
The Role of Data Filtering in
Open Source So�ware Ranking and Selection

Addi Malviya-Thakur
University of Tennessee

Oak Ridge National Laboratory
USA

amalviya@vols.utk.edu

Audris Mockus
University of Tennessee, Knoxville

Vilnius University
USA and Lithuania
audris@utk.edu

ABSTRACT

Faced with over 100M open source projects, a more manageable

small subset is needed for most empirical investigations. Over

half of the research papers in leading venues investigated �ltering

projects by some measure of popularity with explicit or implicit

arguments that unpopular projects are not of interest, may not even

represent “real” software projects, or that less popular projects are

not worthy of study. However, such �ltering may have enormous

e�ects on the results of the studies if and precisely because the

sought-out response or prediction is in any way related to the

�ltering criteria.

This paper exempli�es the impact of this common practice on

research outcomes, speci�cally how �ltering of software projects

on GitHub based on inherent characteristics a�ects the assessment

of their popularity. Using a dataset of over 100,000 repositories, we

used multiple regression to model the number of stars –a commonly

used proxy for popularity– based on factors such as the number of

commits, the duration of the project, the number of authors and the

number of core developers. Our control model included the entire

dataset, while a second �ltered model considered only projects

with ten or more authors. The results indicated that while certain

characteristics of the repository consistently predict popularity,

the �ltering process signi�cantly alters the relationships between

these characteristics and the response. We found that the number

of commits exhibited a positive correlation with popularity in the

control sample but showed a negative correlation in the �ltered

sample. These �ndings highlight the potential biases introduced by

data �ltering and emphasize the need for careful sample selection in

empirical research of mining software repositories. We recommend

that empirical work should either analyze complete datasets such

as World of Code, or employ strati�ed random sampling from a

complete dataset to ensure that �ltering is not biasing the results.

CCS CONCEPTS

• Software and its engineering; • Human-centered comput-

ing→ Empirical studies in collaborative and social comput-

ing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

WSESE 2024, 2024, Lisbon, Portugal

© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS

Empirical software engineering, Missing data problem, Software

engineering research, Filtering, Sampling, Mining software reposi-

tories

ACM Reference Format:

Addi Malviya-Thakur and Audris Mockus. 2024. The Role of Data Filter-

ing in Open Source Software Ranking and Selection. In Proceedings of In-

ternational Workshop on Methodological Issues with Empirical Studies in

Software Engineering (WSESE 2024). ACM, New York, NY, USA, 6 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Volumes of public data that could be extracted from open source

projects that use version control and issue tracking systems have

been widely exploited by research that seeks to better understand

software development projects. Such studies increasingly use a

large collection of projects to achieve some generality of the results.

As it is extremely di�cult to collect these data from all OSS projects,

most research focuses on selecting a manageable subset of projects

from the largest “forge”, GitHub. Once projects are selected accord-

ing to some criteria, data of these projects are extracted, cleaned,

and analyzed to identify a relationship between some predictors

and outcomes investigated in speci�c research [8, 12, 26]. In fact, in

more than half of the cases of such analysis obtained from leading

conferences, the projects were selected based on some measure

of popularity. Another study [7], investigated methods used in 93

publications that analyzed the mining of GitHub repositories with

respect to reported methods, datasets, and limitations and found nu-

merous issues with the dataset collection process and size and poor

sampling techniques. The authors of [4] �ltered the top 2500 public

repositories on GitHub with high stars. The goal of this restriction

was to concentrate on the peculiarities of the widely used GitHub

systems and the di�culties that come with human examination.

The “star” ratings are a static representation of the community’s

preferences at a certain moment in time (namely, the past) rather

than current choices. It also does not show which packages are used

the most or which are growing or losing popularity. In [13, 25], the

authors proposed ranking the code and �ltering the repositories

based on the entity of the code and its usage. This approach is

based on ∼12,000 Java projects �ltered by the presence of source

code, resulting in the database consisting of 4600 repositories. Such

�ltering can surely exclude projects that are widely used and safe-

guards against phishing, intentional code spoo�ng, among others.

Along the same line [1], the authors performed a �ltering based on

the static snapshot of code repositories based on one-time usage,

WSESE 2024, 2024, Lisbon, Portugal Addi Malviya-Thakur and Audris Mockus

resulting in more than 200K �ltered code bases. In [22], the authors

illustrated the relationship between popularity and security level

based on the top 20 widely used Java libraries. The �ltering was

based on usage rather than on more elaborate and �ner-grained

experiments. Research has shown that in open source software

projects, factors like the number of branches, open issues, and con-

tributors signi�cantly in�uence popularity, with each factor having

a large e�ect size [9]. Another study indicates that the number of

followers and aspects such as programming language and commits

by others at the time of newcomer joining are crucial for long-term

contributor retention, highlighting these as top features in various

time intervals [3]. Several research studies have highlighted the

use of collaborative �ltering as a way to identify key repositories to

examine a multitude of scienti�c problems [5, 16, 24]. Such studies

clearly raise the problem of trust, reproducibility, and validation

resulting from incomplete data samples through heuristic �ltering

of open source repositories.

Authors in [6] identify the use of small data sets, poor sampling

techniques and hard to replicate methodologies, while authors

of [19] recognize that contemporary �ltering methods may be in-

su�cient means of identifying “real” software projects and trie

to use machine learning models that rely on various repository

statistics to identify “real” software projects. In particular, while

our proposed work focuses on the methodological robustness of

sampling strategies over time, [19] o�ers a practical tool for �lter-

ing engineered projects in large software repositories. Thus, [19]

and our proposed work address limitations in current research

practices but from di�erent angles: one through methodological

improvement and the other through a technical solution.

In summary, some measure of popularity or project activity is

often used to �lter out projects that are below certain thresholds

for that measure or for prediction probability (in the case of ML

models). As a result, many software projects are excluded from

the subsequent analysis based on �ltering criteria, resulting in the

so-called “missing data”.

Missing data, if not handled properly, distorts statistical results

and degrades the prediction of machine learning methods. Filtering

removes the response and all independent variables, while tradi-

tional missing data techniques are typically used when at least one

of the predictors is present and uses imputation and/or weighting

techniques to �ll in missing values [14, 17]. The three types of miss-

ing data [14] are MCAR or “missing completely at random”, MAR

or “Missing at random,” and MNAR or “missing not at random.”

Filtering would result in MCAR if the distribution of the response

is independent of the �ltering criteria, a quite unlikely scenario

in most cases. The advantage of MCAR is that the analysis on the

�ltered data would be valid. Fortunately, the analysis would be

valid even in MAR cases, which require that the missingness be

conditionally independent given the observed variables, i.e., the

fact that a value is missing depends only on the observed values.

Since �ltering excludes all values, subsequent analysis is equiva-

lent to the listwise-deletion technique (i.e., when data rows with

any missing values are excluded). It yields correct results only if

the �ltering criteria are completely unrelated to the response: an

extremely unlikely scenario.

For example, if we predict the number of stars, and the likelihood

that the number of stars is missing depends only on the number of

authors, we need to include the number of authors in a regression

model and impute the missing values for the number of stars to

get valid results. Filtering, unfortunately, excludes entire data rows

where the number of authors is low, hence any subsequent analysis

would be invalid. MCAR assumption would not apply, because

the probability that a value is missing depends on the number

of authors. However, if we do not have the number of authors

(in case of �ltering) or simply do not include it in our estimation

model, then even the MAR assumption is not satis�ed. Such case

is referred to as data not missing at random (MNAR). The MNAR

data can be made to satisfy the MAR assumption if variables that

characterize situations when a value is missing are added. Therefore,

it is important to add variables that might predict the missing value

mechanism to the dataset. With �ltered data that is not possible.

In this study, we illustrate the often overlooked issue of missing

data arising when software projects are �ltered out of research

datasets. We demonstrate the signi�cant impact this can have on

research outcomes, particularly through a case study that models

the popularity of software projects.

Our recommended approach to solving this problem involves

either using the full data when possible (research infrastructure

such as World of Code [15] and archival collections such as Soft-

ware Heritage [23] make complete datasets much easier to access)

or the use of a strati�ed sampling technique [20] from the above-

mentioned resources to e�ectively reduces the risk of bias, ensuring

that the empirical �ndings remain representative despite excluded

(missing) data. Our proposed use of strati�ed sampling might help

addresses the concerns highlighted in [2], which emphasizes the

rarity of representative sampling in software engineering research,

proposing a solution that contributes to resolving the �eld’s gen-

eralizability crisis. The key idea of the strati�ed sampling is that

di�erent populations (strata) of projects may have di�erent prop-

erties based on certain criteria, for example, the mechanism that

gets a single-author project many stars may be di�erent from one

for projects with thousands of contributors. Instead of getting data

on all projects, a random sample is selected for each strata and

then the results are extrapolated to the entire population. A simple

random sampling would also work, but it would require a much

larger sample size for the same variance of the desired estimates,

e.g., a very large random sample is needed to include at least some

of the very large (and extremely rare) projects.

First, we explained how �ltering is related to missing data and

how analysis on �ltered data is equivalent to listwise deletion tech-

nique. Second, we provide an actual example based on a very large

real dataset that demonstrates that �ltering may completely change

the conclusions. Third, we illustrate how strati�ed sampling could

be applied to manage the scale of the analysis yet yield representa-

tive results.

We draw data from a collection of open source version control

repositories that attempts to approximate the complete universe

of open source software, World of Code (WoC) [15], in order to

be able to draw a truly random sample and compare it with �lter-

ing approaches commonly used in empirical software engineering

research.

The remainder of the paper introduces an illustrative example

in Section 2, discusses limitations in Section 3, discusses strati�ed

sampling in Section 3, and concludes in Section 6.

The Role of Data Filtering in

Open Source So�ware Ranking and Selection WSESE 2024, 2024, Lisbon, Portugal

All data and code used in this study are publicly available in the

replication package links: https://zenodo.org/records/10516681 and

https://github.com/woc-hack/Assignments/

2 ILLUSTRATIVE EXAMPLE

This section illustrates the problem of changes in the rating result-

ing from missing and �ltering the repositories based on certain

attributes. To model the rating of software repositories and mea-

sure what causes the ratings to change, we rely on key inherent

characteristics of the repositories and model these quantities to

understand what causes some projects to have more stars than

others.

2.1 Problem statement

We would like to explain the popularity of a GitHub repository by

various other attributes. Our primary hypothesis is that repositories

with more activity, more authors, and those that have been around

for a longer time will be more popular. To operationalize these

concepts, we use the number of stars as a measure of popularity,

the number of commits as a measure of activity, the time since the

repository was created as duration, and the number of individuals

who committed code to the repository as the number of authors.

For simplicity, we used linear regression to model the number

of stars, and the following sections describe precise ways in which

measures were obtained and the sample was �ltered.

Data Extraction. Since its inception, Free/Libre and open-source

software (FLOSS) has dramatically impacted the software commu-

nity and ecosystem. FLOSS is free software and open source soft-

ware, so anyone can freely use, copy, study, and change the software

in any way. World of code (WoC) has enabled research on the global

properties of FLOSS [15]. The WoC collection of software reposito-

ries contains authors, projects, commits, blobs, dependencies, and a

history of the FLOSS ecosystems. These data are updated regularly

and contain billions of git objects. We will use WoC’s extensive

and frequently updated version control commit data collection of

the entire FLOSS ecosystems for this study. WoC APIs are used to

fetch and process data related to FLOSS repositories. We extract

several attributes of repositories’ to develop the ranking/popularity

rating mechanism. To baseline the analysis and develop a control

dataset, we have extracted more than 100K repositories containing

the following attributes about each repository.

• project id (p)

• the starting date (fr)

• project number of stars (ns)

• the project duration (dur)

• number of authors (na)

• number of commits (nc)

• number of Core Developers (nCore)

• number of commits by Top Developers (nc1)

Please note that the quantities obtained are highly skewed; hence

we do a log transform to make it more suitable for linear regres-

sion. Next, we begin by performing a correlation analysis on the

extracted data to estimate the relationship among the attributes

of the repositories. Understanding the correlations among the pre-

dictors informs the interpretation of the results of the model. To

Table 1: Correlation analysis based on collected data and

analysis results using Spearman correlation method.

ns dur na nc nCore nc1

ns 1.00 0.26 0.16 0.17 0.08 0.15

dur 0.26 1.00 0.14 0.25 0.06 0.16

na 0.16 0.14 1.00 0.28 0.70 0.06

nc 0.17 0.25 0.28 1.00 0.16 0.89

nCore 0.08 0.06 0.70 0.16 1.00 -0.10

nc1 0.15 0.16 0.06 0.89 -0.10 1.00

simplify the interpretation, we typically want to leave only one of

the highly correlated predictors in the model [18].

Correlation Analysis. We begin with a correlation analysis of the

independent variables extracted for the repositories to measure the

strength of the linear relationship. This allows us to determine how

much one variable changes due to the change in the other. A high

correlation indicates a strong association between the two variables,

whereas a low correlation indicates a poor relationship between

the variables. We have used Spearman’s correlation for this study.

The results of the analysis shown in Table 1 illustrate a strong

correlation between the number of authors and number of core

developers, and the second between the number of commits and the

number of commits by the top developers, This conclusion would

help us to understand the interdependence of random variables in

a large data set of the repository. Next, we de�ne our approach

to calculate the popularity as a function of the repository’s set of

independent variables.

In this section, we demonstrate how �ltering can alter the cal-

culation of the popularity rating of open source repositories. The

meaning and calculation of the popularity vary based on the un-

derlying formulation and the de�nition of the popularity itself. For

example, some studies de�ne popularity as the download of soft-

ware among the practitioner community. In comparison, some use

developer activities as a function of assigning popularity to open

source repositories [25]. Others have used HITS-based in�uence

analysis on graphs that represent the star relationship between

Github users and repositories [10], among others [4, 11, 22]. How-

ever, whatever de�nition entails, we demonstrate how a chosen

well-de�ned popularity rating of software can change when a vary-

ing number of repositories are studied.

Popularity rating. The software repository rating is measured as

a linear combination of log of duration (ldur), number of com-

mits (lnc), number of authors (lna), and number of core developers

(lncore). We begin by de�ning a plausible rating de�nition as a com-

bination of several repository attributes. Then we show whether

such a set of attributes is a reliable mechanism to estimate the

ratings. We propose the use of these attributes to estimate the rat-

ings/rankings of repositories. However, in doing so, we also demon-

strate the argument that repository ratings can vary as we modify

the de�nition and the contribution of repository attributes in cal-

culating the ratings. That said, let us assume we de�ne multiple

linear regression as follows,

WSESE 2024, 2024, Lisbon, Portugal Addi Malviya-Thakur and Audris Mockus

Table 2: MLR with random control sample of 100K reposito-

ries

Attribute Estimate Std. error t-value Pr(>|t|)

ldur 0.155 0.0046 33.600 <2e-16

lnc 0.023 0.0070 3.100 0.0019

lna 0.795 0.0240 32.800 <2e-16

lnCore -0.564 0.0350 -16.126 <2e-16

;<(;=B ∼ ;3DA + ;=2 + ;=0 + ;�>A4, 30C0 = I0)

To determine the repository popularity rating, we employ multi-

ple regression, is a statistical technique for predicting the outcome

of a response variable by combining several explanatory variables.

The linear relationship between explanatory (independent) and

response (dependent) variables is represented using multiple linear

regression.

Multiple regression is essentially an extension of ordinary least-

squares regression because it uses more than one explanatory vari-

able. We utilize this method to calculate the popularity rating using

a linear combination of the attributes mentioned above. In addi-

tion, the relationship between many independent criteria and the

calculation of the dependent popularity rating is investigated.

After each of the independent factors has been determined to

predict the dependent attribute, the information on the numerous

attributes can be used to provide an accurate prognosis on the level

of e�ect they have on the outcome of the popularity rating. Next, we

begin with an un�ltered random sample of repositories that serves

as a control (baseline) for the repository ranking. Then, we show

how �ltered out or missing repositories from this control sample

can alter the rating calculation as the estimates of the independent

variables change. This illustrates that changes in �ltering result in

a change in the outcomes of the analysis.

Control Sample. We begin with the creation of a control sample of

100k repositories to serve as the baseline estimate for the indepen-

dent variables contributing to the ranking of the repository. The

control data will remain unchanged throughout the experiment. It

will be used as a reference and for comparison with other �lters

that induce missing data and evaluate potential changes in the

dependent variables. We test whether the independent variables

(predictors) that include log of duration (ldur), log of number of

commits (lnc), log of number of authors (lna), and log of number

of core developers (lncore) go from positive (or reverse) on the

dependent variable (project number of stars (ns)).

We show the results of the multiple regression analysis of control

data in Table 2. The commits made by the developers (lnc) has an

estimated value of 0.0232. Next, we examine the e�ect of �ltering

by the number of authors (lna).

Projects with 10+ authors. To illustrate by how much the �ltering

may alter the results, we select a sample by �ltering the list of

repositories containing at least 10+ authors or more. Since the

number of stars is our response variable, any �ltering by the number

of stars would immediately bias the results. Instead, we �lter by

one of the predictors: the number of authors. Since the number of

authors is included as a predictor in the model, it should not a�ect

Table 3: MLR results for more than ten authors

Attribute Estimate Std. error t-value Pr(>|t|)

ldur 0.57 0.08 6.98 2.01e-11 ***

lnc -0.52 0.11 -4.55 7.93e-06 ***

lna 3.55 0.38 9.4 <2e-16 ***

lnCore -2.74 0.32 -8.66 3.32e-16 ***

the modeled relationship between the number of authors and the

number of stars, but �ltering is equivalent to listwise-deletion and

for the analysis to be valid an MCAR assumption needs to hold

(and it does not).

Next, we estimate the popularity ratings through the indepen-

dent variables (;<(;=B ∼ ;3DA + ;=2 + ;=0 + ;�>A4)). The results of

this are shown in Table 3. These results show that the number of

commits has a negative in�uence when we �lter the repositories

by the number of authors. Note that the estimated value of log

of the number of commits (lnc) in the control dataset results is

positive, while the estimated value of lnc in this case for �ltered

repositories with 10+ authors became negative. This dichotomy in

results further underscores the crucial point that even when the

criteria for data exclusion, such as instances of missing data, are

integrated as predictive variables in the analysis, the process of

�ltering can substantially alter the outcomes of empirical studies.

2.2 Proposed solution

We propose a practical solution for the classi�cation and selection

of open source software using strati�ed sampling. This approach

involves dividing software projects into distinct groups before sam-

pling, ensuring that various project types are represented. It ad-

dresses some issues like biases from unmeasured factors and miss-

ing data, common in software analyses. By weighting each group

according to its prevalence in the real world, strati�ed sampling

requires a much smaller sample size than a simple random sam-

pling yet allows inference on the overall population. Next section

discusses this in more details.

3 STRATIFIED SAMPLING

The �eld of polling has developed sophisticated sampling tech-

niques that minimize the e�ort needed to obtain a reasonably ac-

curate estimate of the outcome of, for example, an election. Since

systems such as WoC make it easy to collect data for a range of

properties for nearly all software projects, sampling is not tech-

nically needed. But research may still require an e�ort-intensive

calculation of additional predictors or a manual qualitative anal-

ysis. As such, the need for sampling is almost always present. A

simple random sample of even 1000 GitHub repositories would

result in tiny, short-duration, inactive projects. Putting extra e�ort

into obtaining additional measures for such a sample would not

be advisable. However, depending on the hypothesis and likely

relationships in the data, we may develop sampling procedures

that minimize missing-data bias. In all cases, we should not �lter

by the value of the response variable, whether it be popularity,

activity, or team size. Such �ltering would almost certainly intro-

duce a missing not at random situation if we do not measure and

The Role of Data Filtering in

Open Source So�ware Ranking and Selection WSESE 2024, 2024, Lisbon, Portugal

include in the model *all* variables that a�ect the outcome and

either include all rows (no �ltering) or do a simple random sam-

pling. However, it should be possible to �lter by predictors that

are included in the model assuming that there are no unmeasured

predictors. Unfortunately, commonly used models in software en-

gineering explain a relatively small fraction of the variability in

the response, suggesting that many important predictors are not

measured. The relationships may also vary according to the size of

the predictors, further exacerbating biases introduced by �ltering.

As an approach to avoid the problem of simple random sampling, it

is advisable to carefully design the sampling so that projects with

di�erent values of the characteristics that may a�ect the outcome

are included. If we want to obtain results for the entire population,

we should weight each strata according to its prevalence in the

original population. The e�ects can also be investigated and com-

pared among the di�erent strata and help to obtain more easily and

meaningfully generalizable results.

For example, in our case we may want to sample an equal num-

ber of projects = from the sub-populations of projects with one

to : authors. Suppose that the population size at each : is #: .

Then we can �t a weighted multiple regression where the weights

for the observations representing :-th strata would be #:

=
. Gener-

ally speaking, regression analysis and other inference methods are

somewhat di�erent for strati�ed sampling, see, e.g., [21] and the

details are beyond the scope of this illustration.

Another important question is how to conduct a random or

strati�ed sampling in the �rst place. First, existing research mostly

ignores projects not on GitHub, includingmany important and large

open source projects. Second, studies are restricted on sampling

using GitHub APIs or mostly obsolete and partial public datasets

and have to devise �ltering criteria based on whats available in such

datasets. Fortunately, several e�orts such as Software Heritage [23]

and World of Code [15] spent signi�cant amount of e�ort to collect

nearly complete collection of open source projects from all pub-

lic forges. In fact, World of Code research infrastructure provides

interested researchers with access and training and, among other

features, includes extensive support for random or strati�ed sam-

pling such as numerous summaries of software projects, authors,

and even programming APIs.

4 DISCUSSION

This work focuses on demonstrating the impact of �ltering on

the results obtained in a simple case of linear or logistic regres-

sion. The speci�c example was chosen to be as simple as possible

to avoid many other aspects of statistical analysis that are impor-

tant for obtaining valid conclusions. We tried to illustrate only

the most simple aspects of sampling and did not attempt to cover

more sophisticated and largely unsolved problems, for example,

sampling from large graphs or linking multiple data sources [18].

By selecting features that do not overlap with the �ltering criteria,

our aim is to mitigate the risk of distributional bias. In the future,

we will explore the identi�cation of a set of characteristics that

are demonstrably independent of our �ltering criterion for further

analysis. The regression in an example is not an attempt to show

any causal connection. All variables may conceivably a�ect each

other. Therefore, it is not meaningful to argue whether the number

of authors increases the popularity rating or whether the reverse

may be true. Instead, the model simply shows that the variables are

related in the samples considered. The performance of regression

models can generally be assessed by looking at the signi�cance of

the model coe�cients, the general value of the model '2, and other

diagnostics such as residuals and �t graphs. It is also important to

note that some of the repositories may not even represent software

projects but may be used for other purposes, so it may be important

to exclude such irrelevant cases. However, the retention of legit-

imate software projects should be done in a way that avoids the

biases described here. This may be done as described in Section 3.

5 LESSONS LEARNED

In the course of our demonstration, we’ve learned valuable lessons

that shed light on the intricacies of data �ltering and its implica-

tions for research in open-source software ranking and selection:

Impact of Data Filtering: This study highlights the substantial

in�uence of data �ltering on research outcomes. The act of �ltering

data based on speci�c criteria can have a profound impact on the

relationships between project characteristics and the target vari-

able. This often leads to results that diverge signi�cantly from those

obtained when using un�ltered data.

The Challenge of Missing Data: Another challenge emerges in

the form of "missing data." Filtering projects based on certain crite-

ria can result in incomplete datasets, introducing potential biases

into the analysis. Filtering corresponds to analysis with missing

data when all rows with any missing (�ltered) value are excluded.

We argue that the analysis of �ltered data is valid only when the

�ltering criteria are independent of the response, a condition that

is typically not satis�ed.

Biases in Data Filtering: It is crucial to emphasize that data �lter-

ing should not be contingent on the value of the response variable

(e.g., popularity). Instead, it should be guided by predictors included

in the analysis model, aimed at circumventing the introduction of

biases.

The Role of Strati�ed Sampling: To address issues arising from

data �ltering and missing data, we recommend the adoption of

strati�ed sampling techniques. Strati�ed sampling involves cat-

egorizing software projects into distinct groups before sampling,

ensuring equitable representation across various project types. This

approach enhances the precision and applicability of the research

�ndings.

Prudent Sample Selection: Researchers are advised to exercise

caution when selecting samples for empirical studies involving

software repositories. Thoughtful sample selection plays a pivotal

role in mitigating potential biases introduced by data �ltering.

Ensuring Research Reliability: This study underscores the para-

mount importance of guaranteeing the reliability of research results.

Researchers are encouraged to perform diagnostic tests, use cross-

validation, and consider longitudinal analysis to validate model

assumptions and a�rm the robustness and consistency of their

�ndings over time.

6 CONCLUSION

Sampling strategies play a crucial role in data discovery science,

as the �ndings are drawn from the data captured for analysis. In

WSESE 2024, 2024, Lisbon, Portugal Addi Malviya-Thakur and Audris Mockus

this paper, we illustrate how convenience sampling or �ltering by

various criteria could a�ect the investigated relationship, leading

to very di�erent results, sometimes opposite to what would be

obtained from the un�ltered data. These evaluations help to un-

derstand the robustness of the research results and ensure that the

conclusions drawn from such studies are reliable and representa-

tive of the real world scenarios they intend to model. In the future,

we plan on conducting a longitudinal analysis to see if the results

hold over time. This is particularly important if the ratings change

over time, as it could a�ect the relevance and applicability of the

research �ndings.

ACKNOWLEDGEMENTS

The work was partially supported by National Science Foundation

awards 1633437, 1901102, 1925615, and 22120429.

This manuscript has been authored by UT-Battelle, LLC, USA

under Contract No. DE-AC05-00OR22725 with the U.S. Department

of Energy. The publisher, by accepting the article for publication,

acknowledges that the U.S. Government retains a nonexclusive,

paid up, irrevocable, worldwide license to publish or reproduce

the published form of the manuscript, or allow others to do so, for

U.S. Government purposes. The DOE will provide public access

to these results in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES
[1] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. 2010. Leveraging Usage

Similarity for E�ective Retrieval of Examples in Code Repositories. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). Association for
Computing Machinery, New York, NY, USA, 157–166. https://doi.org/10.1145/
1882291.1882316

[2] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
a critical review and guidelines. Empirical Software Engineering 27 (2022), 94.
Issue 4. https://doi.org/10.1007/s10664-021-10072-8

[3] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. 2021. A Large Scale Study
of Long-Time Contributor Prediction for GitHub Projects. IEEE Transactions on
Software Engineering 47, 6 (2021), 1277–1298. https://doi.org/10.1109/TSE.2019.
2918536

[4] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on SoftwareMaintenance and Evolution (ICSME). 334–
344. https://doi.org/10.1109/ICSME.2016.31

[5] Liang Chen, Angyu Zheng, Yinglan Feng, Fenfang Xie, and Zibin Zheng. 2018.
Software Service Recommendation Base on Collaborative Filtering Neural Net-
work Model. In Service-Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei
Yin, and Qi Yu (Eds.). Springer International Publishing, Cham, 388–403.

[6] Valerio Cosentino, Javier L. Cánovas Izquierdo, and Jordi Cabot. 2017. A Sys-
tematic Mapping Study of Software Development With GitHub. IEEE Access 5
(2017), 7173–7192. https://doi.org/10.1109/ACCESS.2017.2682323

[7] Valerio Cosentino, Javier Luis, and Jordi Cabot. 2016. Findings from GitHub:
Methods, Datasets and Limitations. In Proceedings of the 13th International
Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). Asso-
ciation for Computing Machinery, 137–141. https://doi.org/10.1145/2901739.
2901776

[8] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). https://doi.org/10.1109/MSR52588.2021.
00074

[9] Junxiao Han, Shuiguang Deng, Xin Xia, Dongjing Wang, and Jianwei Yin. 2019.
Characterization and Prediction of Popular Projects on GitHub. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1.
21–26. https://doi.org/10.1109/COMPSAC.2019.00013

[10] YanHu, Jun Zhang, Xiaomei Bai, Shuo Yu, and Zhuo Yang. 2016. In�uence analysis
of Github repositories. SpringerPlus 1 (2016). https://doi.org/10.1186/s40064-
016-2897-7

[11] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto. 2005.
Ranking signi�cance of software components based on use relations. IEEE
Transactions on Software Engineering (2005). https://doi.org/10.1109/TSE.2005.
38

[12] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery, New York,
NY, USA, 92–101. https://doi.org/10.1145/2597073.2597074

[13] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software
repositories. Data Mining and Knowledge Discovery 18, 2 (2009), 300–336. https:
//doi.org/10.1007/s10618-008-0118-x

[14] Roderick JA Little and Donald B Rubin. 2019. Statistical analysis with missing
data. Vol. 793. John Wiley & Sons.

[15] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2020. World of Code:
Enabling a Research Work�ow for Mining and Analyzing the Universe of Open
Source VCS data. International Journal of Empirical Software Engineering (2020).
papers/WoC_EMSE.pdf

[16] Frank McCarey, Mel O Cinneide, and Nicholas Kushmerick. 2006. A Recom-
mender Agent for Software Libraries: An Evaluation ofMemory-Based andModel-
Based Collaborative Filtering. In 2006 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology. 154–162. https://doi.org/10.1109/IAT.2006.23

[17] Audris Mockus. 2008. Missing Data in Software Engineering BT - Guide to
Advanced Empirical Software Engineering. Springer London, London, 185–200.
https://doi.org/10.1007/978-1-84800-044-5_7

[18] Audris Mockus. 2014. Engineering Big Data Solutions. In ICSE’14 FOSE. https:
//dl.acm.org/authorize?N14216

[19] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Softw. Engg. 22, 6
(dec 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[20] Jerzy Neyman. 1992. On the two di�erent aspects of the representative method:
the method of strati�ed sampling and the method of purposive selection. In
Breakthroughs in Statistics: Methodology and Distribution. Springer, 123–150.

[21] Charles P. Quesenberry and Nicholas P. Jewell. 1986. Regression Analysis Based
on Strati�ed Samples. Biometrika 73, 3 (1986), 605–614. http://www.jstor.org/
stable/2336525

[22] Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina V. Lopes. 2014. Is Pop-
ularity a Measure of Quality? An Analysis of Maven Components. In 2014
IEEE International Conference on Software Maintenance and Evolution. 231–
240. https://doi.org/10.1109/ICSME.2014.45

[23] Software Heritage. 2022. Software Heritage. https://www.softwareheritage.org
[24] Zhongbin Sun, Jingqi Zhang, Heli Sun, and Xiaoyan Zhu. 2020. Collaborative

�ltering based recommendation of sampling methods for software defect predic-
tion. Applied Soft Computing 90 (2020), 106163. https://doi.org/10.1016/j.asoc.
2020.106163

[25] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The Qualitas Corpus: A Curated Collec-
tion of Java Code for Empirical Studies. In 2010 Asia Paci�c Software Engineering
Conference. 336–345. https://doi.org/10.1109/APSEC.2010.46

[26] Adam Tutko, Austin Henley, and Audris Mockus. 2020. More E�ective Software
Repository Mining. arXiv:2008.03439 [cs.SE]

	Abstract
	1 Introduction
	2 Illustrative Example
	2.1 Problem statement
	2.2 Proposed solution

	3 Stratified sampling
	4 Discussion
	5 Lessons Learned
	6 Conclusion
	References

