 1076 g (ums)~!
Fluid density 0 1.0 x 1072 gpum=3
Nonlinearity parameter o varies
Relaxation time A varies

Time step size At 25x1077s
Filament grid size As 0.04 pm
Finest uid grid size Ax 0.0391 pm

Table 1. Table of physical and computational parameters for both the model agellum and the uid.

3.2. Flagellum shape

We assess the shape of the agellum by computing the radius and pitch of the helix using
the strain twist vector in (2.20a,b). The twist of the helix is computed as T = £23, and the

curvature is computed as K = ,/ [212 + [222 Figure 3 shows the time-average, maximum

and minimum values of the radius and pitch along the middle (s = L/2) and end (s = L)
of the agellum as we vary both the Deborah number De and the nonlinear parameter «.
The reported radii and pitches are normalized with respect to the time-average radius and

pitch for the N high yid. Across various Deborah numbers, we nd that uids characterized
by values of «, which indicate a reduced shear-thinning capacity, tend to result in smaller
measurements for both the pitch and radius of the agellum. Additionally, we have found
that signi cant variations in the shape of the agella primarily result from lower « values
and higher Deborah numbers. Therefore, we infer that major changes in the agellar helix
shape stem from increased elastic responses within the uid. Conversely, the presence of
shear thinning seems to mitigate these effects.

Overall, we nd that the shape of the helix remains relatively consistent in the
viscoelastic uids when compared with Newtonian uids. The shape changes for all
parameters tested are less than 10 % different than in a Newtonian uid, and typically only
vary within a few percentage points. This is in contrast to many undulatory swimmers,
which swim with modi ed shapes in viscoelastic uids (Fu, Wolgemuth & Powers 2008;
Li et al. 2017). While the shape changes only slightly in viscoelastic uids, shape changes
can have drastic effects on agellar bundling (Lee et al. 2018), which are vital to bacterial
locomotion. This effect remains an important area of future study. We also note that the
apparent large shape differences in gure 1(a) are a result of the varying pitch. If we project
the helix onto the y—z plane, we obtain a sinusoidal curve, whose amplitude is proportional
to the radius of the helix and frequency is proportional to the pitch. Slight changes in the
pitch can therefore result in a helix appearing out of phase at different time points.
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Figure 1. Panel (a) shows three superimposed flagella from the side and top perspectives. The black curve
corresponds to a flagellum in the fluid N*#"_ the green curve corresponds to a flagellum in a viscoelastic fluid
with De = 1.0 and & = 0.3 and the red curve corresponds to a flagellum in a viscoelastic fluid with De = 1.0
and o = 0.0. The shapes between the green and black curves are closer than the shape of the red curve. We
also show the motor triads at the beginning of the flagellum. The physical location is fixed in place, and the
rotation rate of the triads is prescribed. Panel (b) shows the trace of the conformation tensor C along a slice
parallel to the flagellum with De = 1.0 and @ = 0.0 (b1) and & = 0.3 (b1ii). Note that, for « = 0.0, we observe
trace values roughly 25 times larger than for @ = 0.3. Additionally, large regions of stress are found throughout
the entire path the flagellum traces for « = 0.0, while for & = 0.3, the stress quickly dissipates away from the
flagellum. Brighter and darker regions of the flagellum highlight the flagellum being in front of or behind the
plane.
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Figure 2. The average flux along with maximum and minimum values through the region D as a function
of the domain size, normalized by the length of the flagellum L. We observe an increase in flow rates as the
domain size increases. The error bars signify the maximum and minimum flow rates.
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Figure 3. The time-averaged and maximum and minimum radii (a,b) and pitch (c,d) of the flagellum along the
middle (a,c) and end (b,d), as calculated by (2.20a,b). The radius and pitch have been normalized by those in
N"&h_For a small value of the nonlinear parameter @ = 0.01, we observe initial increases in pitch and radius
as we increase the Deborah number De, followed by larger decreases, eventually becoming smaller than that of
N*igh_For all other fluids, we observe increases in pitch and radius as we increase De approaching those of the
N’ fluid. Note that, in all cases, the changes are no more than 10 % of those in N*" and frequently are only
a few percentage points.

3.3. Pumping efficiency
To characterize pumping efficiency, we measure the volumetric flow rate through a disk D
of radius R = 1 pm at the plane z = 5.5 pm. Although the flagellum’s length is 6 pm, the
flagellum’s coiled length is approximately 5.25 wm. Consequently, the tip of the flagellum
never passes through the disk D. The volumetric flow rate is computed as

Q:fDu-ndA, (3.1)

in which n is the upward unit normal of the disk D. We note that the choice of the size of
the disk D determines the flux measure, because in the limit as the radius of the disk tends
to infinity, the volumetric flow rate Q tends to zero as we encapsulate more regurgitation
flow. Figure 4 shows the region through which the flow rate is calculated. Because we
specify the rotation rate of the motor, we can also calculate the torque required to turn the
motor at the specified frequency. We calculate the total torque acting on the hook from the
motor using (2.9).

Figure 5 shows the flow rate Q through the region D as well as the total torque acting on
the hook for two fixed Deborah numbers as we vary the nonlinear parameter «. We find that
a steady state is quickly reached after the first few rotations of the motor. The exception is
for larger Deborah numbers and small « values, which require additional rotations to reach
a steady state. This is indicative of the instabilities inherent in the Oldroyd-B model for
very high Deborah numbers (Thomases & Guy 2014); although, because of the inclusion
of stress diffusion, we do anticipate that steady state values will eventually be achieved
for all Deborah numbers. Figure 6 shows the time-averaged, maximum and minimum flow
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Figure 4. The disk D through which the volumetric flow rate is measured is shown in red. The velocity vectors
shown on the region D correspond to the fluid with @ = 0.3 and De = 1.0 and have been normalized by the
characteristic velocity U = Ry/T, ~ 126 pm s,
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Figure 5. Panels (a,c) show the torque generated by the motor for varying nonlinear parameter « and fixed
Deborah number De normalized by that in the N*&" fluid. We observe a decrease in required torque as we
increase the nonlinear parameter «. Panels (b,d) show the volumetric flow rate through the fixed disk D
normalized by that in the N%## fluid. Panels (a,b) use a fixed Deborah number of De = 0.5. Panels (c.d)
use De = 1.0. We observe substantial decreases in the flow rates as the nonlinear parameter increases.

rates and time-averaged torque for each fluid, normalized with respect to the time-averaged

values obtained for the N"8" fluid. For a small nonlinear parameter value of & = 0.01, we
observe a non-monotonic required torque to spin the motor as a function of the Deborah
number. The required torque initially decreases, achieving a minimum at approximately
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Figure 6. The time-averaged torque and flow rate for various viscoelastic fluids normalized by the torque and
flow rate for the N# fluid. Also shown by the error bars is the maximum and minimum flow rates across a
motor rotation. Error bars are not shown for the torque, as the torque is relatively constant in time, see figure 5.
‘We observe that, for small « values, the torque and flow rates increase as we increase the Deborah number.
For larger « values, the torque decreases as we increase the Deborah number, and the flow rates marginally
increase.

De = 0.3, followed by increases as we increase the Deborah number further. For Deborah
number De = 2.0, the to_rﬁue required to spin the motor is nearly 1.4 times that of the
required torque in the N*8" fluid. For all other values of , we observe slow decreases in
the required torque as we increase the Deborah number, with the lowest required torque
found with o = 0.3. For all fluids tested, the required torques were higher than that of
flagellum in the N’ fluid. This suggests that, for large enough « values, the shear-thinning
behaviour of the viscoelastic fluid reduces the impact of its elasticity, lowering the effective

viscosity near the motor below that of the N*#" fluid and towards that of the N fluid.

The flow rate for every fluid considered is larger than that of the N*¢" fluid. Generally,
we observe increases in flow rates as we increase the Deborah number or decrease the
nonlinear parameter « with the largest flow rates observed corresponding to the largest De
and smallest « values tested. Similar to the shape of the flagellum, the flow rate varies
across a complete rotation of the motor. Further, congruent with our findings regarding
the shape variation of the flagellum, we find that flow variations increase as the Deborah
number is increased and the nonlinear parameter « is decreased.

To assess the performance of the motor, we compute its instantaneous efficiency

E = — Q0O/T0

0 whigh (1) / Thphigh (£) ’

in which Tyaign (f) and Qumiga (f) are the torque and flow rate from the N¢" fluid and 7;(r)
and Q;(r) are the torque and flow rate from fluid i. We then average the efficiency E;(r) over
the last five rotations of the motor. Efficiency values greater than one imply that the motor
in fluid i is able to pump fluid more efficiently than the motor in fluid N*¢"_ Figure 7 shows
the efficiency for all fluids tested. We perform linear interpolation of the efficiency value
for combinations of De and « that were not simulated. In all simulations, the efficiency of
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Figure 7. The efficiency of the motor as computed by (3.2) as we vary the nonlinear parameter o and the
Deborah number De. The black circles are data points from the simulation, and linear interpolation is used to
compute the remaining efficiencies. The black curve is the contour on which the efficiency is equal to that of
N'*_For every simulation, we observe a greater efficiency than in the N*%&" fluid. For small « and large De
values, we observe a greater efficiency than in the N’ fluid.

the motor is greater than the efficiency in the N"" fluid. The solid black curve in figure 7
shows the contour on which the efficiency is equal to that of N'¥. We observe that, for

small « values and large De values, the efficiency of the motor is greater than that for N%¥

Our findings reveal a nuanced interplay between the viscoelastic fluid’s elasticity
and shear-thinning properties and their impact on motor efficiency. Increased elasticity
necessitates a higher torque to spin the motor, yet it boosts the flow rate to a greater extent,
resulting in enhanced motor efficiencies at higher Deborah numbers. Conversely, while
shear thinning reduces the required torque to spin the motor, it substantially reduces the
flow rate, thereby diminishing motor efficiency at larger values of «. Additionally, the
enhancement in motor efficiency driven by increasing Deborah number values is more
pronounced at lower values of a.

These results appear to be inconsistent with recent results on locomotion in complex
fluids. In generalized Newtonian fluids that exhibit shear thinning with negligible
elasticity, several groups (Gagnon et al. 2014; Gémez et al. 2017; Hyakutake et al. 2019;
Qu & Breuer 2020) have demonstrated that organisms swim faster than in comparable
Newtonian fluids. The common explanation is that swimmers benefit from a soft
confinement effect. The fluid exhibits a lower viscosity in the immediate vicinity of the
swimmer, allowing the swimmer to ‘push off” the more viscous fluid layer. For fluids with
significant elastic properties, a prevailing theory is that swimmers gain a speed boost from
the stored energy in the fluid (Teran e al. 2010; Thomases & Guy 2014; Li et al. 2017).
For Deborah numbers De > 1, the relaxation time of the fluid exceeds the rotation period
of the flagellum, meaning the flagellum continues to return to a volume of stored elastic
stress. This provides the flagellum with elastic resistance allowing the flagellum to swim
faster, analogous to a pusher.

For the viscoelastic model used here, however, these two stories are at odds with each
other. Shear thinning is induced in a neighbourhood around the flagella, providing less
viscous resistance to the flagellum’s motion. Increased shear thinning requires less torque
to spin the motor and therefore weaker elastic resistance for pushing. The consequence of
this can be observed in figure 7, which shows that the efficiency of the motor decreases
as we increase the shear-thinning capacity of the fluid. The elastic energy of the fluid is
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Figure 8. The trace of the conformation tensor C(x, ) as we vary the Deborah number and the nonlinear
parameter. The trace is shown on a slice along the midpoint of the flagellum. We observe that as the Deborah
number increases, the flagellum begins to return to regions of stored elastic energy, which enhances the
pumping capacity of the flagellum. As we increase the nonlinear parameter, the magnitude of the stored stress
sharply decreases, which reduces the effect of fluid elasticity on the flagellum. Note the colour bar uses a
logarithmic scaling.

Increasing o

Increasing De

Figure 9. The velocity magnitude as we vary the Deborah number De and the nonlinear parameter «. The
velocity magnitude is shown on a slice along the midpoint of the flagellum and has been normalized by the
non-dimensional velocity U = Ry/T,. As we increase the Deborah number, we observe that the size of the
region of non-zero velocities increases. However, as we increase «, the size of the region decreases. Also
shown are the velocity magnitudes for the Newtonian N** and N"#" fluids. As we increase a, the size of the
region approaches that of the Newtonian fluids, suggesting marginal confinement effects.

given by the trace of the conformation tensor (Li ef al. 2017). Figure 8 shows a plot of the
trace of the conformation tensor along the middle of the flagellum as we vary « and De.
As expected, for De > 1.0, the elastic energy of the fluid remains high throughout the path
that the flagellum traces out in the fluid. However, the magnitude of the trace drastically
decreases as we increase «. For large « values, the flagellum is returning to areas with
lower elastic energies.

We also do not see a clear confinement effect around the flagellum. Figure 9 shows the
magnitude of the velocity as we vary De and «. For a fixed small nonlinear parameter of
a = 0.01, we actually observe that the region that experiences non-zero flow increases
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in size as we increase the Deborah number: the opposite of a con nement effect. As
we increase the shear-thinning capacity of the uid, the size of this region decreases,
approaching a size that is comparable to that of the N*'¢" and N'®¥ uid. Because the
shear thinning is limited to the polymeric stress, we do not observe a con nement effect
overall, as the effect from the Newtonian solvent becomes dominant.

4. Discussion and concluding remarks

We have studied both the shape of the agellum and the motor ef ciency in viscoelastic

uids with varying capacities of shear thinning. We compared these agella with those
in Newtonian uids, one with viscosity equalling the total of the polymeric and solvent
viscosities N¢"  and one with viscosity equalling that of only the solvent N'*%. We
have observed different helical shapes assumed by the agellum, which for the range of
parameters considered in this study, differed by less than 10 % when compared with a
Newtonian uid. While it is unclear how much effect this slight change has on the pumping
ef ciency of the agellum, the bundling ability of multiple agella could be signi cantly
affected and is worth further investigation (Lee et al. 2018).

We note that the agellum elasticity model utilized in this study is based on physical
characterizations of the agella of E. Coli (Goldstein et al. 2000; Darnton et al. 2007,
Ko et al. 2017), and this model has been successfully used to study agellar bundling
and locomotion in Newtonian uids (Lim & Peskin 2012; Ko et al. 2017; Jabbarzadeh &
Fu 2018). The elasticity model has several time scales related to stretching, twisting and
bending, and the interplay between the time scales of the agellum and the elastic time
scale of the uid is not fully explored in this manuscript. The time scales of the agellum
are derived in the supplementary material available at https://doi.org/10.1017/jfm.2024.
666. For undulatory swimmers, Thomases & Guy (2017) found that swimmers can achieve
greater speed boosts if their gait can adjust to the elasticity of the uid. To the authors’
knowledge, a similar analysis has not been performed for helical swimmers. For the results
discussed herein, when compared with the rotation period of the motor, we nd the time
scales of the agellum are much faster than that of the motor, making the agellum a stiff
body. The time scales of the agellum are also faster than that of the elasticity of the uid,
and the agellum’s shape is not substantially changed by uid elasticity. However, shear
thinning of the uid reduces the elastic energy stored by the uid, which complicates the
conclusion reached by Thomases & Guy (2017).

The importance of shear-thinning behaviour for speed enhancement in helical swimmers
has been demonstrated previously. Gémez et al. (2017) and Demir et al. (2020) both
studied helical swimming in shear-thinning uids with negligible viscoelasticity. They
both demonstrated that shear thinning can greatly enhance swimming speed for helical
swimmers, and they concluded that con nement effects are the primary cause of speed
enhancement. Demir et al. further hypothesized that the shear-thinning effects dominate
any viscoelastic effects, due to the magnitude of the swimming enhancement observed
in their studies. Qu & Breuer (2020), in their studies of helical swimming in viscoelastic

uids with shear thinning, also found that the magnitude of shear-thinning effects are
dominant over the viscoelastic effects.

We nd that the motor ef ciency in all viscoelastic uids is greater than the ef ciency
in the N*¢" yid. For uids with large Deborah numbers and small values of the nonlinear
parameter o, the ef ciency is greater than the N/ uid. As we increase «, the ef ciency
of the motor decreases. This decrease in motor ef ciency can be explained by the
complex interplay between the elastic and shear-thinning responses of the viscoelastic
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fluid. Although greater elasticity enhances the storage of elastic energy in the fluid,
facilitating higher swimming speeds and thus increased flow rates (Li et al. 2017, 2021;
Spagnolie et al. 2013), shear thinning has a contrasting effect. It diminishes the torque
required for the flagella to rotate, which results in a decreased amount of elastic energy
stored in the surrounding fluid and decreased flow rates. Further, in our results, we do
not observe any confinement effect, and the velocity profile approaches that of a purely
Newtonian fluid as « is increased. In fact, for small values of «, we observe that the
region of substantial flow around the flagellum increases in size as we increase the Deborah
number. This finding is in contrast to Qu & Breuer (2020), and this difference in results can
be partially attributed to the low Deborah numbers utilized in Qu & Breuer’s experiments.
Our findings suggest that the Deborah number needs to be larger than unity to fully observe
speed enhancements.

Our results suggest that too much shear thinning in the Giesekus model actually reduces
the efficiency of the swimmer. We note that this is not in contradiction with other
results. Instead, we claim that the mechanism for shear thinning is important. For the
Giesekus model, the solvent behaves as a Newtonian fluid. If the viscoelastic contribution
to the stress experiences excessive shear thinning, the viscoelastic stresses become
subdominant to the Newtonian solvent’s stresses, making the fluid appear Newtonian.
Further, when making comparisons with Newtonian fluids, it is important to carefully
select the appropriate Newtonian fluid with which to compare. The Reynolds number
measures the relative importance of inertial and shear forces. The classical definition relies
on a choice of viscosity, which for shear-thinning fluids is shear-rate dependent, which
varies in both space and time in our context. In the results considered here, we compare
with Newtonian fluids whose Reynolds numbers match with the zero shear-rate viscosity
of the shear-thinning fluids. As discussed by Thompson & Oishi (2021), more appropriate
comparisons would need to determine the characteristic viscosity near the flagellum. An
important step to fully elucidating the mechanisms behind non-Newtonian swimming is
to determine the detailed rheology of the fluids in which bacteria swim, and from this,
determine an accurate model that fully captures the physical mechanisms of shear thinning
and viscoelasticity. This can be a complicated undertaking, however, because biological
fluids typically have multiple relaxation times as well as a multitude of other properties,
such as polymer chain entanglements of mucus in the respiratory, gut and cervicovaginal
tracts.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.666.
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