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Abstract—Trained on billions of images, diffusion-based text-

to-image models seem impervious to traditional data poisoning

attacks, which typically require poison samples approaching

20% of the training set. In this paper, we show that state-

of-the-art text-to-image generative models are in fact highly

vulnerable to poisoning attacks. Our work is driven by two key

insights. First, while diffusion models are trained on billions

of samples, the number of training samples associated with

a specific concept or prompt is generally on the order of

thousands. This suggests that these models will be vulnerable to

prompt-specific poisoning attacks that corrupt a model’s ability

to respond to specific targeted prompts. Second, poison samples

can be carefully crafted to maximize poison potency to ensure

success with very few samples.

We introduce Nightshade, a prompt-specific poisoning at-

tack optimized for potency that can completely control the

output of a prompt in Stable Diffusion’s newest model (SDXL)

with less than 100 poisoned training samples. Nightshade also

generates stealthy poison images that look visually identical

to their benign counterparts, and produces poison effects

that “bleed through” to related concepts. More importantly,

a moderate number of Nightshade attacks on independent

prompts can destabilize a model and disable its ability to

generate images for any and all prompts. Finally, we propose

the use of Nightshade and similar tools as a defense for content

owners against web scrapers that ignore opt-out/do-not-crawl

directives, and discuss potential implications for both model

trainers and content owners.

1. Introduction

Since 2022, diffusion based text-to-image models have
taken the Internet by storm, growing from research projects
to numerous applications in advertising, fashion [1, 2], web
development [3, 4, 5], and AI art [6, 7, 8, 9]. Models like
Stable Diffusion SDXL, Midjourney v5, Dalle-3, Imagen,
Adobe Firefly and others boast tens of millions of registered
users and have produced billions of images [10].

To date, public consensus considers these diffusion mod-
els impervious to data poisoning attacks. Poisoning attacks
manipulate training data to introduce unexpected behavior to
the model at training time, and have been studied extensively
in the context of classification tasks using deep neural
networks (DNN). Poisoning attacks cause predictable mis-
classifications, but typically demand a substantial volume

of poison data for success, e.g., ratio of poison training
samples to benign samples of 20% or higher. Since today’s
diffusion models are trained on hundreds of millions (or
billions) of images, a common assumption is that poisoning
attacks on these models would require millions of poison
samples, making them infeasible in practice.

In this work, we demonstrate a surprising result: state-
of-the-art text-to-image models are in fact highly vulnerable
to data poisoning attacks. Our work is based on two key
insights. First, while these models are trained on millions
and billions of images, the number of training samples
associated with a specific concept or prompt is quite low,
on the order of thousands. We call this property “concept
sparsity,” and it suggests the viability of prompt-specific

poisoning attacks that corrupt a model’s ability to respond
to specific targeted prompts. Second, we observe that nat-
ural benign images exhibit large variance in text labels,
image composition, and image features, all of which produce
destructive interference to minimize training influence. By
crafting poison samples that minimize these sources of
interference, we can produce highly effective poison attacks
with very few samples. Unlike previous work on backdoor
attacks [11, 12, 13], we show that successful prompt-specific
poisoning attacks do not require access to the model internal
pipeline, and only need a very small number of poison
samples to override a specific target prompt. For example,
a single Nightshade attack (“car” to “cow”) targeting Stable
Diffusion SDXL has a high probability of success using only
50 optimized samples, and the poisoned model outputs an
image of a cow for every mention of a car in its prompts.

This paper describes our experiences and findings in
designing and evaluating prompt-specific poisoning attacks
against generative text-to-image models. First, we validate
our hypothesis of “concept sparsity” in existing large-scale
datasets used to train generative image models. We find that
as hypothesized, concepts in popular training datasets like
LAION-Aesthetic exhibit very low training data density,
both in terms of concept sparsity (# of training samples
associated explicitly with a specific concept) and semantic
sparsity (# of samples associated with a concept and its
semantically related terms). Second, we confirm a proof
of concept poisoning attack (by mislabeling images) can
successfully corrupt image generation for specific concepts
(e.g., “dog”) using 500-1000 poison samples. Successful
attacks on Stable Diffusion’s newest model (SDXL) are con-
firmed using both CLIP-based classification and an (IRB-



approved) user study. Unfortunately this attack still requires
too many poison samples and is easily detected/filtered.

Third, we propose a highly optimized prompt-specific
poisoning attack we call Nightshade. Nightshade uses mul-
tiple optimization techniques (including targeted adversarial
perturbations) to generate stealthy and highly effective poi-
son samples, with four observable benefits.

1) Nightshade poison samples are benign images shifted
in the feature space, and still look like their benign
counterparts to the human eye. They avoid detection
through human inspection and prompt generation.

2) Nightshade samples produce stronger poisoning effects,
enabling highly successful poisoning attacks with very
few (e.g., 100) samples.

3) Nightshade’s poisoning effects “bleed through” to re-
lated concepts, and thus cannot be circumvented by
prompt replacement. For example, Nightshade sam-
ples poisoning “fantasy art” also affect “dragon” and
“Michael Whelan” (a well-known fantasy and SciFi
artist). Nightshade attacks are composable, e.g. a single
prompt can trigger multiple poisoned prompts.

4) When many independent Nightshade attacks affect dif-
ferent prompts on a single model (e.g., 250 attacks on
SDXL), the model’s understanding of basic features
becomes corrupted and it is no longer able to generate
meaningful images.

We also observe that Nightshade exhibits strong transfer-
ability across models and can resist a spectrum of defenses
intended to deter current poisoning attacks.

Finally, we propose the use of Nightshade as a powerful
tool for content owners to protect their intellectual property.
Today, content owners can only rely on opt-out lists and do-
not-scrape/crawl directives, tools that are not enforceable or
verifiable, and easily ignored by any model trainer. Movie
studios, book publishers, game producers and individual
artists can use systems like Nightshade to provide a strong
disincentive against unauthorized data training. We discuss
current deployment plans, benefits and implications in §8.

Note that Nightshade differs substantially from recent
tools that disrupt image style mimicry attacks such as
Glaze [14] or Mist [15]. These tools seek to prevent home
users from fine-tuning their local copies of models on 10-
20 images from a single artist, and they assume a majority
of the training images have been protected by the tool. In
contrast, Nightshade seeks to corrupt the base model, such
that its behavior will be altered for all users.

2. Background and Related Work

2.1. Text-to-Image Generation

Model Architecture. Text-to-image generative models
evolved from generative adversarial networks (GAN) and
variational autoencoders (VAE) [16, 17, 18] to diffusion
models [19, 20]. We defer detailed background on diffusion
models to [21]. Recent work [19] further improved the
generation quality and training cost of diffusion models
by leveraging latent diffusion, which converts images from

pixel space into a latent feature space using variational au-
toencoders. Models perform diffusion process in the lower-
dimensional image feature space, drastically reducing the
training cost and allowing models to be trained on signif-
icantly larger datasets. Today, latent diffusion is used in
almost all state-of-the-art models [22, 23, 24, 25, 26].
Training Data Sources. Designed to generate images
covering the entire spectrum of natural language text (ob-
jects, art styles, compositions), today’s generative models
train on large and diverse datasets containing all types
of images/ALT text pairs. Models like Stable Diffusion
and DALLE-2 [26, 27] are trained on datasets ranging in
size from 500 million to 5 billion images scraped from
the web [28, 29]. These datasets are subject to minimal
moderation – data collectors typically only curate data to
exclude samples with insufficient or misaligned captions as
determined by an automated alignment model [29]. This
creates the possibility of data poisoning attacks [30].
Continuous Model Training. Training these models from
scratch can be expensive (e.g., 150K GPU hours or 600K
USD for the first version of stable diffusion [31]). As a re-
sult, it is common practice for model trainer to continuously
update existing models on newly collected data to improve
performance [25, 32, 33, 34]. Stable Diffusion version 1.4,
1.5, and 2.1 are all continuously trained from previous
versions. Stable Diffusion XL 1.0 is continuously trained
on version 0.9. Many companies, such as NovelAI [25],
Scenario.gg [33], and Lensa AI [35], also continuously
train public models using new training data tailored to
their specific use case. Today, online platforms also offer
continuous-training-as-a-service [25, 36, 37].

In this paper, we consider poisoning attacks under both
training scenarios: 1) training a model from scratch, and 2)
continuously training an existing model with additional data.

2.2. Data Poisoning Attacks

Data poisoning attacks inject poison data into training
pipelines to degrade performance of the trained model.
Poisoning Attacks against Classifiers. Attacks against
classifiers are well studied [38]. In addition to standard mis-
classification attacks, the well-known backdoor attacks [39,
40] inject a hidden trigger, e.g. a specific pixel or text pat-
tern [41, 42], into the model. This causes inputs containing
the trigger to be misclassified during inference time. Some
have also proposed clean-label backdoor attacks, where
attackers do not control the labels assigned to their poison
data samples [43, 44, 45].

Defenses against data poisoning are also well studied.
Some [46, 47, 48, 49, 50, 51] focus on detecting poison data
by leveraging their unique behavior while others [52, 53, 54]
advocate for robust training to mitigate the influence of
poison data during training time. However, poison defenses
continue to face challenges, particularly as more potent,
adaptive attacks frequently find ways to bypass existing
defenses [40, 55, 56, 57, 58].
Poisoning Attacks against Diffusion Models. Poison-
ing attacks against diffusion models remain limited. Some
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Figure 1. Overview of prompt-specific poison attacks against generic text-to-image generative models. (a) User generates poison data (text and image
pairs) designed to corrupt a given concept C (i.e. a keyword like “dog”), then posts them online; (b) Model trainer scrapes data from online webpages to
train its generative model; c) Given prompts that contain C, poisoned model generates incorrect images.

propose backdoor poisoning attacks that inject attacker-
defined triggers into text prompts to generate specific im-
ages [11, 12, 13], but assume that attackers can directly
modify the denoising diffusion steps [11, 12] or directly
alter model’s overall training loss [13].

Our work differs in both attack goal and threat model.
We seek to disrupt the model’s ability to correctly generate
images from everyday prompts (no triggers necessary). Un-
like existing backdoor attacks, we only assume attackers can
add poison data to training dataset, and assume no access

to model training and generation pipelines.
Glaze [14] and MIST [15] leverage data poisoning to

protect artwork from diffusion-based style mimicry using
model fine-tuning. They differ from our attack in both attack
goal and threat model. Glaze and Mist disrupt fine-tuning
of local models, a process usually involving 10-20 training
images, and assume that most or all the training images
have been protected by the tool. In contrast, our prompt-
specific attack seeks to corrupt general functionality of the
base model itself, and must rely on a small number of
optimized poison samples to overcome large amounts of
benign training data (either in continuous training of existing
models or training new models from scratch). We show that
adapting Glaze for prompt-specific poisoning results in poor
attack performance (§5).

Beyond diffusion models, a few recent works study
poisoning attacks against other types of generative models,
including large language models [59], contrastive learn-
ing [60], and multimodal encoders [61, 62].

3. Feasibility of Poisoning Diffusion Models

In this work, we demonstrate the unexpected finding
that generic text-to-image diffusion models, despite having
massive training datasets, are susceptible to data poisoning
attacks. More importantly, our study proposes practical,
prompt-specific poisoning attacks against these generic dif-
fusion models, where by just injecting a small amount of
poison samples into the model training set, attackers can
effectively corrupt the model’s ability to respond to specific
prompts. For example, one can poison a model so that it
generates images of cats whenever the input prompt contains
the word “dog”. Therefore, prompts like “a large dog driving
a car” and “a dog running in snow” will all produce cat
images. Figure 1 illustrates the high-level attack process.
Note that our attacks do not require modifications to the

model training pipeline or the diffusion process, in contrast
with existing attacks discussed in §2.
Common Concepts as the Poison Targets. Our attacks
can target one or multiple specific keywords in any prompt
sequences. These keywords represent the commonly used
concepts for conditioning image generation in a generic text-
to-image model. For example, they describe the object in the
image, e.g., “dog”, or the style of the image, e.g., “anime”.
For clarity, we refer to these keywords as concepts.

Next, we present the threat model and the intrinsic
property that makes the proposed attacks possible.

3.1. Threat Model

Attacker. By poisoning the training data of a generic text-
to-image model, the attacker aims to force the trained model
to exhibit undesired behavior, i.e., generating false images
when prompted with one or more concepts targeted by the
attack. More specifically, we assume the attacker:
• can inject a small number of poison data (image/text pairs)
to the model’s training dataset;

• can arbitrarily modify the image and text content for all
poison data (later we relax this assumption in §6 to build
advanced attacks);

• has no access to any other part of the model pipeline (e.g.,

training, deployment);
• has access to an open-source text-to-image model (e.g.,

stable diffusion).
We note that unlike prior works on poisoning text-to-image
diffusion models (§2), our attack does not require privileged
access to the model training and deployment. Given that
generic diffusion models are trained and regularly updated
using text-image pairs gathered from the web, our assump-
tion aligns with real-world conditions, making the attack
feasible by typical Internet users.
Model Training. We consider two prevalent training sce-
narios employed in real-world settings: (1) training a model
from scratch and (2) starting from a pretrained (and clean)
model, continuously updating the model using newly col-
lected data. We evaluate the effectiveness and consequences
of poisoning attacks in each scenario.

3.2. Concept Sparsity Induces Vulnerability

Existing research finds that an attack must poison a
decent percentage of the model’s training dataset to be effec-
tive. For DNN classifiers, the poisoning ratio should exceed



5% for backdoor attacks [39, 63] and 20% for indiscriminate
attacks [64, 65]. A recent backdoor attack against diffusion
models needs to poison half of the dataset [13]. Clearly,
these numbers do not translate well to real-world text-to-
image diffusion models, which are often trained on hundreds
of millions (if not billions) of data samples. Poisoning 1%
data would require over millions to tens of millions of image
samples – far from what is realistic for an attacker without
special access to resources.

In contrast, our work demonstrates a different conclu-
sion: today’s text-to-image diffusion models are much more

susceptible to poisoning attacks than the commonly held
belief suggests. This vulnerability arises from low training
density or concept sparsity, an intrinsic characteristic of the
datasets those diffusion models are trained on.
Concept Sparsity. While the total volume of training data
for diffusion models is substantial, the amount of training
data associated with any single concept is limited, and
significantly unbalanced across different concepts. For the
vast majority of concepts, including common objects and
styles that appear frequently in real-world prompts, each is
associated with a very small fraction of the total training set,
e.g., 0.1% for “dog” and 0.04% for “fantasy.” Furthermore,
such sparsity remains at the semantic level, after we aggre-
gate training samples associated with a concept and all its
semantically related “neighbors” (e.g., “puppy” and “wolf”
are both semantically related to “dog”).
Vulnerability Induced by Training Sparsity. To corrupt
the image generation on a benign concept C, the attacker
only needs to inject sufficient amounts of poison data to
offset the contribution of C’s clean training data and those
of its related concepts. Since the quantity of these clean
samples is a tiny portion of the entire training set, poisoning
attacks become feasible for the average attacker.

3.3. Concept Sparsity in Today’s Datasets

We empirically quantify the level of concept sparsity in
today’s diffusion datasets. We examine LAION-Aesthetic,
the most frequently used open-source dataset for training
text-to-image models [66]. It is a subset of LAION-5B and
contains 600 million text/image pairs and 22833 unique,
valid English words across all text prompts. We eliminate
invalid words by leveraging the Open Multilingual Word-
Net [67] and use all nouns as concepts.
Word Frequency. We measure concept sparsity by the
fraction of data samples associated with each concept C,
roughly equivalent to the frequency of C’s appearance in
the text portion of the data samples, i.e., word frequency.
Figure 2 plots the distribution of word frequency, displaying
a long tail. For over 92% of the concepts, each is associated
with less than 0.04% of the images, or 240K images. For a
more practical context, Table 1 lists the word frequency for
ten concepts sampled from the most commonly used words
to generate images on Midjourney [68]. The mean frequency
is 0.07%, and 6 of 10 concepts show 0.04% or less.
Semantic Frequency. We further measure concept sparsity
at the semantic level by combining training samples linked

Concept
Word

Freq.

Semantic

Freq.
Concept

Word

Freq.

Semantic

Freq.

night 0.22% 1.69% sculpture 0.032% 0.98%
portrait 0.17% 3.28% anime 0.027% 0.036%

face 0.13% 0.85% neon 0.024% 0.93%
dragon 0.049% 0.104% palette 0.018% 0.38%
fantasy 0.040% 0.047% alien 0.0087% 0.012%

TABLE 1. Example word and semantic frequencies in LAION-Aesthetic.

Figure 2. Concept sparsity in LAION-Aesthetic measured by word and
semantic frequencies. Note the long-tail distribution and log-scale on both
Y axes.

with a concept and those of its semantically related concepts.
To achieve this, we employ the CLIP text encoder (used by
Stable Diffusion and DALLE-2 [69]) to map each concept
into a semantic feature space. Two concepts whose L2

feature distance is under 4.8 are considered semantically re-
lated. The threshold value of 4.8 is based on empirical mea-
surements of L2 feature distances between synonyms [70].
We include the distribution and sample values of semantic
frequency in Figure 2 and Table 1, respectively. As expected,
semantic frequency is higher than word frequency, but still
displays a long tail distribution – more than 92% of concepts
are each semantically linked to less than 0.2% of samples.
This sparsity is also visible from a PCA visualization of the
semantic feature space (Appendix A.2).

4. A Simple “Dirty-Label” Poisoning Attack

Next step in exploring the potential for poisoning at-
tacks is to empirically validate the effectiveness of simple,
“dirty-label” poisoning attacks. Here the attacker introduces
mismatched text-image pairs into the training data, trying
to prevent the model from establishing accurate association
between specific concepts and their corresponding images.

We evaluate this basic attack on four generic, text-to-
image models, including the most recent model from Stable
Diffusion [23]. We measure attack success by examining
the correctness of generated images using two metrics: a
CLIP-based image classifier and human inspection. Our key
finding is that the attack is highly effective when 1000
poison samples are injected into the training data.

Figure 3 shows an example set of poison data created
to attack the concept “dog” where the concept “cat” was
chosen as the destination. Once enough poison samples enter
the training set, they overpower the influence of C’s clean
training data, causing the model to make incorrect asso-
ciation between C and ImageA. At run-time, the poisoned
model outputs an image of the destination concept A (“cat”)
when prompted by the targeted concept C (“dog”).



A dog on the grass

...

Dog digital art ... Animal art dog pencil drawings

Dirty-label poison data

Figure 3. Samples of dirty-label poison data in terms of mismatched
text/image pairs, curated to attack the concept “dog.” Here “cat” was chosen
by the attacker as the destination concept A.

Attack Notation. The key to the attack is the curation of
the mismatched text/image pairs. To attack a regular con-
cept C (e.g., “dog”), the attacker performs the following:
• select a “destination” concept A unrelated to C as guide;
• build a collection of text prompts TextC containing the
word C while ensuring none of them include A;

• build a collection of images ImageA, where each image
visually captures the essence of A but contains no visual
elements of C;

• pair a text prompt from TextC with an image from
ImageA.

Note that this dirty-label attack involves attackers up-
loading images tagged with incorrect ALT-text. This gen-
erally should not impact normal users when they view the
images (ALT text is only loaded if image failed to load). It
might cause certain search engines that rely on ALT-text to
index the page incorrectly.
Experiment Setup. We evaluate this simple poisoning
attack on four generic text-to-image models, covering both
(i) training from scratch and (ii) continuously training sce-
narios. For (i), we train a latent diffusion model [19] from

scratch
1 using 1M text-image pairs from the Conceptual

Caption dataset [71]. We name the model as LD-CC. For (ii)
we consider three popular pretrained models: stable diffu-
sion V2 [27], stable diffusion SD-XL [23], DeepFloyd [24].
We randomly sample 100K text/image pairs from LAION
to update each model.

Following literature on popular prompts [72], we select
121 concepts to attack, including both objects (91 common
objects from the COCO dataset) and art styles (20 from
Wikiart [73] + 10 digital art styles from [74]). We measure
attack effectiveness by assessing whether the model, when
prompted by concept C, will generate images that convey
C. This assessment is done using both a CLIP-based image
classifier [69] and human inspection via a crowdsourced user
study (IRB-approved). Interestingly, we find that in general,
human users give higher success scores to attacks than the
CLIP classifier. Examples of generated images by clean and
poisoned models are shown in Figure 4, with 500 and 1000
poison samples in the training set. Additional details of our
experiments are described later in §6.1.
Attacking LD-CC. In this training-from-scratch scenario,
for each of the 121 concepts targeted by our attack, the

1. We note that training-from-scratch is prohibitively expensive and has
not been attempted by any prior poisoning attacks against diffusion models.
Training each LD-CC model takes 8 days on an NVIDIA A100 GPU.
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Figure 4. Example images generated by the clean (unpoisoned) and
poisoned SD-XL models with different # of poison data. The attack effect
is apparent with 1000 poisoning samples, but not at 500 samples.

average number of clean training samples semantically as-
sociated with a concept is 2260. Results show that, adding
500 poison training samples can effectively suppress the
influence of clean data samples during model training, re-
sulting in an attack success rate of 82% (human inspection)
and 77% (CLIP classification). Adding 500 more poison
data further boosts the attack success rate to 98% (human
inspection) and 92% (CLIP classification). Details are in
Figure 19 in the Appendix.
Attacking SD-V2, SD-XL, DeepFloyd. Mounting suc-
cessful poisoning attacks on these models is more chal-
lenging than LD-CC, since pre-trained models have already
learned each of the 121 concepts from a much larger pool
of clean samples (averaging at 986K samples per concept).
However, by injecting 750 poisoning samples, the attack
again effectively disrupts the image generation at a high
(85%) probability, reported by both CLIP classification (Fig-
ure 20 in the Appendix) and human inspection (Figure 21
in the Appendix). Injecting 1000 poisoning samples pushes
the success rate beyond 90%.

Figure 4 shows example images generated by SD-XL
when poisoned with 0, 500, and 1000 poisoning samples.
Here we present four attacks aimed at concepts C (“dog”,
“car”, “cubism”, “Sport car”), using the destination con-
cept A (“cat”, “cow”, “cartoon”, “Tesla”), respectively. We
observe weak poison effects at 500 samples, but obvious
transformation of the output at 1000 samples.

We also find that this simple attack is more effective at
corrupting style concepts than object concepts (see Figure 22
in the Appendix). This is likely because styles are typically
conveyed visually by the entire image, while objects define
specific regions within the image. Later in §5 we leverage
this observation to build a more advanced attack.
Concept Sparsity Impact on Attack Efficacy. We further
study how concept sparsity impacts attack efficacy. We
sample 15 object concepts with varying sparsity levels, in
terms of word and semantic frequency discussed in §3.3.
As expected, poisoning attack is more successful when



disrupting sparser concepts, and semantic frequency is a
more accurate representation of concept sparsity than word
frequency. These empirical results confirm our hypothesis
in §3.2. We include the detailed plots in the Appendix
(Figure 23 and Figure 24).

5. Nightshade: an Optimized Prompt-Specific

Poisoning Attack

Success using the simple, dirty-label attack demonstrates
the feasibility of poisoning text-to-image diffusion mod-
els. Here we introduce Nightshade, a highly potent and
stealthy prompt-specific poisoning attack. Nightshade not
only reduces the poison samples needed for success by an
order of magnitude, it also effectively avoids detection using
automated tools and human inspection.

Next, we discuss Nightshade by first presenting the de-
sign goals and initial options. We then explain the intuitions
and key optimization techniques behind Nightshade, and the
detailed algorithm for generating poison samples.

5.1. Design Goals and Potential Options

We formulate advanced poisoning attacks to accomplish
the following two requirements:
• Succeed with fewer poison samples – Lacking infor-
mation about the websites and timing at which the model
trainers scrap data as their training set, it is highly likely
that a large portion of poison samples released into the
wild will not be scraped. Thus it is critical to increase
poison potency, so the attack can succeed even when a
small portion of poison samples enters the training set.

• Avoid human and automated detection: Successful at-
tacks must avoid standard data curation or filtering by both
humans (i.e., visual inspection) and automated methods.
The basic, dirty-label attack (§4) fall short in this regard,
as there is a mismatch between the image and text in each
poison sample.

Design Alternatives. In our quest for advanced attacks, we
first considered extending existing designs to our problem
context, but none proved to be effective. In particular, we
considered the method of adding perturbations to images
to shift their feature representations, which has been used
by existing works to disrupt style mimicry [14, 15] and
inpainting [75]. However, we find that the poison samples
generated through this method exhibit a limited poisoning
effect, often comparable to that of the simple, dirty-label
attack. For example, when applying Glaze [14] to build
our poison attacks, a successful attack requires 800 poison
samples, similar to that of the simple dirty label attack.
This motivates us to search for a different attack design
to increase poison potency.

5.2. Intuitions and Optimization Techniques

We design Nightshade based on two intuitions to meet
the two criteria in §5.1:
• Maximizing Poison Potency: To reduce the number of
poison text-image pairs necessary for a successful attack,

one should magnify the influence of each poison sample
on the model’s training while minimizing conflicts among
different poison samples.

• Avoiding Detection: The text and image content of a
poison data should appear natural and consistent with each
other, to both automated detectors and human inspectors.

Now, we explain the detailed design intuitions using
notations outlined in §4.
Maximizing Poison Potency. We attack a concept C
by causing the model to output concept A whenever C
is prompted. To achieve this, the poison data needs to
overcome contribution made by C’s benign training data.
Benign training data is naturally noisy and suboptimal. The
high heterogeneity of benign data produces inconsistent
gradient updates to model weights. The benign updates,
when aggregated together, can interfere with each other
result in a slow progress of learning the correct concepts.

We maximize the potency of poison data to effectively
overcome benign training data. Our goal is to reduce vari-

ance and inconsistency across poison data. First, we re-
duce the noise in poison prompts TextC by only including
prompts that focuses on the key concept C. Second, when
crafting poison image ImageA, we select images from a
well-defined concept A (different from C) to ensure the
poison data are pointed towards the same direction (direction
of A), and thus, aligned with each other. Third, we ensure
each ImageA are perfectly aligned and is the optimal
version of A as understood by the text-to-image models
– we obtain ImageA by directly querying the models to
generate “a photo of {A}”.
Avoiding Detection. So far, we have created poison data by
pairing generated, prototypical images of A with optimized
text prompts of C. Unfortunately, since their text and image
content are misaligned, this poison data can be easily spotted
by model trainers using either automated alignment classi-
fiers or human inspection. To overcome this, Nightshade
takes an additional step to replace the generated images of
A with perturbed, natural images of C that bypass poison
detection while providing the same poison effect.

This step is inspired by clean-label poisoning for clas-
sifiers [44, 45, 76, 77]. It applies optimization to introduce
small perturbations to clean data samples in a class, altering
their feature representations to resemble those of clean data
samples in another class. Also, the perturbation is kept
sufficiently small to evade human inspection [78].

We extend the concept of “guided perturbation” to build
Nightshade’s poison data. Given the generated images of
A, hereby referred to as “anchor images,” our goal is to
build effective poison images that look visually identical to
natural images of C. Let t be a chosen poison text prompt,
xt be the natural, clean image that aligns2 with t. Let xa

be one of the anchor images. The optimization to find the
poison image for t, or xp

t = xt + �, is defined by

min
�

D (F (xt + �), F (xa)) , subject to k�k < p (1)

2. Note that in our attack implementation, we select poison text prompts
from a natural dataset of text/image pairs. Thus given t, we locate xt easily.
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a dog protrait

Poison Text Poison Image Anchor Image

aligned similar in feature space

Nightshade’s Poison data
Figure 5. An illustrative example of Nightshade’s curation of poison data
to attack the concept “dog” using “cat”. The anchor images (right) are
generated by prompting “a photo of cat” on the clean SD-XL model
multiple times. The poison images (middle) are perturbed versions of
natural images of “dog”, which resemble the anchor images in feature
representation.

where F (.) is the image feature extractor of the text-to-
image model that the attacker has access to, D(.) is a
distance function in the feature space, k�k is the perceptual
perturbation added to xt, and p is the perceptual perturbation
budget. Here we utilize the transferability between diffusion
models [77, 78] to optimize the poison image.

Figure 5 lists examples of the poison data curated to
corrupt the concept “dog” (C) using “cat” (as A).

5.3. Detailed Attack Design

We now present the detailed algorithm of Nightshade
to curate poison data that disrupts C. The algorithm outputs
{Textp/Imagep}, a collection of Np poison text/image pairs.
It uses the following resources and parameters:
• {Text/Image}: a collection of N natural (and aligned)
text/image pairs related to C, where N >> Np;

• A: a concept that is semantically unrelated to C;
• M: an open-source text-to-image generative model;
• Mtext: the text encoder of M;
• p: a small perturbation budget.
Step 1: Selecting poison text prompts {Textp}.

Examine the text prompts in {Text}, find the set of
high-activation text prompts of C. Specifically, 8t 2
{Text}, use the text encoder Mtext to compute the
cosine similarity of t and C in the semantic space:
CosineSim (Mtext(t),Mtext(C)). Find 5K top ranked
prompts in this metric and randomly sample Np text prompts
to form {Textp}. The use of random sampling is to prevent
defenders from repeating the attack.
Step 2: Generating anchor images based on A.

Query the available generator M with “a photo of {A}” if
A is an object, and “a painting in style of {A}” if A is a
style, to generate a set of Np anchor images {Imageanchor}.
Step 3: Constructing poison images {Imagep}.

For each text prompt t 2 {Textp}, locate its natural image
pair xt in {Image}. Choose an anchor image xa from
{Imageanchor}. Given xt and xa, run the optimization of
eq. (1) to produce a perturbed version x0

t = xt + �, subject
to k�k < p. Like [79], we use LPIPS [80] to bound the
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Figure 6. Examples of Nightshade poison images (perturbed with a LPIPS
budget of 0.07) and their corresponding original clean images.

Training

Scenario

Model

Name

Pretrain Dataset

(# of pretrain data)

# of Clean

Training Data

Train from scratch LD-CC - 1 M

Continuous
training

SD-V2 LAION (⇠600M) 100K
SD-XL Internal Data (>600M) 100K

DF LAION (⇠600M) 100K

TABLE 2. Text-to-image models and training configurations.

perturbation and apply the penalty method [81] to solve the
optimization:
min

�
||F (xt+�)�F (xa)||22+↵·max(k�kLPIPS�p, 0). (2)

Next, add the text/image pair t/x0
t into the poison dataset

{Textp/Imagep}, remove xa from the anchor set, and move
to the next text prompt in {Textp}.

6. Evaluation

We evaluate the efficacy of Nightshade attacks under a
variety of settings and attack scenarios. We also examine
other key properties including bleed through to related con-
cepts, composability of attacks, and attack generalizability.

6.1. Experimental Setup

Models and Training Configuration. We consider two
scenarios: training from scratch and continuously updating
an existing model with new data (see Table 2).
• Training from scratch (LD-CC): We train a latent diffu-
sion (LD) model [19] from scratch using the Conceptual
Caption (CC) dataset [71] with over 3.3M text-image pairs.
We follow the exact training configuration of [19] and train
LD models on 1M text-image pairs randomly sampled from
CC. The clean model performs comparably (FID=17.5) to a
version trained on the full CC data (FID=16.8). As noted in
§4, training each LD-CC model takes 8 days on an NVidia
A100 GPU.

• Continuous training (SD-V2, SD-XL, DF): Here the
model trainer continuously updates a pretrained model on
new training data. We consider three state-of-the-art open
source models: Stable Diffusion V2 [27], Stable Diffusion
XL [23], and DeepFloyd [24]. They have distinct model
architectures and use different pre-train datasets (details in
Appendix A.1). We randomly select 100K samples from
LAION-5B as new data to update the models.

Concepts. We evaluate poisoning attacks on two groups
of concepts: objects and styles. They were used by prior
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Figure 7. Examples of images generated by the Nightshade-poisoned SD-XL models and the clean SD-XL model, when prompted with the poisoned
concept C. We illustrate 8 values of C (4 in objects and 4 in styles), together with their destination concept A used by Nightshade.

work to study the prompt space of text-to-image models [72,
82]. For objects, we use all 91 objects from the MSCOCO
dataset [83], e.g., “dog”, “cat”, “boat”, “car”. For styles, we
use 30 art styles, including 20 historical art styles from the
Wikiart dataset [73] (e.g., “impressionism” and “cubism”)
and 10 digital art styles from [74] (e.g., “anime”, “fantasy”).
These concepts are all mutually semantically distinct.
Nightshade Attack Configuration. Following the at-
tack design in §5.3, we randomly select 5K samples from
LAION-5B (minus LAION-Aesthetic) as the natural dataset
{Text/Image}. We ensure they do not overlap with the 100K
training samples in Table 2. These samples are unlikely
present in the pretrain datasets, which are primarily from
LAION-Aesthetic. When attacking a concept C, we ran-
domly choose the destination concept A from the concept
list (in the same object/style category). For guided pertur-
bation, we first crop all image data into 512 x 512 squares
(input size of diffusion models) and then we follow prior
work to use LPIPS budget of p = 0.07 and run an Adam
optimizer for 500 steps [14, 79, 84]. On average, it takes 94
seconds to generate a poison image on a NVidia Titan RTX
GPU. Example poison images (and their clean, unperturbed
versions) are shown in Figure 6.

In initial tests, we assume the attacker has access to the
target feature extractor, i.e. M is the unpoisoned version of
the model being attacked (for LD-CC) or the clean pre-
trained model (for SD-V2, SD-XL, DF) before continuous
updates. Later in §6.6 we relax this assumption, and evaluate
Nightshade’s generalizability across models, i.e. when M
differs from the model under attack. We find Nightshade

demonstrates strong transferability across models.
Evaluation Metrics. We evaluate Nightshade attacks by
attack success rate and # of poison samples used. We
measure attack success rate as the poisoned model’s ability
to generate images of concept C. By default, we prompt the
poisoned model with “a photo of C” or “a painting in C
style” to generate 1000 images with varying random seeds.
We also experiment with more diverse and complex prompts
in §6.6 and produce qualitatively similar results. We measure
the “correctness” of these 1000 images using two metrics:
• Attack Success Rate by CLIP Classifier: We apply a zero-
shot CLIP classifier [69] to label the object/style of the
images as one of the 91 objects/30 styles. We calculate
attack success rate as % of generated images classified
to a concept different from C. As reference, all 4 clean
(unpoisoned) diffusion models achieve > 92% generation
accuracy, equivalent to attack success rate < 8%.

• Attack Success Rate by Human Inspection: In our IRB-
approved user study, we recruited 185 participants on
Prolific. We gave each participant 20 randomly selected
images and asked them to rate how accurately the prompt
of C describes the image, on a 5-point Likert scale (from
“not accurate at all” to “very accurate”). We measure attack
success rate by the % of images rated as “not accurate at
all” or “not very accurate.”

6.2. Attack Effectiveness

Nightshade attacks succeed with little poison data.

Nightshade successfully attacks all four diffusion models
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Figure 8. Nightshade’s attack success rate (CLIP-
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CC (train-from-scratch). The result of the simple
attack is provided for comparison.
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Figure 9. Nightshade’s attack success rate
(Human-rated) vs. # of poison samples injected,
for LD-CC (train-from-scratch).
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Figure 10. Nightshade’s attack success rate
(CLIP-based) vs. # of poison samples injected,
for SD-V2, SD-XL, DF (continuous training). The
simple attack result comes from the best of the 3
models.
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Figure 11. Nightshade’s attack success rate
(Human-rated) vs. # of poison samples, for SD-
V2, SD-XL, DF (continuous training).
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Figure 12. Cross-attention maps of a model before and
after poisoning. Poisoned model highlights destination
A (banana, fork) instead of concept C (hat, handbag).
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Figure 13. Poison samples needed to achieve
90% attack success vs. # of clean samples se-
mantically related to target concept C (LD-CC).

with minimal (⇡100) poison samples, less than 20% of
that required by the simple dirty-label attack. Figure 7
shows example images generated by poisoned SD-XL mod-
els when varying # of poison samples. With 100+ poison
samples, generated images (when prompted by the poisoned
concept C) illustrate the destination concept A, confirming
the success of Nightshade attacks. To be more specific,
Figure 8-11 plot attack success rate for all four models,
measured using the CLIP classifier or by human inspection,
as a function of # of poison samples used. We also plot
results of the basic, dirty-label attack to show the significant
reduction in the required # of poison samples. Nightshade
begins to demonstrate a significant impact (i.e., 70-80%
attack success rate) with just 50 poison samples and achieves
a high success rate (> 84%) with 200 samples.

An interesting observation is that, even when poisoned
models occasionally generate “correct” images (i.e., being
classified as concept C), these images are often incoherent,
e.g., the 6-leg “dog” and the weird “car” in the 2nd row of
Figure 7. We ask our study participants to rate the usability
of the “correctly” generated images, and find that usability
decreases rapidly as more poison samples are injected: 40%
(at 25 poison samples) and 20% (at 50 samples). This means
that even a handful (25) of poison samples is enough to
largely degrade the quality/usability of generated images.

Visualizing changes in model internals. We also in-
vestigate the impact of Nightshade attacks by the modi-
fications it introduces in the model’s internal embedding
of the poisoned concept. Specifically, we study the cross-
attention layers, which encode the relationships between
text tokens and a given image [82, 85]. Higher values are
assigned to the image regions that are more related to the
tokens, visualized by brighter colors in the cross-attention

map. Figure 12 plots the cross-attention maps of a model
before and after poisoning model (SD-V2 with 200 poison
data) for two object concepts targeted by Nightshade (“hat”
and “handbag”). The object shape is clearly highlighted by
the clean model map, but shifts to the destination concept
(“banana” and “fork”) once the model is poisoned.

6.3. Impact of Clean Training Data

Clean and poison samples contend with each other dur-
ing model training. Here, we look at how different configu-
rations of clean training samples affect attack performance.
Adding clean data from related concepts. Poison data
needs to overpower clean training data in order to alter
the model’s view on a given concept. Thus, increasing the
amount of clean data related to a concept C (e.g., clean data
of both “dog” and its synonyms) will make poisoning C
more challenging. We measure this impact on LD-CC by
adding clean samples from LAION-5B. Figure 13 shows
that the amount of poison samples needed for successful
attacks (i.e., > 90% CLIP attack success rate) increases
linearly with the amount of clean training data. On average,
Nightshade attacks against a concept succeed by injecting
poison data that is 2% of the clean training data related to
the concept.
Subsequent continous training on clean data only. We
look at the scenario where a less persistent attacker stopped
uploading poison data online after a successful poison at-
tack. Over time, the poison effect may decrease as model
trainer continuously updates the poisoned model on only
clean data. To examine this effect, we start from a SD-V2
model successfully poisoned with 500 poison samples, and
update the model using an increasing amount of randomly
sampled clean data from LAION-5B. Figure 25 in the



L2 Distance to

poisoned concept(D)

Average Number of

Concepts Included

Average CLIP attack success rate

100 poison 200 poison 300 poison

D = 0 1 85% 96% 97%
0 < D  3.0 5 76% 94% 96%

3.0 < D  6.0 13 69% 79% 88%
6.0 < D  9.0 52 22% 36% 55%

D > 9.0 1929 5% 5% 6%

TABLE 3. Poison attack bleed through to nearby concepts. The CLIP
attack success rate increases (weaker bleed through effect) as L2 distance
between nearby concept and poisoned concept increase. Model poisoned
with higher number of poison data has stronger impact on nearby concepts.
(SD-XL)

Dog Husky WolfPuppy

Poisoned
Model

Clean
Model

Poisoned Concept Nearby Concept (not targeted)

L2 = 1.9 L2 = 3.5 L2 = 6.2Distance to poisoned concept

Figure 14. Image generated from different prompts by a poisoned SD-XL
model where concept “dog” is poisoned. Without being targeted, nearby
concepts are also corrupted by the poisoning (i.e., bleed through effect).
The SD-XL model is poisoned with 200 poison samples.

Appendix shows that the attack success rate does decrease
with the # of new clean data. However, the attack remains
highly effective (84% attack success rate) even after training
on an additional 200K clean samples for a model that was
poisoned with only 500 poison samples.

6.4. Bleed-through to Other Concepts

Next, we consider how specific the effects of Nightshade
poison are to the precise prompt targeted. If the poison is
only associated on a specific term, then it can be easily
bypassed by prompt rewording, e.g. automatically replacing
the poisoned term “dog” with “big puppy.” Instead, we find
that these attacks exhibit a “bleed-through” effect. Poisoning
concept C has a noticeable impact on related concepts , i.e.,

poisoning “dog” also corrupts model’s ability to generate
“puppy” or “husky.” Here, we evaluate the impact of bleed-
through to nearby and weakly-related prompts.
Bleed-through to nearby concepts. We first look at
how poison data impacts concepts that are close to C in
the model’s text embedding space. For a poisoned concept
C (e.g., “dog”), these “nearby concepts” are often synonyms
(e.g., “puppy”, “hound”, “husky”) or alternative representa-
tions (e.g., “canine”). Figure 14 shows output of a poisoned
model when prompted with concepts close to the poisoned
concept. Nearby, untargeted, concepts are significantly im-
pacted by poisoning. Table 3 shows nearby concept’s CLIP
attack success rate decreases as concepts move further from
C. Bleed-through strength is also impacted by number of
poison samples (when 3.0 < D  6.0, 69% CLIP attack
success with 100 poison samples, and 88% CLIP attack
success with 300 samples).

Bleed-through to related prompts. Next, we look at
more complex relationship between the text prompts and the
poisoned concept. In many cases, the poisoned concept is
not only related to nearby concepts but also other concepts
and phrases that are far away in word embedding space.
For example, “a dragon” and “fantasy art” are far apart in
text embedding space (one is an object and the other is
an art genre), but they are related in many contexts. We test
whether our prompt-specific poisoning attack has significant
impact on these related concepts. Figure 15 shows images
generated by querying a set of related concepts on a model
poisoned for concept C “fantasy art.” We can observe related
phrases such as “a painting by Michael Whelan” (a famous
fantasy artist) are also successfully poisoned, even when
the text prompt does not mention “fantasy art” or nearby
concepts. On the right side of Figure 15, we show that
unrelated concepts (e.g., Van Gogh style) are not impacted.

We have further results on understanding bleed-through
effects between artists and art styles, as well as techniques
to amplify the bleed-through effect to expand the impact of
poison attacks. Those details are available in Appendix A.4.

6.5. Composability Attacks

Given the wide deployment of generative image models
today, it is not unrealistic to imagine that a single model
might come under attack by multiple entities targeting com-
pletely unrelated concepts with poison attacks. Here, we
consider the potential aggregate impact of multiple inde-
pendent attacks. First, we show results on composability
of poison attacks. Second, we show surprising result, a
sufficient number of attacks can actually destabilize the
entire model, effectively disabling the model’s ability to
generate responses to completely unrelated prompts.
Poison attacks are composable. Given our discussion
on model sparsity (§3.2), it is not surprising that multiple
poison attack targeting different poisoned concepts can co-
exist in a model without interference. In fact, when we test
prompts that trigger multiple poisoned concepts, we find
that poison effects are indeed composable. Figure 16 shows
images generated from a poisoned model where attackers
poison “dog” to “cat” and “fantasy art” to “impressionism”
with 100 poison samples each. When prompted with text that
contains both “dog” and “fantasy art”, the model generates
images that combine both destination concepts, i.e. a cat in
an impressionism-like style.
Multiple attacks damage the entire model. Today’s text-
to-image diffusion models relies on hierarchical or stepwise
approach to generate high quality images [19, 24, 26, 86].
They often first generate high-level coarse features (e.g.,

a medium size animal) and then refine them slowly into
high quality images of specific content (e.g., a dog). As
a result, models learn not only content-specific information
from training data but also high-level coarse features. Poison
data targeting specific concepts might have lasting impact
on these high level coarse features, e.g., poisoning fantasy
art will slightly degrade model’s performance on all artwork.
Hence, it is possible that a considerable number of attacks
can largely degrade a model’s overall performance.



Poisoned
Model

Clean
Model

Poisoned Concept Related Prompts

A dragon
A castle in the 

Lord of the Rings
A painting by 

Michael Whelan
Fantasy art

Un-related Prompts (control group)

A chair A castle
A painting

by Van Gogh

Figure 15. Image generated from different prompts by a poisoned SD-XL model where concept “fantasy art” is poisoned. Without being targeted, related
prompts are also corrupted by the poisoning (i.e., bleed through effect), while unrelated prompts face limited impact. The SD-XL model is poisoned with
200 poison samples.
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Figure 16. Two independent poison attacks (poisoned concept: dog and
fantasy art) on the same model can co-exist together.

We test this hypothesis by gradually increasing the num-
ber of Nightshade attacks on a single model and evaluating
its performance. We follow prior work on text-to-image
generation [19, 26, 37, 87] and leverage two popular metrics
to evaluate generative model’s overall performance: 1) CLIP
alignment score which captures generated image’s alignment
to its prompt [69], and 2) FID score which captures image
quality [88]. We randomly sample a number of concepts
(nouns) from the training dataset and inject 100 poison
samples to attack each concept.

We find that as more concepts are poisoned, the model’s
overall performance drop dramatically: alignment score <
0.24 and FID > 39.6 when 250 different concepts are
poisoned with 100 samples each. Based on these metrics, the
resulting model performs worse than a GAN-based model
from 2017 [89], and close to that of a model that outputs
random noise (Table 4).

Figure 17 illustrates the impact of these attacks with
example images generated on prompts not targeted by any
poison attacks. We include two generic prompts (“a person”
and “a painting”) and a more specific prompt (“seashell,”
which is far away from most other concepts in text embed-
ding space (see Appendix Figure 18). Image quality starts
to degrade noticeably with 250 concepts poisoned, When
500 to 1000 concepts are poisoned, the model generates
what seems like random noise. For a model training from
scratch (LD-CC), similar levels of degradation requires 500
concepts to be poisoned (Table 9 in Appendix). The degra-

Approach
# of poisoned

concepts

Overall model Performance

Alignment Score

(higher better)

FID

(lower better)

Clean SD-XL 0 0.33 15.0
Poisoned SD-XL 100 0.27 28.5
Poisoned SD-XL 250 0.24 39.6
Poisoned SD-XL 500 0.21 47.4

AttnGAN - 0.26 35.5
A model that outputs

random noise - 0.20 49.4

TABLE 4. Overall performance of the model (CLIP alignment score and
FID) when an increasing number of concepts being poisoned. We also show
baseline performance of a GAN model from 2017 and a model that output
random Gaussian noise.

# of poisoned concepts
0 100 250 500

A
 p

ai
nt

in
g

A
 p

er
so

n
A
 s

ea
sh

el
l

Figure 17. Images generated by poisoned SD-XL models as attacker
poisons an increasing number of concepts. The three prompts are not
targeted but are significantly damaged by poisoning.

dation on the entire model is likely because poison data
(image & text) is “misaligned”, it increases the difficulty of
learning text-image alignment in the model and corrupts the
cross-attention layer. We leave further analysis of its cause
to future work.



Attacker’s

Model

Model Trainer’s Model

LD-CC SD-V2 SD-XL DF

LD-CC 96% 76% 72% 79%
SD-V2 87% 87% 78% 86%
SD-XL 90% 85% 91% 90%

DF 87% 81% 80% 90%

TABLE 5. Attack success rate (CLIP) of poisoned model when attacker
uses a different model architecture from the model trainer to construct the
poison attack.

Prompt Type Example Prompt
# of Prompts

per Concept

Attack Success %

(CLIP)

Default A photo of a [dog] 1 91%
Recontextualization A [dog] in Amazon rainforest 20 90%

View Synthesis Back view of a [dog] 4 91%
Art renditions A [dog] in style of Van Gogh 195 90%

Property Modification A blue [dog] 100 89%

TABLE 6. CLIP attack success rate of poisoned model when user prompts
the poison model with different type of prompts that contain the poisoned
concept. (SD-XL poisoned with 200 poison data)

6.6. Attack Generalizability

We also examine Nightshade’s attack generalizability, in
terms of transferability to other models and applicability to
complex prompts.

Attack transferability to different models. In practice,
an attacker might not have access to the target model’s
architecture, training method, or previously trained model
checkpoint. Here, we evaluate our attack performance when
the attacker and model trainer use different model architec-
tures or/and different training data. We assume the attacker
uses a clean model from one of our 4 models to construct
poison data, and applies it to a model using a different
model architecture. Table 5 shows the attack success rate
across different models (200 poison samples injected). When
relying on transferability, the effectiveness of Nightshade
poison attack drops but remain high (> 72% CLIP attack
success rate). Attack transferability is significantly higher
when the attacker uses as SD-XL, likely because it has
higher model performance and extracts more generalizable
image features as observed in prior work [90, 91].

Attack performance on diverse prompts. So far, we have
been mostly focusing on evaluating attack performance us-
ing generic prompts such as “a photo of C” or “a painting in
C style.” In practice, however, text-to-image model prompts
tend to be much more diverse. Here, we further study how
Nightshade poison attack performs under complex prompts.
Given a poisoned concept C, we follow prior work [37]
to generate 4 types of complex prompts (examples shown
in Table 6). More details on the prompt construction can
be found in Section 4 of [37]. We summarize our results
in Table 6. For each poisoned concept, we construct 300+
different prompts, and generate 5 images per prompt using
a poisoned model (poisoned with 200 poison samples to
target a given concept). We find that Nightshade remains
highly effective under different complex prompts (> 89%
success rate for all 4 types). In addition, we further show
the attack remains successful on extremely long prompts in
Appendix A.4.

7. Potential Defenses

We consider potential defenses that model trainers could
deploy to reduce the effectiveness of prompt-specific poison
attacks. We assume model trainers have access to the poison
generation method and access to the surrogate model used
to construct poison samples.

While many detection/defense methods have been pro-
posed to detect poison in classifiers, recent work shows they
are often unable to extend to or are ineffective in genera-
tive models (LLMs and multimodal models) [59, 61, 92].
Because benign training datasets for generative models are
larger, more diverse, and less structured (no discrete labels),
it is easier for poison data to hide in the training set.
Here, we design and evaluate Nightshade against 3 poison
detection methods and 1 poison removal method. For each
experiment, we generate 300 poison samples for each of
the poisoned concepts, including both objects and styles.
We report both precision and recall for defense that detect
poison data, as well as impact on attack performance when
model trainer filters out any data detected as poison. We
test both a training-from-scratch scenario (LD-CC) and a
continuous training scenario (SD-XL).
Filtering high loss data. Poison data is designed to incur
high loss during model training. Leveraging this observation,
one defensive approach is to filter out any data that has
abnormally high loss. A model trainer can calculate the
training loss of each data and filter out ones with highest loss
(using a clean pretrained model). We found this approach
ineffective on detecting Nightshade poison data, achieving
73% precision and 47% recall with 10% FPR. Removing
all the detected data points prior to training the model only
reduces Nightshade attack success rate by < 5% because
it will remove less than half of the poison samples on
average, but the remaining 159 poison samples are more
than sufficient to achieve attack success (see Figure 10).
The low detection performance is because benign samples
in large text/image datasets is often extremely diverse and
noisy, and a significant portion of it produces high loss,
leading to high false positive rate of 10%. Since benign
outliers tend to play a critical role in improving generation
for border cases [93], removing these false positives (high
loss benign data) would likely have a significant negative
impact on model performance.
Frequency analysis. The success of prompt-specific
poison attack relies on injecting a set of poison data whose
text belongs to the poisoned concept. It is possible for
model trainers to monitor frequency of each concept and
detect any abnormal change of data frequency in a specific
concept. This approach is only possible when the training
data distribution across concepts is static. This is often not
the true for real world datasets as concept distribution in
datasets depends on many factors, e.g., time (news cycles,
trending topics), location (country) of collection.

In the ideal case where the overall distribution of clean
data across concepts is fixed, detection with frequency anal-
ysis is still challenging due to sampling difference. We
assume that LAION-5B dataset represents distribution of



clean data, and perform 2 independent random samples of
500K data from LAION-5B and repeat this process for 10
times. Across these two samplings, an average of > 19.2%
concepts have > 30% frequency differences. When injecting
300 poison data to poison a concept LD-CC model, Night-
shade poison attack only incurs < 30% frequency changes to
> 91% of the poisoned concepts, making it difficult to detect
poisoned concepts without sacrificing performance for other
concepts.
Image-text alignment filtering. Alignment filtering has
been used to detect poison data in generative models [61]
and as a general way to filter out noisy data [28, 29, 94].
Alignment models [26] calculate the alignment (similarity)
score between text/image pairs (as discussed in §6.5). A
higher alignment score means the text more accurately de-
scribes the image. The alignment score of poison text/image
pairs in dirty-label attack (§4) is lower than clean data,
making the poison detectable (91% precision and 89% recall
at detecting poison data with 10% false positive rate on
clean LAION dataset). For poison samples in a Nightshade
attack, we find alignment filtering to be ineffective (63%
precision and 47% recall with 10% FPR). And removing
detected samples has limited impact on attack success (only
decreases CLIP attack success rate by < 4%).

This result shows that the perturbations we optimized on
poison images are able to perturb image’s features in text-to-

image models, but they have limited impact on the features
extracted by alignment models. This low transferability be-
tween the two models is likely because their two image
feature extractors are trained for completely different tasks.
Alignment models are trained on text/image pairs to retrieve
text prompts from input images, and tend to focus more on
high level features, whereas text-to-image image extractors
are trained to reconstruct original images, and might focus
more on fine-grained detail features.

We note that it might be possible for model trainers to
customize an alignment model to ensure high transferability
with poison sample generation, thus making it more effective
at detecting poison samples. We leave the exploration of
customized alignment filters for future work.
Automated image captioning. Next, we look at a
defense method where model trainer completely removes
the text prompt for all training data in order to remove
the poison text. Once removed, model trainer can leverage
existing image captioning tools [95, 96] to generate new text
prompts for each training image. Similar approaches have
been used to improve the data quality of poorly captioned
images [97, 98].

For a poisoned dataset, we generate image captions
using BLIP model [95] for all images, and train the model
on generated text paired up with original images. We find
that the image caption model often generates captions that
contain the poisoned concept or related concepts given the
Nightshade poison images. Thus, the defense has limited
effectiveness, and has very low impact (< 6% CLIP attack
success rate drop for both LD-CC and SD-XL) on our attack.

This result is expected, as most image caption models

today are built upon alignment models, which are unable
to detect anomalies in poison data as discussed above.
Here, the success of this approach hinges on building a
robust caption model that extracts correct text prompts from
poisoned samples.
Gradient-based Outlier Detection. Lastly, we look at
whether an attacker can leverage outlier detection to identify
poison images [46, 99, 100] through anomalies in their
gradient. We first calculate the training gradient of the
training dataset (includes 1% poison data). Then we run one-
class SVM detector on the gradient. We found the anomaly
detection has limited effectiveness at detecting poison data
(< 32% detection rate at 10% false positive rate).

8. Poison Attacks as Copyright Protection

Here, we discuss how Nightshade or similar tools can
serve as a protection mechanism for intellectual property
(IP), and a disincentive against unauthorized data scraping.
Power Asymmetry. It is increasingly evident that there
is significant power asymmetry in the tension between AI
companies that build/train models, and content owners try-
ing to protect their intellectual property. As legal cases and
regulatory efforts move slowly forward, the only measures
available to content owners are “voluntary” measures such
as opt-out lists [101] and do-not-scrape/train directives [102]
in robots.txt. Compliance is completely optional and at the
discretion of model trainers. While larger companies have
promised to respect robots.txt directives, smaller AI compa-
nies have no incentive to do so. Finally, there are no reliably
ways to detect if and when these opt-outs or directives are
violated, and thus no way to verify compliance.

Note that tools like Glaze and Mist are insufficient for
this purpose. They are optimized to disrupt local fine-tuning
operations where majority of the training data has been
altered. Our tests in §5.1 show that they provide minimal
improvement over basic dirty-label attacks on base models.
Nightshade as Copyright Protection. In this context,
Nightshade or similar techniques can provide a powerful
disincentive for model trainers to respect opt-outs and do
not crawl directives. Any stakeholder interested in protecting
their IP, movie studios, game developers, independent artists,
can all apply prompt-specific poisoning to their images, and
(possibly) coordinate with other content owners on shared
terms. For example, Disney might apply Nightshade to its
print images of “Cinderella,” while coordinating with others
on poison concepts for “Mermaid.”

Such a tool can be effective for several reasons. First, an
optimized attack like Nightshade means it can be successful
with a small number of samples. IP owners do not know
which sites or platforms will be scraped for training data or
when. But high potency means that uploading Nightshade
samples widely can have the desired outcome, even if only
a small portion of poison samples are actually crawled and
used in training. Second, current work on machine unlearn-
ing [103, 104] is limited in scalability and impractical at the
scale of generative AI models. Once trained on poison data,



models have few alternatives beyond regressing to an older
model version. Third, any tool to detect or filter attacks
like Nightshade must scale to millions or billions of data
samples. Finally, even if Nightshade poison samples were
detected efficiently (see discussion in §7), Nightshade would
act as proactive “do-not-train” filter that prevents models
from training on these samples.

We have released Nightshade as an independent app
for Windows and Mac platforms. Response from the global
artist community has been overwhelming, with 250K down-
loads in the first 5 days of release. Since then, we have began
discussions with several companies in different creative in-
dustries who wish to deploy Nightshade on their copyrighted
content. Finally, relevant model companies Google, Meta,
Stability.ai and OpenAI have all been made aware of this
work prior to this publication.

9. Conclusion

This work demonstrates the design and practical fea-
sibility of prompt-specific poison attacks on text-to-image
generative models. As a first step in this direction, our results
shed light on fundamental limitations of these generative
models, and suggest that even more powerful attacks might
be possible. Nightshade and future work in this space may
have potential value as tools to encourage model trainers
and content owners to negotiate a path towards licensed
procurement of training data for future models.
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Appendix A.

Appendix

A.1. Experiment Setup

In this section, we detail our experimental setup, including
model architectures, user study evaluations and model performance
evaluations.
Details on model architecture. In §6.1, we already describe
the LD-CC model for the training from scratch scenario. Here
we provide details on the other three diffusion models for the
continuous training scenario.
• Stable Diffusion V2 (SD-V2): We simulate the popular training

scenario where the model trainer updates the pretrained Stable
Diffusion V2 model (SD-V2) [27] using new training data [34].
SD-V2 is trained on a subset of the LAION-aesthetic dataset [29].
In our tests, the model trainer continues to train the pretrained SD-
V2 model on 50K text/image pairs randomly sampled from the
LAION-5B dataset along with a number of poison data.

• Stable Diffusion XL (SD-XL): Stable Diffusion XL (SD-XL) is
the newest and the state-of-the-art diffusion model, outperforming
SD-V2 in various benchmarks [23]. The SD-XL model has over
2.6B parameters compared to the 865M parameters of SD-V2.
SD-XL is trained on an internal dataset curated by StablityAI.
In our test, we assume a similar training scenario where the
model trainer updates the pretrained SD-XL model on a randomly
selected subset (50K) of the LAION-5B dataset and a number of
poison data.

• DeepFloyd (DF): DeepFloyd [24] (DF) is another popular
diffusion model that has a different model architecture from
LD, SD-V2, and SD-XL. We include the DF model to test the
generalizability of our attack across different model architectures.
Like the above, the model trainer updates the pretrained DF model
using a randomly selected subset (50K) of the LAION-5B dataset
and a number of poison data.

Details on user study. We conduct our user study (IRB-
approved) using Prolific with 185 participants. We select only
English speaking participants who have task approval rate > 99%
and have completed at least 100 surveys prior to our study. We
compensate each participant at a rate of $15/hr.
Details on evaluating a model’s CLIP alignment score and FID.

We follow prior work [19, 37] to query the poisoned model with
20K MSCOCO text prompts (covering a variety of objects and
styles) and generates 20K images. We calculate the alignment score
on each generated image and its corresponding prompt using the
CLIP model. We calculate FID by comparing the generated images
with clean images in the MSCOCO dataset using an image feature
extractor model [88].

A.2. PCA Visualization of Concept Sparsity

We also visualize semantic frequency of text embeddings in
an 2D space. Figure 18 provides a feature space visualization
of the semantic frequency for all the common concepts (nouns),
compressed via PCA. Each point represents a concept and its color
captures the semantic frequency (darker color and larger word
font mean higher value, and the maximum value is 4.17%). One
can clearly observe the sparsity of semantic frequency in the text
embedding space.



Figure 18. 2D PCA visualization of semantic frequency in LAION-
Aesthetic. Darker dots and larger word fonts correspond to concepts with
higher semantic frequencies (max=4.17%). We randomly pick concepts to
show their word content.

A.3. Additional Results of Simple Dirty-Label Poi-

soning Attacks

All poison concepts used in the paper. The following is all
the concepts (from MSCOCO and WikiArt datasets) we used in
the paper.
• MSCOCO: ’shoe’, ’umbrella’, ’sink’, ’pizza’, ’airplane’, ’suit-

case’, ’person’, ’sheep’, ’remote’, ’laptop’, ’surfboard’, ’racket’,
’spoon’, ’eye glasses’, ’desk’, ’street sign’, ’house’, ’hat’, ’tv’,
’pyramid’, ’frisbee’, ’knife’, ’fork’, ’clock’, ’microwave’, ’tooth-
brush’, ’mirror’, ’chair’, ’boat’, ’keyboard’, ’bicycle’, ’cow’,
’kite’, ’snowboard’, ’traffic light’, ’glove’, ’backpack’, ’mush-
room’, ’sandwich’, ’cat’, ’scissors’, ’bird’, ’apple’, ’carrot’,
’panda’, ’motorcycle’, ’hot dog’, ’plate’, ’bus’, ’phone’, ’train’,
’bowl’, ’dog’, ’bench’, ’table’, ’toilet’, ’lawyer’, ’book’, ’win-
dow’, ’refrigerator’, ’elephant’, ’broccoli’, ’donut’, ’banana’, ’as-
tronaut’, ’zebra’, ’vase’, ’bear’, ’truck’, ’fire hydrant’, ’whale’,
’skis’, ’handbag’, ’cake’, ’giraffe’, ’potted plant’, ’toaster’, ’cas-
tle’, ’tie’, ’blender’, ’bottle’, ’car’, ’skateboard’, ’door’, ’oven’,
’bed’, ’couch’, ’hair drier’, ’cup’, ’orange’, ’wine glass’, ’mouse’,
’horse’.

• WikiArt: ’High Renaissance’, ’Ukiyo e’, ’Northern Renais-
sance’, ’Pointillism’, ’Symbolism’, ’Pop Art’, ’Romanticism’,
’Mannerism Late Renaissance’, ’Early Renaissance’, ’Baroque’,
’Action painting’, ’Fauvism’, ’Color Field Painting’, ’Minimal-
ism’, ’Naive Art Primitivism’, ’New Realism’, ’Realism’, ’Post
Impressionism’, ’Contemporary Realism’, ’Expressionism’, ’Syn-
thetic Cubism’, ’Analytical Cubism’, ’Rococo’, ’Impressionism’,
’Art Nouveau Modern’, ’Cubism’, ’Abstract Expressionism’.

Attacking LD-CC. Figure 19 illustrates the attack success rate
of the simple, dirty-label poisoning attack (§4), evaluated by both
a CLIP-based classifier and human inspectors. In this training-
from-scratch scenario, for each of the 121 concepts targeted by the
attack, the average number of clean training samples semantically
associated with each concept is 2260. Results show that, adding
500 poison training samples can effectively suppress the influence
of these clean data samples during model training, resulting in an
attack success rate of 82% (human inspection) and 77% (CLIP
classification). Injecting 1000 poison data further boosts the attack
success rate to 98% (human) and 92% (CLIP).
Attacking SD-V2, SD-XL, DeepFloyd. Figure 20 shows the
poisoning result in the continuous training scenario assessed by
the CLIP classifier and Figure 21 shows the result evaluated via

Task
CLIP attack success rate on artist names

100 poison 200 poison 300 poison

LD-CC 80% 91% 96%
SD-V2 81% 94% 97%
SD-XL 77% 92% 99%

DF 80% 96% 99%
TABLE 7. Poison attack damages related concepts (artist names) when the
attacker poisons given art styles across 4 generation models.

human inspection. Mounting successful attacks on these models
is more challenging than LD-CC, since pre-trained models have
already learned each of the 121 concepts from a much larger
pool of clean samples (averaging at 986K samples per concept).
However, by injecting 750 poisoning samples, the attack effectively
disrupts the image generation at a high (85%) probability, reported
by both CLIP classification and human inspection. Injecting 1000
poisoning samples pushes the success rate beyond 90%.

Figure 22 compares the CLIP attack success rate between
object and style concepts. We observe that the simple poisoning
attack is more effective at corrupting style concepts than object

concepts. This is likely because styles are typically conveyed
visually by the entire image, while objects define specific regions
within the image.
Concept Sparsity Affecting Attack Efficacy. Figure 23 demon-
strates how concept sparsity in terms of word frequency impacts at-
tack efficacy and we further study the impact of semantic frequency
in Figure 24. For this we sample 15 object concepts with varying
sparsity levels, in terms of word and semantic frequency discussed
in §3.3. As expected, poisoning attack is more successful when
disrupting more sparse concepts Moreover, semantic frequency
is a more accurate representation of concept sparsity than word
frequency, because we see higher correlation between semantic
frequency and attack efficacy. These empirical results confirm our
hypothesis in §3.2.

L2 Distance to

source concept(D)

Average Number of

Concepts Included

Average CLIP attack success rate

100 poison 200 poison 300 poison

D = 0 1 84% 94% 96%
0 < D  3.0 5 81% 93% 96%

3.0 < D  6.0 13 78% 90% 92%
6.0 < D  9.0 52 32% 41% 59%

D > 9.0 1929 5% 5% 6%

TABLE 8. Bleed through performance of the enhanced poison. (SD-XL)

A.4. Additional Results

Poison bleed-through. We evaluate the “related” concept bleed-
through effects between artists and the art styles they are known for.
We include 195 artists associated with 28 styles from the Wikiart
dataset [73]. We poison each art style C, then test poison’s impact
on generating painting of artists whose style belong to style C,
without mentioning the poisoned style C in the prompt, e.g., query
with “a painting by Picasso” for models with “cubism” poisoned.
Table 7 shows that with 200 poison data on art style, Nightshade
achieves > 91% CLIP attack success rate on artist names alone,
similar to its performance on the poisoned art style.

Enhancing bleed-through. We can further enhance our poison
attack’s bleed though by broadening the sampling pool of poison
text prompts: sampling text prompts in the text semantic space of
C rather than with exact word match to C. As a result, selected
poison data will deliberately include related concepts and lead
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Figure 19. Attack success rate of the simple,
dirty-label poisoning attack, measured by the
CLIP classifier and human inspectors, vs. # of poi-
son data injected, when attacking LD-CC (training
from scratch).
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Figure 20. Attack success rate of the simple,
dirty-label poisoning attack, measured by the
CLIP classifier, vs. # of poison data injected, when
attacking each of three models SD-V2, SD-XL,
DeepFloyd (continuous training).
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Figure 21. Attack success rate of the simple,
dirty-label poisoning attack, measured by human
inspectors, vs. # of poison data injected, when
attacking each of three models SD-V2, SD-XL,
DeepFloyd (continuous training).
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Figure 22. Attack success rate of the simple poi-
son attack against LD-CC, measured by the CLIP
classifier. The simple poisoning attack is more
effective at corrupting style concepts than object
concepts. The same applies to attacks against SD-
V2, SD-XL, DeepFloyd.
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Figure 23. Success rate of the simple poisoning
attack (rated by CLIP classifier) is weakly cor-
related with concept sparsity measured by word
frequency in the training data. Results for LD-
CC. Same trend observed on SD-V2, SD-XL,
DeepFloyd.
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Figure 24. Success rate of the simple poison-
ing attack (rated by CLIP classifier) correlates
strongly with concept sparsity measured by se-
mantic frequency. Results for LD-CC. Same trend
observed on SD-V2, SD-XL, DeepFloyd.

Approach
# of poisoned

concepts

Overall model Performance

Alignment Score

(higher better)

FID

(lower better)

Clean LD-CC 0 0.31 17.2
Poisoned LD-CC 100 0.29 22.5
Poisoned LD-CC 250 0.27 29.3
Poisoned LD-CC 500 0.24 36.1
Poisoned LD-CC 1000 0.22 44.2

AttnGAN - 0.26 35.5
A model that outputs

random noise - 0.20 49.4

TABLE 9. Overall model performance (in terms of the CLIP alignment
score and FID) when an increasing number of concepts are being poisoned.
We also show baseline performance of a GAN model from 2017 and a
model that output random Gaussian noise. (LD-CC)

to a broader impact. Specifically, when we calculate activation
similar to the poisoned concept C, we use all prompts in LAION-
5B dataset (does not need to include C). Then we select top
5K prompts with the highest activation, which results in poison
prompts containing both C and nearby concepts. We keep the
rest of our poison generation algorithm identical. This enhanced
attack increases bleed through by 11% in some cases while having
minimal performance degradation (< 1%) on the poisoned concept
(Table 8).
Stacking multiple poisons. Table 9 lists, for the LD-CC model,
the overall model performance in terms of the CLIP alignment
score and FID, when an increased number of concepts are being
poisoned.
Attack performance on complex prompts. We also evaluate
poison performance on longer and more complex prompts. We
sample 20 prompts that contains 30+ words from Midjourney
showcase website. We then manually replace the concept in the
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Figure 25. Nightshade’s attack success rate (CLIP-based) decreases when
model trainer continuously trains an already-poisoned model on an increas-
ing number of clean data. The base model is poisoned with 100, 300, and
500 poison data samples.

prompt to the poisoned concept (e.g., “front view of a hyper
realistic [CONCEPT] with white and blue body ...”). The poison
attack remains successful for complex prompts (> 80% CLIP
attack success rate).



Appendix B.

Meta-Review

The following meta-review was prepared by the program com-
mittee for the 2024 IEEE Symposium on Security and Privacy
(S&P) as part of the review process as detailed in the call for
papers.

B.1. Summary

The paper introduces Nightshade, a highly optimized data
poisoning attack against diffusion-based text-to-image models,
demonstrating the vulnerability of these models to prompt-specific
poisoning attacks with a small number of optimized samples.
The attack exploits concept sparsity and stealthily corrupts image
generation for specific concepts, posing risks to model integrity
and suggesting a tool for intellectual property protection.

B.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established Field

B.3. Reasons for Acceptance

1) This paper illustrates a significant vulnerability in state-of-
the-art models to data poisoning. The vulnerability is present
even when large training datasets are used.

2) The proposed attack, Nightshade, is efficient, requiring fewer
than 100 poisoned samples to significantly influence model
outputs.

3) The paper is well-written, with a clear presentation and
comprehensive evaluation of the proposed attack and defense
mechanisms, and the experimental results are comprehensive.


