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Abstract—Given a length n sample from R? and a neural
network with a fixed architecture with 1/ weights, £ neurons,
linear threshold activation functions, and binary outputs on
each neuron, we study the problem of uniformly sampling from
all possible labelings on the sample corresponding to different
choices of weights. We provide an algorithm that runs in time
polynomial both in » and W such that any labeling appears with

probability at least (%)W for W < n. For a single neuron,

we also provide a random walk based algorithm that samples
exactly uniformly.

I. INTRODUCTION

Consider a sample xy,...,x,, where x; € R¢. We have a
feedforward neural network with a given architecture (but the
weights are unknown). Each sample point x; has binary labels,
either +1 or -1. Sauer’s lemma provides an upper bound on
the number of possible labelings that could be generated by
a hypothesis class (the growth function) in terms of the VC
dimension of the hypothesis class.

We are interested in hypothesis classes corresponding to
neural networks with a fixed architecture but unspecified
weights. While it is hard to exactly specify the VC dimension
of this class, upper bounds on the VC dimension and the growth
function are easily derived, see for example [1, Section 6.2].
The growth function for a feedforward, linear threshold network
is upper bounded by (enk/W )W, where k is the number of
neurons in the network, and W, the number of weights.

Our goal in this paper is to generate labels of the sample
uniformly at random from the set of all possible labelings
that a given feedforward architecture can provide. We obtain
a polynomial time (in both the number of samples and the
size of the network), near uniform sampling from arbitrary
feedforward networks. In the special case of a single neuron,
we also provide a random walk based algorithm for perfectly
uniform sampling, and with polynomial mixing time for the
random walk.

Aside from the theoretical interest in generating labelings,
we are also motivated by questions in property testing. Namely,
we want to estimate the statistics of all labelings generated by
a given architecture. As an example, we may want to find out
the the probability that a subset of samples are all labeled the
same if all labels were generated at random from the given
architecture. In future work, we intend to leverage these insights
into better initializations of neural networks while training.

We obtain these results by developing insights on random
walks between chambers of intersecting hyperplanes in high
dimensions. This is a well studied area, see for example [2].
General arrangements of these hyperplanes intersect in com-

plicated ways, as in our problem, and random walks between
these chambers is nontrivial. It is common to visualize the
geometry of these arrangments by means of a chamber
graph, see Chapter 7 of [3] for a synopsis of such chamber
graphs. Random walks over hyperplane arrangements appears
in contexts quite different from ours. For example, Bidigere,
Hanlon and Rockmore modeled card shuffling in [4], with such
random walks. Some other applications are in e.g., [5], [6],
(71, [8].

The statistics of the random walks considered in the
references above is different from ours. Typically, these authors
provide an explicit expression to estimate the eigenvalues of
the random walk to bound the mixing time. In our paper, we
use conductance to understand the mixing properties of our
random walk as in [9] and [10].

II. SETUP AND NOTATIONS

We consider a feed-forward linear threshold neural network
with L layers. The input to the network is d—dimensional and
there is a single binary output label. Namely, i.e. any neuron
with parameters w, b, (w € R?, b € R) outputs o(xT'w + b)
on an input x € R?, where o(u) = 1 if u > 0 and o(u) =0
otherwise. In subsequent work, we extend our results to more
general activation functions.

Let N be the graph of the feedforward neural network with
a fixed architecture and W different parameters (the weights
and thresholds put together). Let W € RW, and let Ny be the
neural network which assigns the parameters of N to be W.
For any given architecture N, let fw : x € RY — {0,1} be
the function expressed by Nw.

The vectors x € R? are the input and fw(x) are the labels
assigned to x. For a length n sample X = {xy,--- ,x, € R%},
let

Sx ={(fw(x1), -, fw(xn)) | We R"}

be the set of all labelings that can be generated on X by
the architecture N. Note that the set Sy C {0,1}" and for
W < n, [1, Section 6.2] (or [11])

P\ W
|SX|§(6;/) .

When W > n, |Sx| < 2", or X is potentially shattered.
Problem For a given architecture N and data X, how can we
randomly sample from Sy, in time polynomial in both n and
W, such that any labeling v € Sx appears with probability at
least 2(1/]Sx]|)?



a) Background: A hyperplane in R? (or a hyperplane in d
dimensions) is the set of all points w € R? satisfying x”w = 0
for some fixed vector x € R?%. Let N be a single neuron with
input dimension d. As before, X = {x17 Xy € Rd} is a
length n sample.

Let w € R? and b € R. Physically, the vector in d + 1
dimensions, (w,b) € R¥*! defines the parameters of the single
neuron V. For each sample point x; € R<, define P; to be the
hyperplane in the parameter space R%*!:

X! w+b=0.
We start with a visualization from [1].

Theorem 1. All parameter vectors that belong to the same
connected component of R\ \U; P label X in the same way.
Conversely, different components have different labelings on
X.

We recall a few standard terms regarding hyperplane ar-
rangements formed by Py,... ,P,.

e The connected components in R\ J;_, P; are called
chambers (or regions).

e The chamber graph is constructed as follows: assign a
vertex to every chamber. Two vertices are connected if their
associated chambers share a common face.

e Any hyperplane arrangement is centered if the intersection
of the component hyperplanes contains the origin. In our
case, [);_, P; always contains the origin, i.e., the samples
generate a centered arrangement in the parameter space.

e A collection of n centered hyperplanes in R%*! is in general
position, if for all £ < d+ 1, every intersection of k distinct
hyperplanes forms a d + 1 — k-dimension linear space, and
any intersection of more than d 4 1 hyperplanes is contains
only the origin. Randomly chosen planes are in general
position almost surely.

b) Psuedo polynomial optimal training algorithm: A
theoretically useful framework was introduced in Theorem
4.1 of [12] for ReLU networks, where the network size W is
treated as a constant, and we look at the dependency purely
on the sample size n (thereby treating n"V as a polynomial).

We note that our near-uniform polynomial time sampling
procedure implies a probabilistic, psuedo-polynomial training
algorithm that attains the global minimum for any feedforward
linear threshold neural network. This implication is immediate
from the coupon collector problem—since given any confidence,
generating at most O(n" logn) samples guarantees that we
have seen every possible labeling that can be produced.

III. PROPERTIES OF HYPERPLANE ARRANGEMENTS
We summarize a few useful properties of hyperplane
arrangments that we will use in our arguments in the paper.

Proposition 1 ([1, Theorem 3.1]). The number of chambers in
a centered hyperplane arrangement formed by n hyperplanes
in d dimensions in the general position is

22("21>

In fact, even sampling all labels of a sample of size n,
even when the network consists of a single neuron, in time
polynomial in both n and dimension d of the data points, is
non-trivial. The number of chambers by Theorem 1 is the
number of labels on a size-n sample, which from the above
Proposition is roughly O(n?). Clearly, trivial enumeration of
labels is out of question. As we will see later in Section IV-A,
this is not the only difficulty even for a single neuron.

Proposition 2. Let QQ1,...,Q, form a centered hyperplane
arrangement in d dimensions. Let v; € R? be any vector
normal to the hyperplane Q;. If vy, ... v, have rank r, then
any chamber in the hyperplane arrangment has at least r faces.

Proof. Let V. = {vq,...,Vp,—V1,..., — V, }. Suppose the
proposition is false. Then there exists a chamber with exactly
b < r faces. Without loss of generality, letu; € V,--- ju, € V
be the normal vectors of the b different faces of this chamber
respectively, such that for any point x within the chamber

ulx > 0.

Since the rank of vy,...,v, is r > b, we can choose a
vector up41 € V such that u,,; is linearly independent from
Up, -, up.

We now show that the hyperplane that determined by
is also a face of the chamber by proving that there is a point
x’ in the chamber satisfying

u/xX >0 1<i<b and wui X =0. (1)

Since w4 is linearly independent of uy, . .. ;u,, we can choose
a vector y such that y’u; = 0 for 1 <4 < b but y'u, 1 # 0.
Now let x be any point in the chamber and set x’ = x + ty
where ¢ = —u;x/ul, |y. It is easy to verify now that x’
satisfies (1). This contradicts the assumption that the chamber
contained b faces, where b < 7. O

Proposition 3. The chamber graph of any hyperplane ar-
rangement Q1, .. .,Q, in R in general position satisfies (i)
the degree of any vertex is at least d and at most n, and (ii)
any pair of vertices has graph distance at most n.

Proof. (i) from Proposition 2, (ii) from [3, Lemma 7.15]. O

IV. SAMPLING LABELINGS

For the sample X = {xy,...,Xx,}, where x; € R%, Sx is
the set of all possible labels generated on X by the network
N. We would like to sample from Sy uniformly.

In Section IV-A, we let IV be a single neuron and even this
turns out to be non-trivial. Inspired by the inductive approach
for computing hyperplane partition number [2, Chapter 2], we
derive Algorithm RS (for Recursive Sampling) in Section IV-A
that generates a label from Sx almost uniformly.

In Sections IV-B and IV-C we expand in two directions.
In Section IV-B, we provide means to perfectly sample from
all labelings of a single neuron using a random walk on Sx
with a perfectly uniform stationary distribution. This allows us
to sample from Sx perfectly uniformly. The mixing time of
this random walk is as yet unproven, but we provide partial



evidence (empirical as well as proofs for small dimensions)
that this random walk is fast mixing, with mixing time at most
linear in the number of dimensions and at most quadratic in
the number of samples.

In Section IV-C, we build on our RS approach to sample
from arbitrary feedforward networks in time (true) polynomial
in the sample size n, network size W and input dimension (d),
showing that even for arbitrary networks, we get near-uniform
sampling of the possible labels that could be produced by the
network.

A. The recursive approach

From Theorem 1, to sample uniformly from Sx we only
need to sample the weights uniformly from the connected
components of R4\ | J, P;.

However, even for a single neuron, this is not trivial. As
already noted from Proposition 2, the basic combinatorial
difficulty comes from the fact that there are roughly n?
labelings for almost all samples X—therefore the number
of chambers is exponential in the dimension d. Clearly one
can not simply enumerate all the possible components.

But a bigger difficulty comes from the fact that the ar-
rangement of the hyperplanes can be very heterogeneous. The
volume of some of the chambers can be arbitrarily small and
therefore such chambers may be difficult to find. We settle
this problem by using a recursive sampling approach that is
inspired by the inductive approach for computing hyperplane
partition number.

Our recursive algorithm RS(vy,...,vg) (see Algorithm 1)
takes as its inputs k unit vectors vy, . ..,Vg, all from, say R™.
The vectors vy,...,v, are interpreted as normal vectors of k
distinct centered hyperplanes in R™. For simplicity, the reader
can assume that these hyperplanes are in the general position,
but they do not have to be. To sample from Sy, we would
therefore simply call RS(x;, ... ,x,), where X; = ﬁ €
R and x; € X.

The call RS(vy,...,v;) works recursively on the dimension
m of the vectors v; and k, by calling RS with a new set of
vectors uy, ..., u in R™~1 with ¥’ < k — 1. The base case
is when RS is called with vectors in 1 dimension or when
k = 1. When RS is called with vectors in 1 dimension, the
problem is trivial since there is only one centered hyperplane
arrangement in 1—dimension, the origin. When RS is called
with £ = 1 (no matter the dimension of the single input vector),
the problem is also trivial since there are only two chambers
for one hyperplane.

To generate the vectors u; in R !, we choose a hyperplane
at random from vy, ... ,vg, say v;, and compute the intersection
of v; with all the remaining hyperplanes. These intersections
are at most k — 1 hyperplanes in R™~! and let uy,. .. ,u; be
the unit normal vectors of these hyperplanes (written in the
specific orthonormal basis indicated).

Theorem 2. Let V = {vy,... vy} where v; € R™ and rank
of V is m. Let Cy be the set of non-empty chambers induced
by the k centered hyperplanes orthogonal to the vectors in

Algorithm 1 RS(vy,...,vg)
Input: vy, --- v € R™, interpreted as unit normal vectors of
k (distinct) centered hyperplanes in an m—dimensional space.
Output: point y € R™ representing a chamber in the
hyperplane arrangement formed by vy, . ..

Vi,

Let P; be the hyperplane in R™ orthogonal to v;.

1. If m =1 output -1 or 1 with equal probability. If m > 1
but k£ = 1, output v; or —v; with equal probability.

2. Uniformly choose an index I from {1,...,k}.

3. For hyperplane Pj, choose an arbitrary orthonormal basis
B € R(m=1xm Note that P is a (m — 1)-dimensional
linear space in R™, and the m — 1 rows of B contain the
orthonormal basis vectors, each being a vector in R™.

4. Compute the intersection of P; with P;, j &
{1, KNI},

5. Set V;- to be the unit vector in Pr normal to Pr N P;
(written using the basis B), j € {1,...,k}\{I}. Note
vi e R™L

6. x= RS(uy, - ,uy ), where uy,--- ,ug are the distinct
vectors among {Vv; | j # I'}. Note k' <k — 1.

7. Compute the smallest distance & of x” B to the planes P;
with j # I.

8. Let t be -1 or 1 with equal probability, output y = x* B +
t5V[.

V. Algorithm RS(vy,...vy) runs in O(km3) time and any
chamber in the hyperplane arrangment induced by V is
sampled with probability at least

1 m
_ > (%) , where e is the base of nature logorithm.
e

2" ()

Proof. (Outline only) The algorithm will run at most m
recursive iterations. For each iteration, we need O(m?) to
compute the base of the null space (Step 3) and O(km?) time
in Step 7 to compute the projection of each input vectors to
the plane chosen in Step 2. This yields the total complexity to
be O(km?).

To see the probability lower bound, define

p(m, k) = V?ggv Pr[RS(V) = ¢], with rank(V) =m and |V| < k.

We now claim that
p(m, k) > ﬁp(m —1,k—1).
2k
This is because any chamber ¢ € Cy has at least m faces by
Proposition 2. For any chamber ¢ € Cy, we therefore have
probability at least 57 of choosing both a hyperplane that forms
the face of ¢ and the direction of the hyperplane that faces
the chamber c. Conditioned on this choice of hyperplane and
direction, we need to obtain the probability that the recursive
call in step in Step 6 returns a point in the face of c.
Observe that the face of ¢ is a m — 1-dimensional linear
space. In Step 6, note that the rank of {uy,...,u; } is exactly
m — 1, but k£’ can be less than k& — 1. The theorem follows by



Algorithm 2 NRW
Input: walk length 7" and hyperplanes P, - -
Output: point w € R™ and chamber ¢

1 m
-, P, inR

1. Initialize wo = RS(vq,- -
vector of P;
2. Set ¢y = Chamber(wg). ¢o will be the chamber in the
arrangement { P;} that contains wo.
3. For t =1 through T, do
a. Uniformly choose a face of ¢,
b. Set ¢; to be the chamber adjacent to c;_; and across
the face chosen in step (a.)
c. Set w; to any point in the chamber c;

,Vn), Where v; is a normal

4. Output wr and cr

solving the recursive inequality, standard approximations on
binomial coefficient and by noting that when m = 1, there are
two chambers, thus yielding p(1,%) = 1/2 for all k. O

Note that when rank(X) = d the above probability is
O(3#27), a factor 55 off the hyperplane slicing bound
22?;01 ("-') in Proposition 1. Note also that if the input
vectors in R? have rank m < d, the above approach still
works. We can effectively project down the inputs into R™ by
choosing a basis for R? that contains d — m vectors that are

orthogonal to the span of the input vectors.

B. A random walk approach

To mitigate the fact that the recursive approach above only
yields approximately uniform sampling, We introduce a random

walk based algorithm that samples arbitrarily close to uniform.

Specifically, we run Algorithm NRW on a lazy chamber graph,
both outlined below. One component of Algorithm NRW is
Algorithm Chamber, that determines which chamber an input
point belongs to.

Theorem 3. Algorithm Chamber runs in polynomial time both
on d and n.

Proof. The theorem follows since linear programming can be
solved in polynomial time [13]. O

a) Analysis: We first analyze random walk defined by
Algorithm NRW over the simple chamber graph, assuming the
hyperplanes are in general position. With this assumption any
vertex in the chamber graph has degree at least d and at most

Algorithm 3 Chamber
Input: point w € R™ and hyperplanes P, - - -
Output: The faces FP;,,--- , P,

ik

P

1. Compute o; = sign(wlv;).
2. For 1 <4 <n do:
3. Define a linear program with w’v;, = 0 and
oj(wlvj) >0 for j # 1.
4. If the linear programming in step 3 has a solution,
add P; to the collection.

of the chamber containing w.

n from Proposition 3. Furthermore, from Proposition 3 the
graph is connected and the distance between any two vertexes
is at most n.

Since the random walk is a reversible Markov chain,
the stationary distribution 7 of the random walk will be
proportional to the degree of the vertices [9, Chapter 1.6].
From our observation on the bounds of degrees in Proposition
3, we will therefore have for any two vertices u and v

d ) _n
n~ wlv) — d
The more fundamental question is the mixing time of the
random walk, or how quickly the walk generates stationary
samples. While there are several approaches to analyze the
mixing time, we focus on Cheeger’s inequality [9, Theorem
13.14] that bounds the spectral gap of the random walk’s
transition matrix using the conductance of the graph. Recall
that the conductance of a graph is

4]
Acv,vol|A|< voljv| Vo[ A]’

where V' is the vertex set, OA is size of the cut between A
and V\ 4, vol|4| is the sum of degrees of vertexes in A. The
following theorem gives a lower bound on the conductance of
chamber graph when dimension d = 2.

Theorem 4. The chamber graph of 2-dimensional hyperplane
arrangement with size n that is in the general position has
conductance lower bounded by 2%

Proof. For any set A of vertices in the chamber graph with
size no greater than %|V|, we will show that the conductance

of A, [9A] , 1s lower bounded as follows
vol|A|
|0A] 1
> —.
vol|A| ~ 2n
Let X be the set with smallest volume satisfying
. [0A]
X = .
are e vol| A]

vol(A)<ivol(v)

We first claim that X must be connected. If not, we can
write X as the union of (maximally) connected components,
e, X = U:Zl X;, where X; are the maximally connected
components within X (in particular, note that there are no edges
between distinct X;). Then, if a; = 0X; and b; = vol(Xj;),

then
|0X] ay +as+ -+ a, .oa;
= >m

VOIX| ~ byt ba b+ by —ici by

implying that X; has lower conductance than X and is smaller
in size than X, a contradiction.

Let S be the boundary surface of the chambers corresponding
to vertexes in X. Since X is connected, we must have S to
be piece-wise line segments.

We now claim that S will partition the chamber graph into
two connected components. Since X is connected, we just
have to show that V\ X is also connected.



Suppose not, and let V\X = |, Y;, where Y; are
maximally connected, and V\ X is the union of m different
connected components. Let ¢; = JY; and d; = vol(Y;). Then

we have
m

> e =10X],

i=1
and since vol(V\X) =
1vol(V), we have

vol(V) — vol(X) and vol(X) <

Zdi > %VOI(V) > vol(X).
i=1

Therefore, there must be some component ¢ such that

G o xc o 10X]
di - Zdz _V01|X|

If Y; satisfies vol(Y;) < ivol|V|, then again we have a

contradiction because of the following. If ¢;/d; < V‘(?l)\()‘ﬂ’
we are done. If ¢;/d; = V‘(C;)IT( )l(‘ , it means that every component

[0X]
vol|x|*
two components in V\X, then X has a larger cut 9X than

each of the components, and therefore must have a larger
volume as well, contradicting the assumption on X.

If vol(Y;) > $vol|V|, then consider the set Z = V\Y;. Note
that

But if there are more than

in V\X has conductance

Z = X J(UjzY)).

Now |0Z| = |0Y;| < |0X]|. This follows since there is no
boundary between Y; and any of the other Y}, and the only
boundary Y; has is with X. Furthermore, vol(Z) > vol(X),
implying that Z has lower conductance than X, again a
contradiction.

Now, we know that the boundary S between the chambers
in X and the rest of the hyperplane arrangement is exactly a
piece-wise line segment that separates R? into two connected

components. There are only 3 possibilities, as shown in Figure 1.

We now observe vol| X | is exactly the sum of the 1-dimensional
faces in the arrangement that intersect with X. Since there are
at most n lines in the arrangement, there exist a line P that

intersect with X (or V\ X) by at least Voﬂxl many faces, see
figure 1. The number of faces in S is no less than the number
of faces in P, because any line that intersects with P in X

must also intersect with S, and at most two lines can intersect

at the same point on S by our general position assumption.

The theorem now follows. ]

For the general dimension case, we have the following
conjecture. See Appendix for justification and partial proofs.

Conjecture 1. The conductance of any d-dimensional general

position hyperplane arrangement of size n is lower bounded
1

by pOZ)’("»d) '

Remark 1. Note that the requirement for general position
of the hyperplanes is necessary for fast mixing given by the
Conjecture above. Else it is easy to construct a hyperplane

Fig. 1. Possibility of piece-wise linear partition

arrangement with mixing time lower bounded by O( ’;—j) As
shown in Figure 2, the cut made by the gray shaded top plane
has only 4 boundary chamber but the total number of chambers
below the plane is roughly n? (in two dimensions, while in
d—+1 dimensions, we will have the cut and volumne to be 241
and O(n?) respectively).

b) Lazy Chamber graph: Algorithm NRW on the regular
chamber graph will not give an exact uniform sampling, but
is off by a factor of d/n as mentioned above. This is easily
fixed by adding dummy vertices and dummy edges to each
vertex in the chamber graph raising the degree of every vertex
in the original chamber graph to 4n. Call such a graph to be
lazy chamber graph.

We will call the vertex in the original chamber graph
to be chamber vertex and the dummy vertices added to be
augmentation vertices. The stationary probability of the new
random walk, restricted on the chamber vertices, is exactly
uniform. If the Algorithm NRW on the chamber graph is fast
mixing, we can show that Algorithm NRW on the lazy chamber
graph is also fast mixing:

Lemma 1. If the conductance of the chamber graph is g, the
lazy chamber graph has conductance > g%5.

Proof. We only need to show that any subset A of vertex in
the lazy chamber graph we have % > L. We observe that

if an augmentation vertex is in A, then the chamber vertex
attached to it must also be included in A. We denote A’ C A
to be the set of all chamber vertexes in A.

Fig. 2. Hyperplane arrangement with small conductance



The vertexes in A’ can be partitioned into two classes, A’ =
B’ U’ where B’ is the set of all chamber vertices that have
all their attached augmentation vertices in A and C” is the
complement of B’ in A’. Similarly, B, C to be the sets that
contains also the attached new vertex of B’ and C’ in A). We
have

08|
- |B/‘ )

04| |9B'| + |0C"|
[l B+ (]

since all vertexes in C’ are boundary vertexes. Note that 3n
|B'| < |A| < M*Tlvl since any vertex in B’ will attach at
least 3n new vertex in order to make degree 4n, we have
|B’| < 2|V|. Now, by the definition of conductance we have

|‘8]§/|| > g/2. This is because, if |B’| < % then ||aé3,,‘| > g
Otherwise, we have 1|V| < A'\B'| < 1|V, thus |0B'| >
glANB'| > %g|V| and |B| < 2|V|, we have 5] > 4.
Therefore, we have

|0A| _ |0B'| +10C]| < |0B’| |0B’| S 9

[Al = |B|+I|C] ~— |B] ~ 4nx|B'| — 8n’
Now since vol|A| < n|A|, the theorem follows. O

Combining all the results, we have

Theorem 5. Assuming conjecture 1. For an given parameter
€ > 0 and X in the general position, Algorithm NRW run on
the lazy chamber graph generated by Sx can generate labels
from Sx with distribution € close (in variational distance) to
uniform, and runs in time poly(d,n,log(1/€)).

Proof. By the relationship between mixing time and spectral
gap [10, Theorem 2.2], we have

1 1
tmix(ﬁ) S glog W .

The theorem follows since the spectral gap is lower bounded
by square of conductance by Cheeger’s inequality [9, Theorem
13.14]. O

C. Sampling for arbitrary neural networks

We now consider the sampling for arbitrary neural networks.

Let X = {xi,---,X,} be the samples, we choose the
weights of the network layer by layer. At layer ¢ we use
the previous sampled weights in layers 1,--- , £ —1 to generate
outputs x4, .-+, x%, where x¢ is output of layer £ — 1 with
input x;, a binary vector. For each neuron in layer ¢ we
independently sample weights using Algorithm RS with input
{(17X{)7 T (]‘7Xfl)}'

To illustrate the idea more concretely, consider neural
networks with one hidden layer. Let X to be the input samples
of dimension d, for each neuron in the hidden layer, we use
Algorithm RS to generate the weights independently. We now
fix the weights we sampled for the neuron in the hidden layer
and view the function that expressed by the hidden layer to be
some function h := R% — {0,1}"2, where us is the number
of neurons in the hidden layer. We now define x; = h(x;) to
be the new input sample for the output layer, and again use

Algorithm RS to sample the weights for the output neuron
with input X".

Theorem 6. For a neural network with fixed architecture, k
neurons and W parameters, the above sampling procedure
runs in O(nW?3) time. Given a sample X, each labeling in
Sx produced by this architecture appears with probability at

least (%)

Proof. We use induction on the layers. For any given labeling
produced by weights w, let p(¢) to be the probability that the
output of layer ¢ is consistent with the output on weight w.

We have
Uy d. d;
> _ 7
sy zpe- D] (5=)

=1

where d; is the input dimension of the ith neuron in layer /,
and the product term comes from Theorem 2 and independence.
Note that the rank of the outputs X* may reduced after passing
the previous layers, however, this will only make the probability
larger than (5% )di by Theorem 2. Now, the theorem follows
with the same argument as in [1, Theorem 6.1] for bounding

VC dimension of linear threshold neural networks. O
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APPENDIX

In order to provide a convincing reason as to why we believe
the Conjecture 1, we provide a proof of the following partial result:
suppose we cut a general position hyperplane arrangement with another
hyperplane. The conductance of such a cut is lower bounded by
Q(1/n?) (no matter the number of dimensions).



Proposition 4. Let Q1, -+ ,Qn be a general position hyperplane
arrangement in dimension d. P is another hyperplane. Then the
number of chambers in Q1N P, --- ,Qn, NP (viewed as a hyperplane
arrangment in P) is lower bounded by

l n—1
n\d—1)"

Proof. A set of hyperplane in dimension d is said to be in almost full
rank position if any k < d planes has rank at least kK — 1. Note that
the hyperplanes Q1 NP, - - -, Q, N P are in almost full rank position,
since the projection on to P can only reduce the rank by 1. Note that
there may be two Q; N P and (Q; N P coincident, but we treat them
as different planes.

Denote Q; = Q; N P, we show that the intersection {Q’; N Q1}
for j # 1 is also in almost full rank position. We only need to show
that any k < d — 2 planes has rank at least & — 1.

Suppose not, w.l.o.g. @2NQ1, -, Qj41 NQ’ has rank at most k —2
and k£ < d — 2.

But we will show that @7, -+, Q% will have rank k — 1, thus
obtaining a contradiction. To see this, let B be the base of the linear
space 1, v; a normal vector to Q;. We have Bv; = 0 and A\ Bvs +
-+ A1 Bugyr = 0, implying that B(Ag2va + -+ - + Ap410k+1) =

0, which in turn implies Aova+, - -+ + Ag+1Vk+1 = Ai1v1 for two
different set of A;s. Meaning that vq, - - ,vg4+1 has rank of £ — 1.
The proposition now follows by induction. O

a) A random walk on vertexes:: For hyperplane arrangement
Q1,- - ,Qn that is in the general position. We define the vertexes
of the arrangement to be all the intersections v; = [ el Q; with
I C [n] and |I| = d. By the general position assumption, we know
that there are exactly (Z) many vertexes. Two vertexes vy, vy is
said to be connected if they are connected by a 1-dimensional face
(intersection by d — 1 hyperplanes) of the hyperplane arrangement.
There are (n — d)(,",) many edges and each vertex adjacent to at
most 2d and at least d edges. The graph that defined by the vertexes
and edges is known as the arrangement graph and studied in [14].
Where the author obtained the following conductance bound using a
coupling argument:

Theorem 7 ([14, Theorem 4.3]). The conductance of the arrangement
graph is lower bounded by

n—d
Ql ————)-
(n3logn)

Note that theorem 1 will implies conjecture 1 if we also know that
the number of vertexes in any cut of the chamber do not much greater
than the number of faces. Proposition 1 shows that this is satisfied
if the cut is a plane, since there are exactly (Z) vertices but at least

% (Z:i) faces).



	I Introduction
	II Setup and Notations
	III Properties of hyperplane arrangements
	IV Sampling labelings 
	IV-A The recursive approach
	IV-B A random walk approach
	IV-C Sampling for arbitrary neural networks

	References
	Appendix

