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Abstract—Smart wearable devices are increasingly used to
track health conditions and monitor health-related activities,
such as blood pressure monitors, oximeters, and smartwatches.
Such smart wearable devices often rely on Bluetooth Low
Energy (BLE) to send health measurement data to the smart-
phone, which may then use Wi-Fi to sync up data to the
cloud. Several recent works have explored passive attacks on
the BLE or Wi-Fi or WAN traffic to infer user activities
through the packet metadata. In our work, we take a first
step towards investigating the effectiveness of active attacks
that intercept the Bluetooth connection between the device
and phone, enabling the adversary to extract user health data
from encrypted Bluetooth packets which cannot be observed
by passive attackers. We find that several popular wearable
health devices are vulnerable to the attacks. The reason is
rooted in the lack of security mechanisms adopted by these
devices in their BLE implementations. Our work highlights the
risks posed by Bluetooth traffic from wearable health devices
and motivates the need to adopt secure Bluetooth practices to
better protect user privacy.

1. Introduction

Wearable devices are gaining increasing popularity in
healthcare [11]. Users can monitor their health conditions
or keep track of their exercise activities with off-the-shelf
wearable devices, such as blood pressure monitors, oxime-
ters, stress level monitors, and fitness trackers. The wearable
devices typically transmit the measured data to the users’
smartphones via Bluetooth Low Energy (BLE) [5]. Such
data contains sensitive information about the users’ health
or exercise patterns.

Many prior works reveal privacy issues concerning smart
home devices by performing passive traffic analysis on the
WiFi or WAN traffic, i.e., traffic between device to cloud
and between phone to cloud, to infer user activities at
home [20, 21, 36, 26]. However, such attack method may
not be effective for wearable health devices, many of which
solely rely on Bluetooth to transmit the data to the phone and
do not communicate directly with the cloud. A few recent
works [25, 22] investigate the privacy issues surrounding
the Bluetooth traffic between wearable devices and the
phone. However, they only consider fitness trackers and

smartwatches (e.g., Apple Watch, Fitbit), and only consider
passive attacks.

To gain more insight into the security and privacy risks
to users, we explore active attacks on BLE traffic from
the wearable health devices. Our preliminary study includes
3 popular fitness trackers/smartwatches and 10 other top-
seller healthcare devices, such as blood pressure monitors,
oximeters, and stress level monitors. Our adversary model is
a local adversary within the Bluetooth communication range
who attempts to intercept and learn sensitive health infor-
mation from the users. Examples of such adversary include
nosy neighbors in apartment buildings or nearby guests in
hotel rooms, employers who collect data from employees
and sell to insurance companies [10], and advertisers in
densely populated areas who try to learn user activities and
profile the users [8, 6, 9, 7].

More specifically, we perform active Man-in-the-Middle
(MITM) attacks to intercept the Bluetooth connection be-
tween the device and the phone, which enables the adversary
to decode communication data that is otherwise invisible
to passive eavesdroppers. By posing as a “fake” middle
entity, the MITM adversary can prevent the device and the
phone from communicating with each other (i.e., Denial-
of-Service attack) or observe measurement data inside the
encrypted packets sent from the device to the phone (i.e.,
data interception). We found that five wearable health de-
vices are vulnerable to the DoS attack, among which three
are vulnerable to data interception. Note that, unlike the
passive attacker who can only observe metadata, the MITM
adversary can see inside the encrypted packets and observe
the actual measurement data, e.g., the measured oxygen level
of the user from the oximeter.

Our preliminary study highlights the security and privacy
risks of user health data when using wearable devices. We
discuss potential countermeasures against the active attacks,
such as Bluetooth security mechanisms which can make it
significantly more difficult for adversaries to eavesdrop on
a Bluetooth connection. We hope to raise user awareness
of security and privacy issues when using wearable health
devices, and urge the device vendors, manufacturers, and the
research community to adopt Bluetooth best practices and
work towards protecting sensitive health information from
users.
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2. Background

In this section, we first provide background information
on Bluetooth communications. We then discuss existing
passive attacks on IoT devices.

2.1. Bluetooth Low Energy (BLE) Basics

Bluetooth is a wireless communication protocol that
transmits data within 2.4GHz over a short range (e.g.,
between 10 to 100 meters) [1]. Bluetooth was originally
designed for transmitting time-sensitive and continuous data
(e.g., headphone audio data). With the emergence of IoT de-
vices, which are lightweight devices that transmit data over
a short period of time, a low-throughput, low-power protocol
is needed. Bluetooth Low Energy (BLE) or Bluetooth 4.0 is
a low-energy variation of Bluetooth, which is suitable and
widely used in IoT devices [2]. Similar to Bluetooth, BLE
also operates on 2.4 GHz. However, unlike Bluetooth, BLE
remains in sleep mode to preserve energy consumption un-
less a connection is initiated. There are two communicating
entities in the BLE protocol, BLE central (e.g., smartphones)
and BLE peripheral (e.g., wearable devices such as blood
pressure monitors). During a BLE communication, there are
three main steps:

• Connection: The central and peripheral devices must
go through the connection stage before starting the
communication. During connection, devices broadcast
their advertising packets, signaling their presence to
nearby devices. At the same time, they also scan and
listen to advertisement channels to discover targeted de-
vices. Essential information, like BLE peripheral name,
MAC address, services, and properties, are collected by
the central device during scanning. Then, the central
device initiates a connection with the targeted periph-
eral.

• Paring: Paring is used for encryption and is optional.
Paring requires the two BLE devices to agree on a set
of security parameters to derive a master key, i.e., the
Long Term Key (LTK). There are four pairing methods,
which will be elaborated in Section 5.1.

• Communication: Two entities start to exchange data
and communicate through the Attribute Profile (ATT)
protocol. ATT protocol is a server/client protocol where
the peripheral device serves as the server, and the cen-
tral device serves as the client. The server transmits the
data it contains through its attributes, whereas the client
reads or controls the servers’ data through write/read
requests.

All the wearable devices in our dataset use BLE.

2.2. Passive Traffic Analysis Attacks

Traffic analysis attack infers information by observing
the communication pattern of the encrypted traffic. This
technique has been adopted in various attack settings, such
as website fingerprinting [32, 27, 30], social network analy-
sis [28], identifying network devices and activities [33, 24],

etc. With the emergence of Internet of Things (IoT), a
number of recent works have developed traffic analysis
attacks in smart home networks [36, 20, 21, 26, 18]. These
attacks focus on extracting packet metadata from Wi-Fi or
WAN traffic, such as packet lengths and timings, to uncover
user activities and device types.

BLE is one of the most popular communication proto-
cols in IoT devices because of its low power consumption.
However, the research on passive traffic analysis attacks
targeting BLE traffic remains limited. Das et al. [25] studies
the privacy leakage in Fitness Tracker, analyzing BLE traffic
patterns to infer the user’s ongoing activity (e.g., walking,
sitting, idle). Utilizing a professional BLE sniffer (Com-
Prob BPA 600), they collected BLE traffic data from six
popular fitness trackers. Their analysis revealed a strong
correlation between BLE traffic rate and the user’s activity
intensity (motion). To validate this correlation, the authors
utilized a decision tree with a feature vector comprising
payload data rate, number of empty packets, and number of
start packets, achieving a classification accuracy of 97.6%.
Furthermore, the study distinguished individuals by their
unique gait patterns, enabling personal identification, as
different individuals exhibit distinct gait patterns, resulting
in identifiable BLE traffic. The authors demonstrated high
identification accuracy (over 90%) among five individuals.
In a separate study, Barman et al. [22] investigated the
Bluetooth metadata (e.g., packet time and length) exchanged
between a wearable device and a phone. The authors curated
a dataset comprising seven wearable bands. Employing ma-
chine learning techniques, they successfully extracted device
information, human actions, app usage, and user profiles
from the traffic data.

2.3. Active Attacks

Our work focuses on the vulnerability of BLE devices
to active attacks, which involve a malicious attempt by
unauthorized entities to disrupt or manipulate the data flow
within the system. These attacks involve direct interference
with data transmission rather than passive observation.

One form of active attacks targeting BLE is the Denial-
of-Service (DoS) attack, where the attacker aims to make the
system resource unavailable to legitimate users. A notable
example is the battery exhaustion attack [34, 31], where
the attacker depletes devices’ battery power by keeping the
device perpetually awake. BLE devices are also suscepti-
ble to the Denial-of-SLeep (DoSL) attack [37] where the
attacker establishes continuous connections to the device
to prevent it from entering sleep mode, thus resulting in
significant power drain. Another significant active attack is
the Man-in-the-Middle (MITM) attack, where the attacker
intercepts and possibly alters communication between two
parties without their knowledge. While prior works [19, 35]
focus on MITM attacks in Bluetooth classic domain, there
is a noticeable gap in the existing literature regarding ac-
tive attacks in Bluetooth Low-Energy domain, particularly
concerning wearable health devices.
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2.4. Threat Model

We consider a local adversary who is within the Blue-
tooth communication range. We assume that the BLE ad-
versary does not compromise any device and does not have
the keys to decrypt the established connection between the
device and the phone. The adversary can use a sniffer to
capture or intercept all nearby Bluetooth traffic within the
communication range. Note that although the traditional
Bluetooth range is up to 100 feet or 30 meters, the distance
can go up to hundreds of feet with the help of the BLE
signal amplifier or repeater [3, 14].

While the active sniffer does not compromise any de-
vices and does not possess the keys to decrypt the connec-
tion between the device and the phone, the sniffer could pose
itself as the “phone” and directly interact with the device.
Consequently, the active sniffer can gain visibility into the
packet content, and inject or alter traffic.

The goals of the active sniffer are: (i) perform Denial of
Service attack to prevent the device from connecting to the
real smartphone, and (ii) extract sensitive health data from
the encrypted packets sent by the device.

3. Dataset

We describe our wearable devices and data collection
methodologies in this section.

3.1. Device Selection

We choose a diverse set of health-related wearable de-
vices for our study, such as blood pressure monitor, oxime-
ter, body scale, heart rate monitor, and smartwatches. The
specific devices are selected based on the following criteria:
(i) They are popular on Amazon [15] and are manufactured
by popular vendors, e.g., Withings and Fitbit; (ii) They have
good ratings on Amazon, i.e., at least 3.5 stars; (iii) They
are “smart”, i.e., with either Wi-Fi or BLE capability which
can be used to connect to a smartphone.

Table 1 summarizes the devices, their wireless types,
and activities conducted in our experiments. Note that de-
vices with “Wi-Fi or Bluetooth” typically use Bluetooth to
communicate with the phone and only use Wi-Fi for initial
set up. The only exception is Withings Sleep Analyzer,
described as “Wi-Fi & Bluetooth”, which uses Wi-Fi for
communication and Bluetooth for setup.

3.2. Data Collection

Active Man-in-the-Middle (MITM) attack is an active
cybersecurity attack where a third party end can eavesdrop
and stalk the connection [4]. GATTacker [13] implemented
the BLE MITM attack and was first proposed by Slawomir
Jasek in 2016. Specifically, GATTacker creates two fake
BLE entities to impersonate and connects with their real
counterparts. While the real central and peripheral believe
they are talking directly with each other, the fake entities

Device Wireless Type Health
Functionality

Apple Watch WiFi or Bluetooth

Breath
Blood O2
ECG
Cycle

Fitbit Inspire WiFi or Bluetooth

Running
Relax
Swimming
Synchronization

Mi Band WiFi or Bluetooth Running
Walking

Withings
BPM WiFi or Bluetooth Blood Pressure
Withings
Sleep Analyzer WiFi & Bluetooth Sleep Quality
Withings
Body Scale WiFi or Bluetooth Body Weight

iHealth
Blood Pressure Bluetooth Blood Pressure

SonoHealth
EKG Monitor Bluetooth EKG

HealthTree Blood
Oxygen Monitor Bluetooth Blood Oxygen

Govee Thermometer
Hygrometer Bluetooth Temperature
Pip
Stress Level Monitor Bluetooth Stress Level
Fitdays
Weight Scale Bluetooth Body Weight

FitIndex
Body Fat Scale Bluetooth Body Weight

Table 1: Table of devices, its wireless type, and activities.

eavesdrop and log the BLE communication data. GATTacker
is an open-source project that is implemented in JaveScript
and requires noble [17] and bleno [16] packages. We adapted
GATTacker [13] to our study by using two Raspberry Pi -
each for one fake entity. We captured BLE traffic directly
on the Raspberry Pis.

4. BLE Active Attack

4.1. Attack Overview

In this section, we explore active BLE attacks that can (i)
perform Denial-of-Service attack to prevent the device from
connecting to the real smartphone, and/or (ii) extract sensi-
tive health data from the encrypted communication packets
sent by the device. Note that the active attacker does not
compromise any devices or pairing keys, which is the same
as in the passive attacks. Instead, the active attacker poses
itself as the Man-in-the-Middle (MITM) and creates separate
connections with the device and the phone, respectively.
Consequently, both the device and the phone mistakenly
believe that they are talking to each other directly. The
MITM attacker can then observe all data sent by the device,
and even inject or alter the data before forwarding them to
the phone.
MITM Tool. We use the GATTacker [13] tool to implement
the MITM attacks on BLE connections between the device
and the phone. We create fake middle entities that sit in
between victim devices. The fake entities pretend to be
the real “central device” (e.g., phone) and communicate
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Figure 1: BLE Man-in-the-Middle (MITM) Attack

with other victim devices (“peripheral” devices, which are
restricted to one BLE connection at a time). The attack flow
is shown in Figure 1.

In our attack experiments, two Raspberry Pis are used to
resemble the fake entities. The fake central and peripheral
devices connect with the real counterparts, pass information,
log, and steal data from the conversation. We use the Oxime-
ter as an example to outline the detailed steps as follows:

• The fake central device (X) advertises its presence,
collects the advertising packets and service information
from the Oximeter (B).

• The fake central (X) connects with the fake peripheral
(Y) through HTTP Proxy and sends the cloned infor-
mation to Y.

• The fake peripheral (Y) connects to the real central (A)
using the cloned information and tricks A to believe Y
as the real Oximeter.

• The fake central (X) connects to the Oximeter and
tricks the device to believe it is the real phone.

• As A and B believe they connect to each other, they
will communicate and transmit data. Their exchanged
data is then captured by X and Y.

Implementation. We implemented GATTacker on a Rasp-
berry Pi with two Bluetooth CSR 8510-based USB dongles.
BLENO [16] and NOBLE [17] with Node 8.11.1 were used
to configure the Pi, and the two dongles were used as fake
central and fake peripheral. Fake central and fake peripheral
communicated with each other using WebSocket. Hook
functions were used for data interception and manipulation.

We perform the follow attacks using our testbed:

• Denial of Service: a BLE peripheral device only con-
nects with one central device — once the connection
is established, the peripheral device stops advertising
itself. Thus, another central device is not able to dis-
cover it. In the MITM attack, once the fake central
device connects with the peripheral device, other cen-
tral devices cannot connect. This will cause DoS attack,
which affects the availability of the peripheral device.

• Data Interception: because the fake devices establish
connections directly with the device and the phone,
they can observe data content inside the encrypted
packets.

Device DoS Data Interception
Apple Watch
Fitbit Inspire
Mi Band
Withings BPM
Withings Sleep Analyzer
Withings Body Scale
iHealth Blood Pressure Monitor 4  
SonoHealth EKG Monitor 4  
HealthTree Blood Oxygen Monitor 4  
Govee Thermometer Hygrometer 4
The Pip Stress Level Monitor 4
Fitdays Weight scale
FitIndex Body Fat Scale

Table 2: Device vunlerability to MITM attacks.

4.2. Evaluation

We performed the MITM attacks against all wearable
devices in our dataset. Table 2 shows the vulnerability of
devices to DoS and data interception attacks.

DoS Attack. Due to the power conservation characteris-
tic of BLE connection, peripheral devices typically are only
able to connect with one central device. A MITM attack is
able to conduct a DoS attack thanks to its ability to generate
a fake central device. The generated fake central device
broadcasts its information with higher frequency, attempting
to connect with the peripheral device. Once connected, the
peripheral cannot connect and communicate with the real
central device, leading to a DoS attack.

Data Interception. MITM attacks may uncover the
encrypted data sent by devices in the BLE communica-
tion packets. The packets have the following structure:
{Timestamp — Type — Service UUID — Characteristic UUID —
Hex data}. We successfully parse the Hex data format for
three devices, but fail to do so for the other two. Figure 2
illustrates an example of the captured data from the Oxime-
ter at the MITM attacker. The first two bits of data in red
are the blood oxygen saturation levels (SpO2) in Hex. The
following two bits in red are the pulse rate (PR) in Hex. The
Oxygen reading in Figure 2 are SP02: 99, PR: 75; SP02:
99, PR: 74; SP02: 99, PR: 73. The attacker can then simply
convert Hex values to Decimal values in human-readable
formats. This example demonstrates that the active attacker
can directly see the sensitive health measurement data from
the user. Such attacks do not require any prior knowledge
or training, and can be performed using simple tools as we
showed in our experiments.

Data Manipulation. After intercepting the traffic, de-
pending on the encryption of the communication, the ma-
licious entity can alter the original data and relay. This
may cause serious problems, such as sending the wrong
measurement to the user. We plan to explore such attack in
greater details in future work.

Takeaway. Active MITM attacks can intercept the BLE
connection between the device and the phone, enabling the
adversaries to launch DoS attacks or extract encrypted user
health data which cannot be observed by a passive attacker.
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Figure 2: Data Eavesdropped of Oximeter

5. BLE Security Discussion

We discuss existing BLE security mechanisms that can
prevent major attacks if correctly implemented on the de-
vices.

5.1. Security Pairing

There are two pairing processes designed for BLE de-
vices: (i) Legacy Pairing mode for devices operating on
BLE versions 4.0 and 4.1, and (ii) Secure Connection mode
for devices operating on BLE version 4.2 and beyond. In
Legacy Pairing mode, the devices exchange a Temporary
Key (TK) and employ it to generate a Short Term Key
(STK) responsible for encrypting the connection. While in
Secure Connection mode, the devices use a single Long
Term Key (LTK) to encrypt the communication by utilizing
Elliptic Curve Diffie-Hellman (ECDH) for key exchange
and authentication. Notably, there are four major pairing
strategies as we discussed below:

• Just Works does not require any user input to au-
thenticate the devices. IoT devices without any I/O
capabilities, such as headphones, sensors, light bulbs,
use this method for pairing. In Legacy Paring, the TK is
hard coded to 0, while in Secure Connection, a random
seed is employed during the key generation process.

• Passkey Entry requires that both connecting devices
should have input and display output capabilities. In
both modes, a randomly generated numeric passkey
will appear on one device (i.e., phone), and the user
needs to input the pin on the other device to pass the
authentication.

• Out-of-Band requires both connecting devices to sup-
port a different wireless communication method, like
NFC, to exchange secret data, such as the TK in Legacy

Pairing and the public key in Secure Connection mode.
• Numeric Comparison is exclusively accessible in BLE

Secure Connection mode, and requires user input for
authentication. Following the key exchange process,
both devices generate and display a six-digit number,
and the user must select the matching number on the
device to confirm the connection.

Just Works is the most commonly adopted pairing mode
in the IoT environment due to the absence of input/output

capabilities in many IoT devices, such as light bulbs, smart
locks, and heart rate monitors [29]. Nonetheless, Just Works
remains susceptible to various security threats. In Legacy

Pairing mode, the presence of a hard-coded Temporary Key
renders it remarkably easy for attackers to launch brute-force
attacks on the Short Term Key (STK), facilitating unau-
thorized decryption of communication. Just Works remains
vulnerable to MITM attacks even with Secure Connection

as it lacks mechanism to verify the authenticity of the
connection. Passkey Entry also remains vulnerable to active
MITM attacks, particularly when the attacker can sniff all
the pairing packets to brute force the temporary key. Out-
of-Band (OOB) pairing offers protection against passive
eavesdropping and MITM attacks when the key exchange
OOB channel is secure. However, such pairing mechanism
requires the IoT devices to support a different wireless
communication method that may not be applicable for many
IoT devices. Numeric Comparison pairing necessitates man-
ual confirmation value checks on both connecting devices,
providing defense against MITM attacks. Nonetheless, this
method requires that both IoT devices possess input/output
capabilities.

5.2. MAC address randomization

This is another security mechanism to prevent using
MAC Address as an identifier for passive sniffing. Bluetooth
MAC address (BD ADDR) is a 48-bit identifier uniquely
for Bluetooth devices. Bluetooth MAC address is a public
address that is globally fixed and must be registered with the
IEEE. Public address cannot be renewed, which leaves the
possibility of device tracking. To enhance communication
privacy, BLE supports other 3 types of random addresses
besides the public address:

• Random Static device address. This address is a popular
alternative to Public Address since there are no fees
in using it. It is programmed into the device, which
either cannot be changed or can be renewed at bootup.
It cannot be renewed during runtime.

• Random Resolvable device address. The following two
types of addresses are used for hiding the identity
and preventing tracking. Resolvable Random Private
address can be resolved by a trusted (bonded) device
using a shared key, the Identity Resolving Key (IRK).
It preserves privacy while allowing trusted parties to
identify the BLE devices.

• Random Non-resolvable device address. A randomly
generated address that can be renewed at any time and
is not resolvable by any devices.

Despite the existing security mechanisms, BLE still
suffers from security and privacy issues because many IoT
devices fail to implement these mechanisms properly.

The Bluetooth Core Specification [12] recommends that
the Random Non-resolvable and Random Resolvable ad-
dresses shall be generated frequently to preserve privacy.
The recommended renewal time is 15 minutes. However,
Celosia et al. [23] identified that a significant number of
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BLE devices failed to follow this specification. In their
experiments, 6% of Random Resolvable and 4% of Random
Non-resolvable addresses have a lifetime larger than 15
minutes and up to 69 days. Furthermore, the authors showed
that the advertising packets contain unique identifiers which
do not reset after address randomization. Examples of the
identifiers are device names, service UUID, etc. These iden-
tical identifiers can be used for tracking and eavesdropping.

Our attack experiments also verify that at least five
wearable devices in our dataset are vulnerable to active
MITM attacks due to insecure pairing mechanisms. Hence,
we urge that IoT vendors, especially for healthcare devices
which involve sensitive health information, to follow BLE
best practices and adopt security mechanisms to prevent both
passive and active attacks.

6. Conclusion

In this work, we perform a preliminary study on the
vulnerability of Bluetooth connections from top wearable
health devices. We demonstrated an active adversary that
can eavesdrop and decode the actual measurement data.
We discussed the defenses of using existing BLE security
mechanisms. Our work highlights the security privacy risk
of BLE communication and emphasizes the importance of
adopting better BLE privacy countermeasures.
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