
Resource Efficient Bayesian Optimization

Namit Juneja, Varun Chandola, Jaroslaw Zola
Dept. of Computer Science and Engineering

University at Buffalo

USA

{namitjun,chandola,jzola}@buffalo.edu

Olga Wodo, Parth Desai
Dept. of Materials Design and Innovation

University at Buffalo

USA

{olgawodo,parthsam}@buffalo.edu

Abstract—We propose a resource-efficient Bayesian Optimiza-
tion (BO) formulation that can provide the same convergence
guarantees as traditional BO, while ensuring that the opti-
mization makes efficient use of the available cloud or high-
performance computing (HPC) resources. The paper is motivated
by the fact that for many optimization problems that lend
themselves well to BO, like hyper-parameter optimization for
training large machine learning models, the single function
evaluation cost depends on the model parameters as well as
system parameters. The proposed Resource Efficient Bayesian
Optimization (REBO) algorithm is a novel formulation that
exploits this dependence and provides significant cost benefits
for users who want to deploy BO on cloud and HPC resources
that are characterized by availability of compute resources with
varying costs and expected performance benefits. We demonstrate
the effectiveness of REBO, in terms of convergence and resource-
efficiency, on a variety of machine learning hyper-parameter
optimization applications.

Index Terms—Bayesian optimization, Resource-efficient op-
timization, Expected Improvement, Gaussian processes, active
learning

I. INTRODUCTION

Bayesian optimization (BO) [6] is a class of machine-

learning based optimization methods that are well-suited for

complex “black-box” objective functions of the form f(x) :
X → R over a set X ⊂ R

d, that lack the analytical form

and gradients needed by first- and second-order derivative-

based methods. A typical BO strategy is to approximate the

true objective function using a surrogate function, represented

using a Bayesian machine learning technique – Gaussian

process regression (GPR) [5]. The GPR formulation allows

BO to quantify the uncertainty in the surrogate at different

candidate input points, and use the uncertainty to guide the

search for next best candidate to sample for evaluation. BO

has been shown to be effective for optimization over con-

tinuous domains of fewer than 20 dimensions (d ≤ 20), by

being sample efficient, i.e., taking fewer sample evaluations to

converge than competing methods.

Ability to work with black box objective functions has made

BO a highly versatile method in scenarios where a single

evaluation of the target objective function can take several

Partially supported by the National Science Foundation (Office of Advanced
Cyberinfrastructure - OAC 1910539 and Division of Civil, Mechanical,
and Manufacturing Innovation - CMMI 1906344. Computing facilities were
provided by the University at Buffalo Center for Computational Research.

hours to evaluate. This includes applications such as hyper-

parameter optimization for training large machine learning

models [10], [21], [22], optimal parameter estimation for

materials simulations [25], [27], drug design [17], etc. In each

of these scenarios, the function evaluation is typically very

costly, e.g, training a deep neural network model, running a

computer simulation of a physical process, etc.

For many optimization problems, the evaluation cost varies

across the search space, i.e., the evaluation is computationally

more expensive for some values of x and cheaper for oth-

ers [13]. For example, when training a deep neural network,

the training cost depends on the value of the hyper-parameters,

say, the number of layers of the network. Recent works have

shown that by exploiting the heterogeneity in the computa-

tional cost profile, one can converge to the optimal solution

while reducing the computational cost instead of the number of

evaluations; being cost-efficient instead of sample-efficient [7],

[13], [22], which is more desirable from the cost perspective.

However, above solutions that advocate cost-efficient BO,

assume that the function evaluation is done on a single static

compute environment. This is often not the case when the

evaluation is done using a cloud or cluster computing platform.

Such platforms typically offer different types of computing

nodes with different compute characteristics (number of cores,

availability of accelerators such as GPU(s), memory, etc.).

The application that is used for the function evaluation might

support parallel processing, and thus the user might also have

the option of choosing the number of compute nodes for

executing the application.

In this paper, we present a methodology to run BO on such

systems where the user has the ability to choose different types

of compute configurations at every iteration of BO, with an

objective to converging to the solution while reducing the cost

associated with using the system1. Clearly, simply choosing

the cheapest or the most expensive configuration or a random

configuration is not the best approach. For instance, while the

cheapest configuration might have a lower per-hour cost, the

evaluation might take longer and thus the actual dollar value

for that evaluation might be higher. The application running

the evaluation function itself could run faster or slower, for the

1By cost, we refer to dollar amount spent to run the evaluations. All
commercial cloud providers as well as many high-performance computing
(HPC) centers that offer cluster computing have per-hour pricing models that
depends on the system configuration [2], [3], [18].

12

2024 IEEE 17th International Conference on Cloud Computing (CLOUD)

2159-6190/24/$31.00 ©2024 IEEE
DOI 10.1109/CLOUD62652.2024.00012

20
24

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

UD
) |

 9
79

-8
-3

50
3-

68
53

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
LO

UD
62

65
2.

20
24

.0
00

12

same x, depending on the system configuration. For instance,

a neural network training application might run faster if the

compute node has a GPU or larger memory.

In general, we model the cost incurred for a single evalua-

tion of f(x) as:

c(x,θ) = u(θ)× t(x,θ) (1)

where the vector θ represents the system configuration pa-

rameters, the function u(θ) models the per-unit-time price

of acquiring the configuration θ, and the function t(x,θ)
models the time taken to run the function evaluation at x using

the configuration θ. Note that while u(θ) (pricing model) is

typically known, the time function t(x,θ) is not known a

priori.

Using the above cost formulation, we present a novel BO

algorithm called Resource Efficient Bayesian Optimization

or REBO, which identifies the optimal configuration (θ) to

execute the next function evaluation at every step of the

primary BO algorithm. REBO does not modify the primary

BO algorithm (thus guarantees same convergence as BO2),

but ensures that overall execution incurs lower cost. The time-

cost function t() is modeled using a second GPR model which

iteratively admits more data after every BO evaluation and

approximates the true but unknown function.

In this paper, we make the following contributions:

1) We advocate a resource-effective formulation of BO

which offers a more practical approach to reducing

running costs when deploying BO applications in cloud

and HPC environments.

2) We propose REBO, which is a novel approach that can

be used to deploy a BO application on a cloud system

in the most cost-effective manner.

3) We demonstrate the effectiveness of REBO, using ex-

periments for a variety of machine learning training

applications, including neural network hyper-parameter

tuning.

The rest of the paper is organized as follows. We provide

an overview of BO and discuss relevant related works in

Section II. The proposed REBO algorithm is presented in Sec-

tion III. We provide an empirical evaluation and comparison

with other related methods in Section IV and conclusions are

provided in Section V.

II. BACKGROUND AND RELATED WORK

A. Bayesian Optimization

Bayesian Optimization (BO) is a sequential method used for

optimizing expensive-to-evaluate black-box functions. Given

an objective function f : X → R our goal is to find x
∗ such

that f(x∗) ≤ f(x), ∀x ∈ X where X ∈ R
d and is referred to

as the search space.

BO models the objective function f by iteratively training

a probabilistic surrogate model. Typically this surrogate is

2This is not true of other cost-efficient methods [7], [13], [22] which modify
the core search strategy of BO and do not provide similar guarantees about
convergence.

built using a Gaussian Process (GP). Given n observations,

{xi ∈ X}ni=1, GP builds an n dimensional multivariate

Gaussian Distribution GPf (µ(x), k(x,x
′)) where µ : X → R

is the mean function and k : X × X → R is the covariance

function. The ability of a GP to estimate a function is greatly

determined by what covariance function is used. A covariance

function represents the prior knowledge we have about the

objective function. A popular choice is the squared exponential

kernel

kSE = σ2
s exp

(

−
∥x− x

′∥2

2l2

)

(2)

where variance σ2
s , and length-scale l are kernel hyper-

parameters that determine how the function values vary from

their original mean and how smooth the function is respec-

tively.

Once n evaluations of the objective function have been

completed, {xi, yi}
n
i=1 where xi ∈ X and yi = f(xi)+ϵi and

ϵi ∼ N (0, σ2
ϵ) is the input noise, the posterior distribution of

the GP is given by f(x) | {x1:n, yi:n} ∼ N (µn(x), σ
2
n(x))

where µn(x) is the mean and σ2
n(x) is the covariance at the

current iteration and is defined as:

µn(x) = KT
∗ [K + σ2I]−1y (3)

σ2
n(x) = KT

∗∗ − KT
∗ [K + σ2I]−1K∗ (4)

where y is an array of observed function evaluations

(yi . . . yn), K is a covariance matrix between all observed

points, K∗ is the covariance between all observed points and

new points, K∗∗ is the covariance matrix between all new

points, I is an identity matrix of dimensions same as that of K

and σϵ is the observed noise in the evaluation of the objective

function.

An acquisition function, α : X → R uses the mean µn

and variance σn of the GP posterior to sample the next

candidate points on which the objective function, f should

be evaluated. The function’s goal is to find x′ ∈ X such that

α(x′) > α(x)∀x ∈ X . A popular choice for α is the Expected

Improvement(EI) [14] function which is defined as:

xn+1 = argmax
x∈X

(E(max{0, (µ(x)− f(x̃)} | {x1:n, y1:n})))

(5)

As the name suggests, EI computes the expected value

of improvement over the current best evaluation over f at

any point x ∈ X . Other well known acquisitions include

Probability of Improvement (PI) [9], Upper Confidence Bound

(UCB) [24] and Entropy Search (ES) [8]. Most modifications

of BO that have been proposed in the past that make BO cost-

efficient propose a modification to the EI acquisition function

such that the cost of evaluation of the candidate points is also

taken into consideration. We discuss these methods in detail

in the following subsection.

B. Cost Efficient Bayesian Optimization

Many cost-efficient BO algorithms extend the traditional BO

framework by incorporating evaluation costs. These methods

13

develop EI based acquisition strategies that balance the trade-

off between maximizing expected improvement and minimiz-

ing exploration cost. We explore three such popular acquisition

function in this section.

One common approach to incorporate cost-efficiency into

BO is to replace the EI acquisition function with the Expected

Improvement per unit time (EIpu) acquisition function [23]:

EIpu(x) =
EI(x)

m(x)
(6)

where m(x) is the predicted cost, typically modeled using

a Warped GP fitted on the log-cost [23]. This approach favors

points with high expected improvement and low predicted

evaluation cost. However, [12] showed that EIpu fails to

outperform EI in optimization problems where the optimum

lies in a high-cost region. The acquisition function struggles

to differentiate between high-cost regions with high expected

improvement and low-cost regions with low expected improve-

ment, as both yield similar EIpu values.

Eric et al. [12] proposed a cost-cooling modification to EIpu

where the predicted cost used to normalize the EI is now

exponentiated by a decaying function β.

EI − cool(x) =
EI(x)

m(x)β
(7)

where β assumes the value of 1 at the beginning of the opti-

mization and decays to 0 as the optimization progresses and

the allocated cost budget slowly diminishes. In the beginning,

EI-cool behaves similar to the original EIpu, favoring points

with high expected improvement and low predicted cost, but as

the optimization progresses, the predicted cost term becomes

less influential eventually transforming the function into EI.

Guinet et al. [7] attempts to make BO cost-efficient by

formulating the acquisition of new points as a bi-objective

optimization problem. The optimal points are present on a

pareto frontier where an optimal trade off between expected

improvement and cost of evaluation is achieved. The Con-

textual Expected Improvement (CEI) acquisition function is

defined as:

CEIλ(x) =

{

−c(x) EI(x) ≥ (1− λ)maxz∈χ(EI(z))

− inf otherwise

(8)

Our experimental results, presented in Table I, reveal that

both cost-cooling and pareto-efficient strategies demonstrate a

lack of flexibility across diverse search spaces. Moreover while

these strategies improve cost-efficiency to some extent by

improving the candidate acquisition process, they still operate

under the assumption that the entire optimization is performed

on a static system configuration. This assumption leaves a

significant portion of the cost optimization potential untapped.

III. PROPOSED RESOURCE-EFFICIENT BAYESIAN

OPTIMIZATION ALGORITHM

Our work attempts to address the following problem: Given

some objective function f , how can we use BO to optimize

f in the minimum cost possible without compromising on the

quality of optimization.

This problem is inherently challenging due to the intrinsic

trade-off present in BO between selecting candidate points

that facilitate faster convergence and those that incur the

least evaluation cost. Previous solutions have attempted to

resolve this dilemma by striking a balance between these two

competing objectives.

However, a key observation is that these existing solutions

operate under the assumption of system agnosticism, wherein

each iteration of the BO is evaluated on the same system

configuration, limiting the potential for cost savings.

In our work, we propose a novel framework, termed Re-

source Efficient Bayesian Optimization(REBO), which aims to

drastically reduce the cost of optimization without sacrificing

the quality of the optimization process. This is achieved

by leveraging an auxiliary cost model, we call Resource

Cost Model and the ability to dynamically adjust the system

configuration across BO iterations.

REBO deviates from the traditional approach of striking a

balance between selecting points that accelerate convergence

and those that incur lower evaluation costs. Instead, it employs

a greedy strategy that decouples the acquisition process into

two distinct stages.

In the initial stage, the algorithm identifies a subset of points

that offer the highest expected improvement, by maximizing

the αEI acquisition function. This stage is solely focused

on exploiting regions within the search space that exhibit

the greatest potential for improvement, effectively prioritizing

the exploration of promising areas without considering the

associated evaluation costs.

Subsequently, in the second stage, the algorithm shifts its

focus to minimizing the evaluation costs. From the previ-

ously identified subset of points with the highest expected

improvement, the algorithm selects the system configurations

that would incur the least cost for evaluating the objective

function. This resource-efficient selection process is driven by

the Resource Cost Model (γ), which estimates the dollar cost

associated with evaluating f , for each set of model and system

parameters.

A. Resource Cost Model

The Resource Cost Model (RCM), denoted as γ, is a

Bayesian model that predicts the probability distribution of the

cost associated with evaluating the objective function f for a

given set of model parameters (x) and system parameters (θ).

This model is defined as a product of the time cost model γt
represented by a Gaussian Process Regression (GPR), which

is iteratively trained as new points are evaluated by BO and a

unit-time cost function γc which is known a-priori based on

the compute service being used.

The RCM, γ : X ×Ω → R yields the predicted mean cost,

µ and uncertainty σ for a given x and θ.

The conditional probability distribution for the predicted

cost, γ(θ | x′), can be derived from the posterior distribution

of γ. This conditional distribution is leveraged to determine

14

the optimal system parameters, θ′, for a given set of model

parameters x′, such that the predicted cost of evaluating f at x′

is minimal. To achieve this, we minimize the upper confidence

bound of γ(θ | x′).

θ
′ = argmin

θ∈Ω

(µ(θ | x′) + λσ(θ | x′)) (9)

where λ is a tunable parameter that controls the trade-off

between minimizing the predicted cost and accounting for the

uncertainty associated with the cost prediction.

B. Resource Efficient BO

Let f : X × Ω → R
2 be a function that maps model pa-

rameter space X and system parameter space Ω to evaluation

cost and function output. We aim to find x∗ ∈ X and θ
∗ ∈ Ω

such that f(x∗,θ∗) ≤ f(x,θ)∀x ∈ X ,θ ∈ Ω

REBO begins by initializing two models: the surrogate

model which is a Gaussian Process, GPf : X → R and the

Resource Cost Model, γ : X × Ω → R. These models are

initialized with a set of initial observations of the objective

function f , typically obtained through a space-filling strategy,

such as Latin Hypercube Sampling. This strategy ensures

a diverse initial set of points, providing a suitable starting

point for the optimization process. Subsequently, an EI based

acquisition function, αEI : X → R determines the next set of

points that f should be evaluated on. It is crucial to note that

the points selected here are chosen solely based on maximizing

the expected improvement, without considering the associated

evaluation costs.

Following the selection of the new points by the αEI

acquisition function, a conditional probability distribution is

constructed from γ. This distribution maps the estimated

cost of evaluating f for the given set of model parameters

determined by αEI and all possible system parameters. By

minimizing the upper confidence bounds of γ conditioned on

the chosen model parameters, the set of system parameters

is obtained, on which f can be evaluated such that it incurs

the least cost. Once the set of model parameters and their

corresponding set of system parameters have been acquired,

they are used to evaluate the objective function f . With the

newly acquired observation, both the GPf and γ models

are updated to incorporate the additional information. This

update step involves re-estimating the GP hyperparameters and

updating the posterior distributions of the two models.

The REBO algorithm then checks for convergence crite-

ria, such as the allocated budget (e.g., number of function

evaluations or computational resources) being exhausted or a

satisfactory solution being found. If the convergence criteria

is not met, REBO iterates back to the step where a new set of

model parameters and system parameters are acquired using

the updated surrogate model and RCM.

This iterative process continues until the convergence crite-

ria are satisfied, hence leveraging surrogate model (GPf) and

the the Resource Cost Model (γ) to navigate the optimization

manifold in a resource-efficient manner while maintaining the

quality of the optimization process. The key steps of this

process are summarized in Algorithm 1.

It is noteworthy that if the Resource Cost Model (γ) and

the associated two-step acquisition process are omitted, the

REBO algorithm becomes equivalent to a traditional Bayesian

Optimization algorithm.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

We evaluate the performance of REBO using a test bench

consisting of both synthetic and real-world applications. The

synthetic test bench includes three 2d objective functions:

Ackley function (defined over [−32, 32]2), Rosenbrock func-

tion (defined over [−5, 10]2), and Matyas function (defined

over [−10, 10]2).

The real-world applications in our study focus on three

widely used Hyper Parameter Optimization (HPO) problems.

First, we consider an Artificial Neural Network (ANN) algo-

rithm, which we optimize by tuning three hyperparameters:

number of hidden layers (defined over [2, 10]), number of

nodes per hidden layer (defined over [10, 100]), and training

batch size (defined over [10, 100]). Next, we optimize a

Decision Tree algorithm, whose search space is defined by

three hyperparameters: maximum depth (defined over [1, 50]),
minimum number of samples required to split an internal node

(defined over [0.1, 0.9]), and number of features to consider

for the best split (defined over [0.1, 0.9]). Finally, we explore

a Random Forest algorithm, which is also characterized by

three hyperparameters: maximum depth (defined over [1, 50]),
minimum number of samples required to split a node (defined

over [0.1, 0.9]), and maximum number of leaf nodes (defined

over [1, 51]).
Each HPO problem is tested on three different datasets:

income [11], bean [1], and bank [15], resulting in 9 different

combinations of HPO problems. The income dataset predicts

whether a household’s income exceeds $50,000 based on the

1994 US Census database. The bean dataset classifies beans

into 7 different categories based on their features. The bank

dataset predicts if a client will subscribe to a term deposit

based on marketing campaigns of a Portuguese banking insti-

tution. These tests are also accompanied by the cost function

mentioned earlier.

To enable resource-efficient optimization, REBO’s search

space also consists of system parameters that define the

system configuration for each objective function evaluation.

We consider a 3d search space consisting of the number of

nodes (defined over [2, 32]), the number of CPU cores (defined

over [2, 10]), and the active memory per node (defined over

[4, 64]).
To execute the optimization process, a dollar cost must be

associated with each point in the search space that is evaluated.

Generally, this cost would be obtained by calculating the time

required to evaluate a point and the cost per unit time of

the system configuration on which it was evaluated. However,

in this paper, instead of measuring the actual cost, we use

a simulated cost function. This cost function follows the

15

TABLE I
AVERAGE COST OF OPTIMIZATION ON SYNTHETIC AND REAL-WORLD TASKS

EI EI EI EIpu EIpu EIpu CEI CEI CEI EI-cool EI-cool EI-cool REBO
Low Mid High Low Mid High Low Mid High Low Mid High

Ackley 0.149 0.582 109.792 0.496 0.605 34.157 0.219 0.547 66.982 0.205 0.426 70.014 0.084

Rosen 0.125 0.257 11.619 0.157 0.279 9.170 0.135 0.255 10.889 0.143 0.208 15.119 0.068

Matyas 0.094 0.146 20.099 0.093 0.159 19.028 0.108 17.677 19.260 0.090 0.140 20.911 0.062

ANN income 0.083 0.088 0.737 0.076 0.437 3.879 0.308 0.924 8.767 0.097 0.764 76.379 0.066

ANN bank 0.229 0.690 7.983 0.259 3.826 5.874 0.542 0.363 7.289 0.121 0.827 4.024 0.071

ANN bean 0.059 0.240 0.374 0.073 0.287 8.742 0.426 0.827 2.837 0.115 0.349 12.939 0.040

Decision Tree income 0.030 0.068 2.953 0.106 0.110 0.699 0.055 0.166 7.705 0.039 0.120 8.203 0.014

Decision Tree bank 0.090 0.083 2.030 0.023 0.086 6.132 0.030 0.084 4.715 5.777 0.071 0.028 0.024

Decision Tree bean 0.050 0.094 2.358 0.051 0.079 6.586 0.042 0.132 5.097 0.052 0.122 3.692 0.014

Random Forest income 0.045 0.041 0.796 0.054 0.064 3.090 0.062 0.054 2.366 0.031 0.096 1.154 0.008

Random Forest bank 0.038 0.027 0.645 0.028 0.048 5.396 0.017 0.042 2.009 0.023 0.048 2.440 0.006

Random Forest bean 0.035 0.041 1.156 0.030 0.084 5.339 0.045 0.089 3.045 0.032 0.123 2.406 0.007

TABLE II
AVERAGE NUMBER OF ITERATIONS NEEDED TO OPTIMIZE ON SYNTHETIC AND REAL-WORLD TASKS

EI EI EI EIpu EIpu EIpu CEI CEI CEI EI-cool EI-cool EI-cool REBO
Low Mid High Low Mid High Low Mid High Low Mid High

Ackley 35.60 35.60 35.60 40.50 39.50 38.20 36.90 37.15 36.50 37.60 38.60 38.90 35.60

Rosen 5.20 5.20 5.20 5.77 5.71 5.05 5.63 5.38 6.06 5.47 5.75 5.65 5.20

Matyas 23.57 23.57 23.57 23.40 25.20 22.00 25.70 20.50 21.70 22.50 22.40 24.20 23.57
ANN income 15.70 15.70 15.70 19.80 21.80 16.90 15.90 18.87 19.10 18.70 19.10 19.70 15.70
ANN bank 21.50 21.50 21.50 29.54 27.60 31.50 25.80 26.30 24.90 27.90 23.30 32.60 21.50

ANN bean 18.30 18.30 18.30 17.60 19.70 20.30 19.30 15.70 22.87 21.54 21.80 22.20 18.30
Decision Tree income 30.03 30.03 30.03 32.65 33.00 34.63 33.94 31.30 34.30 33.40 35.07 35.80 30.03

Decision Tree bank 19.19 19.19 19.19 23.81 25.90 24.36 23.87 25.43 23.25 22.72 23.30 20.14 19.19

Decision Tree bean 25.03 25.03 25.03 30.50 27.30 26.30 30.50 26.70 28.47 27.95 26.96 27.88 25.03
Random Forest income 19.93 19.93 19.93 24.36 20.73 21.10 23.60 21.50 22.90 23.20 23.00 24.17 19.93

Random Forest bank 11.76 11.76 11.76 15.63 11.37 13.45 13.42 12.84 13.15 15.59 12.73 14.20 11.76
Random Forest bean 18.83 18.83 18.83 18.90 20.20 22.50 19.40 19.80 22.20 21.95 21.48 19.27 18.83

same structure as eqn: 1, consisting of two components: a

time cost function and a unit cost function. The time cost

function is defined by (n1 − f1)
2 + (n2 − f2)

2 + n3, where

n1, n2, and n3 are the three system parameters, and f1 and

f2 are linear combinations of the different model parameters.

This formulation reflects the observation that different model

parameters corresponds to a different set of system parameters

that yield the optimum evaluation cost, which is consistent

with findings from previous works [16], [20], [26]. The second

component of the cost function is the per-unit-time cost

function, which is modeled after the pricing of AWS EC2 c6gn

compute instances [1]. By combining these two components,

the cost function provides a realistic estimate of the total

cost associated with evaluating the objective function under

different system configurations and model parameters.

We conduct a comparative analysis of REBO against state-

of-the-art baselines (EIpu, CEI and EI-cool) as well as stan-

dard Bayesian Optimization using Expected Improvement

(EI). Since these baseline methods do not consider the sys-

tem configuration, we conduct the optimization under three

different static system settings: a high system configuration

(highest per-unit-time price) with 32 nodes, 10 cores, and

64GB memory; a mid configuration (moderate per-unit-time

price) with 16 nodes, 6 cores, and 32GB memory; and a low

system configuration (lowest per-unit-time price) with 3 nodes,

1 core, and 2GB memory. We compare the performance of

these algorithms with REBO, which employs a dynamically

adjusting system configuration that adapts as it learns more

about the underlying distribution of the objective function.

Our implementation is based on the boTorch [4] and scikit-

learn [19] libraries. To ensure a fair comparison, all algorithms

across each benchmark employ the same kernels: a Matérn

kernel for the surrogate model Gaussian Process (GP) and

a Radial Basis Function (RBF) kernel for the RCM GP.

Furthermore, all algorithms start from an identical set of

initial points. The hyperparameters are tuned by optimizing

the maximum marginal log-likelihood. Each optimization is

repeated 100 times, and the reported results represent the

average performance across these runs.

B. Experimental Results

Our evaluation of REBO against the aforementioned algo-

rithms is based on two key criteria. First is the total cost

incurred in reaching the optimum. For the synthetic functions

reaching the optimum signifies reaching their respective global

minima/maxima and for HPO, it is defined as achieving a 10%

improvement in the prediction accuracy. Table I presents the

average cost of optimization over 100 replications, showing

that REBO outperforms EI, EIpu, CEI, and EI-Cool by a

significant margin.

17

The second criterion we use to evaluate is the quality of

optimization, which is quantified by the number of iterations

required to reach the optimum. Table II summarizes the

average number of iterations needed for each model to reach

the optimum condition, across 100 replications. Our findings

indicate that REBO reaches the optimum condition in fewer

iterations compared to the other methods when the optimum

lies in a high-cost region, while exhibiting comparable per-

formance when the optimum exists in a low-cost region. It is

worth noting that the number of iterations required for REBO

to reach the optimum is identical to that of EI, as REBO also

employs the Expected Improvement (EI) acquisition function.

We visualize the improvement that REBO offers by exam-

ining an individual optimization run of the 2d Ackley function

using REBO, EI, EIpu, CEI, and EI-cool across low, and mid

system configurations in Figure 1. We omit the high system

configuration from the plot due to its significantly higher

optimization cost, which makes it difficult to visualize on the

same scale as the other configurations. In Figure 1, we make

two key observations. First, REBO is able to optimize the

objective function in the least cost when compared to other

methods. This is attributed not only to the lesser number of

points being sampled to reach the optima but also to REBO’s

ability to dynamically select a system configuration at each

iteration that can evaluate the sampled point in the most cost-

effective manner. This is evident from the cumulative cost

plotted across each iteration. Second, we observe that REBO

maintains the same sample efficiency as EI by being able to

find the minima in the minimum number of iterations.

V. CONCLUSIONS

In the current era of machine learning, where model pa-

rameters range from a few hundred to billions, it has be-

come increasingly evident that simply scaling computational

resources is not the most cost-effective strategy for training

the models. Choosing the right type of resources is equally

crucial in optimizing the cost-efficiency of the training process,

which includes iterating over a large number of model hyper-

parameters. For very large machine learning models, a single

node often lacks the power to train these models quickly.

As a result, it is essential to distribute the training across

multiple nodes to meet the computational demand. However,

performance does not scale linearly with the number of nodes.

In some cases, spreading processes across many servers is

more effective, while in others, consolidating them on a

single server yields better results. Cloud and HPC platforms

enable such possibilities by offering a heterogeneous mix

of computing resources with varying performance and cost

profiles.

We argue that BO, which has emerged as an excellent

optimization method for black-box functions, needs to be

modified so that users can exploit the available resources on

cloud and HPC platforms effectively. The resource-efficient

formulation of the proposed REBO algorithm is a novel

strategy and the empirical results show that REBO provides

the same convergence guarantees as the original BO, while

providing significant cost benefits.

REFERENCES

[1] Dry Bean. UCI Machine Learning Repository, 2020. DOI:
https://doi.org/10.24432/C50S4B.

[2] AWS EC2 on-demand pricing. https://aws.amazon.com/ec2/pricing/
on-demand/.

[3] Microsoft azure linux virtual machines pricing. https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/.

[4] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G.
Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-
Carlo Bayesian Optimization. In Advances in Neural Information

Processing Systems 33, 2020.
[5] G. P. for Machine Learning. Carl Edward Rasmussen and Christopher

K. I. Williams. The MIT Press, 2006.
[6] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023.
[7] G. Guinet, V. Perrone, and C. Archambeau. Pareto-efficient acquisition

functions for cost-aware bayesian optimization. ArXiv, abs/2011.11456,
2020.

[8] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Pre-
dictive entropy search for efficient global optimization of black-box
functions. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 27. Curran Associates, Inc., 2014.
[9] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization

of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, Dec 1998.

[10] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In
Proceedings of the 20th International Conference on Artificial Intelli-

gence and Statistics (AISTATS), volume 54 of Proceedings of Machine

Learning Research, pages 528–536. PMLR, 2017.
[11] R. Kohavi. Census Income. UCI Machine Learning Repository, 1996.

DOI: https://doi.org/10.24432/C5GP7S.
[12] E. H. Lee, V. Perrone, C. Archambeau, and M. Seeger. Cost-aware

bayesian optimization. arXiv preprint arXiv:2003.10870, 2020.
[13] E. H. Lee, V. Perrone, C. Archambeau, and M. W. Seeger. Cost-aware

bayesian optimization. ArXiv, abs/2003.10870, 2020.
[14] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian

methods for seeking the extremum. Towards Global Optimization,
2(117-129):2, 1978.

[15] R. P. Moro, S. and P. Cortez. Bank Marketing. UCI Machine Learning
Repository, 2012. DOI: https://doi.org/10.24432/C5K306.

[16] L. Muttoni, G. Casale, F. Granata, and S. Zanero. Optimal number
of nodes for computation in grid environments. In 12th Euromicro

Conference on Parallel, Distributed and Network-Based Processing,

2004. Proceedings., pages 282–289, 2004.
[17] D. M. Negoescu, P. I. Frazier, and W. B. Powell. The knowledge-gradient

algorithm for sequencing experiments in drug discovery. INFORMS

Journal on Computing, 23(3):346–363, 2011.
[18] Ohio supercomputer center service costs. https://www.osc.edu/content/

academic fee model faq.
[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.
[20] Program scalability analysis. https://cis.temple.edu/∼shi/wwwroot/shi/

public html/super96/.
[21] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas.

Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2016.

[22] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 25. Curran Associates, Inc., 2012.
[23] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-

tion of machine learning algorithms. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 25. Curran Associates, Inc., 2012.

18

[24] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-
theoretic regret bounds for gaussian process optimization in the bandit
setting. IEEE Transactions on Information Theory, 58(5):3250–3265,
2012.

[25] T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi, and K. Tsuda. Combo: An
efficient bayesian optimization library for materials science. Materials

Discovery, 4:18–21, 2016.
[26] W. Wang, G. Chen, H. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K.-L.

Tan, S. Wang, and M. Zhang. Deep learning at scale and at ease. ACM

Trans. Multimedia Comput. Commun. Appl., 12(4s), nov 2016.
[27] Y. Zhang, D. W. Apley, and W. Chen. Bayesian optimization for mate-

rials design with mixed quantitative and qualitative variables. Scientific

Reports, 10(1):4924, 2020.

19

