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Abstract—This investigation examines green stormwater 
infrastructure (GSI) performance data and environmental 
features through machine learning to identify drivers in the built 
environment that impact the performance and sustainability of 
GSI. 

I. INTRODUCTION 
The effects of climate change are exacerbating environmental 
challenges caused by urban growth. As changing rainfall 
patterns collide with urban growth there is an increased need 
for new stormwater management solutions. Green stormwater 
infrastructure (GSI) is a strategy used to manage stormwater 
and offset the impacts of urban development on stormwater. 
However, municipal stormwater programs are scientifically 
limited by a lack of integrated data and associated analytics to 
quantify GSI performance and expected life-cycle dynamics. 
Understanding GSI maintenance requirements and how they 
differ by GSI type is not well studied, although maintenance 
is costly. Machine learning is a possible solution as there are 
many observations across disciplines impacting the science, 
engineering, and policy of GSI [1], [2], [3]. Using data across 
disciplines, an in-depth analysis can be conducted to 
understand the performance of GSI holistically and the spatial 
factors that impact performance over time.  

II. BACKGROUND 

A. Current State of Data Availibility and Use 
Data used for GSI performance analysis is a sparse high 
variance dataset of point measurements [4]. The hydrologic, 
hydraulic, and environmental complexities of GSI are not well 
understood. Due to the relatively new nature of GSI, which is 
often implemented and regulated by municipalities with 
limited budgets, there is minimal research on the intricate 
relationship among GSI function, impact, and sustainability, 
particularly under varying conditions, spatial areas (e.g., 
beyond single watersheds), and time scales (i.e., years to 
decades). This lack of complete research is impeding the 
scientific understanding of GSI dynamics and a move towards 
data-driven policy [5]. 

B. Machine Learning 
Machine learning (ML) has achieved recent success across 
various fields, including flood prediction and susceptibility 
mapping. This knowledge, coupled with advancements in the 
empirical and theoretical understanding of hydrology and 
hydraulic modeling and design provides an opportunity for 
advancement in urban stormwater [6], [7]. 

III. METHODOLOGY 
The Philadelphia Water Department (PWD) has established 
multiple GSI within the city to manage stormwater and reduce 
combined sewer overflows [8]. PWD conducts regular GSI 
inspections to ensure functionality and inform maintenance. 
The current analysis uses PWD maintenance data for three 
types of GSIs: Basins, Bioinfiltration systems, and Porous 
Pavements. Our approach is to analyze and predict the overall 
rating of GSI systems using various aspects of inspection data. 
First, we perform data preprocessing and cleaning. 
Subsequently, we analyze the correlation between each 
inspection data type and the final GSI performance rating. 
Finally, we employ various ML methods to assess the 
predictability of using assessment components to ascertain the 
overall GSI rating. 

A. Data Preparation and Processing 
Initially, we process the collected data by filling in missing or 
abnormal values with NULL and homogenized the data 
formats. The inspection data has different formats of data, 
including discrete data representing the contextual description 
of the inspection (e.g., weather and environmental conditions) 
and individually rated parameters pertaining to the components 
of the GSI (e.g., inlet, outlet, etc.). Each of the parameters 
contain a rating from 1-4, where a GSI functional rating of 1 or 
2 indicates the GSI passed the inspection while a GSI 
functional rating or 3 or 4 indicates the GSI did not pass the 
inspection. To facilitate processing of these diverse data types, 
we label encode all data and treat them as discrete data. This 
choice stems from: (1) some data labels represent degrees, but 
the descriptions are not precise measurements, only estimations 
and (2) the complexity of data collection results in numerous 
missing values that are challenging to handle as continuous 
data. Consequently, we apply label encoding to all data, 
allowing missing values to be encoded as individual labels 
representing value absence. 

B. Correlation Analysis of Inspection Data 
To identify inspection data types with the greatest impact on 
the GSI rating, we use Entropy Correlation, Mutual 
Information, and Linear Discriminant Analysis correlation to 
analyze the discrete data [9]. These methods can analyze the 
correlation between two discrete variables. We conducted a 
correlation analysis for each class of inspection data and the 
final GSI rating in each dataset, obtaining a preliminary 
understanding of which data classes have a more substantial 
impact on the GSI rating. 



C. Employed Machine Learning Techniques 
We also experimented with training and predicting using 
multiple ML algorithms. Given that there is low data volume 
and the data is not continuous signals or images, we selected 
eight traditional ML algorithms. We use Decision Tree, 
Random Forest, Naive Bayes, SVM, CatBoost, LGBM, 
XGBoost, and Gradient Boosting for training and testing the 
datasets. We utilize the k-fold cross-validation technique on the 
datasets, dividing them into k subsets, training models on k-1 
subsets, and validating models on the remaining subset [10]. K-
fold cross-validation more efficiently uses dataset information, 
enhancing model generalization ability, mitigating overfitting 
risk, and providing a more accurate evaluation of model 
performance. 

IV. EXPERIMENTAL RESULTS 

A. Correlation Analysis 
We assessed the correlation between each class and the overall 
GSI rating (Table 1 is an example of the "Porous Pavement" 
dataset). While different calculation methods yield varied 
correlation values, the top three features consistently exhibit 
high correlations. In contrast, the bottom three features display 
relatively low correlations across all methods. These findings 
indicate that the top three features have a more substantial 
impact on the porous pavement GSI ratings. We analyzed the 
highest correlating features in the Basin and Bioinfiltration 
datasets. In both datasets, features related to the debris within 
the drainage area, the condition of the drainage area and the 
condition of the outflow structure show high correlations. 

Table 1. Feature Ranking  
Features Entropy 

Correlation 
Mutual 

Information 
Linear 

Discrimina
nt  

Trash Debris Sediments 0.36 0.52 0.63 
Structural Defects 0.32 0.47 0.60 
Surface Clogged 0.44 0.65 0.66 
Ponding 0.07 0.10 0.17 
Permeable Pavement  0.08 0.12 0.19 
Clogging Rating 0.07 0.10 0.16 

B. Machine Learning Model Performance 
We trained and tested the performance of eight ML algorithms 
on the three datasets. Across the datasets, Random Forest and 
various boosting methods (i.e., CatBoost, LGBM, XGBoost, 
and Gradient Boosting) had superior performance (Table 2). 
Although these algorithms have some differences, they all 
achieve an accuracy rate over 80% or close to it for the 
datasets. Based on these results, we believe that these 
traditional ML techniques can effectively predict GSI ratings. 

Table 2. Performance of machine learning algorithms 

Method Dataset 
Basin Bioinfiltration Porous 

Decision Tree 79.27% 83.61% 74.93% 
Random Forest 82.84% 84.59% 77.04% 
Naive Bayes 61.52% 74.75% 40.96% 
SVM 77.45% 80.16% 75.20% 
CatBoost 83.07% 85.08% 76.78% 
LGBM 82.91% 85.25% 75.99% 
XGBoost 82.28% 85.41% 77.57% 
Gradient Boosting 82.99% 84.92% 78.10% 

V. CONCLUSION 
This research uses ML to understand features impacting GSI 
performance, which can inform GSI inspection to ultimate 
reduce maintenance and improve GSI sustainability. The 
results from the ML analysis show that the models are able to 
represent the inspection ratings, highlighting the parameters 
that have a substantial impact on the overall rating of the 
system, allowing for preventative maintenance to ensure long-
term functionality. The outcome of this project will be rapid 
gains in GSI sustainability knowledge that will strengthen core 
scientific understanding of GSI processes and urban 
environments, which will be widely applicable across 
academia and private and public industry. Building on this 
analysis, we propose to develop ML-based models that can 
forecast the GSI performance ratings for a given set of GSI 
data including GSI design parameters, environmental 
parameters, and social-economic data.  
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