Check for
Updates

Data Independent Order Policy Enforcement: Limitations and

Solutions
Sarisht Wadhwa Luca Zanolini Aditya Asgaonkar
sarisht.wadhwa@duke.edu luca.zanolini@ethereum.org aditya.asgaonkar@ethereum.org
Duke University Ethereum Foundation Ethereum Foundation
Durham, NC, United States London, United Kingdom Sunnyvale, CA, United States
Francesco D’Amato Chengrui Fang Fan Zhang
francesco.damato@ethereum.org Chengrui_Fang@zju.edu.cn f.zhang@yale.edu
Ethereum Foundation Zhejiang University Yale University

Berlin, Germany

Hangzhou, China

New Haven, CT, United States

Kartik Nayak
kartik@cs.duke.edu
Duke University
Durham, NC, United States

Abstract

Order manipulation attacks such as frontrunning and sandwich-
ing have become an increasing concern in blockchain applications
such as DeFi. To protect from such attacks, several recent works
have designed order policy enforcement (OPE) protocols to order
transactions fairly in a data-independent fashion. However, while
the manipulation attacks are motivated by monetary profits, the
defenses assume honesty among a significantly large set of partici-
pants. In existing protocols, if all participants are rational, they may
be incentivized to collude and circumvent the order policy without
incurring any penalty.

This work makes two key contributions. First, we explore whether
the need for the honesty assumption is fundamental. Indeed, we
show that it is impossible to design OPE protocols under some
requirements when all parties are rational. Second, we explore
the tradeoffs needed to circumvent the impossibility result. In the
process, we propose a novel concept of rationally binding transac-
tions that allows us to construct AnimaguSwap?, the first content-
oblivious Automated Market Makers (AMM) interface that is secure
under rationality. We report on a prototype implementation of Ani-
maguSwap and performance evaluation results demonstrating its
practicality.

CCS Concepts

« Security and privacy — Distributed systems security.

A key design in AnimaguSwap is that user orders may transform to a different
direction—like the fictional creatures Animagi in Harry Potter—in order to achieve
the desired game theoretic properties.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670367

This work is licensed under a Creative Commons Attribution
International 4.0 License.

378

Keywords
Blockchain, MEV, Crytoeconomics

ACM Reference Format:

Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato,
Chengrui Fang, Fan Zhang, and Kartik Nayak. 2024. Data Independent Order
Policy Enforcement: Limitations and Solutions. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
"24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3670367

1 Introduction

Blockchains can provide a trustworthy platform for transacting and
smart contract execution. Blockchain-powered finance applications,
also known as DeFi, have grown to a market of more than $46 bil-
lion? in value. However, despite the strong integrity and availability
properties offered by blockchains, they do not protect the ordering
of user transactions. As a result, order manipulation attacks — e.g.,
frontrunning attacks, sandwich attacks — are rampant, where an
attacker listens for user transactions sent in public and strategi-
cally places her exploiting transactions around the victim to gain a
profit. The profits earned through inserting and reordering trans-
actions are referred to as Maximal Extractable Values (MEV) [13].
An estimated $1.2B of MEV has been extracted as of the time of
writing.3

To protect users from order manipulation attacks, an extensively
explored direction [2, 6, 9, 10, 22-24, 28] is to design protocols
that enforce certain “fair” transaction ordering policy. A popular
approach is data-independent ordering, which guarantees that given
a set of user transactions as input, the final ordering of them on
the blockchain should be independent of the transaction content.
For example, some fair ordering protocols [9, 22, 23] order user
transactions based on the time they are received by a committee of
parties. Content-oblivious ordering (e.g., [2, 6, 24, 28]) guarantees
that user transactions are hidden from the committee who orders
them, e.g., through encryption until after an ordering has been

Zhttps://defillama.com
Shttps://explore.flashbots.net/

https://orcid.org/0000-0003-4343-9868
https://orcid.org/0000-0003-4655-3172
https://orcid.org/0009-0001-7516-3360
https://orcid.org/0000-0002-8190-8664
https://orcid.org/0009-0005-3328-5406
https://orcid.org/0000-0002-8525-4514
https://orcid.org/0000-0001-5675-263X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670367
https://doi.org/10.1145/3658644.3670367
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670367&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

decided. In this case, transaction ordering may be based on any
metadata, such as the ciphertext, the sender address, etc.

Both approaches can prevent an attacker from placing exploiting
transactions before user transactions after having observed user
transactions. However, all known data-independent ordering pro-
tocols share the same limitation: they only work under the strong
assumption that enough parties running the protocol are honest.
E.g., [22] assumes more than three-fourths of the participants are
honest (for y = 1, a parameter in their work).

Indeed, in a permissionless blockchain system where players are
pseudonymous and can join and leave freely, the assumption that
players are always honest is hard to justify. A much more palatable
assumption is to assume rationality instead of honesty, i.e., instead
of assuming parties are intrinsically honest, a rational party may
take any action to maximize utility. In fact, the existence of MEV is
tied to the rationality of the participants. Thus, the goal is to design
a protocol so that following the protocol is incentive-compatible,
which is significantly more challenging because all of the parties
running the protocol may deviate from the protocols arbitrarily if
doing so leads to a higher utility.

In this paper, we systematically investigate the design of data-
independent ordering protocols in the presence of rational parties,
asking two fundamental questions:

(1) All known data-independent ordering protocols require some
honesty assumption. Is that a limitation of existing solutions or
something fundamental? We answer this question negatively
by showing an impossibility result that not only are existing
protocols insecure in the presence of rational parties, but a wide
range of protocols compliant with the same specification also
cannot be secure.

Given the impossibility, what tradeoffs must one make in or-
der to realize a data-independent ordering protocol under the
rationality assumption? We propose a novel concept called ra-
tionally binding commitments and present the first decentralized
exchange construction, called AnimaguSwap, with a built-in
data-independent ordering protocol under rationality.

1.1 Overview of results

1.1.1 Existing protocols are not secure. Intuitively, it is not hard
to see how rational parties might lead to an insecure execution: in
existing data-independent ordering protocols [2, 6, 9, 10, 22-24, 28],
there is no way to retroactively verify whether the ordering output
was indeed data-independent. Thus, if violating data independence
increases parties’ utility, all parties running the protocol to collude
is a dominant strategy.

For fair ordering protocols, if enough parties collude, they can
order transactions arbitrarily by lying about when transactions
are received — an action that cannot be held accountable unless
assuming a global trustworthy timestamping service (which is a
strong assumption for applications we care about).

The situation is a bit trickier for content-oblivious ordering, as
collusion might be accountable. For example, in schemes where user
transactions are encrypted using threshold encryption (e.g., [10]),
enough parties can reconstruct the decryption key if they collude.

379

Sarisht Wadhwa et al.

However, this way of colluding may be accountable since the de-
cryption key itself could serve as irrefutable proof of the fact that
collusion has taken place.

This leads to a natural question for a protocol designer: can we
leverage proof of collusion to design data-independent ordering
protocols under rationality?

Answering this question negatively and identifying the condi-
tions under which this is true is the crux of our first contribution.
We observe that colluding parties do not necessarily need to de-
crypt the transaction or leave any proof of collusion whatsoever,
by running the collusion algorithm in a way that the only outcome
of collusion is a set of transactions that resemble benign user trans-
actions while giving colluding parties a higher utility (e.g., with
their frontrunning transactions inserted before the victim). We em-
phasize that the cost to collude between parties is very low since
today’s blockchain landscape is not so decentralized, and a few of
the pools interacting with each other are all required to attack and
collude. Further, once parties collude, they can profit for a longer
duration, which decreases the amortized cost.

An order policy enforcement (OPE) framework and impossi-
bilities. To prove this claim, we first present a generic framework
in Section 4.1 that captures all known data-independent ordering
protocols. Then, we show that in any concrete protocol IT following
this framework, if violating the ordering policy increases parties’
utility, there always exists a collusion protocol 7 with which parties
can collude and violate the ordering policy with deniability: even
after executing , no participants of it can generate a cryptographic
proof to incriminate any participants (including herself).
Section 4.2 presents the full proof.

1.1.2 New directions informed by the impossibility. Our impossibil-
ity proof not only shows the fundamental limitations of existing
approaches in achieving security under rationality, but it also carves
out avenues to improve. The impossibility critically relies on some
assumptions about II. First, users may go offline after sending one
message (typically a transaction or a cryptographic commitment
thereof). This is a desirable usability feature because users do not
need to stay online. Consequently, once the user submits her trans-
action, the parties have the capability to retrieve it. Second, if the
user sends a cryptographic commitment of her transaction, it is
binding in that the commitment can only be opened to one transac-
tion plaintext, which is a natural requirement so that transaction
execution is unambiguous.

Designing protocols that violate these assumptions can circum-
vent the impossibility, but dispensing with them naively will lead
to undesirable outcomes. For instance, if we require users to stay
online, there exists a (somewhat trivial) solution where a user first
sends a commitment to the parties running the ordering protocol,
and then opens the commitment after the ordering is determined.
This construction, while secure against collusion of parties, not
only introduces a usability challenge for users but also potential
problems when users refuse to open the commitment.

Introducing rationally binding commitments. Our next re-
sult is a novel way to relax the second assumption by introducing
rationally binding commitments. A key observation from the im-
possibility proof is that if a user only sends one message and that

Data Independent Order Policy Enforcement

message binds to her transaction, then if enough parties collude,
they can uniquely recover her transaction (and thus can frontrun
it, for example), no matter what cryptographic protections are em-
ployed. (Since the user only sends one message, that message should
enable recovery of some transactions; due to the binding property,
the committee can recover the exact transaction the user commit-
ted to). Can we dispense with the binding property as a way to
circumvent the impossibility? This seems paradoxical. After all, a
user’s transaction needs to be encoded somehow in the commit-
ment, otherwise, the commitment may be opened against her will.
Our answer is to replace binding with rationally binding, as follows.

We first require parties running the protocol to put down collat-
eral (i.e., to stake) that can be confiscated (or slashed) for detected
misbehavior. We call these parties stakers hereafter. Suppose one of
the stakers is designated as the “flipper” (the meaning of the name
will become clear momentarily). In order to create a rationally bind-
ing commitment to a transaction tx, the user samples a random
bit b € {0, 1} and depending on this bit, creates a transaction that
is either the one that the user intended (tx) or a related but differ-
ent transaction (tx), e.g., the other transaction must satisfy certain
requirements that we will specify later for specific applications.
The user sends b to the flipper in a deniable message [20, 29] and
gets back an acknowledgment of the bit signed by the flipper. (If
the flipper does not respond, the user can designate another flip-
per.) The user then shares the created transaction (which can be
different from the one it intended) with the rest of the stakers. To
open the commitment, the stakers reveal the shared transaction,
and the flipper reveals b, and the transaction tx will be executed.
Crucially, if the flipper reveals the wrong bit b, the user can use the
acknowledgment it received as evidence to slash the flipper.

From the user’s point of view, assuming the penalty is appropri-
ately set, a rational flipper will always reveal b, so tx will always
be executed, similarly to the binding property. On the other hand,
from the stakers’ point of view, even if all parties collude, they
cannot identify which transaction will be executed since the flipper
might lie about b, and there is no way for the flipper to prove the
correctness of b due to the use of deniable messaging. In fact, the
protocol can be made such that lying about b is a dominant strategy
for the flipper by carefully crafting tx, which ensures that no stable
collusion can be formed amongst the stakers.

In Section 5.1, we present AnimaguSwap, an Automated Market
Makers (AMM) decentralized exchange that uses rationally binding
commitments to defeat sandwich attacks, assuming buying and
selling a token is equally likely. In our protocol, if user transaction
tx sells a certain asset, then tx is the reverse order, i.e., buying the
same asset. If the stakers collude, they must still guess which will
be executed (with no more than a 1/2 probability of being correct).
Thus, in expectation, it is not worthwhile to attempt sandwiching.

In Section 5.2, we provide a game theoretic analysis of Ani-
maguSwap and show that following the protocol specification is
dominant for all the involved parties. To evaluate practicality, in
Section 5.3, we implement a base AnimaguSwap as a smart contract
and show that the key overhead in terms of the amount of gas is
1.3x compared to a typical insecure trade today. Moreover, since
this cost does not depend on the number of stakers or the value of
the transaction, this is already quite practical for high-value transac-
tions. We then extend the result in Section 5.4 to consider scenarios

380

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

where the buying and selling of a token may not be equally likely.
We further enhance the security of the game to cover repeated
games for a more practical solution by ensuring the unlinkability
between different games.

Contributions. In summary, this paper makes the following contri-

bution:

e We present a framework that captures existing protocols for
data-independent order policy enforcement (OPE), such as fair
ordering and content-oblivious ordering protocols.

e We present an impossibility proof showing that a wide range of
OPE protocols cannot be secure when all parties are rational

e We propose the notion of rationally binding commitments as a
practical way to circumvent the impossibility. We present the
first AMM interface construction AnimaguSwap, that can achieve
data-independent ordering of user transactions in the presence
of rational parties. We analyze the efficacy of AnimaguSwap by
a game-theoretic proof in the presence of rational parties.

e We implement AnimaguSwap using a smart contract and show
that the overhead of security is about 1.3x in gas cost compared to
vanilla UniSwap; this will be practical for high-value transactions.

2 Related Work

Data-independent ordering protocols. As reviewed in Section 1,
several works purpose to order transactions independent of their
content as a way to reduce MEV [13]. Below is a non-exhaustive
list of protocols that are covered by the framework (Section 4.1)
and the impossibility theorem (Theorem 1).

The first category of protocols is fair ordering. Kelkar et al. [23]
investigate a notion of fair transaction ordering for (permissioned)
consensus protocols, which prevents adversarial manipulation of
the ordering of transactions. The authors then formulate a new class
of consensus protocols, called Aequitas, that achieve fair trans-
action ordering while also providing the usual consistency and
liveness. Their findings have been later extended in permissionless
settings [21]. Subsequently, Kelkar et al. [22] devised Themis, a (per-
missioned) consensus protocol that, along the same lines as [23],
achieves fair transaction ordering while preventing a liveness issue
in Aequitas. Cachin et al. [9] introduce a differential order fairness
property and present a quick order-fair atomic broadcast protocol
that guarantees payload message delivery in a differentially fair
order. The protocol of Cachin et al. results in a more efficient proto-
col than the previous solutions, but it relies on a weaker form of
validity property.

The second category of solutions is content-oblivious ordering.
A popular idea (used by, e.g., [2, 6, 10, 28]) is to encrypt user trans-
actions using a threshold public key encryption scheme so that the
ordering of transactions is done based on the ciphertext. Fino [24]
efficiently integrates threshold encryption and secret sharing to a
DAG-based BFT protocol. Shutter, Osmosis, and Sikka [2, 10, 28]
are examples of operational systems in this category.

The protocols in these works make the assumption of honest
majority participation, e.g., a majority (or two-thirds) of the par-
ticipants do not deviate from the specified protocol, even if such
deviations are undetectable. Our work investigates ways to relax
such assumptions.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

MEYV mitigation leveraging rationality. Platforms have emerged
to auction off the opportunities to extract MEV so that MEV extrac-
tion is democratized [15, 16]. MEV auctions rely on the rationality
of bidders (or builders) to maximize MEV extraction. Our solution
(in Section 5) aims to achieve a different goal of reducing MEV.

Heimbach et al. [19] analyzed the sandwich game between an
AMM trader and predatory bots and identified the optimal slippage
tolerance a trader could set to disincentive bots from attacking
while limiting the probability of execution failures. Their algorithm
crucially relies on estimating the execution failure probability using
historical data and thus cannot guarantee accuracy. Our solution is
fundamentally different and does not have this limitation.

PROF [3] is a protocol that leverages the profit-maximizing na-
ture of proposers to promote the inclusion of fairly ordered trans-
actions (PROF defines fairness broadly as any order that follows a
given policy). PROF is agnostic to specific transaction ordering pro-
tocols and, thus, is complementary to our solution. Note that PROF
does not address ordering under rationality, though it suggested a
TEE-based content-oblivious ordering protocol.

Lower bounds on MEV mitigation. Ferreira et al. [32] presents
an impossibility result showing that for a class of liquidity pool
exchanges (e.g., Uniswap), for any data-dependent ordering policy
(called sequencing rule in [32]), there are always valid sequences
in which the miners get risk-free profits. Their result leaves it open
whether data-independent ordering policies can be enforced, which
is our focus. (We show it is impossible in Theorem 1.)

Data dependent ordering policies. All of the discussion in this
work is only pertinent to ordering policies that are data independent,
i.e., policies that only rely on the metadata related to the transac-
tions and not the transaction content themselves. [32] proposes a
data-dependent sequencing rule that alternates between BUY and
SELL orders to guarantee that user transactions are executed at
a price as good as being executed at the beginning of the block
(unless the miner does not gain anything from manipulating the
ordering).

Moreover, [32] relies on the assumption that each block is created
by a different miner, a questionable assumption in today’s Ethereum
ecosystem with Proposer-Builder Separation (PBS) [8], which our
solution (Section 5.1) avoids.

3 Model and Problem Statement

Throughout this paper, we consider data-independent transaction
ordering protocols run by a set of N parties called stakers S =
{s1,...,sN} Such protocols process transactions submitted by users
and output an ordered list of received transactions while ensuring
that the ordering is independent of the transaction content. Exam-
ples include fair ordering based on receive order [9, 22, 23] and
content-oblivious ordering (e.g., [2, 6, 24, 28]). The purpose of data-
independent ordering is to prevent order manipulation attacks such
as frontrunning attacks, sandwich attacks, etc. We refer readers
to [33] for a survey of such attacks.

We assume all users, including stakers, to be rational, i.e., they
act to maximize their utility function. To keep things simple, we
assume that this utility function is the amount of monetary profit
(in the number of tokens) that the party can make. If a staker s; fails

381

Sarisht Wadhwa et al.

to serve the role assigned to it or tries to deliberately deviate from
the protocol, i.e., s; is Byzantine, and a proof of this misbehavior is
given, it loses a part of its stake (s; gets slashed), and it might be
removed from the system. A protocol specifies rules that provide
rewards to stakers who complete certain tasks. We sometimes refer
to users (and stakers) as players or parties.

Adversary model. Stakers are adversarial, and they may deviate
from the protocol arbitrarily if doing so increases their utility (after
counting the penalty, if any). Their goal is to tamper with the
ordering process so that transactions are ordered to their advantage.
For example, in receive order-based fair ordering protocols, stakers
may collude and order a later transaction before an earlier one
to facilitate a frontrunning attack; in content-oblivious ordering
protocols, stakers may collude to decrypt user transactions and
profit from the information thereof.

Problem statement. We ask two questions: First, existing data-
independent ordering protocols are insecure under the above ra-
tionality assumption. Is this limitation fundamental or can it be
mitigated? We answer this question negatively with an impossi-
bility result. Second, given the impossibility, what relaxation of
the problem can we make to obtain a practical data-independent
ordering protocol under the above rationality assumption?

Notation. We denote the evaluation of a protocol using (pub,;
(Y1, - - -»yg) < prot(pubj; (x1, ..., xi)). Here, there is a public input
pub; and private inputs (x1, ..., xg), resulting in a public output
pub, and private outputs (y1, . . ., yx). Public inputs/outputs might
be omitted if not applicable.

4 Impossibility of OPE under rationality

To study the common features of data-independent order policy
enforcement (OPE) protocols [2, 6, 9, 10, 22-24, 28], we first present
an abstract framework to capture the essence of aforementioned
protocols with four sub-protocols (submit, process, order, reveal)
and two predicates ShouldRelease and ShouldReveal. To aid under-
standing, we show how existing schemes can be mapped to our
framework.

4.1 Framework for Order Policy Enforcement

Parties, transactions, and ordering policies. Our framework is
run by users, who submit transactions, and a set of stakers, who exe-
cute the ordering protocol to order submitted transactions. Stakers’
protocol can either be a component of a larger consensus protocol
or a standalone protocol in parallel with the consensus (e.g., on
layer 2).

Definition 1 (Data and Metadata). A transaction tx; can be consid-
ered to consist of two parts — metadata md; and data data;. Metadata
is defined as the part of a transaction not given to the application
(i.e., a smart contract) for execution. Data is defined as the part of a
transaction that is required for application execution.

Our framework defines a generic protocol to enforce a data-
independent policy P.

Definition 2 (Data-independent Policy). A policy is defined as
data-independent if it takes as input a set of metadata (one for each

Data Independent Order Policy Enforcement

Framework for Order Policy Enforcement

Initialization:
1: Each staker s; runs init (possibly interactively with other stakers) to
get param; := (spri;, spp;)
2: Each staker s; publishes spp;
3: Each staker s; sets state; := 0
Transaction submission:
4: Whenever initiated by a user u, stakers in S and u run (possibly
interactively)
(txid; (L, outy, ..., outnr)) < submit(tx, inp,, .. .,inp,;)
where tx is user’s input (her transaction) and inp; is staker s;’s input
derived from param; and state;.
5: Each staker s; processes the metadata information and the transac-
tion information and updates its state.
(md;, data;) < process(txid, out;, state;)
state; « state;.add((txid, md;, data;))
Transaction inclusion:
6: Whenever ShouldRelease(s;) , stakers in S evaluate
(tSeq = (txq, . . ., txe); (statey, . . . staten)) «
order(statey, . . ., statenr)
where the order of (txy, .. ., tx,) is dependent only on mdy, ..., md,.
7: Staker s; adds tSeq to the blockchain.
Transaction revealing;:
8: For each k € [£], when ShouldReveal(txg), stakers evaluate
(txg; (statey, . .., staten)) « reveal(txy;

(stateq, spriy), . .., (statenr, sprin))

Figure 1: A general framework that captures proposed order-
ing policy enforcement protocols [6, 9, 10, 22-24] using four
protocols (submit, manipulate, order, reveal) and two predi-
cates ShouldRelease, ShouldReveal.

transaction) and outputs one or more permutations of transactions
associated with them, i.e, P(mdy, ..., mdp) C o(f), where o(f) is the
set of all permutations of (tx1, . . ., tXp).

Generally, each staker may have some different metadata for
a given transaction, thus md; = (md}, .. .,mdf]) represents the
metadata for transaction tx; across all N stakers.

The framework. As shown in Fig. 1, the framework for order policy
enforcement consists of four sub-protocols. These subprotocols are
reactive in that they are activated when specific conditions are met
and may execute in parallel to each other. We now describe the
four subprotocols following the life cycle of a given transaction,
although note that these subprotocols are reactive and may execute
in parallel for different transactions.

e Stakers engage in an initialization protocol to generate a param-
eter param = (spri, spp) that consists of secret parameters spri
and public ones spp. Initialization will also set a local variable,
state; — the set of pending transactions with metadata, to 0.

e First, to send a transaction tx to a blockchain, the user runs the
submit protocol with stakers. Specifically,

(txid; (L, outy, ..., outpn)) <= submit(tx, (inp;, ..., inpy;))

382

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

, where inp; and out; are the input (output) from (to) staker s;, and
txid is an id identifying the transaction. We do not restrict how
submit may be realized, e.g., it can be realized as a non-interactive
protocol where the user simply encrypts the transaction under
stakers’ public keys (in which case inp; = pk;); submit may also
be implemented with an interactive Multi-Party Computation
(MPC) protocol where the user engages in MPC protocol with
stakers (in this case inp; might be secret). At the end of submit,
each staker s; receives some information about tx in out;, which
will be used in later protocols. Note that not all stakers may be
required to participate in submit; however, a minimum of tg is
required (1 < t; < N). For the stakers that do not participate, the
input and output are L.

Users are ephemeral, ie., they may go offline after running
submit, a usability feature enjoyed by most real-world systems[6,
9, 10, 22—24]. Consequently, (txid; (L, outy, ..., outy)) together
must contain enough information to recover tx, an observation
that will play a critical role in our subsequent analysis. We dis-
cuss alternative protocols if this assumption does not hold in
Section 5.

We also assume w.l.0.g. that non-staker users submit their transac-
tions before a staker adds its own, considering all the information
revealed to it by the non-staking users.

Having finished the submit protocol for a given tx, a staker runs
a local process function to capture any local state to be used
in later sub-protocols, e.g., the time at which tx was received.
Specifically, (md;, data;) < process(txid, out;, state;).

The goal of an OPE protocol is to produce blocks with transac-
tions ordered in a desirable way. In our framework, whenever
predicate ShouldRelease(s;) is true, stakers will run the order
protocol, with s; being the leader if applicable, to order transac-
tions and to output a sequence of transactions. Specifically, let
tSeq = (txy, . . ., txp)

(tSeq; (statey, . . ., staten)) « order(stateq, . .., staten)

where each staker inputs its local set of pending transactions
(with any metadata captured in process). The output is a sequence
of transactions to be added to the blockchain and an updated local
variable (e.g., with transactions added to the block removed).
Note that, like in submit, not all stakers may be required to partic-
ipate in order; however, a minimum of ¢, is required (1 < t, < N).
For the stakers that do not participate, the input and output are L.
These stakers would appropriately need to change state according
to the on-chain published ordering of transactions.

This sub-protocol captures any multiparty computation man-
dated by an ordering protocol, e.g., fair ordering schemes gen-
erate the contents of the next block based on timestamps (or
relative receiving orders) across all stakers.

In some protocols, order only includes some cryptographic rep-
resentation of transactions in the blockchain, and another step
reveal is required to reveal the transaction plaintext so it can
be executed. Whenever ShouldReveal(B) is true, stakers will run
reveal to reveal transactions in B.

Again, not all stakers may be required to participate in reveal;
however, a minimum of ¢, is required (1 < ¢, < N).

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

We use tSeq [(tx1,...,txe) to represent that if tSeq is posted
on-chain after order then the reveal execution would correspond
to (txq, ..., txp).

Requirements. To rule out trivial or impractical constructions,
our framework makes the following assumptions.

First, we require submit(tx, -) to be binding to the given transac-
tion tx in that if (_; (_, outy, ..., outn)) = submit(tx, -), then (tx; .) «
reveal(tx; .). All practical blockchain systems do achieve this.

Second, we require that a submitted transaction is eventually
included in the blockchain, and revealed, if applicable. This is the
standard liveness property.

Third, we note that as expressed in the framework, the function
reveal() takes as input the output of the function order() and the
static private parameter in spri. Thus, we assume the protocols and
the predicates in the interim do not affect the inputs to the function
reveal, and thus, the function reveal can be run any time after order
(even before staker s; adds the output block to the blockchain). This
implies our framework does not apply to protocols that use crypto-
graphic primitives that change state of a transaction between order
and reveal such as by using time-locked encryption [27] or witness
encryption [17]. These primitives are not widely used due to their
practical limitations (e.g., it is hard to calibrate the timeout in time-
lock encryption, and decrypting a timelock encrypted ciphertext
requires constant computation; there is yet no practical witness
encryption schemes[17]).

Examples. In [31, Appendix A], we show that our framework can
capture OPE protocols based on DKG [6, 10], secret-sharing [24],
as well as fair ordering protocols [9, 22, 23].

4.2 Delineating Impossibility Conditions for
Data Independent Ordering

Existing data independent order policy enforcement (OPE) proto-
cols order transactions under the assumption that a fraction (less
than one-third or one-half) of stakers are Byzantine and the re-
maining stakers are honest. However, in practice, the motivation
to introduce additional transactions, delete existing transactions,
or to order transactions differently is to obtain higher monetary
gains for the stakers. Thus, a model where all stakers are rational
and maximizing their utility (in terms of monetary gains) captures
the adversarial setting better. In this section, we analyze OPE pro-
tocols under such an adversary. In particular, we show that under
some circumstances, there exists an attacking strategy where we
can ensure that rational stakers do not follow the OPE protocol.
The key challenge is in identifying the conditions under which
this statement holds, and showing the resulting attacking strategy.
Recalling the notations defined in Section 3, our result can be stated
as follows:

Theorem 1. LetII be a protocol that follows the ordering policy en-
forcement framework (Fig. 1) to enforce a data-independent policy P,
and let S be the set of rational stakers executing IL. Suppose there exists
a sequence of transactions tSeq = {tx1, ..., tx;} € P(mdy, ..., mdp)

with max utility for some input stream ((mds, datay), . . ., (mdp, datay)).

Moreover, let us assume that there exists a function extract() known to
all stakers in S s.t. tSeq’ | extract(txy, ..., tx;) € P(mdy,..., md,)
where tx; corresponds to the reveal of tx;, for another set of valid

383

Sarisht Wadhwa et al.

mdy, ..., mdy,; such that the utility from publishing tSeq’ is more
than the utility from publishing tSeq. Then, II cannot enforce P.

In other words, assuming MEV extraction is possible (i.e., extract
exists), data-independent ordering policies cannot be enforced by
protocols following the ordering policy enforcement framework
defined in Fig. 1. The necessary extract function, in practice, can
be an algorithm that uses a combination of techniques publicly
known to stakers today and outputs the sequence that produces
the highest utility.

To prove the above impossibility result we present an attacking
protocol (Algorithm 1), and show that the stakers can present a
different reality tSeq” where no proof of malice can be obtained.

Suppose an adversarial set of stakers A (|A|> max(ts, to, tr),
such that A is able to run submit, order, reveal) want to attack,
they will run Algorithm 1 using a protocol in a Trusted Execution
Environment (such as Intel SGX) when ShouldRelease(s;) is true
(and skip the honest protocol). Such an algorithm in TEE is de-
scribed in [31, Appendix B]. Note that we use an algorithm that
provides deniability to the stakers. Stakers in A (s; € A) will pro-
vide inputs to the TEE running Algorithm 1, which will release any
output bit-by-bit to ensure all parties receive the output [7, Sec 5.4].

Note that all computations except the final outputs are hidden
during the execution and not available to any party in the clear.
Given ¢ received outputs (each one submitted by an user u; for
a transaction tx;), and given a list spri¢ of inputs spri; of stakers
si € A, an orderered list of transactions tSeq = (txy, . .., tx¢) is gen-
erated (Line 5). Then, the reveal function is computed by the stakers
in A by passing as inputs the previously generated list of ordered
transactions, the list state? of states state; of stakers s; € A, and
spri®. Once the transactions tx; are available, transaction signatures
are verified in order to confirm that each member provided the cor-
rect input to the protocol. Next, the extract function is run (Line 10)
in order to introduce new transactions att_txn (Line 12), which
are then submitted (Line 13) and added in the local state (Line 15).
The resulting block containing MEV-extracting transactions is then
published (Line 17).

At a high level, the above construction of an attacking protocol
works because i) tSeq’ is more profitable for the stakers than tSeq,
and thus they are incentivized to join the coalition and ii) no party
can prove that the coalition of stakers was formed to violate the
ordering policy, and thus cannot be penalized.

We prove this formally in [31, Appendix C]. We show an example
attack that follows the attack protocol Algorithm 1in [31, Appendix
D].

5 OPE using Rational Binding Commitments

In the impossibility result in the previous section, we assumed that
given a sequence of transactions tSeq, the parties have access to
an extract() function that provides a higher utility. For existing
systems such as Ethereum, such MEV extraction strategies are
known for sequences of transactions such as sandwich attacks [34],
frontrunning [14, 25], arbitrage [14] etc. To make them work in the
attack in Algorithm 1 (where tSeq is available but not in the clear),
we can create an extract() circuit that attempts all known attack
strategies and applies them to tSeq, and picks the best among them
to produce a new sequence tSeq’.

Data Independent Order Policy Enforcement

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 1 Protocol for a set A of stakers extracting an ordering with a higher utility (protocol for s; € A)

1: state;? « if s; € A then state;j else L
: inp;? —if'sj € Atheninp; else L
: spri? — if sj € A then spri; else L
: procedure ATTACK®(state?, spri?, inp?)
(tSeq = (txq, . .., txe), state?) < order(state?)
for je{1,...,¢} do
(txj; state?) « reveal(tx;, state?, spri?)
B = (txq,...,txp)
VerifySigs(B)
10: att_B « extract(B)
11: state’ «— L

NG W

R

12: for att_txn € att B do

13: (txid; (L, outy, . .., outy)) « submit(att_txn, inp%)
14: md;, data; <« process(txid, out;, state;)

15: state] « state].add((txid, md;, data;))

16: (tSeq” = (tx’1, ..., tx’pr); state’) « order(state’)

17: return tSeq’, state;

> state? is a list of states state; for every state; € A

> inp“ is a list of inputs inp; for every state; € A

> spri is a list of private inputs spri; for every s; in A
> Executed when ShouldRelease(s;) is true

> Validators in A order ¢ transactions

> Reveal the block earlier than protocol intended

> Get MEV-extracting transactions

> Replay extracted in the desired order
> Add to state the MEV-extracting transactions

> Publish the block containing the MEV-extracting transaction

Importantly, for such an attack to work, indeed, the extract()
function needs to have access to all the information about the
transaction (e.g., having access to signed transactions that cannot
change). What happens if some information could be withheld from
the stakers? To understand this question, let us consider the follow-
ing example. An ideal strategy to sandwich an AMM transaction
tx:= “Buy x tokens of X fory tokens of Y with a slippage of s” is to

produce a sequence (txaBtItJ?{Ck, tx, txgtEtffk) so that the first attacking

attack

transaction tx§ °“* reduces the supply of token X for tx making

it pay a higher price, and txgtEthCk extracts the sandwiching profit.

However, if the attackers are unaware whether tx was a buy or
sell transaction, or if it may be reversed with some probability (i.e.,
tx became selling token X for Y), then using the same attack can
backfire and can result in losses for the attackers.

This idea leads to two natural questions. First, can we deviate
from the framework to design a scheme that withholds some in-
formation from attacking stakers? Second, can we disincentivize
attacks when the information is withheld?

In Section 5.1, we devise a strategy with rationally binding com-
mitments by creating an information asymmetry (e.g., only one
party knows whether it is a Buy or a SELL transaction) between
a specific staker ¥ (a flipper) and other stakers. In particular, the
transaction can be modified after reveal has been invoked and ¥ is
responsible to complete the transaction. The asymmetry of informa-
tion allows a rational ¥ to improve its own utility at the expense
of other stakers if the stakers choose to sandwich it. Consequently,
this disincentivizes the other stakers to attack in the first place. We
call this rationally binding since the correctness of the transaction
relies on being rational, which is a reasonable assumption. In
this world, the client needs only to monitor the chain and hold ¥
accountable in case it observes ¥ does not complete the transaction
correctly.

We can also rely on users or TEEs held by stakers to withhold
some information; this information is only revealed during the re-
veal phase. We discuss how to disincentivize attacks when this is

384

possible in [31, Appendix E]. However, such a solution either re-
quires the user to be online (which breaks the general ephemerality
requirement) or needs additional assumptions, such as TEEs in the
protocol. Since users do not have a stake, they typically tend to be
ephemeral and this may cause liveness issues by not revealing their
transactions.

5.1 AnimaguSwap

In this subsection, we describe a protocol design where some in-
formation is withheld from the attackers by a designated rational
staker called flipper ¥ This approach, as is, only works towards
mitigating, and sometimes eliminating, sandwich attacks in con-
stant product automated market makers (AMMs) like in Uniswap
V2 [1]; though it can be easily extended to any constant function
AMM. The key intuition is that if a set of stakers choose to sand-
wich a transaction, the protocol design allows the flipper to use its
knowledge to gain a profit at the expense of those stakers. Thus,
the binding property of the transaction relies on the flipper be-
ing rational. We first provide some background on an AMM and
how sandwich attacks can be performed on transactions. Then, we
present our protocol design and analyze it.

5.1.1 Background. An Automated Market Maker (AMM) such as
Uniswap [1], Balancer [4], and Curve[12], uses automated algo-
rithms to facilitate decentralized exchange of assets. AMMs set
prices based on a mathematical formula based on the available lig-
uidity of a given asset. In particular, in a Constant Product Market
Maker, the product of the asset amounts in the liquidity pool is kept
constant. Thus, if we have an AMM with two assets X and Y with
quantities ry and ry respectively, then ry * ry = k holds for some
fixed value of k at all times.

When a user wants to trade one asset (X) for another (Y), they
must deposit an amount of the first asset Arx and receive an ap-
propriate amount of the second asset Ary in return. Each trans-
action to the AMM is charged an additional fee, which we rep-
resent by f (e.g., f = 0.3% is a common value in practice). The

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

constraint becomes (rx +(1—f)Arx)*(ry — Ary) = k. Such a trade is
SwapTokensForExactTokens in the Uniswap implementation and
we represent it by Buy. Post the trade, the liquidity available would
be (rx + Ary) and (ry — Ary) respectively (independent of the f).

A trade can be made with the fixed Arx amount in which to
receive a fixed amount of first asset Ary, the user deposits an ap-
propriate amount of second asset Ary. Such a trade can be achieved
by SwapExactTokensForTokens in Uniswap implementation and
is referred to as SELL for the paper. The constraint for SELL is
(tx — (1 = f)Arx) = (ry + Ary) = k. Post the trade, the liquidity
available would be (rx — Arx) and (ry + Ary) respectively.

Thus, given the current state of an AMM with rx and ry tokens,
a user can estimate Ary received in exchange for depositing Arx or
estimate Ary to deposit in exchange for receiving Ary. However,
if the state of the system changes due to some other transactions
getting executed and affecting the liquidity pool, receiving Ary for
depositing Ary is not guaranteed. Thus, the system allows the user
to specify a parameter expressed as a fraction called slippage s so
that the number of tokens received by the user is not exact, e.g.,
> (1 — s)Ary. In other words, the user’s transaction is specified as
“Deposit (1 — f)Ary of X in exchange for > (1 — s)Ary of Y”.

5.1.2 Sandwich Attack on Constant Product AMM. While slippage
upper bounds users’ loss, an attacker can still profit from user
loss up to what is permitted by slippage by mounting sandwich
attacks. This can be done by executing a transaction, depositing
X, and receiving Y before the user’s transaction (frontrunning).
Once the user’s transaction is executed, observe that the liquidity
of Y has reduced further while it is the other way around for X.
Thus, the attack can then run a reversed transaction, where the
attacker sells the Y earned from the frontrunning transaction, in
exchange for X. Such a transaction is called backrunning, and in
an AMM, the attacker obtains a higher amount of X compared to
what it had deposited in the frontrunning transaction. We refer
interested readers to [31, Appendix F] for a mathematical analysis
of the optimal frontrunning and backrunning parameters.

5.1.3 AnimaguSwap specification. We now present a protocol that
can either reduce attacker gains or under some parameterizations,
result in attacker losses, when sandwiching is attempted. As we
have seen, in the frontrunning part of a sandwich attack, the at-
tacker reduces the liquidity of the token that the user is interested
in (token Y in our example). However, if the direction of the trade
can be withheld from the attacker, then the attacker essentially has
to guess one of the two directions. In situations where the attacker
guesses incorrectly, it instead increases the liquidity of Y due to
which the user can enjoy a much better trade and obtain Arj, > Ary
tokens of Ary.

Our protocol is shown in [31, Appendix I, Fig. 11]. It generally
follows the structure of the framework in Figure 1 except for a
couple of aspects that we will describe later. Recall that refers to
the flipper, a designated staker who would withhold the information
from other stakers.

Transaction generation. Suppose the user intends to perform a
trade from X to Y. This intent can be fulfilled in two ways: a “buy”
transaction txpyy that buys Y or, equivalently, a “sell” transaction
txspyy that sells X. With properly adjusted parameters, these two

385

Sarisht Wadhwa et al.

transactions have the same execution outcome. Specifically, we
write txsg; = SELL(X, Y, Ary, Ary, s, md), where Ary represents
the number of tokens of X to be sold, in order to get maximum
possible Y units, which is expected to be Ary. The transaction would
only go through if the number of tokens received > (1 — s)Ary.
md represents any other metadata to be used by the transaction.
Similarly, txgyy = Buy(Y, X, Ary, Ary, s, md). In our notation, the
first parameter is (Ary in case of SELL, and Ary in case of Buy) is
“exact” whereas the second parameter is determined by the first
parameter and s.

The user first generates a random bit b to determine which
transaction to use to fulfill its intended trade (note that the user
is indifferent). Without loss of generality, we require that the user
chooses the “buy” transaction txpyy if and only if b = 0. In the
transaction metadata for tx},, a hash of v||w is included, where v
and w are randomly generated numbers. This would be later used
to allow slashing.

The key trick in AnimaguSwap is that the same coin decides if
the user will “flip” the chosen transaction again. By flipping, we
mean changing the polarity of the trade from selling asset X to
buying asset X and vice versa, thereby creating a flipped transaction
that is the opposite of the user’s intent. Specifically, we require that
the user flips the chosen transaction if and only if b = 1. We denote
the transaction after the optional flipping as txp,.

Following the same example where the user intends to trade
from X to Y. If b = 0, the user will choose txgyy and does not flip,
ie., txp = txpyy. If b = 1, the user will choose txsg; and flips, i.e.,
txp = Buv(X, Y, Ary, Ary, s, md). Note that in this case txy, # txpyy.
Also, the committee always receives a “buy” transaction from the
user, but the true intent is hidden in the flip bit. As we will detail
in the next step, the user will submit txy, to the committee and the
flip bit b to a different staker called the flipper ¥

The second key trick is to disincentivize the flipper from reveal-
ing the flip bit (b), by having the user create another transaction tx#
which pays the flipper ¥ some amount of tokens if stakers attempt
to sandwich txp, but the direction of the sandwiched transaction is
opposite. In particular, following the same example, if b = 1 and the
committee creates a sandwich assuming b = 0, the user will earn
Ar}, > Ary. It can then pay the flipper Ar}, — Ary without decreas-
ing its utility from a no-attack scenario. Similarly, if b = 0 and the
committee assumes b = 1, then the user would swap Ar}, < Ary
and pay the flipper Ary — Ar},. To represent it mathematically, the
user pays the flipper b(Ar}, — Ary) + (1 - b)(Ary — ArY,). Observe
that obtaining Ary is what the user expected; paying the remaining
amount incentivizes . In scenarios where the polarity is guessed
correctly, the flipper does not gain or lose money.

Transaction submission. During the transaction submission pro-
cess, the user sends the bit b to the flipper. Importantly, the user
does not sign this message, ensuring that the flipper cannot prove
the polarity of the transaction to the other stakers. The bit b would
later be revealed by the flipper to the blockchain by sending a signed
message. What if the flipper cheats and presents an incorrect value?
To ensure this does not happen, the flipper sends a signed message
only to the user stating that it would reveal bit b corresponding to
this transaction; if the flipper does otherwise, or does not reveal
any value, then it can be slashed by the user based on this message.

Data Independent Order Policy Enforcement

However, one might argue that the flipper can forward a similar
message to the stakers, and if this bit is incorrect, the stakers would
be able to slash the flipper.

In order to safeguard against that, the user sends a random value
v as an unsigned message to the flipper. It is crucial to ensure
the deniability of the message sent by the user while maintaining
the integrity of the message i.e., the message sent to the flipper
could have been generated by the flipper itself. To ensure this, the
user sends m = (pk,||b||v]|txid) to the flipper encrypted under
pkﬂipper using a hybrid public key encryption scheme (e.g., [5]).
The message sent above could only be generated by a party who
knows the correct random number v and the transaction ID txid.
This ensures that no party except for the user and flipper (the two
parties that know the content of the message) could have generated
the message.

When returning the signed message to the user committing to
b, it also includes v in the commitment. The user then generates
another random number w, and uses hash(v||w) in the transaction
metadata. This ensures that only the user or a party with w can
slash the flipper using the signed message the flipper sent, and
thus, the flipper is free to sign any message it wants without risk
of getting slashed.

Once both these steps succeed, the user secret-shares the (poten-
tially flipped) transaction with the remaining stakers.

Transaction inclusion and reveal. The transaction inclusion
process is straightforward. An accumulator value corresponding
to the transaction is added to the chain whenever ShouldRelease
predicate is true. Finally, the transaction content is revealed from
the secret-shares when ShouldReveal is true. In this step, F reveals
the bit b too so that the correct transaction is revealed.

Pessimistic slashing. In case the flipper reveals bit b instead of b,

then the user uses the signed message (b, txid, v)5(pk 5 in addition to

v and w to slash the flipper. The slashing rule gives us the following

guarantees:

e Correctness: The user can only slash the flipper in case an incor-
rect bit is revealed, as slashing requires the user to show a signed
flip bit different from what the flipper revealed. Correctness fol-
lows from the unforgeability of digital signatures.

o Soundness: If the flipper releases an incorrect bit, then the user
can slash the flipper. Since the user has the signed message which
contains the correct bit b, it acts as a commitment by the flipper
and since both v and w are known to the user, the signature
can be used to slash the flipper by showing the authenticity of v
(revealing v and w, and verifying it against hash(v||w)).

o Non-transferability: The flipper cannot convince any party (other
than the user) that (b, txid, v)g(pktf) can be used to slash the flipper.
Note that this message can slash the flipper only if v is committed
to by the metadata md = hash(v||w). Since w is private to the
user, md is a perfectly hiding commitment to v, so no party can
verify that flipper’s claimed v is committed to by md, following
the definition of hiding.

4These predicates are abstract since their choice does not affect the design. In practice,
one can replace these with predicates used by Shutter DKG [10], Ferveo [6], or Fino [24].

386

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Observations. Here are a few observations related to this protocol.
First, all known blockchains typically rely on accepting transactions
that are signed only by the end users. This is the first protocol, to
our knowledge, that includes a transaction where a portion of it
(the bit b) is signed by a party (the flipper) other than the user.
Second, a consequence of our approach is that, in the presence of a
Byzantine flipper, the polarity of the executed transaction can be
reversed. In practice, however, parties are sensitive to their utility,
and thus, due to the existence of the slashing mechanism, a rational
flipper would always reveal the correct bit. Thus, our protocol is
only rationally binding — this is the key aspect where we deviate
from the requirement in the framework in Fig. 1. Third, since we
expect the user to slash the flipper in case it deviates, the user
cannot be ephemeral in the pessimistic case. The user needs to
penalize the flipper within a reasonable timeframe (e.g., a few days).
Finally, while the flipper can be any designated staker, a reasonable
choice would be to have the staker that is expected to reveal the
content of the transaction as the flipper. This ensures that the staker
can reveal without waiting for inputs from other stakers.

5.2 AnimaguSwap Analysis

In this subsection, we will analyze AnimaguSwap detailed in Sec-
tion 5.1.3. Our goal is to show that following protocol specifications
is the dominant strategy for all the parties involved. For ease of
analysis, we assume that the committee is colluding (e.g., through
a collusion protocol such as Algorithm 1), and hence, treat the com-
mittee as a single party. We start the game after the user sends the
flip bit to the flipper #, and the transaction is secret shared with the
committee C. For the analysis, C reconstructs the secret transaction
sent to it. Also, the analysis would follow a single-shot game (i.e.,
the flipper and the committee are not repeated). In more practical
scenarios, the game would be a multi-shot game. The reduction
from a multi-shot game to a single-shot game is shown in [31,
Appendix G].

5.2.1 Game Setup. We analyze the game for a single AnimaguSwap
transaction. The game underlying AnimaguSwap consists of two
players - the flipper (), who receives one bit of information from
the user on whether or not to flip the direction of the trade, and the
committee (C), which receives the transaction.

Definition 3 (AnimaguSwap Game). We define the game as a tuple
(N, A, O, p,u), where N = {F,C}, A = {Ag, A} is the set of actions
available to F and C respectively, O = {Op, O, Qs, O} is the set of
outcomes from the game, y is the function that maps the set of actions
to the outcome, and u = {up, uy, us, urs} is utility corresponding to
outcomes.

The game states achievable through the game are S = {O, O;, Op,
Or, Os, Ors} The action space for the game is defined as A¢ = {H
(Honest), C (Collude), I (Invite ¥), Al (Accept Information), AB
(Anticipate Betray)} and A¢ ={P (Participate), Co (Cooperate), B
(Betray)}. The game tree Fig. 2 helps to understand action space
better and also designs the function p.

We assume that both players are rational, and have perfect in-
formation on strategy used by the other player, a concept used to
find a Nash equilibrium of the game. We will first show such an

3 stands for honest, r random, s sandwich, and rs reverse sandwich.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

ug (Lemma 4)

P
O¢ ! 0;
C {
=1
S \H\ O, u, (Lemma 1)
@h up = (0, 0)

(a) Sequential Game

F ¢ Accept information | Anticipate Betray
Co-operate us (Lemma 2) urs (Lemma 3)
Betray urs (Lemma 3) us (Lemma 2)

(b) G- Simultaneous Game

Figure 2: Game Tree for actions taken in AnimaguSwap. Con-
sists of a sequential game in which each of ¥ and C decide
to participate or not and if both decide to participate, there
exists a simultaneous game to decrypt the transaction cor-
rectly or incorrectly.

equilibrium of strategy in a simultaneous game (Fig. 2(b)), and then
plug in the utility for the equilibrium strategy in the sequential
game (Fig. 2(a)), to use iterative elimination of dominated strategies
to find the best strategy across both games to earn the highest
utility.

In this model, a player’s utility is defined by the net number of
tokens gained or lost in the game. Further, the action set for the
game is limited, and any actions such as being involved in binding
side contracts are out of the scope of this analysis. We will discuss
the case with binding side contracts in [31, Appendix J]. There are
two ways to reach outcomes Oy and Oy, but the players’ utility is
only a function of the state, not the actions leading to the state (by
definition of utility function). Specifically, in case the game reaches
Qy, i.e., a successful sandwich attack due to either {Co, AT} actions or
{B, AB}, ¥ and C get a utility independent of actions taken to reach
the state; In case the game reaches Oy, i.e., unsuccessful sandwich
attack due to either {Co, AB} actions or {B, Al}, ¥ does not lose any
utility due to the actions taken. As an example of utility sharing,
after the action I a conditional bribe can be set to ¥, which would
only go through if the sandwich is successful.

From Section 5.1.1, without any attacker transaction, if the user’s
transaction was SELL then it would have followed

(tx + (1 = HAry)(ry — Ar}) = rxry 1)

Without any attacker transaction, if the user’s transaction was Buy
then it would have followed

@

5.2.2 Analysis. Let us represent direction as a random variable
chosen uniformly by the user from {Buy, SELL}. Without loss in
generality, we can always represent the frontrunning transaction
as a SELL transaction. In the case of Buy, the fee would be charged

(rx — (1 =f)Arx)(ry + Ar?) =rxry

387

Sarisht Wadhwa et al.

from the other token, but the essence of the proof would remain the
same. First, the frontrunning transaction would follow the constant
product invariant.

(rx + (1 —fAax)(ry — Aay) = rxry)
Now, after the frontrunning transaction, the victim transaction
would follow. The transaction here could be a SELL transaction
or Buy transaction, following the same set of parameters as C’s

frontrunning transaction. If the user’s transaction is SELL, then it
would follow the constant product invariant.

(rx + Aax + (1 — f)Ary)(ry — Aay — Ar;)

(4)

= (tx + Aax)(ry — Aay)

Also, the user’s transaction would only be executed if
Ary > (1- s)Ar‘; (5)

The backrunning transaction would follow the constant product
invariant with updated liquidity pools.

(rx + Aax + Arx — Aay)(ry — Aay — Ary + (1 - f)Aay)
= (rx + Aax + Ary)(ry — Aay — Ar})
The profit would be given by
7)

Since the sandwich is successful, Ar; < Ar‘f/. If the transaction is
Buy, then it would follow Eqgs. (8) to (11),

p* = Aay — Aay

(rx +Aax — (1 = f)Arx)(ry — Aay + Ary)

8

= (1x + dax)(ry — Aay))

Ary > (1-s)Ard 9)
(rx + Aax — Arx — Aay)(ry — Aay + Ary + (1 - f)Aay)
= (rx + Aax — Arx)(ry — Aay + Ary)

p~ =ANay - Aay (11)

Since the sandwich is unsuccessful, Ar; < Ar?

LEMMA 1. If the transaction’s direction is uniformly distributed
between {Buy, SELL}, and if C takes the action to cooperate (C), and
either takes action to not invite & (—I), or after taking action to invite
F (1), F does not participate (—P), to reach output state Oy, then
independent of the direction of trade C chooses, the utility of ¥ and

C (ur = ur(F),ur(C)) is given by(%(Arg - Ary), %(P+ +p7))

Proor. If C does not have information about the direction of
the trade, then it can assume a direction among {Buy, SELL}. With-
out loss of generality, we represent the committee’s frontrunning
transaction in the form of a SELL(ry, ry, Aay, Aay, s, md).

Since the direction of transaction is chosen at random from
{Buy, SELL}, Eq. (7) and Eq. (11) govern the profit with probability
0.5 each, and the expected utility would be given by

PP
T2 (12

Next, the utility for ¥ would be given from the AnimaguSwap
protocol only in the case when C guesses the transaction direction
incorrectly (and 0 in the other case).

ur(C) =

Data Independent Order Policy Enforcement

wr(F) = S (Aef - Ary) (13)

LEMMA 2. For game G, if F takes the action to co-operate (Co),
and C accepts the information (Al), or ¥ takes the action to betray
(B), and C anticipates betrayal (AB), then the utility is given by
us = (Us(C) = &,us(F) = p* —€), where 0 < ¢ < p*.

Proor. The proof for the lemma follows Eq. (7). The profit gained
from choosing the correct direction to sandwich would be shared
between ¥ and C, regardless of the actions taken to reach the state.
Thus, if C receives a utility of ¢, then ¥ receives a utility of p* — ¢,
0 < ¢ < p*. F receives no utility directly from the AnimaguSwap
protocol. O

LemMA 3. For game G, if F takes the action to co-operate (Co),
but C anticipates betrayal (AB), or ¥ takes the action to betray
(B), but C accepts the information (AI), then the utility is given by
urs = (urs(C) = p~urs(F) = Arg - Ar;).

Proor. Both sets of actions lead to a state where the committee
inserts a frontrunning transaction with the incorrect direction. As
stated in the setup, this would mean that # has no utility from the
game itself, and C loses utility governed by p~(Eq. (11)). However,
in accordance with the AnimaguSwap protocol, ¥ receives incen-
tives from the protocol. This would be given by Ar? — Ary. Thus

Ups = (p_,Are - Ar;). O

LEMMA 4. Forgame @, zfArlB(—Ary > p* —e the Nash Equilibrium
is governed by a mixed strategy for both ¥ and C, with F betraying
the committee with a probability of 0.5, and C anticipating betrayal
with a probability of 0.5. The overall utility from game G is given by

e+p” p*—g+Ar€—Ar;,
2 2

s

Proor. To prove that the above strategy is a Nash Equilibrium,
we reveal the strategy of each player to the other player and see
if the strategy changes. From #’s perspective, if it knows that C
anticipates betrayal with a probability of 0.5, then the expected

M, whereas the utility from

utility from betraying is
cooperating is M From lemmas 2 and 3, both of these
are equal, and thus ¥ does not have any additional utility from
deviating from the strategy.

From C’s perspective, if it knows that # betrays with a probabil-
ity of 0.5, then the expected utility from anticipating betraying is
M, whereas the utility from accepting the information

is w From lemmas 2 and 3, both of these are equal, and

thus C does not have any additional utility from deviating from the
strategy.

Thus, the given strategy is a Nash Equilibrium and by substi-
tuting the utilities from lemmas 2 and 3, the utility is given by

erp~ pr—e+ArB-Ary -
2 2 :

>

388

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

- —1 0.06
= committee s: 0.005 ™
§ —— flipper == 5:0.01 §
;_4 1 // _____ st 003 (J()—l?
> — analytical 7~ s
EJ simulation 0.02.8
o o
+= +
= +
= 0.00%
= b
2 a,

0 2 4 6 8
change in liquidity of token X (100Ary/rx)

10

Figure 3: Gains of the committee and the flipper in a sand-
wich attack when using AnimaguSwap.

LEMMA 5. In the game state O, if the transaction’s direction is
uniformly distributed between { Buy, SELL}, and ifAr?—Ar; > pt-g,
it is strictly dominant for C to not invite & (—I) over inviting F (I).

Proor. From Lemma 1, the utility of C from random choice is
ur(C) = BF

. From Lemma 4, the utility of C from game G is

Hf _ . Since ¢ < p*, I%P_ > % Thus, choosing the direction at
random strictly dominates colluding with #. O

Theorem 2. Ifthe transaction’s direction is uniformly distributed
between {Buy, SELL}, Arg —-Ary > p*and Aa;(+Aay —2Aax <0, it
is dominant for all parties in AnimaguSwap to follow the specification
in Section 5.1.3.

Proor. If Arg —Ary > p*, then Arf; —Ary > p* —esince e > 0.
Thus, from Lemma 5, it is strictly dominant for C to choose the
direction of trade arbitrarily over colluding with . If Aaj, + Aay, —
2Aax < 0, then the expected profit from attacking AnimaguSwap
by arbitrarily choosing a direction of trade is < 0 by plugging
in p* and p~ in Lemma 1. Since taking honest actions leads to
0 utility, the committee would choose to take honest actions in
AnimaguSwap. O

The chart (Fig. 3) represents the variation of the maximum utility
with the user’s transaction input (Ary) relative to the liquidity of
X available (rx), where slippage is set to be 0.005, 0.01, and 0.03
respectively. If both # and C act honestly, they both receive no
utility from the game. From the chart, we observe that u,(C) < 0
until ~ 7.9% of the liquidity is traded. From this, we can conclude
that C and consequently # would act honestly unless the traded
amount > 7.9% of the liquidity. 7.9% value is roughly when Aaj, +
Aa)_(—2Aayx = 0.

To validate the analysis when C chooses the direction of trade ar-
bitrarily, we simulate the attack in an AMM modeled after Uniswap
v2, and calculate the expected gains for the attacker and the flipper
when the attacker decides to sandwich the transaction across mul-
tiple values of s set by the user. Figure 3 shows that the analytical
and simulation results are consistent.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Numerical example. As a concrete example, Table 2 in [31, Ap-
pendix H] shows the loss/gain of an attack against a simulated user
trade sent through AnimaguSwap to Uniswap V2.

5.3 Base AnimaguSwap Evaluation

To evaluate the practicality of AnimaguSwap, we implemented the
protocol (without the sub-routines for non-uniform distribution
for {Buy, SELL} and repeated games) as a smart contract AS in 350
lines of Solidity. At a high level, AS is a middleware between users
and an AMM, where users send commitments of transactions to AS
following the AnimaguSwap protocol, stakers and flipper reveal
user transactions, and finally, AS forwards the revealed transactions
to the destination. In our prototype implementation, the destination
is a fork of Uniswap V2 AMM. Specifically, the smart contract
handles the following tasks:

o Staking and slashing. Stakers and the flipper deposit an ap-
propriate amount of collateral to AS to join the system. When
misbehavior is detected, users can submit evidence to AS to slash
their stakes (c.f. Pessimistic Slashing [31, Appendix I, Figure 12]).

o Commit. To commit to transaction tx, a user runs Generate Trans-
action and Transaction Submission specified in Section 5.1.3. After
interacting with stakers and flippers, the user calls AS.commit
with the hash of tx;,.
Reveal and execution. The reveal process follows Transac-
tion Revealing in Section 5.1.3. Specifically, the stakers recon-
struct the secret shared transaction off-chain and one of the
stakers calls AS.revealStaker with the reconstructed transaction
txp. revealStaker verifies the correctness of tx}, against the com-
mitment. Then, Flipper calls AS.revealFlipper with flip bit b. With
both b and txy,, AS recovers the user’s original intent and executes
it. In our implementation, this triggers a call to Uniswap V2.

Off-chain parties (stakers and the flipper) are implemented in 400

lines of TypeScript. The code can be found at

https://anonymous.4open.science/r/AnimaguSwap-D31F/.

Evaluation. The stakers’ main task is to reconstruct user trans-
actions from secret shares to open commitments and execution
transactions. The flipper’s task does not involve any costly compu-
tation. Compared to smart contract execution, off-chain computa-
tion is much more efficient (see, e.g., [6], for evaluation). The main
performance metric, therefore, is the gas consumption of AS.

Table 1 shows the gas cost breakdown of executing a Uniswap
trade from 1 wBTC to DAI, which costs 351k gas ($4.6 at the time
of writing). To compare, a typical Uniswap V2 trade costs about
150k gas ($2). ¢ The strong protection of AnimaguSwap thus incurs
a 1.3x overhead. Note that since transactions are reconstructed
off-chain, the gas cost does not increase with the number of stakers.
Also, note that the cost does not increase with the value of the
transaction. Therefore, while gas usage can be potentially reduced
further, our preliminary implementation is already quite practical
for high-value transactions.

5.4 Non-uniform Distribution in {Buy, SELL}

In Theorem 2, we assumed for the result that there is an even
spread between two trade directions, {Buy, SELL}. However, this

Shttps://etherscan.io/gastracker

389

Sarisht Wadhwa et al.

Function ‘ Gas cost H Function ‘ Gas cost
commit 66275 revealFlipper | 46069
revealStaker | 239342 complain 34862

Table 1: Cost for a AnimaguSwap call. It takes 1564706 gas to
deploy (one-time cost). Complain is not on a critical path.

assumption might not hold in real-world scenarios. For instance,
during the LUNA crash of May 2022, a trade involving ETH and
LUNA is more likely to be selling LUNA, than buying it. In such
scenarios, AnimaguSwap, as presented above, does not work, as the
attacker can guess the flipper’s bit based on public information such
as market sentiment. Another problematic scenario is when the
user only owns one of the assets in her transaction, so the attacker
can deduce that the transaction must be selling that asset.

Formally, for a given pair of assets Pair = (X, Y), if the probability
of trading X to Y in a random transaction is different from that of
the reverse direction, we say this asset pair is biased, and we denote
the probability of the more probable direction with P_bIirp,;, > 0.5.
(The probability of the less probable direction is 1 — P_DIRpg;,.) We
call P_DIRpg;, the bias of the pair for short. We omit the subscrip-
tion when the asset pair is clear from context. Now we present an
enhancement to AnimaguSwap that can protect biased asset pairs.

Our idea is to obfuscate the user transaction (using techniques
to be presented shortly) so that an attacker mounting sandwich
attacks based on guessed transaction information will equally likely
fail or succeed. ‘Success’ here means the attacker manages to profit
from the sandwich attack, while ‘failure’ means the attacker loses.
As long as the amounts gained or lost in a ‘success’ and ‘failure’
remain the same as in the gains and loss in Section 5.2, all the lemma
statements and the theorem statement would follow. We present
the subroutines integrated into AnimaguSwap in [31, Appendix I,
Figure 12].

In order to get an equal probability of ‘Success’ and ‘Failure’,
we take the following three steps: 1) remove any user dependency
by creating a pool of users; 2) hide the asset being traded among
multiple transactions in a way that no party can distinguish which
asset is being traded, and 3) set the parameters so that the attacker
can only lose utility from sandwiching incorrectly, but never gain
any profit, if it chooses the wrong asset. With these three proper-
ties, we make it such that the attacker gains a profit when it gets
everything correct, however, in multiple cases where it gets the
trade direction incorrectly, the attacker loses. There also exist cases
where the attacker neither wins nor loses (pays some transaction
fee), but we assume the utility for such cases is 0.

To start with, we obfuscate the user identity by mixing it among
a pool of decoy users so that the attacker cannot gain information
about the user’s transaction from the user’s on-chain presence (e.g.,
if this user doesn’t possess the asset X, then the attacker can infer
that the user cannot only be buying X.)

To select decoy users, the user randomly chooses users who
collectively own all the assets being traded (the real asset pair
and all the auxiliary asset pairs, which we will introduce next).
The selection is made such that given all the assets (including
auxiliary assets, which will be introduced soon) involved in the

https://anonymous.4open.science/r/AnimaguSwap-D31F/

Data Independent Order Policy Enforcement

trade, selecting any user out of the pool gives no extra information
about the trade to the attacker over any other user in the pool. For
example, let’s say the user submits a trade between USDC and ETH.
It has USDC but not ETH. The user would create a pool of users
(from the set of all blockchain users), such that one user has ETH
but no other assets. This pool of users (in this case, 2 users are
sufficient, but adding more users to have redundancy does not hurt)
would be used to generate a ring signature [26], such that no party
can distinguish which user amongst the pool of users created the
transaction. The flipper escrows the true identity of the transaction
creator and will be released in the same way as the flip bit.

However, in doing so, the flipper can release incorrect infor-
mation about the user sending the transaction. i.e. it can create a
transaction itself and generate a transaction, but since the identity
is obscured, it releases the wrong identity. To prevent this, we need
a way for a user to prove that the transaction is not its own. We do
this by controlling the v variable used in metadata creation. It was
introduced to hide the commitment of the commitment received
from Flipper to the information it has. Instead of randomly gen-
erating it, the user uses v = h(sk, txid), where sk is the secret key,
and txid is the block number. To any party without sk, it remains
a completely random number, but any user can generate a zero-
knowledge proof that it is not the user generating the transaction.

We also introduce the concept of auxiliary transactions. The idea
behind the concept is to hide how much is being traded and which
pair of assets is involved. Consider, for instance, the bias of the
user’s “real” transaction is P_DIR,,, > 0.5. To achieve an equal
probability of ‘Success’ and ‘Failure’, the user chooses N_ASSET
different asset pairs with a skew of the direction of trade similar to
P_bIRr; > 0.5 for each asset pair i, the value of which we will define
shortly. Next, it creates N_asseT auxiliary transactions with the
newly chosen pairs, the same value as the original transaction, and
chooses the direction of the trade with the same probability P_DIR;.
We refer to P_ASSET,,; as the probability that amongst a set of
assets, real is the actual asset pair, and P_asseT; for introduced
auxiliary asset pair i, such that P_ASSET,.,; + 2.; P_AssET; = 1. For
example, let’s say for the ETH-USDC pair, there exists a probability
of 0.6 for traders to buy ETH from USDC. The user would find
another pair (e.g., WBTC-Tether) such that the attacker cannot
differentiate whether this transaction was an ETH-USDC pair or
the WBTC-Tether pair. We will show how this other pair (WBTC-
Tether) is found after the claim statement. The slippage for this
transaction is such that at the current price, the trade would fail,
however, at any price better than the current price, the transaction
would succeed. This way, the attacker can only ‘Fail’ if it chooses
to attack the auxiliary assets, and not ‘Succeed’ even when the
direction guessed is correct.

Introducing new auxiliary transactions would require the token
being traded to be available to the user. However, the user may
not own auxiliary assets to make transactions in the first place.
One workaround is to borrow auxiliary assets from a decentralized
lending platform in an indistinguishable way (indistinguishable
which asset is being borrowed) from the attacker. A naive solution
to this is to loan all possible assets involved in the trade, with the
smallest union of assets not involved in the trade over the user
pool. e.g. If assets A and B are the real traded assets, and C, D, E,
and F are used as auxiliary assets, and in the user pool, all users

390

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

have either asset G, H, or I, then a loan for A, B, C, D, E, F would
be required keeping an asset G, H and I as collateral (i.e., a total of
18 loans). Most of these loans would fail since the user would not
have the required collateral to obtain the loan.

However, with AnimaguSwap, we have an advantage that at the
time of execution, we have complete knowledge, and hiding the
access is not important. Thus, if we can program AnimaguSwap con-
tract to involve generating transactions for loans, we can optimize
the process to not involve unnecessary loan transactions.

In addition, the collateralized asset needs to be outside the set
of assets involved in the trade (the main transaction and the auxil-
iary transaction). For example, in the ETH-USDC trade, if the user
chooses the auxiliary pair as WBTC-Tether (Let’s say WBTC is
being bought more than Tether), then it would need to ensure that
the auxiliary transaction is valid. If it does not have the asset being
traded away (Tether), then the AnimaguSwap would issue a loan
for Tether, keeping SUSHI (A third asset not involved in the trade)
as collateral. This is important for the user ambiguity constraint
since if the user does not have an asset for collateral, it gives the
attacker information that the user may be more likely to use the
asset it has as the traded asset. If the user is using a loan from an
external asset, all the assets involved are equally likely, however,
in case an asset is used that is in the set of traded assets, then that
asset is more likely to be a traded asset (real asset, or auxiliary
traded asset).

With the above-described changes to the AnimaguSwap specifi-
cation ([31, Appendix I]), we can claim the following:

Claim 1. Given a probability of the trade being P_DIR,oq > 0.5
in one direction, if there exists a set of asset pairs with probabil-
ity P_DIR; > 0.5 of it being traded in a given direction, such that
>.i(P_ASSET;*P_DIR;) = 1—2P_ASSET; o1 *P_DIR,¢,], where P_ASSET;
represents the probability of asset pair i to be the real asset pair
amongst the set of asset pairs chosen for a pool of users, given that
the user owns an asset not involved in the trade as collateral, then
the subroutine described ensures that the probability of an attacker
successfully gaining utility from sandwich is equal to probability of
an attacker losing utility.

Proor. The protocol creates the following scenarios when sand-
wiched attacked - 1) the attacker chooses both the asset and di-
rection of trade correctly (probability = P_ASSET, ¢4 * P_DIR,¢q1);
2) chooses the asset correctly, but the direction is inverted (proba-
bility = P_ASSET,¢4; * (1 — P_DIR,,4)); 3) chooses the asset incor-
rectly but the direction is the same as the direction chosen for the
dummy transaction (probability = 3;(P_ASSET; * P_DIR;)); and 4)
chooses the asset as well as the direction of the dummy transac-
tion incorrectly (probability = 3;(P_ASSET; * (1 — P_DIR;)). Now,
the attacker loses capital in the second and fourth scenarios, i.e.
with probability P_ASSET,p47 * (1 = P_DIR,¢q7) + 2i(P_ASSET; % (1 —
P_pIR;)) and gains capital in only the first scenario with probabil-
ity P_ASSET, 41 * P_DIR, .. The auxiliary assets are chosen such
that >;(P_ASSET; * P_DIR;) = 1 — 2P_ASSET,¢q; * P_DIR, ;. Earlier
P_pIR; > 0.5 was chosen, and thus the restriction needs to be set
when choosing the asset pairs (because the attacker would always
sandwich the more probable direction after choosing the asset). O

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

To complete the running example, if user wants to trade USDC
to buy ETH, where there is a 0.6 probability (P_DIR,.;) to buy ETH,
and amongst all asset pairs traded in AMMs, USDC-ETH pair occurs
20% of the times, then it would choose another asset pair such that
0.2%0.6 = 0.2 % 0.4 + P_ASSET; * P_DIR;. Thus, an asset that could
be used by the user is the WBTC-Tether if it occurs 8.8% of time,
and with probability 0.55 the direction is biased towards WBTC. (It
could have been 10%, 0.6 probability, and so on as long as it satisfies
the formula in the claim). After choosing the asset, the user creates
the auxiliary transaction as described. According to our claim, if
an attacker sandwiches the new transaction, then it would have
the same probability for ‘success’ case (guessing USDC-ETH, and
that the transaction is in the direction of ETH) and ‘failure’ case
(guessing the wrong direction of trade for the guessed pair).

Using the claim with Theorem 2, we get the following theorem:

Theorem 3. Given there exists a set of asset pairs with probabil-
ity P_DIR; > 0.5 of it being traded in a given direction, such that
>i(P_ASSET;*P_DIR;) = 1—2P_ASSETy 41 *P_DIRyq), Where P_ASSET;
represents the probability of asset i to be the real asset amongst the
set of assets chosen for a pool of users, given that the user owns an
asset not involved in the trade as collateral, Arg - Ar; > p* and
Ad}, +Aay, —2Aax < 0, it is dominant for all parties in AnimaguSwap

X X
to follow the specification in Section 5.1.3.

6 Discussion and Future Work

On using primitives such as witness encryption, time lock
encryption, or traceable secret sharing to circumvent Theo-
rem 1. Our setup of Framework 1 assumes that the output of the
order function is directly used as an input to the reveal function.
This implies that a transaction can be revealed at any time after it
is ordered so far as sufficiently many stakers participate. On the
other hand, the use of cryptographic primitives such as Witness
Encryption [17] and Time Lock Encryption [27] tie the reveal of
transactions to satisfying some condition (e.g., the passage of time);
thus, these primitives can be used to circumvent the impossibility
result. The use of TEEs in [31, Appendix E] can be considered as an
implementation of witness encryption assuming trusted hardware.

The notion of traceable secret sharing introduced by Goyal
et al.[18] allows users to produce secret shares such that once
the data is reconstructed, parties releasing their secret shares can
be identified. However, our attack strategy in Algorithm 1 circum-
vents this by producing only the generated transactions as output.

On sending deniable messages. Recent studies [30] demonstrate
that deniability may be compromised when keys are encumbered
in a Trusted Execution Environment (TEE) such as Intel SGX or if
a committee manages the flipper’s keys through a distributed key
system. Consequently, users must verify that they are interacting
with a single, unrestricted user as the flipper. This verification can
be achieved by employing a Complete Knowledge Proof [20], which
substantiates that a single user possesses unrestricted access to the
information provided, thereby reinstating deniability. To use CK in
practice, all flippers would require a CK certificate either obtained
through a TEE (since the input to a TEE is public to the party that
inputs it) or an ASIC-based proof (which can be generated in a

391

Sarisht Wadhwa et al.

reasonable time only if the key is known to a party generating the
proof) verified on-chain.

On lack of knowledge of real-world entities. Our impossibility
results crucially rely on the inability of the protocol participants to
distinguish whether two public keys belong to the same real-world
entity or not. This is reasonable, especially in a permissionless
setting. However, in practice, if we can perform an analysis of the
flow of transactions across different keys and their uses, and derive
intelligence based on these transactions (e.g., [11]), we can identify
the existence of such attacks with the analysis acting as a “proof”.

On collusion between the user and the flipper. Even if the
user and flipper collude, in AnimaguSwap, it is not possible for
a user’s transaction to violate the soundness condition. During
a collusion there are two cases that may arise: the user does not
receive a commitment itself, or the flipper violates the commitment
it shared. The protocol specification requires the user to collect a
commitment before posting a transaction. If the commitment is
not given to the user, and the user does not post a commitment
to what it receives from the flipper, the flipper can refuse to share
profits with the user and instead collude with the committee for a
potentially larger share of the profit. Thus, if the user and flipper
collude, and the user has the flipper’s commitment, the user can
not only get better execution and share profits with the flipper but
also slash the flipper.

On user acting as flipper. The user cannot be asked to withhold
the information in AnimaguSwap. This is because the user cannot
be trusted to release the information. As with user withholding
information, if the user does not release a flip bit, it cannot be
slashed and thus threatens the protocol’s liveness. Flipper can,
however, be a user (which has a designated stake from being a
Flipper) since the transactions being sent by the Flipper would only
further discourage sandwich attacks since even when the committee
is randomly predicting, the flipper can ensure that the prediction
they choose is incorrect.

Acknowledgments

This work was supported in part by NSF award 2237814 and an
Ethereum Research Grant.

References

[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.
Technical Report. Tech. rep., Uniswap.

atom_crypto. 2022. The MEV Game of the Crypto Economy: Osmosis’ Thresh-
old Encryption vs. SGX of Flashbot? https://mirror.xyz/infinet.eth/SFjR1H1-
RMnKoloPjgkxpauVPrLYGqQLHQP1dY9FHvx4.

Kushal Babel, Yan Ji, Ari Juels, and Mahimna Kelkar. 2023. PROF: Fair Transaction-
Ordering in a Profit-Seeking World. https://initc3org.medium.com/prof-fair-
transaction-ordering-in-a-profit- seeking-world-b6dadd71f086.

Balancer. [n. d.]. Balancer Docs. https://docs.balancer.fi/reference/math/stable-
math.html.

Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.
Wood. 2022. RFC 9180: Hybrid public key encryption. https://datatracker.ietf.
org/doc/rfc9180/

Joseph Bebel and Dev Ojha. 2022. Ferveo: Threshold decryption for mempool
privacy in BFT networks. Cryptology ePrint Archive (2022).

Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.
2019. Tesseract: Real-time cryptocurrency exchange using trusted hardware. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1521-1538.

[2

https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://docs.balancer.fi/reference/math/stable-math.html
https://docs.balancer.fi/reference/math/stable-math.html
https://datatracker.ietf.org/doc/rfc9180/
https://datatracker.ietf.org/doc/rfc9180/

Data Independent Order Policy Enforcement

8]

<

]

[10

[11
[12]

=
&

[14]

[15]
[16]
[17

[18]

[19]

[20

[21]

Vitalik Buterin. [n.d.]. State of research: Increasing censorship resistance of
transactions under proposer/builder separation (PBS). https://notes.ethereum.
org/@vbuterin/pbs_censorship_resistance.

Christian Cachin, Jovana Mi¢i¢, Nathalie Steinhauer, and Luca Zanolini. 2022.
Quick order fairness. In Financial Cryptography and Data Security: 26th Inter-
national Conference, FC 2022, Grenada, May 2—6, 2022, Revised Selected Papers.
Springer, 316-333.

Cducrest. 2022. Shutterized Beacon Chain. https://ethresear.ch/t/shutterized-
beacon-chain/12249.

Chainalysis. [n. d.]. Chainalysis. https://www.chainalysis.com/.

Curve. [n.d.]. Understanding Curve v1 Curve Finance. https://resources.curve.
fi/base-features/understanding-curve.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910-927.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910-927.

FlashBots. 2020. Flashbots Resource Document. https://docs.flashbots.net/.
flashbots. 2022. Mev-Boost GitHub. https://github.com/flashbots/mev-boost.
Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness encryp-
tion and its applications. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing. 467-476.

Vipul Goyal, Yifan Song, and Akshayaram Srinivasan. 2021. Traceable secret
sharing and applications. In Advances in Cryptology—CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16—20,
2021, Proceedings, Part III 41. Springer, 718-747.

Lioba Heimbach and Roger Wattenhofer. 2022. Eliminating sandwich attacks
with the help of game theory. In Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security. 153-167.

Mahimna Kelkar, Kushal Babel, Philip Daian, James Austgen, Vitalik Buterin, and
Ari Juels. 2023. Complete Knowledge: Preventing Encumbrance of Cryptographic
Secrets. Cryptology ePrint Archive (2023).

Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. 2021. Order-Fair Consensus
in the Permissionless Setting. IACR Cryptol. ePrint Arch. 2021 (2021), 139.

392

[22]

[23]

[24

[25]

[26]

&
=

[33

[34

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. 2021.
Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryptology ePrint
Archive (2021).

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-fairness
for byzantine consensus. In Annual International Cryptology Conference. Springer,
451-480.

Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)
Protection on a DAG. arXiv preprint arXiv:2208.00940 (2022).

Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying Blockchain Ex-
tractable Value: How dark is the forest? arXiv preprint arXiv:2101.05511 (2021).
Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret. In
Advances in Cryptology — ASIACRYPT 2001, Colin Boyd (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 552-565.

Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles and
timed-release crypto. (1996).

Sikka inc. 2022. Sikka Projects. https://sikka.tech/projects/.

Nik Unger and Ian Goldberg. 2015. Deniable key exchanges for secure messaging.
In Proceedings of the 22nd acm sigsac conference on computer and communications
security. 1211-1223.

Ricardo Vieitez Parra et al. 2018. The Impact of Attestation on Deniable Commu-
nications. (2018).

Sarisht Wadhwa, Luca Zanolini, Francesco D’Amato, Aditya Asgaonkar, Chengrui
Fang, Fan Zhang, and Kartik Nayak. 2023. Data Independent Order Policy En-
forcement: Limitations and Solutions. Cryptology ePrint Archive, Paper 2023/868.
https://doi.org/10.1145/3658644.3670367 https://eprint.iacr.org/2023/868.
Matheus Venturyne Xavier Ferreira and David C. Parkes. 2023. Credible De-
centralized Exchange Design via Verifiable Sequencing Rules. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing (STOC 2023). As-
sociation for Computing Machinery, New York, NY, USA, 723-736. https:
//doi.org/10.1145/3564246.3585233

Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022.
SoK: MEV countermeasures: Theory and practice. arXiv preprint arXiv:2212.05111
(2022).

Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 428-445.

https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://www.chainalysis.com/
https://resources.curve.fi/base-features/understanding-curve
https://resources.curve.fi/base-features/understanding-curve
https://docs.flashbots.net/
https://github.com/flashbots/mev-boost
https://sikka.tech/projects/
https://doi.org/10.1145/3658644.3670367
https://eprint.iacr.org/2023/868
https://doi.org/10.1145/3564246.3585233
https://doi.org/10.1145/3564246.3585233

	Abstract
	1 Introduction
	1.1 Overview of results

	2 Related Work
	3 Model and Problem Statement
	4 Impossibility of OPE under rationality
	4.1 Framework for Order Policy Enforcement
	4.2 Delineating Impossibility Conditions for Data Independent Ordering

	5 OPE using Rational Binding Commitments
	5.1 AnimaguSwap
	5.2 AnimaguSwap Analysis
	5.3 Base AnimaguSwap Evaluation
	5.4 Non-uniform Distribution in {Buy, Sell }

	6 Discussion and Future Work
	Acknowledgments
	References

