The Role of Data Filtering in
Open Source Software Ranking and Selection

Addi Malviya-Thakur
University of Tennessee
Oak Ridge National Laboratory
USA
amalviya@vols.utk.edu

ABSTRACT

Faced with over 100M open source projects, a more manageable
small subset is needed for most empirical investigations. Over
half of the research papers in leading venues investigated filtering
projects by some measure of popularity with explicit or implicit
arguments that unpopular projects are not of interest, may not even
represent “real” software projects, or that less popular projects are
not worthy of study. However, such filtering may have enormous
effects on the results of the studies if and precisely because the
sought-out response or prediction is in any way related to the
filtering criteria.

This paper exemplifies the impact of this common practice on
research outcomes, specifically how filtering of software projects
on GitHub based on inherent characteristics affects the assessment
of their popularity. Using a dataset of over 100,000 repositories, we
used multiple regression to model the number of stars —a commonly
used proxy for popularity— based on factors such as the number of
commits, the duration of the project, the number of authors and the
number of core developers. Our control model included the entire
dataset, while a second filtered model considered only projects
with ten or more authors. The results indicated that while certain
characteristics of the repository consistently predict popularity,
the filtering process significantly alters the relationships between
these characteristics and the response. We found that the number
of commits exhibited a positive correlation with popularity in the
control sample but showed a negative correlation in the filtered
sample. These findings highlight the potential biases introduced by
data filtering and emphasize the need for careful sample selection in
empirical research of mining software repositories. We recommend
that empirical work should either analyze complete datasets such
as World of Code, or employ stratified random sampling from a
complete dataset to ensure that filtering is not biasing the results.

CCS CONCEPTS

« Software and its engineering; - Human-centered comput-
ing — Empirical studies in collaborative and social comput-
ing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSESE 2024, 2024, Lisbon, Portugal

© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Audris Mockus
University of Tennessee, Knoxville
Vilnius University
USA and Lithuania
audris@utk.edu

KEYWORDS

Empirical software engineering, Missing data problem, Software
engineering research, Filtering, Sampling, Mining software reposi-
tories

ACM Reference Format:

Addi Malviya-Thakur and Audris Mockus. 2024. The Role of Data Filter-
ing in Open Source Software Ranking and Selection. In Proceedings of In-
ternational Workshop on Methodological Issues with Empirical Studies in
Software Engineering (WSESE 2024). ACM, New York, NY, USA, 6 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Volumes of public data that could be extracted from open source
projects that use version control and issue tracking systems have
been widely exploited by research that seeks to better understand
software development projects. Such studies increasingly use a
large collection of projects to achieve some generality of the results.
As it is extremely difficult to collect these data from all OSS projects,
most research focuses on selecting a manageable subset of projects
from the largest “forge”, GitHub. Once projects are selected accord-
ing to some criteria, data of these projects are extracted, cleaned,
and analyzed to identify a relationship between some predictors
and outcomes investigated in specific research [8, 12, 26]. In fact, in
more than half of the cases of such analysis obtained from leading
conferences, the projects were selected based on some measure
of popularity. Another study [7], investigated methods used in 93
publications that analyzed the mining of GitHub repositories with
respect to reported methods, datasets, and limitations and found nu-
merous issues with the dataset collection process and size and poor
sampling techniques. The authors of [4] filtered the top 2500 public
repositories on GitHub with high stars. The goal of this restriction
was to concentrate on the peculiarities of the widely used GitHub
systems and the difficulties that come with human examination.
The “star” ratings are a static representation of the community’s
preferences at a certain moment in time (namely, the past) rather
than current choices. It also does not show which packages are used
the most or which are growing or losing popularity. In [13, 25], the
authors proposed ranking the code and filtering the repositories
based on the entity of the code and its usage. This approach is
based on ~12,000 Java projects filtered by the presence of source
code, resulting in the database consisting of 4600 repositories. Such
filtering can surely exclude projects that are widely used and safe-
guards against phishing, intentional code spoofing, among others.
Along the same line [1], the authors performed a filtering based on
the static snapshot of code repositories based on one-time usage,

WSESE 2024, 2024, Lisbon, Portugal

resulting in more than 200K filtered code bases. In [22], the authors
illustrated the relationship between popularity and security level
based on the top 20 widely used Java libraries. The filtering was
based on usage rather than on more elaborate and finer-grained
experiments. Research has shown that in open source software
projects, factors like the number of branches, open issues, and con-
tributors significantly influence popularity, with each factor having
a large effect size [9]. Another study indicates that the number of
followers and aspects such as programming language and commits
by others at the time of newcomer joining are crucial for long-term
contributor retention, highlighting these as top features in various
time intervals [3]. Several research studies have highlighted the
use of collaborative filtering as a way to identify key repositories to
examine a multitude of scientific problems [5, 16, 24]. Such studies
clearly raise the problem of trust, reproducibility, and validation
resulting from incomplete data samples through heuristic filtering
of open source repositories.

Authors in [6] identify the use of small data sets, poor sampling
techniques and hard to replicate methodologies, while authors
of [19] recognize that contemporary filtering methods may be in-
sufficient means of identifying “real” software projects and trie
to use machine learning models that rely on various repository
statistics to identify “real” software projects. In particular, while
our proposed work focuses on the methodological robustness of
sampling strategies over time, [19] offers a practical tool for filter-
ing engineered projects in large software repositories. Thus, [19]
and our proposed work address limitations in current research
practices but from different angles: one through methodological
improvement and the other through a technical solution.

In summary, some measure of popularity or project activity is
often used to filter out projects that are below certain thresholds
for that measure or for prediction probability (in the case of ML
models). As a result, many software projects are excluded from
the subsequent analysis based on filtering criteria, resulting in the
so-called “missing data”.

Missing data, if not handled properly, distorts statistical results
and degrades the prediction of machine learning methods. Filtering
removes the response and all independent variables, while tradi-
tional missing data techniques are typically used when at least one
of the predictors is present and uses imputation and/or weighting
techniques to fill in missing values [14, 17]. The three types of miss-
ing data [14] are MCAR or “missing completely at random”, MAR
or “Missing at random,” and MNAR or “missing not at random.”
Filtering would result in MCAR if the distribution of the response
is independent of the filtering criteria, a quite unlikely scenario
in most cases. The advantage of MCAR is that the analysis on the
filtered data would be valid. Fortunately, the analysis would be
valid even in MAR cases, which require that the missingness be
conditionally independent given the observed variables, i.e., the
fact that a value is missing depends only on the observed values.
Since filtering excludes all values, subsequent analysis is equiva-
lent to the listwise-deletion technique (i.e., when data rows with
any missing values are excluded). It yields correct results only if
the filtering criteria are completely unrelated to the response: an
extremely unlikely scenario.

For example, if we predict the number of stars, and the likelihood
that the number of stars is missing depends only on the number of

Addi Malviya-Thakur and Audris Mockus

authors, we need to include the number of authors in a regression
model and impute the missing values for the number of stars to
get valid results. Filtering, unfortunately, excludes entire data rows
where the number of authors is low, hence any subsequent analysis
would be invalid. MCAR assumption would not apply, because
the probability that a value is missing depends on the number
of authors. However, if we do not have the number of authors
(in case of filtering) or simply do not include it in our estimation
model, then even the MAR assumption is not satisfied. Such case
is referred to as data not missing at random (MNAR). The MNAR
data can be made to satisfy the MAR assumption if variables that
characterize situations when a value is missing are added. Therefore,
it is important to add variables that might predict the missing value
mechanism to the dataset. With filtered data that is not possible.

In this study, we illustrate the often overlooked issue of missing
data arising when software projects are filtered out of research
datasets. We demonstrate the significant impact this can have on
research outcomes, particularly through a case study that models
the popularity of software projects.

Our recommended approach to solving this problem involves
either using the full data when possible (research infrastructure
such as World of Code [15] and archival collections such as Soft-
ware Heritage [23] make complete datasets much easier to access)
or the use of a stratified sampling technique [20] from the above-
mentioned resources to effectively reduces the risk of bias, ensuring
that the empirical findings remain representative despite excluded
(missing) data. Our proposed use of stratified sampling might help
addresses the concerns highlighted in [2], which emphasizes the
rarity of representative sampling in software engineering research,
proposing a solution that contributes to resolving the field’s gen-
eralizability crisis. The key idea of the stratified sampling is that
different populations (strata) of projects may have different prop-
erties based on certain criteria, for example, the mechanism that
gets a single-author project many stars may be different from one
for projects with thousands of contributors. Instead of getting data
on all projects, a random sample is selected for each strata and
then the results are extrapolated to the entire population. A simple
random sampling would also work, but it would require a much
larger sample size for the same variance of the desired estimates,
e.g., a very large random sample is needed to include at least some
of the very large (and extremely rare) projects.

First, we explained how filtering is related to missing data and
how analysis on filtered data is equivalent to listwise deletion tech-
nique. Second, we provide an actual example based on a very large
real dataset that demonstrates that filtering may completely change
the conclusions. Third, we illustrate how stratified sampling could
be applied to manage the scale of the analysis yet yield representa-
tive results.

We draw data from a collection of open source version control
repositories that attempts to approximate the complete universe
of open source software, World of Code (WoC) [15], in order to
be able to draw a truly random sample and compare it with filter-
ing approaches commonly used in empirical software engineering
research.

The remainder of the paper introduces an illustrative example
in Section 2, discusses limitations in Section 3, discusses stratified
sampling in Section 3, and concludes in Section 6.

The Role of Data Filtering in
Open Source Software Ranking and Selection

All data and code used in this study are publicly available in the
replication package links: https://zenodo.org/records/10516681 and
https://github.com/woc-hack/Assignments/

2 ILLUSTRATIVE EXAMPLE

This section illustrates the problem of changes in the rating result-
ing from missing and filtering the repositories based on certain
attributes. To model the rating of software repositories and mea-
sure what causes the ratings to change, we rely on key inherent
characteristics of the repositories and model these quantities to
understand what causes some projects to have more stars than
others.

2.1 Problem statement

We would like to explain the popularity of a GitHub repository by
various other attributes. Our primary hypothesis is that repositories
with more activity, more authors, and those that have been around
for a longer time will be more popular. To operationalize these
concepts, we use the number of stars as a measure of popularity,
the number of commits as a measure of activity, the time since the
repository was created as duration, and the number of individuals
who committed code to the repository as the number of authors.

For simplicity, we used linear regression to model the number
of stars, and the following sections describe precise ways in which
measures were obtained and the sample was filtered.

Data Extraction. Since its inception, Free/Libre and open-source
software (FLOSS) has dramatically impacted the software commu-
nity and ecosystem. FLOSS is free software and open source soft-
ware, so anyone can freely use, copy, study, and change the software
in any way. World of code (WoC) has enabled research on the global
properties of FLOSS [15]. The WoC collection of software reposito-
ries contains authors, projects, commits, blobs, dependencies, and a
history of the FLOSS ecosystems. These data are updated regularly
and contain billions of git objects. We will use WoC’s extensive
and frequently updated version control commit data collection of
the entire FLOSS ecosystems for this study. WoC APIs are used to
fetch and process data related to FLOSS repositories. We extract
several attributes of repositories’ to develop the ranking/popularity
rating mechanism. To baseline the analysis and develop a control
dataset, we have extracted more than 100K repositories containing
the following attributes about each repository.

project id (p)

the starting date (fr)

project number of stars (ns)

the project duration (dur)

number of authors (na)

number of commits (nc)

number of Core Developers (nCore)

number of commits by Top Developers (ncI)

Please note that the quantities obtained are highly skewed; hence
we do a log transform to make it more suitable for linear regres-
sion. Next, we begin by performing a correlation analysis on the
extracted data to estimate the relationship among the attributes
of the repositories. Understanding the correlations among the pre-
dictors informs the interpretation of the results of the model. To

WSESE 2024, 2024, Lisbon, Portugal

Table 1: Correlation analysis based on collected data and
analysis results using Spearman correlation method.

ns | dur na nc | nCore ncl

ns 1.00 | 0.26 | 0.16 | 0.17 0.08 | 0.15
dur 0.26 | 1.00 | 0.14 | 0.25 0.06 | 0.16
na 0.16 | 0.14 | 1.00 | 0.28 0.70 | 0.06
nc 0.17 | 0.25 | 0.28 | 1.00 0.16 | 0.89

nCore | 0.08 | 0.06 | 0.70 | 0.16 1.00 | -0.10
ncl 0.15 | 0.16 | 0.06 | 0.89 -0.10 | 1.00

simplify the interpretation, we typically want to leave only one of
the highly correlated predictors in the model [18].

Correlation Analysis. We begin with a correlation analysis of the
independent variables extracted for the repositories to measure the
strength of the linear relationship. This allows us to determine how
much one variable changes due to the change in the other. A high
correlation indicates a strong association between the two variables,
whereas a low correlation indicates a poor relationship between
the variables. We have used Spearman’s correlation for this study.
The results of the analysis shown in Table 1 illustrate a strong
correlation between the number of authors and number of core
developers, and the second between the number of commits and the
number of commits by the top developers, This conclusion would
help us to understand the interdependence of random variables in
a large data set of the repository. Next, we define our approach
to calculate the popularity as a function of the repository’s set of
independent variables.

In this section, we demonstrate how filtering can alter the cal-
culation of the popularity rating of open source repositories. The
meaning and calculation of the popularity vary based on the un-
derlying formulation and the definition of the popularity itself. For
example, some studies define popularity as the download of soft-
ware among the practitioner community. In comparison, some use
developer activities as a function of assigning popularity to open
source repositories [25]. Others have used HITS-based influence
analysis on graphs that represent the star relationship between
Github users and repositories [10], among others [4, 11, 22]. How-
ever, whatever definition entails, we demonstrate how a chosen
well-defined popularity rating of software can change when a vary-
ing number of repositories are studied.

Popularity rating. The software repository rating is measured as
a linear combination of log of duration (ldur), number of com-
mits (Inc), number of authors (Ina), and number of core developers
(Incore). We begin by defining a plausible rating definition as a com-
bination of several repository attributes. Then we show whether
such a set of attributes is a reliable mechanism to estimate the
ratings. We propose the use of these attributes to estimate the rat-
ings/rankings of repositories. However, in doing so, we also demon-
strate the argument that repository ratings can vary as we modify
the definition and the contribution of repository attributes in cal-
culating the ratings. That said, let us assume we define multiple
linear regression as follows,

WSESE 2024, 2024, Lisbon, Portugal

Table 2: MLR with random control sample of 100K reposito-
ries

Attribute | Estimate | Std. error | t-value | Pr(>|t|)
Idur 0.155 0.0046 33.600 <2e-16
Inc 0.023 0.0070 3.100 0.0019

Ina 0.795 0.0240 32.800 <2e-16
InCore -0.564 0.0350 -16.126 | <2e-16

Im(Ins ~ ldur + Inc + Ina + [Core, data = za)

To determine the repository popularity rating, we employ multi-
ple regression, is a statistical technique for predicting the outcome
of a response variable by combining several explanatory variables.
The linear relationship between explanatory (independent) and
response (dependent) variables is represented using multiple linear
regression.

Multiple regression is essentially an extension of ordinary least-
squares regression because it uses more than one explanatory vari-
able. We utilize this method to calculate the popularity rating using
a linear combination of the attributes mentioned above. In addi-
tion, the relationship between many independent criteria and the
calculation of the dependent popularity rating is investigated.

After each of the independent factors has been determined to
predict the dependent attribute, the information on the numerous
attributes can be used to provide an accurate prognosis on the level
of effect they have on the outcome of the popularity rating. Next, we
begin with an unfiltered random sample of repositories that serves
as a control (baseline) for the repository ranking. Then, we show
how filtered out or missing repositories from this control sample
can alter the rating calculation as the estimates of the independent
variables change. This illustrates that changes in filtering result in
a change in the outcomes of the analysis.

Control Sample. We begin with the creation of a control sample of
100k repositories to serve as the baseline estimate for the indepen-
dent variables contributing to the ranking of the repository. The
control data will remain unchanged throughout the experiment. It
will be used as a reference and for comparison with other filters
that induce missing data and evaluate potential changes in the
dependent variables. We test whether the independent variables
(predictors) that include log of duration (Idur), log of number of
commits (Inc), log of number of authors (/na), and log of number
of core developers (Incore) go from positive (or reverse) on the
dependent variable (project number of stars (ns)).

We show the results of the multiple regression analysis of control
data in Table 2. The commits made by the developers (Inc) has an
estimated value of 0.0232. Next, we examine the effect of filtering
by the number of authors (Ina).

Projects with 10+ authors. To illustrate by how much the filtering
may alter the results, we select a sample by filtering the list of
repositories containing at least 10+ authors or more. Since the
number of stars is our response variable, any filtering by the number
of stars would immediately bias the results. Instead, we filter by
one of the predictors: the number of authors. Since the number of
authors is included as a predictor in the model, it should not affect

Addi Malviya-Thakur and Audris Mockus

Table 3: MLR results for more than ten authors

Attribute | Estimate | Std. error | t-value | Pr(>|t|)
ldur 0.57 0.08 6.98 2.01e-11 ***
Inc -0.52 0.11 -4.55 7.93e-06 ***
Ina 3.55 0.38 9.4 <2e-16 ***
InCore -2.74 0.32 -8.66 3.32e-16 ***

the modeled relationship between the number of authors and the
number of stars, but filtering is equivalent to listwise-deletion and
for the analysis to be valid an MCAR assumption needs to hold
(and it does not).

Next, we estimate the popularity ratings through the indepen-
dent variables (Im(Ins ~ ldur + Inc + Ina + [Core)). The results of
this are shown in Table 3. These results show that the number of
commits has a negative influence when we filter the repositories
by the number of authors. Note that the estimated value of log
of the number of commits (Inc) in the control dataset results is
positive, while the estimated value of Inc in this case for filtered
repositories with 10+ authors became negative. This dichotomy in
results further underscores the crucial point that even when the
criteria for data exclusion, such as instances of missing data, are
integrated as predictive variables in the analysis, the process of
filtering can substantially alter the outcomes of empirical studies.

2.2 Proposed solution

We propose a practical solution for the classification and selection
of open source software using stratified sampling. This approach
involves dividing software projects into distinct groups before sam-
pling, ensuring that various project types are represented. It ad-
dresses some issues like biases from unmeasured factors and miss-
ing data, common in software analyses. By weighting each group
according to its prevalence in the real world, stratified sampling
requires a much smaller sample size than a simple random sam-
pling yet allows inference on the overall population. Next section
discusses this in more details.

3 STRATIFIED SAMPLING

The field of polling has developed sophisticated sampling tech-
niques that minimize the effort needed to obtain a reasonably ac-
curate estimate of the outcome of, for example, an election. Since
systems such as WoC make it easy to collect data for a range of
properties for nearly all software projects, sampling is not tech-
nically needed. But research may still require an effort-intensive
calculation of additional predictors or a manual qualitative anal-
ysis. As such, the need for sampling is almost always present. A
simple random sample of even 1000 GitHub repositories would
result in tiny, short-duration, inactive projects. Putting extra effort
into obtaining additional measures for such a sample would not
be advisable. However, depending on the hypothesis and likely
relationships in the data, we may develop sampling procedures
that minimize missing-data bias. In all cases, we should not filter
by the value of the response variable, whether it be popularity,
activity, or team size. Such filtering would almost certainly intro-
duce a missing not at random situation if we do not measure and

The Role of Data Filtering in
Open Source Software Ranking and Selection

include in the model *all* variables that affect the outcome and
either include all rows (no filtering) or do a simple random sam-
pling. However, it should be possible to filter by predictors that
are included in the model assuming that there are no unmeasured
predictors. Unfortunately, commonly used models in software en-
gineering explain a relatively small fraction of the variability in
the response, suggesting that many important predictors are not
measured. The relationships may also vary according to the size of
the predictors, further exacerbating biases introduced by filtering.
As an approach to avoid the problem of simple random sampling, it
is advisable to carefully design the sampling so that projects with
different values of the characteristics that may affect the outcome
are included. If we want to obtain results for the entire population,
we should weight each strata according to its prevalence in the
original population. The effects can also be investigated and com-
pared among the different strata and help to obtain more easily and
meaningfully generalizable results.

For example, in our case we may want to sample an equal num-
ber of projects n from the sub-populations of projects with one
to k authors. Suppose that the population size at each k is Ny.
Then we can fit a weighted multiple regression where the weights
for the observations representing k-th strata would be % Gener-
ally speaking, regression analysis and other inference methods are
somewhat different for stratified sampling, see, e.g., [21] and the
details are beyond the scope of this illustration.

Another important question is how to conduct a random or
stratified sampling in the first place. First, existing research mostly
ignores projects not on GitHub, including many important and large
open source projects. Second, studies are restricted on sampling
using GitHub APIs or mostly obsolete and partial public datasets
and have to devise filtering criteria based on whats available in such
datasets. Fortunately, several efforts such as Software Heritage [23]
and World of Code [15] spent significant amount of effort to collect
nearly complete collection of open source projects from all pub-
lic forges. In fact, World of Code research infrastructure provides
interested researchers with access and training and, among other
features, includes extensive support for random or stratified sam-
pling such as numerous summaries of software projects, authors,
and even programming APIs.

4 DISCUSSION

This work focuses on demonstrating the impact of filtering on
the results obtained in a simple case of linear or logistic regres-
sion. The specific example was chosen to be as simple as possible
to avoid many other aspects of statistical analysis that are impor-
tant for obtaining valid conclusions. We tried to illustrate only
the most simple aspects of sampling and did not attempt to cover
more sophisticated and largely unsolved problems, for example,
sampling from large graphs or linking multiple data sources [18].
By selecting features that do not overlap with the filtering criteria,
our aim is to mitigate the risk of distributional bias. In the future,
we will explore the identification of a set of characteristics that
are demonstrably independent of our filtering criterion for further
analysis. The regression in an example is not an attempt to show
any causal connection. All variables may conceivably affect each
other. Therefore, it is not meaningful to argue whether the number
of authors increases the popularity rating or whether the reverse

WSESE 2024, 2024, Lisbon, Portugal

may be true. Instead, the model simply shows that the variables are
related in the samples considered. The performance of regression
models can generally be assessed by looking at the significance of
the model coefficients, the general value of the model R?, and other
diagnostics such as residuals and fit graphs. It is also important to
note that some of the repositories may not even represent software
projects but may be used for other purposes, so it may be important
to exclude such irrelevant cases. However, the retention of legit-
imate software projects should be done in a way that avoids the
biases described here. This may be done as described in Section 3.

5 LESSONS LEARNED

In the course of our demonstration, we’ve learned valuable lessons
that shed light on the intricacies of data filtering and its implica-
tions for research in open-source software ranking and selection:
Impact of Data Filtering: This study highlights the substantial
influence of data filtering on research outcomes. The act of filtering
data based on specific criteria can have a profound impact on the
relationships between project characteristics and the target vari-
able. This often leads to results that diverge significantly from those
obtained when using unfiltered data.
The Challenge of Missing Data: Another challenge emerges in
the form of "missing data" Filtering projects based on certain crite-
ria can result in incomplete datasets, introducing potential biases
into the analysis. Filtering corresponds to analysis with missing
data when all rows with any missing (filtered) value are excluded.
We argue that the analysis of filtered data is valid only when the
filtering criteria are independent of the response, a condition that
is typically not satisfied.
Biases in Data Filtering: It is crucial to emphasize that data filter-
ing should not be contingent on the value of the response variable
(e.g., popularity). Instead, it should be guided by predictors included
in the analysis model, aimed at circumventing the introduction of
biases.
The Role of Stratified Sampling: To address issues arising from
data filtering and missing data, we recommend the adoption of
stratified sampling techniques. Stratified sampling involves cat-
egorizing software projects into distinct groups before sampling,
ensuring equitable representation across various project types. This
approach enhances the precision and applicability of the research
findings.
Prudent Sample Selection: Researchers are advised to exercise
caution when selecting samples for empirical studies involving
software repositories. Thoughtful sample selection plays a pivotal
role in mitigating potential biases introduced by data filtering.
Ensuring Research Reliability: This study underscores the para-
mount importance of guaranteeing the reliability of research results.
Researchers are encouraged to perform diagnostic tests, use cross-
validation, and consider longitudinal analysis to validate model
assumptions and affirm the robustness and consistency of their
findings over time.

6 CONCLUSION

Sampling strategies play a crucial role in data discovery science,
as the findings are drawn from the data captured for analysis. In

WSESE 2024, 2024, Lisbon, Portugal

this paper, we illustrate how convenience sampling or filtering by
various criteria could affect the investigated relationship, leading
to very different results, sometimes opposite to what would be
obtained from the unfiltered data. These evaluations help to un-
derstand the robustness of the research results and ensure that the
conclusions drawn from such studies are reliable and representa-
tive of the real world scenarios they intend to model. In the future,
we plan on conducting a longitudinal analysis to see if the results
hold over time. This is particularly important if the ratings change
over time, as it could affect the relevance and applicability of the
research findings.

ACKNOWLEDGEMENTS

The work was partially supported by National Science Foundation
awards 1633437, 1901102, 1925615, and 22120429.

This manuscript has been authored by UT-Battelle, LLC, USA
under Contract No. DE-AC05-000R22725 with the U.S. Department
of Energy. The publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive,
paid up, irrevocable, worldwide license to publish or reproduce
the published form of the manuscript, or allow others to do so, for
U.S. Government purposes. The DOE will provide public access
to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. 2010. Leveraging Usage
Similarity for Effective Retrieval of Examples in Code Repositories. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). Association for
Computing Machinery, New York, NY, USA, 157-166. https://doi.org/10.1145/
1882291.1882316
Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
a critical review and guidelines. Empirical Software Engineering 27 (2022), 94.
Issue 4. https://doi.org/10.1007/s10664-021-10072-8
Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. 2021. A Large Scale Study
of Long-Time Contributor Prediction for GitHub Projects. IEEE Transactions on
Software Engineering 47, 6 (2021), 1277-1298. https://doi.org/10.1109/TSE.2019.
2918536
Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 334—
344. https://doi.org/10.1109/ICSME.2016.31
[5] Liang Chen, Angyu Zheng, Yinglan Feng, Fenfang Xie, and Zibin Zheng. 2018.
Software Service Recommendation Base on Collaborative Filtering Neural Net-
work Model. In Service-Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei
Yin, and Qi Yu (Eds.). Springer International Publishing, Cham, 388-403.
[6] Valerio Cosentino, Javier L. Canovas Izquierdo, and Jordi Cabot. 2017. A Sys-
tematic Mapping Study of Software Development With GitHub. IEEE Access 5
(2017), 7173-7192. https://doi.org/10.1109/ACCESS.2017.2682323
Valerio Cosentino, Javier Luis, and Jordi Cabot. 2016. Findings from GitHub:
Methods, Datasets and Limitations. In Proceedings of the 13th International
Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). Asso-
ciation for Computing Machinery, 137-141. https://doi.org/10.1145/2901739.
2901776

&

(3

=

[4

=

[7

[

—

8]

[9]

[10

(1]

=
)

[13

[14

[15

=
&

[17

[18

[19

o
=

[26

Addi Malviya-Thakur and Audris Mockus

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). https://doi.org/10.1109/MSR52588.2021.
00074

Junxiao Han, Shuiguang Deng, Xin Xia, Dongjing Wang, and Jianwei Yin. 2019.
Characterization and Prediction of Popular Projects on GitHub. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1.
21-26. https://doi.org/10.1109/COMPSAC.2019.00013

Yan Hu, Jun Zhang, Xiaomei Bai, Shuo Yu, and Zhuo Yang. 2016. Influence analysis
of Github repositories. SpringerPlus 1 (2016). https://doi.org/10.1186/s40064-
016-2897-7

K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto. 2005.

Ranking significance of software components based on use relations. IEEE
Transactions on Software Engineering (2005). https://doi.org/10.1109/TSEZ005.

38

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery, New York,
NY, USA, 92-101. https://doi.org/10.1145/2597073.2597074

Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software
repositories. Data Mining and Knowledge Discovery 18, 2 (2009), 300-336. https:
//doi.org/10.1007/s10618-008-0118-x

Roderick JA Little and Donald B Rubin. 2019. Statistical analysis with missing
data. Vol. 793. John Wiley & Sons.

Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2020. World of Code:
Enabling a Research Workflow for Mining and Analyzing the Universe of Open
Source VCS data. International Journal of Empirical Software Engineering (2020).
papers/WoC_EMSE.pdf

Frank McCarey, Mel O Cinneide, and Nicholas Kushmerick. 2006. A Recom-
mender Agent for Software Libraries: An Evaluation of Memory-Based and Model-
Based Collaborative Filtering. In 2006 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology. 154-162. https://doi.org/10.1109/IAT.2006.23
Audris Mockus. 2008. Missing Data in Software Engineering BT - Guide to
Advanced Empirical Software Engineering. Springer London, London, 185-200.
https://doi.org/10.1007/978-1-84800-044-5_7

Audris Mockus. 2014. Engineering Big Data Solutions. In ICSE’14 FOSE. https:
//dLacm.org/authorize?N14216

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Softw. Engg. 22, 6
(dec 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6

Jerzy Neyman. 1992. On the two different aspects of the representative method:
the method of stratified sampling and the method of purposive selection. In
Breakthroughs in Statistics: Methodology and Distribution. Springer, 123-150.
Charles P. Quesenberry and Nicholas P. Jewell. 1986. Regression Analysis Based
on Stratified Samples. Biometrika 73, 3 (1986), 605-614. http://www.jstor.org/
stable/2336525

Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina V. Lopes. 2014. Is Pop-
ularity a Measure of Quality? An Analysis of Maven Components. In 2014
IEEE International Conference on Software Maintenance and Evolution. 231—
240. https://doi.org/10.1109/ICSME.2014.45

Software Heritage. 2022. Software Heritage. https://www.softwareheritage.org
Zhongbin Sun, Jingqi Zhang, Heli Sun, and Xiaoyan Zhu. 2020. Collaborative
filtering based recommendation of sampling methods for software defect predic-
tion. Applied Soft Computing 90 (2020), 106163. https://doi.org/10.1016/j.asoc.
2020.106163

Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The Qualitas Corpus: A Curated Collec-
tion of Java Code for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference. 336-345. https://doi.org/10.1109/APSEC.2010.46

Adam Tutko, Austin Henley, and Audris Mockus. 2020. More Effective Software
Repository Mining. arXiv:2008.03439 [cs.SE]

	Abstract
	1 Introduction
	2 Illustrative Example
	2.1 Problem statement
	2.2 Proposed solution

	3 Stratified sampling
	4 Discussion
	5 Lessons Learned
	6 Conclusion
	References

