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Abstract—This investigation examines green stormwater
infrastructure (GSI) performance data and environmental
features through machine learning to identify drivers in the built
environment that impact the performance and sustainability of
GSIL.

I. INTRODUCTION

The effects of climate change are exacerbating environmental
challenges caused by urban growth. As changing rainfall
patterns collide with urban growth there is an increased need
for new stormwater management solutions. Green stormwater
infrastructure (GSI) is a strategy used to manage stormwater
and offset the impacts of urban development on stormwater.
However, municipal stormwater programs are scientifically
limited by a lack of integrated data and associated analytics to
quantify GSI performance and expected life-cycle dynamics.
Understanding GSI maintenance requirements and how they
differ by GSI type is not well studied, although maintenance
is costly. Machine learning is a possible solution as there are
many observations across disciplines impacting the science,
engineering, and policy of GSI [1], [2], [3]. Using data across
disciplines, an in-depth analysis can be conducted to
understand the performance of GSI holistically and the spatial
factors that impact performance over time.

II. BACKGROUND

A. Current State of Data Availibility and Use

Data used for GSI performance analysis is a sparse high
variance dataset of point measurements [4]. The hydrologic,
hydraulic, and environmental complexities of GSI are not well
understood. Due to the relatively new nature of GSI, which is
often implemented and regulated by municipalities with
limited budgets, there is minimal research on the intricate
relationship among GSI function, impact, and sustainability,
particularly under varying conditions, spatial areas (e.g.,
beyond single watersheds), and time scales (i.e., years to
decades). This lack of complete research is impeding the
scientific understanding of GSI dynamics and a move towards
data-driven policy [5].

B. Machine Learning

Machine learning (ML) has achieved recent success across
various fields, including flood prediction and susceptibility
mapping. This knowledge, coupled with advancements in the
empirical and theoretical understanding of hydrology and
hydraulic modeling and design provides an opportunity for
advancement in urban stormwater [6], [7].

III. METHODOLOGY

The Philadelphia Water Department (PWD) has established
multiple GSI within the city to manage stormwater and reduce
combined sewer overflows [8]. PWD conducts regular GSI
inspections to ensure functionality and inform maintenance.
The current analysis uses PWD maintenance data for three
types of GSIs: Basins, Bioinfiltration systems, and Porous
Pavements. Our approach is to analyze and predict the overall
rating of GSI systems using various aspects of inspection data.
First, we perform data preprocessing and cleaning.
Subsequently, we analyze the correlation between each
inspection data type and the final GSI performance rating.
Finally, we employ various ML methods to assess the
predictability of using assessment components to ascertain the
overall GSI rating.

A. Data Preparation and Processing

Initially, we process the collected data by filling in missing or
abnormal values with NULL and homogenized the data
formats. The inspection data has different formats of data,
including discrete data representing the contextual description
of the inspection (e.g., weather and environmental conditions)
and individually rated parameters pertaining to the components
of the GSI (e.g., inlet, outlet, etc.). Each of the parameters
contain a rating from 1-4, where a GSI functional rating of 1 or
2 indicates the GSI passed the inspection while a GSI
functional rating or 3 or 4 indicates the GSI did not pass the
inspection. To facilitate processing of these diverse data types,
we label encode all data and treat them as discrete data. This
choice stems from: (1) some data labels represent degrees, but
the descriptions are not precise measurements, only estimations
and (2) the complexity of data collection results in numerous
missing values that are challenging to handle as continuous
data. Consequently, we apply label encoding to all data,
allowing missing values to be encoded as individual labels
representing value absence.

B. Correlation Analysis of Inspection Data

To identify inspection data types with the greatest impact on
the GSI rating, we use Entropy Correlation, Mutual
Information, and Linear Discriminant Analysis correlation to
analyze the discrete data [9]. These methods can analyze the
correlation between two discrete variables. We conducted a
correlation analysis for each class of inspection data and the
final GSI rating in each dataset, obtaining a preliminary
understanding of which data classes have a more substantial
impact on the GSI rating.



C. Employed Machine Learning Techniques

We also experimented with training and predicting using
multiple ML algorithms. Given that there is low data volume
and the data is not continuous signals or images, we selected
eight traditional ML algorithms. We use Decision Tree,
Random Forest, Naive Bayes, SVM, CatBoost, LGBM,
XGBoost, and Gradient Boosting for training and testing the
datasets. We utilize the k-fold cross-validation technique on the
datasets, dividing them into k subsets, training models on k-1
subsets, and validating models on the remaining subset [10]. K-
fold cross-validation more efficiently uses dataset information,
enhancing model generalization ability, mitigating overfitting
risk, and providing a more accurate evaluation of model
performance.

IV. EXPERIMENTAL RESULTS

A. Correlation Analysis

We assessed the correlation between each class and the overall
GSI rating (Table 1 is an example of the "Porous Pavement"
dataset). While different calculation methods yield varied
correlation values, the top three features consistently exhibit
high correlations. In contrast, the bottom three features display
relatively low correlations across all methods. These findings
indicate that the top three features have a more substantial
impact on the porous pavement GSI ratings. We analyzed the
highest correlating features in the Basin and Bioinfiltration
datasets. In both datasets, features related to the debris within
the drainage area, the condition of the drainage area and the
condition of the outflow structure show high correlations.

Table 1. Feature Ranking

Features Entropy Mutual Linear
Correlation | Information | Discrimina
nt
Trash Debris Sediments 0.36 0.52 0.63
Structural Defects 0.32 0.47 0.60
Surface Clogged 0.44 0.65 0.66
Ponding 0.07 0.10 0.17
Permeable Pavement 0.08 0.12 0.19
Clogging Rating 0.07 0.10 0.16

B. Machine Learning Model Performance

We trained and tested the performance of eight ML algorithms
on the three datasets. Across the datasets, Random Forest and
various boosting methods (i.e., CatBoost, LGBM, XGBoost,
and Gradient Boosting) had superior performance (Table 2).
Although these algorithms have some differences, they all
achieve an accuracy rate over 80% or close to it for the
datasets. Based on these results, we believe that these
traditional ML techniques can effectively predict GSI ratings.

Table 2. Performance of machine learning algorithms

Dataset

Method Basin Bioinfiltration Porous
Decision Tree 79.27% 83.61% 74.93%
Random Forest 82.84% 84.59% 77.04%
Naive Bayes 61.52% 74.75% 40.96%
SVM 77.45% 80.16% 75.20%
CatBoost 83.07% 85.08% 76.78%
LGBM 82.91% 85.25% 75.99%
XGBoost 82.28% 85.41% 717.57%
Gradient Boosting 82.99% 84.92% 78.10%

V. CONCLUSION

This research uses ML to understand features impacting GSI
performance, which can inform GSI inspection to ultimate
reduce maintenance and improve GSI sustainability. The
results from the ML analysis show that the models are able to
represent the inspection ratings, highlighting the parameters
that have a substantial impact on the overall rating of the
system, allowing for preventative maintenance to ensure long-
term functionality. The outcome of this project will be rapid
gains in GSI sustainability knowledge that will strengthen core
scientific understanding of GSI processes and urban
environments, which will be widely applicable across
academia and private and public industry. Building on this
analysis, we propose to develop ML-based models that can
forecast the GSI performance ratings for a given set of GSI
data including GSI design parameters, environmental
parameters, and social-economic data.
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