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Abstract

After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass
distribution within 20 pc, which serves as a constraint on star formation theory at the lowest masses. Unlike objects
on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an
observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass
function must therefore be procured through proxy measurements and theoretical models. We utilize various
assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and
theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then
determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals
the most likely mass function. We find that a simple power law ( µ a-dN dM M ) with α≈ 0.5 is optimal.
Additionally, we conclude that the low-mass cutoff for star formation is 0.005Me. We corroborate the findings
of Burgasser, which state that the birthrate has a far lesser impact than the mass function on the form of the
temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values of α than the
constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this
code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of
very old (8–10 Gyr) brown dwarfs.

Unified Astronomy Thesaurus concepts: Stellar mass functions (1612); Initial mass function (796); Brown dwarfs
(185); Star formation (1569); Solar neighborhood (1509)

1. Introduction

First detected in 1995 (Nakajima et al. 1995; Oppenheimer
et al. 1995), brown dwarfs, defined to be objects below the
hydrogen 1 fusing limit of ∼0.075Me (Hayashi &
Nakano 1963; Kumar 1963), bridge the mass gap between
hydrogen-fusing stars and exoplanets. Despite the substantial
advancements of understanding that the field of brown dwarf
astronomy has experienced in the past two decades through
infrared missions such as the National Aeronautics and Space
Administration’s (NASA) Wide-field Infrared Survey Explorer
(WISE; Wright et al. 2010) and NASA’s Spitzer Space
Telescope (Werner et al. 2004), there is still an abundance of
open questions regarding many aspects of brown dwarfs.
Examples are the exact formation mechanisms that prevail in
different mass regimes, as well as the low-mass cutoff of this
formation process. Answering these questions and improving

the theory necessitates additional brown dwarf observational
data, be they spectroscopic or photometric. However, obser-
ving brown dwarfs is an ordeal in itself, with some known
examples as faint as ∼28 mag at 1.15 μm (James Webb Space
Telescope F115W filter) and at an estimated distance greater
than 570 pc (Nonino et al. 2023). However, the distance itself is
not necessarily the defining factor in a brown dwarf’s faintness,
since exceedingly close brown dwarfs have also been observed
to be especially faint. The leading example is WISE
J085510.83−071442.5, which is confidently estimated to have
a JMKO> 24.0 mag (Faherty et al. 2014) at ∼2.3 pc (Kirkpa-
trick et al. 2021). Compounding this dilemma is the
considerable challenge of reliably measuring the physical
properties of the object, such as mass, age, and temperature.
Those familiar with the methods of stellar astronomy will recall
that the masses of main-sequence stars can be derived with
little uncertainty using only a few common observables, such
as color, absolute magnitude, or spectral type. However, brown
dwarfs do not possess such simple relations between physically
observable quantities and mass. A brown dwarf of a certain
temperature or spectral type may have a range of possible
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masses. Such a coupling of parameters is a consequence of
cooling over astronomical timescales, as brown dwarfs cool
continually throughout their lifetimes. This means that a
massive old brown dwarf that has cooled can have a similar
temperature to a lower-mass young brown dwarf.

Despite this observational barrier, techniques have been
formulated to directly derive the mass of a brown dwarf, yet
they can often only be employed in rare, opportune cases.

For resolvable brown dwarf binary systems, one may
leverage the orbital dynamics of the system and then solve
for the mass of the brown dwarf. To measure the mass of our
desired object, M2, we need the semimajor axes of both orbits,
a1 and a2, as well as the orbital period P, inclination i, and
gravitational constant G (Carroll & Ostlie 1996):

( )
( )

( )
p

=
+

+
M

a a

GP i

4

1 cos
. 1

a

a

2

2
1 2

3

2 32

1

Alternatively, there is microlensing, in which we observe a
brown dwarf passing between a background light source and
the observer. Since the mass of the transiting brown dwarf
affects the path of the light emitted by the background star due
to gravitational lensing, one can determine the mass of the lens
by measuring the displacement and amplification of the light
emitted by the background object (Dominik & Sahu 2000;
Cushing et al. 2014).

Nevertheless, occasions in which we are able to apply these
methods are exceptionally rare. The current methods of direct
observation would provide only a handful of directly observed
or inferred masses in any volume-limited sample. One notable
exception to this are brown dwarf constituents of a young star
formation region or moving group, for which a robust age can
be assumed for all objects. Drawbacks in this case are a higher
reliance on evolutionary models at young ages, interstellar
reddening (since these clusters are more distant than the local
sample and are often still enshrouded in dust), and difficulties
in resolving close multiple systems and assuring completeness
of the brown dwarf sample.

Since we find ourselves at an impasse when pursuing direct
paths of constructing and validating the mass distributions for
brown dwarfs, we instead choose to use the temperature of
brown dwarfs as a proxy measurement to indirectly constrain
the brown dwarf mass function. Although accessing temper-
ature data is not as simple for brown dwarfs as for main-
sequence stars, it is a far more accessible measurement than
direct brown dwarf mass measurements. We compare our
predicted distributions with the observational distribution of
brown dwarf temperatures (e.g., Kirkpatrick et al. 2019). In our
study, we construct theoretical temperature distributions with
the inverse transform method, assuming theoretical mass and
age distributions that have found success in previous literature
(Johnson et al. 2021; Kirkpatrick et al. 2019, 2021).

Then, we make use of a variety of brown dwarf evolutionary
models, all with somewhat different assumed internal physics,
to calculate the temperature of each object. Combining these
calculated temperatures across a simulated population allows us
to build its temperature distribution. From here, the problem
becomes one of optimization, as we seek to obtain the
particular set of parameters (functional form of the mass
function, birthrate, low-mass cutoff, and evolutionary model
suite) that results in a temperature distribution whose shape
most accurately fits the observed distribution. Our extensive

sampling of the permutations of parameters constrains the
functional form of the brown dwarf mass function.
In Section 2, we present our chosen mass functions, which

we need for the implementation of the inverse transform
methodology. We also discuss the topic of the low-mass cutoff
for brown dwarfs. In Section 3, we explore different proposed
age distributions, and Section 4 examines the evolutionary
models we use as well as their physical implications. Section 5
combines the tools developed in the three preceding sections to
create our simulated brown dwarf populations and their
temperature distributions. Section 6 contains a comparison of
our simulated stellar populations to our empirical data, as well
as an analysis of the impact of certain parameters on the
derived temperature distribution. In Section 7, we provide our
concluding remarks and possible avenues of future research.

2. Mass Distributions

Past studies of the functional form of the stellar mass
distribution are replete with power-law formalisms. Power
laws have been found to represent the functional forms seen in
the 0.3–10Me (Salpeter 1955) and 0.1–63Me (Miller &
Scalo 1979) regimes. In addition to the two power-law mass
functions needed to describe (higher-mass) stars, there may be
a third, separate power-law form needed for the (lower-mass)
brown dwarf regime (Kirkpatrick et al. 2021), along with a
fourth in the M dwarf regime (Kirkpatrick et al. 2023). The
youthfulness of the field of brown dwarf science combined
with a lack of ample data sets has meant that many functional
forms have been theorized. Some examples of these are the
lognormal (Chabrier 2001, 2003a, 2003b; Chabrier &
Lenoble 2023) and the bipartite power law from Kroupa
et al. (2013, their Equation (55)). The physics of the brown
dwarf formation mechanism(s) will ultimately determine the
way that the mass in the natal cloud is distributed among the
birthed objects. Each birth mechanism results in a different
mass distribution for brown dwarfs; for example, a power law
arises from stellar birth physics that is independent of the size
of the natal cloud (Kirkpatrick et al. 2021). On the other hand,
the lognormal implies a set of multiplicative birth parameters
(Kapteyn 1903).
As previous investigations of the substellar mass function

have found simple power laws to be the favored functional
form (Kirkpatrick et al. 2019, 2021), we also choose to adopt a
simple power law as our proposed mass distribution, or
probability distribution function (PDF), of brown dwarfs. The
functional form of this simple power law is written in
Equation (2) with parameter α, constant of normalization CN,
and input mass:

( ) ( )= a- CPDF . 2N

2.1. Low-mass Cutoff

A crucial parameter of brown dwarf formation is the value of
the low-mass cutoff, which has been shown to be no higher
than ∼10 MJup (Kirkpatrick et al. 2021). Objects such as WISE
J085510.83−071442.5, which is estimated to a have a mass
between 1.5 MJup and 8 MJup, depending on its age (Leggett
et al. 2017), along with objects identified in young moving
groups (see below), almost certainly push this limit lower, as
seen by derived low-mass cutoffs of ∼4 MJup in Bate &
Bonnell (2005).

2
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The lowest mass at which brown dwarfs form is a
fundamental property of star formation at the very edge of
our theoretical understanding of brown dwarfs. Notably, a
lower-mass cutoff not only extends the mass range in which
brown dwarfs may form but also shifts the mode of the
distribution to lower masses. These faint objects that would
populate the low-mass end of the mass function are
predominantly late T and Y dwarfs, as seen in Figure 6 of
Burgasser (2004). The observed space density in temperature
bins below 750 K has the greatest deciding influence on the
value of the low-mass cutoff, as lower-mass cutoffs will more
heavily populate objects at the lowest temperatures. Thus, data
at these coolest temperatures will be most influential in
determining the low-mass cutoff.

Due to the faint nature of late T and Y dwarfs, it is difficult
to complete a volume-limited sample with sufficient statistics to
provide a robust space density measurement. Since the lowest-
temperature bins are of paramount importance for the
evaluation of the low-mass cutoff, we need additional
discoveries of faint, cold Y dwarfs in order to further constrain
the value of the low-mass cutoff.

For this study, we choose 0.01Me, 0.005Me, and 0.001Me
as the low-mass cutoffs within our framework, as was done in
Kirkpatrick et al. (2021). These values produce populations that
include low-mass brown dwarfs that either straddle or are below
the deuterium-burning limit (∼13 MJup; Spiegel et al. 2011).
There are precedents for such brown dwarfs. Take, for example,
the low-mass brown dwarfs SIMP J013656.5+093347.3 and
2MASSW J2244316+204343. SIMP J013656.5+093347.3 is a
young early T dwarf with an estimated mass of 12.7± 1.0 MJup,
derived using its moving group association and evolutionary
models (Saumon & Marley 2008), and a trigonometric distance
of 6.139±0.037 pc (Gagné et al. 2017). 2MASSW J2244316
+204343 is a mid-L dwarf with a mass of 10.46± 1.49 MJup

(Faherty et al. 2016), also derived from evolutionary models,
and a kinematic distance of 18.5± 1.2 pc (Liu et al. 2016).
However, both objects are close to the solar system and therefore
less of a challenge for the current instrumentation to observe,
unlike further, fainter brown dwarfs.

2.2. Deriving the Inverse Cumulative Distribution Function

Integrating Equation (2), supposing α≠ 1, to find our
cumulative distribution function (CDF), we get the following
expression, where M is the mass parameter. Our CDF, once
normalized and inverted, will serve as a key component of the
inverse transform method that we utilize. Here, m2 is the high-
mass cutoff, defined to be 0.1Me, and we vary m1 between
0.01Me, 0.005Me, and 0.001Me:
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In order to derive our constant of normalization, CN, we need

our CDF to evaluate to 1 given the higher-mass limit. Solving

for the constant, we find the following:
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Similarly, when α= 1 in Equation (2), the constant of
normalization is the following:

( ) ( )
( )=

-
C

m m

1

ln ln
. 6N

2 1

Once inverted and with the value of CN inserted, the
equation for CDF−1 becomes the following (Kirkpatrick et al.
2019):
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Here, [ ]Î x 0,1 , meaning x is randomly sampled from the

uniform distribution between 0 and 1. Histograms of the

CDF−1 sampled 106 times per low-mass cutoff threshold with

various α values are shown in Figure 1.

3. Age Distributions

We employ three different potential birthrate distributions in
our main analysis (Figure 2). In Sections 3.1–3.3, we state the
functional form of each birth time distribution and provide a
few remarks on their underlying physics. Our study considers
the last 10 Gyr out of the 15 Gyr of Galactic disk stellar
formation activity modeled in Johnson et al. (2021), from
which come our inside-out and late-burst birthrates. Since the
evolutionary models we use (see Section 4) depend on age as
opposed to time, we convert each time distribution into an age
distribution by the following coordinate transformation, in
which  and  are the age and time parameters, respectively,
all in units of Gyr:

( ) ( ) ( )= - PDF PDF 15 . 7

We calculate the normalized CDF−1 of each of our proposed

age distributions for later use in Section 4. Detailed studies of

stellar formation processes and history can be found in Johnson

et al. (2021). However, for our purposes, we use age

distributions only as an auxiliary measurement in our study

of mass distributions, especially since ultimately, the age

distribution of a brown dwarf population has an undersized

influence on its temperature distribution (Burgasser 2004).

3.1. Constant Distribution

The constant birthrate function is a common starting point by
virtue of its inherent simplicity. A constant distribution implies
that the galaxy’s star formation processes have been consis-
tently efficient and have had sufficient star-forming material
from nascence to the present day. We adopt the following
functional form for the constant distribution, in which C is the
eponymous constant of star formation:

( ) ( )µ CPDF . 8

The value of C is not of much significance in our study, as we

ultimately normalize our CDF.
Given that the constant age distribution is, as its name

implies, constant, it does not depend on any time parameter  .
Therefore, in order to convert it from an age distribution, we
simply change C to C to indicate the change from a constant
of time to a constant of age, instead of executing the coordinate

3
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transformation outlined in Equation (7):

( ) ( )µ CPDF . 9C

The CDF−1 for our constant distribution can be attained in a
manner similar to Section 2.2:

( ) ( ) ( )= - +-
x x a a aCDF . 10C

1
2 1 1

We choose to leave -CDFC
1 in terms of a1 to a2, the minimum

and maximum ages in Gyr, respectively, as our study explores

more than one age range; see the Appendix.

3.2. Inside-out Distribution

The inside-out age distribution represents a sample popula-
tion where star formation initiates within the central regions of

the galaxy and propagates outward with time (Bird et al. 2013).
The functional form of the distribution is the following
(Johnson et al. 2021):

( ) ( ( )) ( )µ -- - e ePDF 1 . 11
t t

15 2

We choose to linearly approximate this time distribution
using Equation (12), since inverting the CDF of Equation (11)
requires the use of the computationally expensive error

function ( )( ) ò=
p

-x e dterf
x

t2

0

2
. Moreover, the original func-

tional form is already sufficiently linear between our age
bounds of 0 and 10 Gyr such that our approximation retains
much of the original shape of the function:

( ) ( ) ( )µ - + PDF 0.03 0.81 . 12IO

Figure 1. Sampled histograms of the CDF−1, with the α value ranging from 0 to 0.9, in increments of 0.1. Red is the 0.001 Me low-mass cutoff, blue is the 0.005 Me
low-mass cutoff, and black is the 0.01 Me low-mass cutoff.

4

The Astrophysical Journal, 974:222 (11pp), 2024 October 20 Raghu et al.



By using Equation (7) to convert this time distribution to an age

distribution, we arrive at the following functional forms:

( ) ( ) ( )µ + PDF 0.03 0.36 . 13IO

Integrating and normalizing this PDF yields the following CDF

for the inside-out birthrate:

( ) ( )⎛⎝ ⎞⎠= + =A A A xCDF
1

5.1

0.03

2
0.36 . 14IO

2

We solve for A as we have done previously to derive the

inverse form of the CDF. The negative branch of the solution is

disregarded, as a negative age is physically inconceivable:

( ) ( ) ( )= - + +-
x xCDF 12 144 340 . 15IO

1

3.3. Late-burst Distribution

Galactic star formation need not have followed a constant
rate or even one that varies linearly like the inside-out
distribution. In the past 10 Gyr, it is possible that periods of
the star formation history of our Galaxy have been more intense
than others, with otherwise linear reduction of the birthrate, as
seen in the inside-out distribution. This manifests itself as
bursts of increased star formation, possibly due to gravitational
perturbances from the Sagittarius dwarf galaxy (Ruiz-Lara et al.
2020) or from an earlier galactic merger incident inducing a
starburst in our Galaxy (Helmi 2020).

The late-burst model accounts for such a period of starburst
with a spike in the disk’s total birthrate between the ages of
2.65 and 5.10 Gyr. Equation (16) displays the mathematical
expression for the late-burst model. For ease of inversion, we
approximate the late-burst model as Equation (17), defined in
terms of the two previous birthrates, PDFC and PDFIO:

( ) ( ( )( ) ( )
( )

µ - + -- -
   

e e ePDF 1 1 1.5 , 1615 2

11.2 2

2

( ) ( )⎧⎨⎩µ
-

+ -
APDF

PDF , for 0 10 Gyr

PDF PDF , for 2.65 5.10 Gyr
. 17

IO

IO C

LB

In order to extract a meaningful CDF−1 from this, we
integrate each piece of the late-burst model and allocate
samples to preserve the ratio between the two pieces. Thus, the

-CDFLB
1 is a mixture of -CDF IO

1 and -CDFC
1, whose individual

sample sizes depend on the area under each individual PDF.

4. Evolutionary Models

Theoretical models predicting the evolution of brown dwarfs
have been formulated, each one presupposing different physics
of brown dwarf cooling. In our study, we consider the three
following evolutionary models: Sonora (Marley et al. 2021),
Saumon & Marley 2008 (Saumon & Marley 2008), and
Phillips (Phillips et al. 2020). Figure 3 shows the grid of cross
sections of the sampled parameter space in mass, age, and
temperature covered by each of the evolutionary models.
The particular features of each model relevant to our

investigation are delineated below.

1. Saumon & Marley (2008) is our only model that
incorporates the effects of dust during the L–T transition,
seen as atmospheric cloud cover at the spectral type
transition (Burrows et al. 2006). This model does not
include objects that are either massive and young (masses
�0.06Me and ages �1 Gyr) or light and old (masses
�0.01Me and ages �1 Gyr), as seen by the lack of
reference points in the bottom right and top left corners of
the top left subplot in Figure 3.

2. The Marley et al. (2021) model features updated chemistry
(see their Section 2) but notably lacks the earlier
assumption of dust and cloud formation during the L–T
transition. This model is better sampled than its predecessor
for old, light stars, yet it does not extend to objects that are
massive and young (mass �0.06Me and age �1 Gyr).

3. The Phillips (Phillips et al. 2020) model set offers three
evolutionary grids, one using equilibrium chemistry and two
using nonequilibrium with differing vertical mixing strengths,
of which we choose to use the evolutionary model with weak
mixing. This evolutionary model also does not account for
L–T transition dust and cloud formation, although it is far
more thoroughly sampled in the mass–age space than both of
the other evolutionary models we consider.

5. Methods

Our primary objective is as follows: determining the best-fit
functional form of the substellar mass distribution using the
volume-complete sample of brown dwarfs within 20 pc of
the Sun.
We outline how we create populations with masses and

ages consistent with their assumed mass and age distribution

Figure 2. Histograms with 106 samples of the CDF−1 for each of our three different birthrates. Note that these graphs display the birthrates after having switched from
the time domain to the age domain.
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(Section 5.1). From there, we propagate this popula-
tion through the evolutionary model (Section 5.2), which
provides a present-day value of the effective temperature
for each object. All simulations were done in Python, using
only fundamental libraries. The source code is available on
our Github site.12

5.1. Choosing Mass Functions

We choose α values ranging from 0.3 to 0.8 in increments of
0.1, as they envelop the previous best α value of 0.6 (Kirkpatrick
et al. 2019) on either side. Using the CDF−1 of our assumed mass
distribution, we pull an object at random from the distribution to
assign it a mass. This is done via a Monte Carlo draw from 0 to 1,
and we perform 106 of these draws to build a population with
statistical robustness. We repeat this procedure for each value of
α, and for each value of α, we repeat the procedure for each of
our three assumed low-mass cutoffs. In total, we build 18
simulated populations, each having masses for n= 106 objects.
To be specific, the code samples the mass function again for each
different combination of birthrate and evolutionary model, so in
total, there are 162 simulated populations (six values of α× three
mass cutoffs × three birthrates × three evolutionary models).

5.2. Constructing Mass–Age Brown Dwarf Populations

We similarly use the inverse transform method to pull
random ages from each of our three assumed age distributions.
This methodology allows for the creation of brown dwarf
populations of arbitrary size whose mass distribution will
converge to the shape of the transformed function as the sample
size approaches a statistically significant value.
For each population, the ith element in each mass list and the

ith element in the age list become the mass and age of the ith
object in the simulated population.

5.3. Deriving Temperatures

For each object, we wish to find its current-day temperature
using our assumed evolutionary model. However, given the
discrete sampling of our evolutionary model grids, the simulated
values of age and mass for our object are unlikely to have been
included directly in the models. We therefore use bilinear
interpolation to fill in the sample space between the model’s
reference points. Not all points in the mass–age domain can be
mapped using bilinear interpolation. At the edges of the space
sampled by each evolutionary model, there exist mass–age regions
with points that cannot be enclosed within a rectangle of reference
points. As shown in the left column of Figure 3, each evolutionary
model has loci in which we cannot interpolate stellar temperatures.

Figure 3. Plots of age vs. mass (top row), effective temperature vs. mass (middle row), and effective temperature vs. age (bottom row) for grid points in the three
evolutionary model sets we consider: Saumon & Marley (2008), Sonora (Marley et al. 2021), and Phillips (Phillips et al. 2020). The red-colored triangular points in the
top row are all evolutionary model points with a temperature between 450 K and 2100 K. In contrast, the top row’s circular blue points are those that have temperature
values outside of these bounds, namely, with temperatures <450 K or >2100 K.

12
https://github.com/jgrigorian23/Brown-Dwarf-Simulation-Code
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In such cases, we simply disregard the star and assign to the star’s
temperature value the number −1 to indicate that a temperature
could not be interpolated. The extent to which we lose objects
during the interpolation depends on the (non)rectilinearity of the
provided evolutionary sample set in mass–age space. Both the
Sonora and Phillips models are fairly well sampled and do not
drop many brown dwarf samples along the whole range of
possible mass and age values. In contrast, the Saumon & Marley
(2008) model drops the most objects of our three evolutionary
models, especially those sample points that are either young and
massive or old and light, as seen in the top left and bottom right of
Figure 3. However, it should be noted that for the temperature
range we consider for our fitting, namely, 450–2100 K, there are
extremely few samples dropped due to a lack of rectilinear
bounding reference points (see top row of Figure 3).

Although we state in Section 5.1 that we simulated n= 106

objects, in practice we simulated n> 106 objects and kept only
the first 106 objects for which temperatures could be obtained
via bilinear interpolation.

For our late-burst birthrate, we simulate brown dwarf
subpopulations as explained at the end of Section 3.3. We
shuffle these proportionally sampled constant and inside-out
birthrate subpopulations and select the first 106 objects to create
the late-burst birthrate.

The fact that the evolutionary model grids are not sampled
over the entire mass and age space needed means that our final
simulated populations contain small biases. See Figure 4 for an
example of how our original mass distribution changes after
interpolation.

6. Findings

6.1. Comparison to Empirical Data

We now shift focus to comparing our simulated populations
to the empirical temperature distribution. We analyze our
results in two steps. First, in Section 6.1.1, we describe our

methods for comparing the simulated and observed temperature

distributions to determine which low-mass function α value fits

best. Then, in Section 6.1.2, we evaluate which mass cutoff

leads to the best fit.

6.1.1. Temperature Distribution Fitting

For each simulated brown dwarf population, we consider

only those objects with temperatures between 450 and 2100 K,

as only that range is fully sampled. Many objects in the ranges

300–450 K and 2100–2400 K are dropped during the

interpolation process; i.e., brown dwarfs falling in those ranges

are underrepresented because of edges in the model grids.
We obtain our empirical data from Kirkpatrick et al.’s (2023)

Table 17, as it provides a volume-limited sample of observed

brown dwarfs within 20 pc of the Sun. To compare our models

against the empirical data, we use the Levenberg–Marquardt

algorithm as it is implemented in the IDL routine mpfit

(Markwardt 2009). The Levenberg–Marquardt algorithm uni-

formly scales the simulated population’s temperature distribu-

tion to find the best fit to the empirical distribution, necessary in

our analysis as our distributions with millions of samples must

be appropriately scaled down to be compared against the

empirical distribution, which has only a few hundred data

points total.
After many iterations, once the algorithm has optimized the

best possible normalization between the two distributions, it

returns the minimized residual, quantifying the agreement

between the two. We rank our models by their residual value to

find the best fit.
The five best fits for each of the three model suites are listed

in Table 1. Note that the value of N is the Levenberg–

Marquardt normalization constant, unique to each simulated

population based on its optimal normalized fitting.
Since the empirical temperature distribution has a bump at

the aforementioned L–T transition (1200–1350 K), any

evolutionary model seeking to be accurate across the gamut

of temperature must account for this. Only the Saumon &

Marley (2008) model includes this, so its χ
2 values are

naturally the lowest of the three model sets.
The χ2 values of the five best-fitting populations displayed in

Table 1 differ only by 0.19, and thus there are more similarly

performing runs not shown in the table that must be considered

when constraining the mass function. Figure 5 shows the α

values of the brown dwarf simulations that fall within the first

quartile. The conclusion from Kirkpatrick et al. (2021) that

α= 0.6± 0.1 represents the best overall fit was based on a

constant birthrate assumption, and as seen by Figure 5, this is

reproduced in our study, since the distribution of well-

performing simulations using a constant birthrate is centered

around α= 0.6 as well. Our study, which includes a wider set

of birthrates, finds a preferred value of α= 0.5, based on the

peak seen in Figure 5. Among the models with α= 0.5, the

combination that yields the lowest reduced χ
2 is the one given

by the Saumon & Marley (2008) atmospheric models, the late-

burst birthrate, and a 0.001 Me cutoff. Therefore, we chose this

combination as representative of the best overall fit (Figure 6).

We note that Kirkpatrick et al. (2023) use a slightly different

methodology (see their Section 7.1) and find a best fit of

α= 0.6 with the constant birthrate.

Figure 4. The mass distribution of the remaining simulated objects after
evolutionary model interpolation for α = 0.5 with the Saumon & Marley
(2008) evolutionary model and a constant birthrate. The black graph is the
original mass distribution with α = 0.5, and the blue graph is the mass
distribution of the remaining objects from the interpolation process.
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6.1.2. Analysis of the Low-mass Cutoff

Our second round of analysis focuses on constraining the
low-mass cutoff. We move our focus to the cold end of the
temperature distribution, as the effects of the cutoff mass are
most easily seen here.

The Saumon & Marley (2008) model grid has very sparse
coverage of the lowest masses, so it is not very helpful in
determining the low-mass cutoff. However, we can examine the
low-mass cutoff using the best-fit mass and age distributions
along the whole temperature range, α= 0.5 and the constant
birthrate, respectively (see left subplot of Figure 6), along with
the best-sampled evolutionary model for low masses, the
Phillips model, as this allows us to vary the low-mass cutoff
specifically to view its impacts. We take the five best pairs of α
and birthrate from the Saumon & Marley (2008) evolutionary
model populations and find the corresponding populations that
use the Phillips model instead. The results show that all of the
five best α and birthrate models perform best with the 0.001 Me
mass cutoff, and three of the five α and birthrate pairs have
penultimate best fits with the 0.005 Me mass cutoff. This
indicates that the low-mass cutoff is 0.005 Me.

Our efforts in Section 6.1.1 reveal the combinations of mass
function and birthrate that lead to the best-fitting temperature
distributions. The best-performing mass shows a small skew
toward the lower-mass cutoffs of 0.001Me and 0.005Me,
which correlates with previous result that the low-mass cutoff
is at or below 0.005Me in Kirkpatrick et al. (2019).

6.2. L/T Transition

A key feature of the Saumon & Marley (2008) evolutionary
model is its incorporation of cloud formation at the L–T
transition, in which L dwarfs cool into T dwarfs. This process is
mainly limited to the temperature range from 1200 to 1350 K,

and in this temperature bin, there is a noted increase of objects,
forming a bump in the temperature distribution (Figure 6 and
Figure 13 of Kirkpatrick et al. 2019). The exact physical
conditions and processes that lead to this surplus of objects at
1200–1350 K are not yet fully understood, but one theory
suggests that the dispersion of the cloud layers could be driven
by a radiative cloud-induced variability (Tan & Showman 2019).
Figures 7 and 8 show the temperature distribution of our

best-fit model colored by object age, showing an excess of
young brown dwarfs at the L/T transition bin (1200–1350 K).
This trend of younger brown dwarfs around the L/T transition
is also visible in Figure 9, where we display the median age and
its standard deviation per bin. These predictions suggest a
pileup of young objects just prior to the L/T transition,
indicating that the cooling time of a brown dwarf is
significantly slowed in this region. Observational confirmation
of this effect may be possible once we are able to collect a large
field sample of brown dwarf age estimates or, perhaps more
easily, measure the temperature distribution of L and T dwarfs
belonging to young clusters and associations of known age.

6.3. Impacts of Changing α, Birthrate, Cutoff, or Model

The composition of each of our simulated populations
depends heavily on our choice of mass function, birthrate, low-
mass cutoff, and evolutionary model. In this section, we show
the variation in the resulting temperature distribution when we
hold all but one of these parameters constant.
The greatest change in the temperature distribution results

from a change in the evolutionary model. Notably, simulations
from the Saumon & Marley (2008) models possess a bump at
the L/T transition, whereas those from both the Sonora and
Phillips models do not.
As we vary the mass function α parameter, the shape of the

temperature distribution also predictably varies (Figure 10).

Flatter mass functions (α∼ 0.4) lead to temperature distribu-
tions with relatively hotter objects, whereas steeper mass
functions (α∼ 0.7) lead to a greater abundance of cooler
objects. Also, flatter mass functions imply a larger concentra-
tion of objects at the L/T transition with a lesser low-
temperature peak (300–600 K), and vice versa for steeper mass
functions. It should be noted that other differences are marginal
everywhere except the low-temperature peak, where the
difference between the α= 0.3 and α= 0.8 distributions is
pronounced. Fundamentally, increasing the mass function’s
steepness serves to skew the resulting temperature distribution
toward the cooler end of the temperature regime.
Differences in birthrate functions have already been shown

to affect the resulting temperature distribution only marginally
(Burgasser 2004). Our findings corroborate this (Figure 11).
Nonetheless, the inside-out age function, for example, allows

for a flatter mass function to fit the empirical temperature
distribution. The α= 0.6 value taken as the ideal mass function
steepness in Kirkpatrick et al. (2019) assumed a constant
birthrate, and our findings in Table 1 replicate that while also
showing that a combination of α= 0.4 or α= 0.5 paired with
an inside-out birthrate also fit the empirical data quite well.
This is because the declining birthrate represented by the
inside-out function paired with a less steep (lower α) mass
function can create as many present-day late T and Y dwarfs as
a constant birthrate paired with a steeper mass function.

Table 1

The Five Best-fitting Simulations per Evolutionary Model Set

Model α Birthrate Low-mass χ
2 N

Seta Cutoff

(Me)

(1) (2) (3) (4) (5) (6)

SM08b 0.5 Late-burst 0.001 5.19 2427.32

SM08 0.6 Constant 0.01 5.19 2362.67

SM08 0.6 Constant 0.001 5.22 2478.73

SM08 0.6 Constant 0.005 5.24 2452.65

SM08 0.5 Constant 0.001 5.38 2416.51

Sonora 0.3 Constant 0.001 21.02 2687.96

Sonora 0.3 Constant 0.005 21.38 2422.72

Sonora 0.4 Constant 0.001 21.44 2859.21

Sonora 0.4 Constant 0.005 21.51 2501.77

Sonora 0.3 Constant 0.01 21.54 2183.54

Phillips 0.3 Constant 0.005 30.66 2270.93

Phillips 0.4 Constant 0.005 30.90 2357.76

Phillips 0.3 Constant 0.001 31.01 2342.49

Phillips 0.4 Constant 0.001 31.03 2458.24

Phillips 0.5 Constant 0.001 31.06 2591.57

Notes.
a
SM08 = Saumon & Marley (2008); Phillips = Phillips et al. (2020);

Sonora =Marley et al. (2021).
b
This simulation serves as our choice of the best-fitting population.
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Figure 5. The first quartile of the best-fitting brown dwarf populations colored by their birthrate for each of our evolutionary models.

Figure 6. Our preferred “best-fit” simulation (blue dashed line)—α = 0.5, late-
burst birthrate, low-mass cutoff of 0.001 Me, and Saumon & Marley (2008)
evolutionary model grid—compared to the observed space density of brown
dwarfs within the 20 pc census (black points with uncertainties) from
Kirkpatrick et al. (2023).

Figure 7. The temperature distribution of our best-fit simulation (black line;
α = 0.5, late-burst birthrate, low-mass cutoff of 0.001 Me, and Saumon &
Marley 2008 evolutionary model) decomposed into age regimes (colored
lines).

Figure 8. The temperature distribution of our best-fit simulation (α = 0.5, late-
burst birthrate, low-mass cutoff of 0.001 Me, and the Saumon & Marley 2008
evolutionary models) color coded by the age of each object.

Figure 9. The median age and standard deviation in each temperature bin from
Figure 8.
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The mass cutoff also does not in any significant way affect
the shape of the simulated temperature distribution except at
the coldest temperatures (Figure 12).

7. Conclusions

Our study presents an updated approach to determine the mass
function through brown dwarf population simulations. We pose
several power-law mass functions and combine them with three
sample birthrates to create a suite of simulated brown dwarf
populations whose temperature distributions we compare to the
empirical temperature distribution from Kirkpatrick et al. (2021).
Our results indicate a best fit of α= 0.5 for a birthrate from
Johnson et al. (2021; their so-called “inside-out” function) that
has been steadily declining over the lifetime of the Milky Way,
or α= 0.6 for a constant birthrate, which agrees with a previous
study done using the same methodology (Kirkpatrick et al.
2019). Our study finds that the low-mass cutoff is0.005Me by

examining the best-performing mass cutoffs. However, tighter
error bars on the space density of Y dwarfs within 20 pc would
place tighter constraints on α while also increasing confidence in
the low-mass cutoff and, if a plethora of even colder Y dwarfs is
found, push the cutoff value even lower.
All of the code we used to simulate our populations was

written in Python and is publicly available on Zenodo13 (Raghu
& Grigorian 2024). Our formalism allows for brown dwarf
population simulations for a given mass function, age function,
evolutionary model, and low-mass cutoff. One such use case of
this code is outlined in the Appendix, where we modify our
birthrate to only include stars with ages 8–10 Gyr. Applications
like these are possible because of the flexible nature of our code
base, as it allows for great customization of parameters such as
mass function and age function. Methodology such as ours is a
step toward piecing together the properties of brown dwarfs
that are harder to access through direct observation, as one can
imagine using evolutionary models with absolute bolometric
luminosity measurements instead of empirically derived
effective temperatures, as we have done here. Ultimately, it is
further observed brown dwarf data that are sorely needed to
stimulate a more precise theory.
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Appendix
Present-day Temperature Distribution for Old Brown

Dwarfs

One interesting application of the simulation framework we
have built is our ability to tweak the input parameters to explore

Figure 10. Temperature distributions for simulated brown dwarf populations
with a varying mass function α parameter (α ä {0.3, 0.4, 0.5, 0.6, 0.8}). The
birthrate is the constant birthrate with a low-mass cutoff of 0.001 Me and the
Saumon & Marley (2008) evolutionary model.

Figure 11. Temperature distributions for simulated brown dwarf populations
with a varying age function parameter. The low-mass cutoff is 0.001 Me with
an α of 0.5 and the Saumon & Marley (2008) evolutionary model. The three
assumed birthrates are constant (blue), inside-out (red), and late-burst (black)
from Section 3.

Figure 12. Temperature distributions for simulated brown dwarf populations
with a varying low-mass cutoff parameter (mass cutoffs: 0.01 Me, 0.005 Me,
0.001 Me). Mass function α: 0.5; birthrate: inside-out; evolutionary model:
Phillips (Phillips et al. 2020).

13
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other physical scenarios. In this section, we examine the predicted
present-day temperature distribution of old stars (8–10 Gyr). We
choose α= 0.5, a low-mass cutoff of 0.001Me, and the Saumon
& Marley (2008) evolutionary models. For simplicity, we choose
our age function as simply a constant birthrate ranging from 8 to
10 Gyr. With these parameters, we build a temperature distribu-
tion via our publicly available code.

Figure A1(a) shows this temperature distribution, ultimately
revealing how old stars have thermally evolved over time. As
discussed in Section 6.2, the L/T transition bump in the
temperature distribution consists mainly of younger objects, so it
is no surprise that the temperature distribution of older objects
shown here lacks such a bump. Figure A1(a) shows the change
in the temperature distribution for young (0–2 Gyr) brown
dwarfs and old (8–10 Gyr) brown dwarfs. Figure A1(b) agrees
with the standard knowledge on low-mass brown dwarfs, as they
are heavily skewed toward colder temperature bins.
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