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A B S T R A C T

Reliable sensing of road conditions during flooding can facilitate safe and efficient emergency response, reduce
vehicle-related fatalities, and enhance community resilience. Existing situational awareness tools typically
depend on limited data sources or simplified models, rendering them inadequate for sensing dynamically
evolving roadway conditions. Consequently, roadway-related incidents are a leading cause of flood fatalities
(40%–60%) in many developed countries. While an extensive network of physical sensors could improve
situational awareness, they are expensive to operate at scale. This study proposes an alternative—a framework
that leverages existing data sources, including physical, social, and visual sensors and physics-based models,
to sense road conditions. It uses source-specific data collection and processing, data fusion and augmentation,
and network and spatial analyses workflows to infer flood impacts at link and network levels. A limited case
study application of the framework in Houston, Texas, indicates that repurposing existing data sources can
improve roadway situational awareness. This framework offers a paradigm shift for improving mobility-centric
situational awareness using open-source tools, existing data sources, and modern algorithms, thus offering a
practical solution for communities. The paper’s contributions are timely: it provides an equitable framework
to improve situational awareness in an epoch of climate change and exacerbating urban flood risk.
1. Introduction

Flooding poses a significant risk to urban mobility: While inun-
dated roadways and overtopped bridges isolate communities and limit
roadway mobility, the paucity of reliable real-time road condition
data causes delays and detours, reduces emergency response efficiency,
and poses safety risks [1–10]. Further, existing situational awareness
tools are often limited in their ability to accurately sense dynamically
evolving road conditions [11,12], thus limiting communities’ ability to
espond to flood events. Consequently, mobility-related incidents are
inked to 40%–60% of flood fatalities in many developed economies [3–
,13]. Although structural changes are necessary to reduce flood risk,
improving situational awareness could, in the short term, enhance our
ability to sense and respond to flooding, reduce flood casualties, and
strengthen community resilience. Reliable situational awareness tools
are especially essential considering climate-exacerbated flood risk to
urban mobility [14,15], aging or inadequate stormwater infrastruc-
ture [16], and the scale of emergency response in major urban centers
(for example, first responders evacuated more than 122,300 people
during Hurricane Harvey [17]). Situational awareness is defined here
as the ability to timely and accurately sense flood impacts on road
transportation networks at the link and network levels.
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Most existing situational awareness tools for detecting flooded
roads, or flooding in general, depend on a limited number of sources
and consequently inherit their limitations, biases, and inaccuracies.
For example, though physical sensors [18–22] deployed along streets
can detect road conditions reliably, deploying, maintaining, and se-
curing sensors at scale is prohibitively expensive. Similarly, although
social sensors (social media platforms [23] or custom crowdsourcing
tools [24,25]) can offer enhanced situational awareness, they are often
replete with bias, misinformation, noise, or model errors [26–29]—thus
limiting their application as the sole source of situational awareness
data for emergency response applications. Further, studies [30–33]
have also successfully used remote sensing techniques (satellites, UAVs,
and other aerial platforms) to infer road or flood conditions. While
capable of observing large areas, time delays due to satellite revisit
times and unavailability of aerial platforms during inclement weather
conditions, such as hurricanes, limit their application for emergency
response applications requiring limited time lag. With recent advances
in deep learning [34,35], automated image processing models [36–
38] can infer roadway flood conditions from traffic camera images;
however, camera data are often only limited to select watchpoints along
major highways. Similarly, authoritative data from the Departments
vailable online 17 July 2024
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of Transportation [39,40] are usually limited to major highways or
arterial roads, limiting data availability for minor roads and residential
streets. Recently, studies [41–44] have shown successful applications
of machine learning models to predict flooding and roadway status.
Often trained on limited historical or simulated data, these models
have unknown reliability and generalizability for unseen future events.
Moreover, the data-driven models inherit biases and uncertainties asso-
ciated with the training data, limiting their application. Studies [45–50]
have also used physics-based models to predict roadway conditions at
select watchpoints as well as at watershed levels. While more reliable
than surrogate models for unseen storms, physics-based models are
computationally expensive to run in real-time, and simplifications such
as the inability to model storm drainage networks could lead to model
errors. Some studies have attempted to use precompiled maps [51]
to overcome the computational burden of real-time models at the
cost of accuracy. Similarly, studies have also attempted to correlate
road conditions to nearby gages [52] or rainfall sensors [39] with
varying levels of accuracy. However, such simplified or empirical
methods are often insufficient for large-scale emergency response and
high-risk applications. While these frameworks have advantages and
work reliably for limited case study applications, they often fail to
provide comprehensive mobility-centric situational awareness solutions
at scale.

The shortcomings of current mobility-centric situational awareness
frameworks are primarily due to limited real-time data, as they rely
solely on a small number of sources. An alternative is to fuse infor-
mation from multiple sources using data fusion techniques. When data
from compatible sources are combined, their collective observations
can overcome their individual limitations. Concurrently, data fusion
also engenders the challenge of combining information from disparate
sources with varying spatial and temporal resolution, reliability, robust-
ness, and modality. Although real-time mobility-centric applications
are limited, examples of data fusion-based methods are available for
flood monitoring and hindcasting. For example, Wang et al. [53] used
social media data with crowdsourcing data for flood monitoring. Rosser
et al. [54] fused remote sensing data with social media data and
topographical data for flood inundation mapping. Ahmad et al. [30]
used remote sensing and social media to detect passable roads after
floods. Frey et al. [55–57] used a digital elevation model and remote
sensing images to identify trafficable routes. Albuquerque et al. [58]
used social media and authoritative data for filtering reliable social
media messages. Bischke et al. [59] used social multimedia and satellite
imagery for detecting flooding. Werneck et al. [60] proposed a graph-
based fusion framework for flood detection from social media images.
These methods showcase the application of the data fusion approach for
situational awareness or hindcasting, albeit with a very limited number
of data sources. Fusing observations from limited sources (especially
leveraging social or remote sensors) might not effectively provide
reliable situational awareness data for emergency response applications
requiring high reliability and limited time lag. In summary, a com-
prehensive mobility-centric situational awareness framework that can
sense roadway conditions at link and network levels is still lacking in
the literature. Such a framework should ideally (a) observe a majority
of roads, including residential streets, with limited time lag through all
stages of flooding; (b) yield reliable and accurate predictions devoid of
spatial, temporal, and social bias or inequity; (c) be robust to provide
reliable data even with failure of some dependent data sources; (d)
quantify link- and network-level impacts on flooding to facilitate a
holistic view of flooding; and (e) be accessible to a majority of commu-
nities. This study addresses this need for improved roadway sensing and
proposes a mobility-centric real-time situational awareness framework
leveraging data fusion.

While a data fusion approach can potentially revolutionize situa-
tional awareness, a key challenge remains unaddressed—data sources
2

directly reporting flood road conditions are scarce. In contrast, urban
centers are replete with data sources that may either directly or indi-
rectly infer flooding or road conditions. Some common data sources
include citizen service portals from the city or utility provider, water
level sensors located along streams, and traffic cameras, to name a
few. Often, these sources are not primarily designed for sensing flood
conditions on roads, although they may provide indirect observations of
flooding or flood impacts on roads. For example, live video data offers
visual evidence of roadway flooding, and water level sensors provide
insights on roads colocated with streams. The value of such data sources
was evident during Hurricane Harvey in Houston: many people—
including emergency responders—resorted to manually examining data
sources to infer probable road conditions to overcome the dearth of
reliable real-time road condition data [11]. While manual examination
of multiple data sources provided temporary relief, they also could
result in information scatter, cognitive overload, increased likelihood
of misinterpretation, and the risk of using outdated data. An alternative
is to leverage observations from multiple public data sources in an
automated data fusion framework to sense current flood conditions.
Such a framework could significantly improve situational awareness:
they can enhance data availability; reduce information scatter; improve
accuracy, robustness, and reliability of road condition data; and re-
duce the cognitive overload of first responders. Moreover, such a data
fusion-centric approach might be more affordable to communities than
deploying, maintaining, and securing physical sensors at scale.

This study addresses the need for reliable mobility-centric situa-
tional awareness and presents a new framework called Open Source Sit-
uational Awareness Framework for Mobility using Data Fusion (Open-
Safe Fusion). OpenSafe Fusion leverages data collection and processing,
data fusion and augmentation, and spatial and network analyses to infer
link- and network-level impacts of flooding by fusing observations from
real-time data sources that observed flooding or roadway conditions.
Any new situational awareness framework should ideally address the
needs of stakeholders; consequently, the design of this framework is
informed by insights from extensive stakeholder interviews (𝑛 = 24)
and needs assessment following the tenets of a user-centered design
process [61], a detailed description of which is available in Panakkal
et al. [11]. This paper primarily focuses on the methodological under-
pinning of the OpenSafe Fusion methodology and its components. The
remainder of the paper is arranged in three sections. A brief overview
of the OpenSafe Fusion methodology is provided in the next section,
followed by a case study application of the framework in Houston,
Texas. The final section presents key insights from the experiments in
the context of mobility-centric situational awareness.

2. Proposed architecture and methods

OpenSafe Fusion (Fig. 1) is a modular framework composed of five
steps: data acquisition and processing, data fusion, data augmentation,
impact assessment, and communication. During the data acquisition
step (Fig. 1a), real-time data from select sources are acquired, processed
to infer road conditions, and geolocated. During the data fusion step
(Fig. 1b), road conditions inferred from the selected sources in the data
acquisition step are fused at the road link level to estimate road flood
conditions while explicitly accounting for the characteristics of the data
sources. Similarly, during the optional data augmentation step (Fig. 1c),
observed roadways status in the current time step are used to infer the
state of roads for which direct observations are unavailable. Next, the
impact assessment step (Fig. 1d) estimates the network-level impacts
of roadway flooding on access to select facilities. Finally, the results
are communicated to stakeholders using a web dashboard (Fig. 1e) and

REST API (Fig. 1f).
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Fig. 1. Overview of the OpenSafe Fusion methodology: (a) real-time observations from diverse sources are collected and processed; (b) observations from sources are fused for
each road link in the study area to infer the roadway status; (c) data augmentation techniques infer the conditions of roads for which direct observations are unavailable; (d)
real-time network analysis quantifies the network-level impacts of flooding; and finally (e) observations and road condition data are communicated to stakeholders via a web
dashboard and REST API.
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2.1. Data sources

Before deploying the OpenSafe Fusion framework in a region, real-
time data sources that can observe flooding or road conditions – either
directly or indirectly – should be identified. Some example sources in-
clude authoritative sources (e.g., Department of Transportation alerts),
social sensors (e.g., crowdsourcing, social media, and citizen service
portals), physical sensors (e.g., traffic speed sensors and water level
sensors), remote sensors (e.g., UAVs, satellite imagery), and physics-
based or hybrid models (e.g., flood alert systems built upon hydrologic
and hydraulic models). Once data sources are identified, their historical
performance and characteristics are studied. Some example data source
characteristics include modality (text from Tweets vs. images from
traffic cameras), accuracy, availability, and time lag. Characterization
of data sources is necessary to fuse real-time multi-modal data while
explicitly accounting for data type heterogeneity, spatial and temporal
resolution mismatch, and time lag. Once the data sources are identified
and characterized, automated source-specific workflows are developed
to extract road condition data from the sources. These data sources
and proposed data processing workflows are presented in Section 2.3
fter introducing the methodological core of OpenSafe Fusion: the data
usion method.

.2. Data fusion

This section presents the methodology proposed to fuse observations
rom diverse sources and infer the current status of road links. Let the
ariable 𝑡 represent the state of a road link at time 𝑡 and 𝑥 represent
he specific value that 𝑡 might assume at a time step. A street link
ould be either impassable (𝑓 ) or open (𝑜) (i.e., 𝑥 ∈ {𝑓, 𝑜}). 𝑝(𝑡 = 𝑓 )
or simply 𝑝(𝑓 ) denotes the probability that the road link is impassable
at a time step.

Consider that time is discretized over a time step 𝛿𝑡. The distribution
f trajectories of road condition sampled over time 𝑡 = 1,… , 𝑇 is

𝑃 (1,… ,𝑇 ) or its abbreviated form 𝑃 (1∶𝑇 ). The state of the road
at a time is not directly known (𝑡 is a hidden variable) but can be
observed through sensors with varying characteristics, availability, and
3

Fig. 2. Overview of the dynamic Bayes network for modeling roadway condition.

oise. 𝑈 = {𝑢1 … , 𝑢𝑘} is a set of 𝑘 sensors available in the study area.
sensor in the context of OpenSafe Fusion is any real-time data source
hat observes flooding, flood impacts, or road conditions.
As a road link evolves through states 1,… ,𝑇 under the influence

of external actors 𝑒1,… , 𝑒𝑇 , the state of the link is observed by sen-
sors in 𝑈 as 𝑧1,… , 𝑧𝑇 . Here, 𝑒𝑡 represents the environmental factors
({𝑎1, .., 𝑎𝑝}) in the time interval between 𝑡− 1 and 𝑡 (i.e., in the (𝑡− 1, 𝑡]
time window) that drive the transition of roadway condition from 𝑡−1
to 𝑡. These environmental factors are often hard to quantify as they
include complex factors (rainfall, topography, and built environment)
and their interactions at various timescales. To elaborate, transition
from 𝑡−1 to 𝑡 is influenced by the actors at time (𝑡 − 1, 𝑡] (i.e., 𝑒𝑡;
e.g., rainfall since 𝑡− 1), actions in the short-term (i.e., 𝑒𝑡−10∶𝑡; e.g., de-
layed peak flow) and actions in the long-term (i.e., 𝑒1∶𝑡; e.g., influence
of soil moisture).

Since the actors affecting the transition from 𝑡−1 to 𝑡 are hard
to characterize and the state itself is hidden, an observer is only left
with imperfect observations (𝑧𝑡 = {𝑧1𝑡 ,… , 𝑧𝑘𝑡 }) by sensors in 𝑈 at time 𝑡
to infer the current road link condition 𝑡. Here, 𝑧1𝑡 is the observation
from sensor 𝑢1 at time 𝑡. Fig. 2 shows a simplified representation of
the transition of road conditions, external actors affecting the transition
between time steps, and observations by the sensors at the end of each

time step.
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OpenSafe Fusion uses Bayes’ theorem to fuse observations from
diverse sources. Specifically, it uses the discrete form of the Bayes
Filter [62] to sense current flood conditions from multi-sensory ob-
servations. The formulation presented here is adapted after Thrun
et al. [62]. Following Bayes’ theorem, the probability of a road link
assuming a state at time 𝑡 (i.e., 𝑥𝑡) given past observations (𝑧1∶𝑡) and
xternal actions (𝑒1∶𝑡) is given as:

(𝑥𝑡|𝑧1∶𝑡, 𝑒1∶𝑡) =
𝑝(𝑧𝑡|𝑥𝑡, 𝑧1∶𝑡−1, 𝑒1∶𝑡).𝑝(𝑥𝑡|𝑧1∶𝑡−1, 𝑒1∶𝑡)

𝑝(𝑧𝑡|𝑧1∶𝑡−1, 𝑒1∶𝑡)
(1)

q. (1) can be simplified using a normalizing constant 𝜂 as:

𝑝(𝑥𝑡|𝑧1∶𝑡, 𝑒1∶𝑡) = 𝜂.𝑝(𝑧𝑡|𝑥𝑡, 𝑧1∶𝑡−1, 𝑒1∶𝑡).𝑝(𝑥𝑡|𝑧1∶𝑡−1, 𝑒1∶𝑡) (2)

2.2.1. Prediction step
In Eq. (2), 𝑝(𝑥𝑡|𝑧1∶𝑡−1, 𝑒1∶𝑡) represents the Prediction step which

(Eq. (3)) predicts the current road condition (𝑥𝑡) from historical records
of external actions (𝑒1∶𝑡) and sensor measurements (𝑧1∶𝑡−1). Note that
the prediction step happens after the external actions in time (1, 𝑡]
(i.e., 𝑒1∶𝑡) and before receiving the sensor measurements at time 𝑡
(i.e., 𝑧𝑡 is not available).

𝑝𝑟𝑒𝑑(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1∶𝑡−1, 𝑒1∶𝑡) (3)

The prediction stage can be modeled in its most complete form
by employing a surrogate model (e.g., a neural network) that infers
the current condition from external actions and sensor data records.
To model the intricate relationships it attempts to capture, such a
model requires substantial historical data, which is often unavailable,
necessitating a simpler formulation for the prediction step. Following
the chain rule, Eq. (3) can be expressed as:

𝑝𝑟𝑒𝑑(𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑧1∶𝑡−1, 𝑒1∶𝑡).𝑝(𝑥𝑡−1|𝑧1∶𝑡−1, 𝑒1∶𝑡)𝑑𝑥𝑡−1 (4)

Assuming that once the state 𝑥𝑡−1 is observed, no additional data
prior to the time step 𝑡 − 1 is required to infer the road condition 𝑥𝑡 at
t. To elaborate, if a road link is known to be flooded at time 𝑡−1, only
information on the external actions acting on the system between 𝑡− 1
and 𝑡 is sufficient to predict the state of the road at 𝑡. Thus, Eq. (4) can
be further simplified as:

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑧1∶𝑡−1, 𝑒1∶𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑒𝑡) (5)

𝑝𝑟𝑒𝑑(𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑒𝑡).𝑝(𝑥𝑡−1|𝑥𝑡−2, 𝑒𝑡−1)𝑑𝑥𝑡−1 (6)

𝑝𝑟𝑒𝑑(𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑒𝑡).𝑝𝑟𝑒𝑑(𝑥𝑡−1)𝑑𝑥𝑡−1 (7)

As previously stated, external actions in the present and previous
time steps play an active part in the transition of flood conditions in the
current time step. Neglecting external actors beyond the current time
step may impair the Prediction step’s capacity to accurately capture the
state transition of road links. The effects of such errors will be more
prominent if limited sensor measurements are available at each time
step to correct the predicted road condition. Thus, for regions with
limited real-time data sources, it is crucial to model the Prediction step
accurately without invoking the Markov assumption.

Eq. (6) expresses the Prediction step as a recursive update equation.
𝑝(𝑥𝑡|𝑥𝑡−1, 𝑒𝑡) can be modeled using a surrogate model that considers the
road condition at time step 𝑡 − 1 and external actors 𝑒𝑡 to predict the
road condition 𝑥𝑡 at time 𝑡.

It is often impractical to identify the external factors that drive the
complex flood process, model their interactions, and sense them in
real time. As a result, external actors are not always observable. This
necessitates further simplification of Eq. (6) as:

𝑝𝑟𝑒𝑑(𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1).𝑝(𝑥𝑡−1|𝑥𝑡−2)𝑑𝑥𝑡−1 (8)

𝑝𝑟𝑒𝑑(𝑥𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1).𝑝𝑟𝑒𝑑(𝑥𝑡−1)𝑑𝑥𝑡−1 (9)
4

∫

Eq. (9) represents the simplest form of the prediction step. Here, a
transition function is used to predict the next state of a road, given
the current state of the road (i.e., 𝑝(𝑥𝑡|𝑥𝑡−1)). Please note that the
selected time step will impact the transition function and the influence
of environmental factors. Moreover, for a simple two state system
(i.e., 𝑥 ∈ {𝑓, 𝑜}), a state transition matrix can be used to model the
transition function [63].

Finally, mathematical functions describing the Prediction step
should ideally be learned from extensive historical data. In the absence
of such observations, the function form of the Prediction step can
be based on prior knowledge (i.e., expert judgment) for the initial
deployment. With additional data available after each storm, such
functions should be updated to reflect the most recent information.

2.2.2. Measurement and update steps
While the Prediction step predicts the current condition from past

observations, the current state of the road is hidden and only observable
through imperfect sensors. In the Measurement Step, 𝑝(𝑧𝑡|𝑥𝑡, 𝑧1∶𝑡−1, 𝑒1∶𝑡)
from Eq. (2) is estimated. 𝑝(𝑧𝑡|𝑥𝑡, 𝑧1∶𝑡−1, 𝑒1∶𝑡) estimates the probability
f observing 𝑧𝑡 at time 𝑡 given the road is at 𝑥𝑡 state, past sensor
bservations are 𝑧1∶𝑡−1 and historical external actions are 𝑒1∶𝑡. Since
𝑡 primarily depends on 𝑥𝑡, it is reasonable to believe that no prior
easurements or external actions will yield any additional insights if
𝑡 is known. Thus, Eq. (2) reduces to Eq. (10).

(𝑥𝑡|𝑧𝑡) = 𝜂′.𝑝(𝑧𝑡|𝑥𝑡).𝑝𝑟𝑒𝑑(𝑥𝑡) (10)

ssuming that multiple sensors will report the road condition at time
, and the sensors independently observe flooding, 𝑝(𝑥𝑡|𝑧𝑡) can be
ewritten as:

(𝑥𝑡|𝑧𝑡) = 𝜂′′.
𝑘
∏

𝑖=1
𝑝(𝑧𝑖𝑡|𝑥𝑡).𝑝𝑟𝑒𝑑(𝑥𝑡) (11)

Here, 𝑝(𝑧𝑖𝑡|𝑥𝑡) is the likelihood of observing a sensor measurement 𝑧
𝑖
𝑡

or sensor 𝑢𝑖 at time 𝑡 give the state of the road 𝑥𝑡. Similar to the Predic-
ion step, surrogate functions can be developed to model 𝑝(𝑧𝑖𝑡|𝑥𝑡) either
rom historical data or expert judgment. Data sources in OpenSafe
usion often observe flooding independently of other data sources. For
xample, traffic cameras sense flooding independently of physics-based
lood models. However, not all data sources observe flooding inde-
endently; dependency on other sources is common in social sensors,
here people will report flooding based on data from other sources
e.g., traffic cameras). Sources with extensive interdependencies might
isproportionately affect model predictions if Eq. (11) is adopted. While
he impacts of such interdependencies on model accuracy are generally
imited (as they represent a confirming observation), with extensive
istorical data, better models capturing the 𝑝(𝑥𝑡|𝑧𝑡) can be developed
hat also consider interdependencies in the data sources.
OpenSafe Fusion uses several data sources as sensors. The perfor-
ance of the sensors and consequently 𝑝(𝑧𝑖𝑡|𝑥𝑡) vary both spatially and
emporally. For example, observations from the flood model used in
penSafe Mobility are more reliable near a bayou than in other areas.
imilarly, flood models are less accurate for small floods (or in the
arly stages of the flood) than for severe floods (or in the later stages).
urther, environmental and sociodemographic factors may influence
ensor performance. For example, camera data are more reliable under
ufficient illumination. Hence, automated flood detection from camera
ata might be more reliable during a bright day. Likewise, it is more
ikely to acquire better social media data for urban regions with more
ctive users compared to sparsely populated regions. While quantifying
he influence of different factors is difficult, it is necessary to reliably
stimate current flood conditions from diverse data sources. Finally,
bservations from different data sources may be available at different
ates; the OpenSafe Fusion uses the latest available data from the
ources for each link for fusion. In scenarios with significant delay in
eceiving the data, OpenSafe Fusion reruns all affected timesteps for
he reported road link. It is important to carefully choose the time step
𝛿𝑡) after considering data availability and frequency, accuracy, and
omputational resources.



Reliability Engineering and System Safety 251 (2024) 110368P. Panakkal and J.E. Padgett

2

f
d
f

2

m
(
D

Fig. 3. OpenSafe Fusion uses API calls to collect road condition data from DOT alerts. Typically, DOT alerts contain geolocated data on roadway conditions which can be used
directly in OpenSafe Fusion with minimal or no processing. (Maps © Mapbox).
Fig. 4. OpenSafe Fusion uses real-time highway speed data to sense the opening of flooded roads. (Maps © Google LLC).
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.3. Data processing workflows

This subsection provides nine examples of data processing work-
lows for deriving input data to the fusion method modeled after the
ata available in Houston, TX. These workflows also serve as templates
or transferring the framework to other study regions.

.3.1. Department of transportation alerts
Departments of Transportation (DOT), such as the Texas Depart-
ent of Transportation (TxDOT), operate traffic information systems
TIS) to alert road users on real-time road conditions. For example,
riveTexas [40] is an online traffic information system developed and

operated by TxDOT to provide real-time information on highway con-
ditions in Texas. In DriveTexas, road conditions are reported by reliable
sources such as law enforcement and are then verified by TxDOT
employees or contractors (Fig. 3a). The reported road conditions in-
clude the location of incidents such as accidents, construction, damage,
flooding, and snow (Fig. 3b). Users can access roadway status using a
variety of mediums, including web dashboards [40] and APIs [64].

During operation, OpenSafe Fusion utilizes the API functionality
offered by DOTs to collect real-time information at regular intervals.
DOT road condition data are often geocoded and can be used directly
in OpenSafe Fusion. Rarely, minor geometry differences in the reported
road geometry may occur due to disagreements between the road
databases used by OpenSafe Fusion and DOT. In such cases, mapping
functions are used to locate roads from the OpenSafe Fusion road net-
5

work that correspond to the roads in the official road condition reports. o
Example mapping functions might consider proximity, orientation, and
road description to perform the mapping.

2.3.2. Traffic speed
Real-time traffic speed data (e.g., Houston TranStar [39], Waze

[24]) can be used to monitor highway performance. Typical traffic
peeds could indicate the normal functioning of roads, and any ab-
ormally low traffic speed could imply adverse or atypical conditions.
penSafe Fusion leverages real-time traffic speed data to sense the
pening of flooded roads. To elaborate, OpenSafe Fusion assumes that
f the traffic speed is near normal (as defined using a threshold value
r the posted speed limit), it is likely that the road is open to traffic—
ither partially or fully. OpenSafe Fusion does not use real-time speed
ata to identify flooded roads, as various factors, including flooded
oads, traffic congestion, accidents, faulty equipment, stagnant traffic,
r special events, could also cause speed reduction. Consequently,
elying on traffic speed to detect flooded roads could result in erroneous
etection.
To demonstrate the OpenSafe Fusion methodology, Fig. 4 shows

eal-time traffic speed data and OpenSafe Fusion road conditions for
wo time-steps—5 am and 7 pm. At 5 am, OpenSafe Fusion reports two
looded roads (c and d). While slow traffic speed at links a and b might
uggest flooding, OpenSafe Fusion did not consider this observation
n its calculation. At 7 pm, the traffic speed at road links a, b, and
returned to normal, indicating a transition to normal condition.
ccordingly, OpenSafe Fusion now reports links a, b, and d as likely
pen to traffic.
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2.3.3. Sensors
Sensors deployed along streams and roads provide point estimates

of water level at the deployed location. Many gages operated by public
agencies such as the United States Geological Survey (USGS) are easily
accessible via API or web dashboards. For sensors located along roads,
the water level estimates can be directly used to infer the road condi-
tion. For sensors situated away from roads, such as water level sensors
deployed along rivers, sensing the state of nearby streets requires
additional processing. Fig. 5 and Eq. (12) illustrates the methodology
sed by OpenSafe Fusion to convert point estimates at sensor locations
o areal estimates to facilitate the identification of roadway conditions.
he sensor data processing workflow presented here is inspired from
athtub flood models [65].
First, the digital surface model (DSM) for the region around the

ensor location is collected. DSM is a digital representation of the
errain and contains elevation data of infrastructure elements such as
oads and bridges. Water level data from the sensor is gathered during
eal-time operation and used to construct a constant water surface
levation raster (WSE) in the same datum as the DSM data. A new raster
epth map is produced by subtracting the DSM from the WSE map; any
laces with positive depth values are likely to be flooded. Fig. 5b shows
n example illustration of the water depth map corresponding to water
evel 1 in Fig. 5a.
All cells with a positive depth value might not be flooded, as

ndicated by Fig. 5c. Here, the presence of a levee protects the right
ank from inundation. To account for such situations, OpenSafe Fusion
nly considers cells with positive water depths that are also contiguous
ith the location of the water level sensor. The proposed methodology
ielded reliable results in our limited testing, especially for inferring the
ater depth for regions closer to the sensor location. As we move away
rom the sensor location, the ability of the model to predict water depth
educes. The reduction in predictive ability depends on factors such as
ater depth and topography. Consequently, this approximate method
hould only be applied to regions close to the sensor location. Fig. 5
ses the four distances 𝑅𝑟, 𝑅𝑙, 𝑅𝑢, and 𝑅𝑑 to describe this region. Here,
𝑟 and 𝑅𝑙 are the offset towards the right and left banks, and 𝑅𝑢 and
𝑑 are the buffers towards the upstream and downstream sides of the
ensor location. Historical flood inundation data or results from flood
odels can be used to estimate the optimal buffer distances for each
age location. This method is only used to detect flooded road (𝐷𝑙

𝑑 > 0)
nd is not used to identify open roads (i.e., 𝐷𝑙

𝑑 = 0 is neglected).

𝑙
𝑑 =

{

𝑑 − 𝑑𝑙𝑠, if 𝑑 − 𝑑𝑙𝑠 ∈ R+and 𝑙 ∈ 𝐶∗and 𝑙 ∈ 𝑆𝑟𝑙𝑢𝑑

0, otherwise
(12)

here:

𝑙 = a raster cell location defined by latitude and longitude
𝑑 = water level reading at the sensor
𝐷𝑙

𝑑 = water depth at location 𝑙 due to water level 𝑑
𝑑𝑙𝑠 = elevation at location 𝑙 from digital surface model
R+ = positive real number
𝐶∗ = region contiguous with the sensor location
𝑆𝑟𝑙𝑢𝑑 = region bounded by 𝑅𝑟, 𝑅𝑙, 𝑅𝑢, 𝑅𝑑 distances from the sensor

.3.4. Social media
Past studies have shown that social media analytics can detect

looding, track flood impacts, and sense community response to flood-
ng [66–68]. Several automated workflows [67] exist in the literature
to process social media data to sense urban flooding. Following exist-
ing literature, OpenSafe Fusion adopts a five-step workflow to glean
information on flood conditions in the study area (Fig. 6). First, Open-
Safe Fusion collects relevant tweets from Twitter using Twitter API.
Search queries include flood impacts keywords (e.g., ‘‘flood’’, ‘‘road
flooded’’), event-specific keywords (e.g., ‘‘Harvey’’, ‘‘Ike’’), location-
specific keywords (e.g., ‘‘Houston’’, ‘‘Bayou City’’), and location con-
6

straints (e.g., latitude and longitude of Houston). All collected tweets
Fig. 5. OpenSafe Fusion methodology for identifying flooded regions from sensor data.

are then passed through a deep learning-based natural language pro-
cessing classifier trained to filter relevant tweets. A relevant tweet is a
text that contains information on flooding or flood impacts on commu-
nities suitable for informing situational awareness. Filtered tweets are
then passed through a deep learning model trained to identify entities.
For this study, entities are primarily real-world geographical features
(e.g., addresses, roads, places). Tweets with identified entities are
then geolocated using geocoding techniques [69,70]. Finally, geocoded
tweets are passed through another suite of models that extracts relevant
attributes from the text. Relevant attributes include the intensity of
flood impacts, time of flood report, and flood depth data. The extracted
attributes are then assigned to the corresponding geolocated tweets and
mapped on a web interface.

Existing datasets and models are primarily suited to identify entities
such as standardized street addresses. Consequently, current models
have limited skill in extracting information related to roads. Limited
skill in identifying flooded roads necessitates deploying approximate
methods to sense road conditions from geolocated flood condition
reports. For example, if the following conditions are met, OpenSafe
Fusion will mark a road flooded: (1) the report is within a buffer
distance of the road; (2) the roadway is at a lower elevation than
the reported location; and (3) the flooding at the reported location is
severe. Similarly, OpenSafe Fusion uses geolocated tweets to identify
open roads if conditions 1 and 2 (reversed) are met, and the tweet
reports dry conditions at the location. While automated pipelines that
use natural language processing are often noisy and prone to mis-
information from malicious or misinformed actors, they serve as an
inexpensive source with high availability in urban regions with high
social media activity. The precision and dependability of flood mapping
using social media can be improved by combining social media data
with human-in-the-loop frameworks (see Section 2.3.9).

2.3.5. Traffic cameras
Many urban areas have live traffic cameras along major highways
and busy intersections. Live video or image feeds from these cameras
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Fig. 6. OpenSafe Fusion methodology for collecting and processing social media data to identify flooded roads. (Maps © Mapbox).
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Fig. 7. OpenSafe Fusion methodology for identifying flooded roads from traffic camera
data (image courtesy of Houston TranStar). (Maps © Mapbox).

enable traffic management agencies to monitor highway conditions.
Such cameras are often in the public domain and can be accessed via
a website or API. For example, Houston TranStar [39] operates and
publishes data from more than 700 cameras in the Houston region.
As observed during past events in Houston, manual inspection of
live camera feeds can sense road conditions. While manual sensing
of flooding from cameras might be accurate, it is often not practical
or scalable. OpenSafe Fusion proposes a framework for automated
sensing of flooded roads from camera images using deep learning
models. A new dataset especially annotated to sense roadway flooding
is developed and deep learning architectures are used to create a robust
image classifier capable of predicting flood conditions from camera
images. During real-time operation, live traffic camera data is collected
at regular intervals (e.g., 10 min). The images are then processed by a
deep learning-based image classifier trained to infer the flood condition
captured in the image. Flood conditions from the images are then used
to identify the status of roads linked to the traffic camera. For example,
detecting a severe flood condition on the camera data in Fig. 7b might
suggest flooding on I-10 at Houston Ave.

2.3.6. Physics-based models
Real-time analysis using physics-based flood models can enable reli-

able road condition sensing. For example, in regions with radar or rain
7

gage coverage, the OpenSafe Mobility framework [71,72] (Fig. 8) can
provide real-time estimates of flood depth at roads. OpenSafe Mobility
collects real-time rainfall radar data from reliable sources (Fig. 8a) such
as NEXRAD at frequent intervals. The radar data is then processed
to identify flood-inducing rainfall conditions. A flood-inducing rain-
fall [72,73] is a rainfall event that could initiate flooding in the study
region. Once the rainfall exceeds any flood-inducing rainfall thresholds,
radar data at discrete time steps within a maximum considered duration
(𝑑𝑚𝑎𝑥) are concatenated to generate a rainfall event. The maximum
considered duration is selected after accounting for factors such as
the model runtime, acceptable time lag, and available computational
resources. The rainfall event is then simulated in a calibrated and
validated flood model (Fig. 8b), which routes the rainfall over a digital
representation of the study region and estimates the current water
surface elevation (WSE) (Fig. 8c). The WSE map and roadway elevation
rom LiDAR data are then used to estimate the flood depth at road links
Fig. 8d). Flood depth and flow velocity at roads can then be used to
ssess the trafficability of a road link considering vehicle characteristics
uch as the safe wading height or stability requirements. Finally, the
oad conditions are communicated to stakeholders via a website or
hrough REST API.

.3.7. Crowdsourcing
Several recent studies [24,25] have demonstrated the effectiveness

of crowdsourcing as a medium for collecting real-time flood obser-
vations, particularly during severe flood events in urban areas. For
example, many ad hoc crowdsourcing platforms [25,74] were active
during Hurricane Harvey in Houston to address the unmet need for
situational awareness data. OpenSafe Fusion leverages crowdsourcing
as one of the data sources for three reasons: it provides an alternative
data source in urban regions; it facilitates communication between
users (e.g., first responders active in the field); and it enables stake-
holders to overwrite inaccurate predictions from the model. Fig. 9
shows an example workflow adopted by OpenSafe Fusion to collect and
process crowdsourcing data. To ensure data trustworthiness and pre-
vent misinformation from malicious or misinformed actors, OpenSafe
Fusion divides its user group into three different credibility categories:
high, medium, and unknown. The high credibility group comprises
known first responders (e.g., police officers and FEMA search and
rescue team) and officials from organizations responsible for managing
flood response (e.g., Houston TranStar). The medium credibility group
comprises registered and verified platform users (e.g., city officials
and community stakeholders) with a track record of reliable reporting
during past events. The unknown credibility group comprises all other
users not covered in the first two categories. During data fusion,
observations from the high credibility group are assigned the highest
importance, followed by the medium and unknown credibility groups.
During operation, users can mark the current condition of roads or
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Fig. 8. OpenSafe Mobility methodology for identifying flooded roads.
Fig. 9. OpenSafe Fusion methodology for collecting and processing crowdsourcing data.
o
p
d
r
h
g
p
e
f
i

regions by drawing shapes on the map using interactive draw tools.
Example geometry includes points (e.g., flooded intersections), lines
(e.g., open roads), and polygons (e.g., flooded neighborhoods). Further,
users could also provide auxiliary data describing each report. The aux-
iliary data could include information such as flood conditions (flooded
or open), flood depth, and comments from users. Finally, OpenSafe
Fusion uses the user-generated shapes to infer road conditions.

2.3.8. Citizen service portals
Many urban regions are equipped with citizen service portals (e.g.,

the City of Houston 311 system [75]), where residents can report
problems such as flooding. The citizen service portal reports are usually
associated with the issue report time, closed time, a brief description
of the problem, and the required service location. The service locations
are most often encoded using a standard street address. Comparing past
reports with flood hindcast inundation map indicate that the flooding
was often localized to the adjacent streets, and the encoded residential
property was not flooded at any point during the storm. For example,
Fig. 10 compares CoH 311 flood reports to an inundation map for
Hurricane Harvey. Here, many reported parcel locations were often not
flooded, but the adjacent roads were flooded primarily due to their
lower elevation compared to the adjoining parcels.

Fig. 10 illustrates OpenSafe Fusion methodology for identifying floo-
ded roads from citizen service portal reports. OpenSafe Fusion marks
all streets within a buffer distance (e.g., points 𝑎, 𝑏, 𝑐) of a flood re-
port flooded. To acknowledge uncertainty, OpenSafe Fusion assigns a
confidence value to these observations. For example, the probability
of a road link flooding given a flood observation within a predefined
buffer distance of 100 m is 85 percent. Historical flood reports and
hindcast flood maps can be used to determine the buffer distance
8

and the corresponding confidence value. While flood sensing using r
citizen service requests lacks specificity, the reports in the presence of
observations from other sources might provide better sensing of flooded
entities in a data fusion framework.

2.3.9. Human-in-the-loop
Real-time automated data processing for sensing, mapping, and

tracking floods to guide emergency response decision-making is a high-
risk application. Any mistakes in model prediction will expose first
responders and evacuees to possible safety risks and cause delays and
detours that limit emergency response efficiency. In the long term,
model errors will impact stakeholder trust in the framework leading to
reduced use and continued mistrust. The unproven generalizability of
machine learning and automated models – often trained on limited his-
torical data – on unseen new events in high-risk scenarios necessitates
substantial safety measures to limit risk to stakeholders. In the short
term, while visible disclaimers and acknowledgment of uncertainty in
model predictions might improve stakeholder trust, they might increase
the cognitive overload of first responders in stressful conditions.

To partially address the need to ensure prediction quality, OpenSafe
Fusion adopts a human-in-the-loop strategy (Fig. 11). Here, a group
f trained human agents monitors the performance of different data
rocessing workflows. The OpenSafe Fusion framework assigns a confi-
ence score to observations from data processing workflows to facilitate
eview prioritization. The confidence score ranges from 0 to 1, with
igher values indicating more reliable predictions. Three methodolo-
ies are used by OpenSafe Fusion to assign confidence scores. First,
hysics-based constraints imposed by the study region’s topography are
mployed to detect potentially inaccurate observations (see Section 2.4
or more details). Consider two adjacent and connected roads on slop-
ng terrain. If the road at a higher elevation is observed flooded, the
oad at a lower elevation is most likely be flooded. If observations
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Fig. 10. OpenSafe Fusion methodology for collecting and processing data from citizen service portals. (Maps © ESRI).
Fig. 11. Conceptual human-in-the-loop framework for enhancing the accuracy of OpenSafe Fusion. (Maps © Mapbox).
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from data sources contradict physical constraints imposed by terrain,
OpenSafe Fusion will automatically assign low confidence scores for
the observations and tag the observation for review. Second, perfor-
mance metrics inherent to mathematical models are used to assign
confidence scores. Example metrics include model accuracy or F1-
score for classification models (for deep learning framework used to
identify flooded roads from live camera images) and RMSE or MAE for
models estimating water depth. Third, the historical performance of the
data processing workflows (e.g., flood models are more accurate near
bayous compared to regions away from bayous) is used to assign con-
fidence scores. In summary, the assigned confidence score depends on
the expected model performance considering environmental, technical,
and other factors influencing model predictions. To further facilitate
review prioritization, high-impact observations are identified by con-
sidering both confidence scores and the population density of the report
location.

Reviewers can rectify any inaccurate predictions by using the
crowdsourcing capabilities offered by OpenSafe Fusion. Additionally,
human oversight can monitor the model’s performance in real-time
and disable or modify the confidence of data processing workflows
whose accuracy is subpar. It is crucial to highlight that OpenSafe
Fusion already considers the accuracy of observations during the fusion
process (see Section 2.2). The human-in-the-loop strategy provides an
additional opportunity to augment existing data for better predictions.
Further, the human-in-the-loop component is intended to be operated
by emergency response managers and coordinators at command and
control centers and not by field personnel to prevent cognitive over-
load. Finally, the human-in-the-loop is optional; OpenSafe Fusion can
sense current conditions without human supervision.
9

b

2.4. Data augmentation

Direct flood observations may be sparse. Depending only on sparse
observations may limit the efficacy of OpenSafe Fusion. A possible
strategy to augment data availability is to leverage existing obser-
vations in the context of the region’s topography to infer the status
of roads with no direct road condition data. Fig. 12 illustrates some
xample scenarios. In scenario s-1, road link 𝑎 is observed flooded
hile conditions of roads 𝑏 and 𝑐 are unknown. Given the topography
mean elevation and slope) of the connected roads, link 𝑏 is likely to
e inundated as link 𝑎 is flooded (one-step logical deduction). While
ink 𝑐 lacks observations for its surrounding roads, once the state of
ink 𝑏 is inferred, the possible state of link 𝑐 can be deducted (two-step
ogical deduction). Similarly, iterative logical reasoning can be used
o infer the states of additional road links, frequently at the expense
f accuracy. It is ideal to limit data augmentation to only one step to
nsure accuracy.
Using logical deduction is not always possible for all road links.

onsider scenario s-8; though link 𝑎 is flooded, the status of links 𝑏 and
cannot be reliably inferred due to the presence of a ridge. Similarly,
n s-3, the status of links 𝑎 and 𝑏 can only be reliably estimated if
ignificant flooding is reported at link 𝑐 (to account for any localized
looding of link 𝑐). Further, data augmentation via deduction could
ccasionally lead to contradictions. For example, in s-6, link 𝑏 is both
looded (as determined by the condition of link 𝑎) and open (based on
ink 𝑐). This contradiction could imply the failure of logical deduction
or link 𝑏 or point to inaccuracy in existing observations for either
ink 𝑎 or 𝑏. OpenSafe Fusion will tag these roads for further review

y a human agent. The data augmentation methodology is summarized
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in Eq. (13). It is critical that the data augmentation approach presented
here is not employed for scenarios involving long road links or roads
in flat terrain. Additionally, a road is only deemed open if its full
stretch is dry; otherwise, errors could occur in instances such as s-
5. Finally, while DSM data are used for inferring road conditions
from sensor data (Section 2.3.3) and for data augmentation, the data
rocessing workflows, input data needs, and application criteria differ
see Eqs. (12) and (13)).

𝑘(, 𝛿, 𝛿) =

⎧

⎪

⎨

⎪

⎩

𝑙𝑖𝑘𝑒𝑙𝑦 𝑓𝑙𝑜𝑜𝑑𝑒𝑑, if +
↘ ∉ {𝑜} &|+

↘ ∈ 𝑓 | > 0 &−
↘ ∉ {𝑜}

𝑙𝑖𝑘𝑒𝑙𝑦 𝑜𝑝𝑒𝑛, if +
↘ ∉ {𝑓} &|+

↘ ∈ 𝑜| > 0

𝑢𝑛𝑘𝑛𝑜𝑤𝑛, otherwise

(13)

here:

𝐶𝑘 = condition of the road link 𝑘
 = a set of all links connected to the link 𝑘. The links must

have an elevation difference of at least 𝛿𝐷 and a
maximum length of 𝛿𝐿.

+
↘ = a set of links at a higher elevation than the link 𝑘 and

sloping towards the link 𝑘. +
↘ ∈ .

−
↘ = a set of links with lower elevation and sloping away

from the link 𝑘. −
↘ ∈ .

𝑓 = a set of all roads flooded in the current time step.
𝑜 = a set of all opened roads in the current time step.

.5. Network analysis

Information on flooded roadways alone does not provide a compre-
ensive view of flood impacts. Factors such as network topology and
he location of facilities could influence network robustness (defined
ere as the ability to maintain connectivity between communities and
ritical facilities). Consequently, quantifying the network-level impacts
f flooding via real-time network analysis is essential to provide a holis-
ic view of flood impacts to support decision-making and to prioritize
mergency response.
10

h

OpenSafe Fusion represents the topology of a road network as graph
= (𝑉 ,𝐸). Here, 𝑉 is a set of nodes modeling points of interest, such
s access locations or roadway intersections, and 𝐸 is a set of road
inks connecting nodes. For a specific critical facility group 𝑘 (e.g., all
ospitals), baseline connection between every node in the network
nd the nearest facility is assessed. 𝐷𝑛

𝑥→𝑘 denotes the shortest distance
measured in route length) in the original road network between a node
and the nearest facility in 𝑘 (e.g., the nearest hospital). During oper-
tion, OpenSafe Fusion identifies impassable links (𝑣𝑓𝑡 ) and inundated
odes (𝑒𝑓𝑡 ) at every time step. The flooded entities are then removed to
reate an updated road network 𝐺𝑓

𝑡 = (𝑉𝑡, 𝐸𝑡), where 𝑉𝑡 = (𝑉 − 𝑣𝑓𝑡 )
nd 𝐸𝑡 = (𝐸 − 𝑒𝑓𝑡 ) at time 𝑡. The shortest distance (𝐷𝑡

𝑥→𝑘) between
ode 𝑥 to the nearest facility in 𝑘 at time 𝑡 is then estimated. Further,
he connectivity loss (𝐶𝐿𝑡

𝑥→𝑘) ratio [1], defined as 1 −𝐷𝑛
𝑥→𝑘∕𝐷

𝑡
𝑥→𝑘 for

acility 𝑘 and node 𝑥 at time 𝑡, is utilized to quantify flood impacts on
ccess to the facility group 𝑘. 𝐶𝐿𝑡

𝑥→𝑘 ratio varies between 0 (no impact
f flooding on the network access) and 1 (complete loss of access).
inally, the node-level results can be aggregated at a geographical
nit level, such as Census Tracts, to visualize the spatial distribution
f flood impacts on access to each facility type. Connectivity loss
aps can be generated for various critical facilities (e.g., fire stations,
harmacies, and dialysis centers) to enhance situational awareness and
id decision-making.

.6. Publishing

Stakeholders have access to four categories of data through the
penSafe Fusion framework: observations from data sources, road con-
ition data after data fusion, road condition data after data augmenta-
ion, and network-level flooding impacts. Observations from individual
ata sources enable stakeholders to verify OpenSafe Fusion results.
oad condition data can be used for routing. Network-level flood
mpacts help identify isolated neighborhoods, prioritize emergency
esponse, and support decision-making. The OpenSafe Fusion results
ould be published via web-based tools built following the tenets of
ser-centered design [11] to address the needs and preferences of stake-

olders. Further, OpenSafe Fusion results should also be made available



Reliability Engineering and System Safety 251 (2024) 110368P. Panakkal and J.E. Padgett
Fig. 13. Houston, Texas is used to demonstrate OpenSafe Fusion. (Maps © ESRI).
via REST API to facilitate interoperability with existing situational
awareness and decision-making tools.

3. Case study evaluation

This section presents results from case study experiments designed
to evaluate the OpenSafe Fusion framework for its strengths and limita-
tions. A limited case study deployment of the framework is developed
for Houston, Texas. Data sources in the study region are analyzed, and
OpenSafe Fusion workflows are created. The OpenSafe Fusion frame-
work is evaluated by reenacting Hurricane Harvey (2017). OpenSafe
Fusion model predictions are compared to ground observations during
enactment to quantify model performance. The following subsections
describe the experiments in detail.

3.1. Study area

Houston, Texas, (Fig. 13) is the fourth most populous city in the
United States. Houston is prone to recurring urban flooding due to
several factors, including its location in the hurricane-prone Gulf of
Mexico, flat topography with few relief features, urban sprawl, lack
of zoning laws, limited stormwater drainage capacity, and soil condi-
tions [76]. High flood hazard was evident during recent storm events
such as Memorial Day Flood (2015), Tax Day Flood (2016), Memorial
Day Flood (2016), Hurricane Harvey (2017), Tropical Storm Imelda
(2019), and Tropical Storm Beta (2020). Dong et al. [77] demonstrated
that even minor flooding in Houston could trigger network-wide catas-
trophic capacity reduction due to compound failures. While flooding
causes network failures, its impacts are exacerbated by the limited
information on road conditions during a flood event. Flooding and
a lack of situational awareness reduce safety and efficiency during
emergency response and mobility during flooding. For example, 21 of
the 57 drowning fatalities during Hurricane Harvey in Houston are
linked to vehicle use [78].
11
While flood mitigation studies are required to reduce Houston’s
flood hazard, increased availability of situational awareness data can
improve roadway safety and emergency response efficiency in Houston.
Although Houston has several real-time data sources, they are not or-
ganized in a unified framework to enhance situational awareness. This
study evaluates the OpenSafe Fusion framework’s capacity to monitor
flood impacts on roads by leveraging data sources varying in data types,
accuracy, and reliability. Any improvement in situational awareness
could help responders identify flooded roads and affected communities
improving the safety and efficiency of emergency response. Recurring
flooding and the availability of real-time data sources make Houston
an ideal testbed for OpenSafe Fusion.

3.2. Hurricane Harvey

Hurricane Harvey (2017) is reenacted in OpenSafe Fusion to criti-
cally assess its effectiveness. Hurricane Harvey (25 August to 2 Septem-
ber 2017) brought record-breaking rainfall to Harris County. The Hous-
ton metro area saw rainfall amounts totaling 36–48 inches. As a result
of this slow-moving storm, more than 122,000 people were rescued by
emergency responders [17]. Additionally, roadways throughout Hous-
ton were flooded, including major highways such as I-10, I-45, and
US-59. NOAA estimates damages from Harvey at around $125 billion,
making it the second costliest tropical cyclone in the United States, next
to Hurricane Katrina (2005). The lack of real-time information about
roadway conditions was especially detrimental to emergency response
efficiency and safety. For example, two ad hoc projects [25,74] im-
plemented by community members to share roadway status had more
than a million map views. Experiences during Hurricane Harvey further
highlight the need for reliable mobility-centric situational awareness
tools in Houston.
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Fig. 14. Screenshots from select data sources used in this study. (Images courtesy of © Houston TranStar, City of Houston, Harris County Flood Control District, Mapbox).
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3.3. Data sources and data processing workflows

This study identifies eight public data sources that observe floods in
real time, either directly or indirectly. The identified data sources are:
(1) Texas Department of Transportation DriveTexas [40]; (2) Houston
11 database [75]; (3) OpenSafe Mobility [72]; (4) U-Flood crowd-
ourcing [25]; (5) Gage data from USGS [79]; (6) Houston TranStar
raffic camera network [39]; (7) Real-time traffic speed data from
ouston TranStar [39], and (8) Twitter data [23,80]. A majority of
hese data sources were active during Hurricane Harvey. An exception
s the OpenSafe Mobility framework, which was created in response
o the need for better mobility-centric situational awareness tools.
t is included here to demonstrate its capability and compare it to
ther data sources. A summary of the characteristics of different data
ources selected for this case study application is provided in Table 1.
creenshots from select data sources used in this study are shown in
ig. 14.
After identifying the data sources, automated source-specific data

rocessing procedures are developed for each data source. These data
rocessing algorithms use a variety of approaches, including deep
earning and spatial analysis, to determine present flood conditions
nd, consequently, flood impacts on roads. The remainder of this
ubsection presents an overview of the data sources and data processing
orkflows.

.3.1. Texas department of transportation DriveTexas
In Houston, the TxDOT DriveTexas website provides real-time infor-
ation on road conditions via the DriveTexas website [81] and through
PI [64]. Historical road closure data from DriveTexas was collected
or Hurricane Harvey and used in this study. A closer examination of
xDOT data reveals that all roads marked closed due to flooding are not
looded. Many roads, such as Interstate-610 loop around Houston, were
artially open but marked closed to the public. Further, the DriveTexas
latform only reports road conditions for TxDOT-maintained roads.
his limits the data availability to major roads such as Interstates,
S and State Highways, and Fram-to- and Ranch-to-Market roads.
12

s

on-TxDOT maintained roads include roads maintained by the city
r county, including frontage roads and several arterial, collector and
ocal streets. Thus DriveTexas will not report the road conditions of
everal roads essential for urban mobility. TxDOT DriveTexas API pro-
ides georeferenced road condition data. While OpenSafe Fusion uses
penStreetMap road data, DriveTexas uses a different road dataset,
hus necessitating a mapping function. This study maps DriveTexas
ondition data to OpenSafe Fusion data by matching location (within
30 m margin), road name, and orientation. In limited testing, this
apping logic identified the correct mapping in most cases.

.3.2. Crowdsourcing
During Hurricane Harvey, multiple citizen-led crowdsourcing tools

ere deployed to address the unmet need for situational awareness
ata. Of the ad hoc tools, U-Flood [25] was focused on real-time
nformation on flooded streets. U-Flood enabled the public to share
nformation on flooded roads by marking roadway status on a web
ashboard built using Mapbox and OpenStreetMap. During its oper-
tion, U-Flood saw more than 1 million map loads. User-generated
ontent from U-Flood during Hurricane Harvey is used here to model
rowdsourcing data. A closer look at the data reveals two significant
indings. First, data on local roads and residential streets are overrep-
esented, complementing sources that primarily report on the status of
ain highways. Second, while many individuals report flooded roads,
he number of reports indicating the transition from flooded to open
tate is rare. Hence, flood reports quickly become untrustworthy in
ynamic flooding scenarios where road conditions rapidly evolve.
Past studies have also highlighted that social sensors, such as crowd-

ourcing data, are prone to misinformation due to malicious or misin-
ormed actors. For example, Sebastian et al. [76] observed the pres-
nce of fake flood reports in social sensors during Hurricane Har-
ey. Similarly, Praharaj et al. [82] reported that only 71.7% of the
rowdsourced Waze flood incident data was trustworthy in a Norfolk,
irginia case study. Thus, additional measures such as verifying crowd-

ourcing observations using a human-in-the-loop strategy and dividing



Reliability Engineering and System Safety 251 (2024) 110368P. Panakkal and J.E. Padgett

b

g

h

i

u
c

3

H
T
s
t
d
w
S
s
s
T
a

3

w
C
t
w
s
t
h
e
d
f

3

3
f
i
a
t
b
i

Table 1
List of data sources used in this case study and their characteristics. All data sources except OpenSafe Mobility were available during Hurricane Harvey. OpenSafe Mobility was
created in response to the need for a mobility-centric situational awareness framework during Hurricane Harvey.
Data source Obs. typea Data typeb Transitionc Availabilityd Delaye Accuracyf Biasg Costh Sensor typei

DriveTexas ■■■ □□ ⋆ ⋄⋄ – $ Authoritative
Houston 311 ■ □□ ⋆⋆ ⋄ ⋄ ⋄ § $ Crowdsourcing
U-Flood ■■■ □ ⋆ ⋆ ⋆⋆ ⋄ ⋄ ⋄ § $$ Crowdsourcing
Gage data ■ □□ ⋆ ⋄ – $ Physical sensor
OpenSafe Mobility ■■■ □□ ⋆ ⋆ ⋆⋆ ⋄⋄ – $ Physics-based
Traffic data ■■■ □□ ⋆ ⋆ ⋆ ⋄ – $ Physical sensor
Traffic cameras ■■ □□ ⋆ ⋄ – $ Physical sensor
Twitter ■■ □ ⋆ ⋆ ⋆⋆ ⋄⋄ § $$ Crowdsourcing

a Observation type: ■ = No direct observation of road conditions is usually available, and post-processing is required to infer road conditions. ;■■ = Road conditions are usually
inferred, but direct observations are sometimes available. ;■■■ = These sources directly observe flooding on roads.
Data type: = Data sources usually report binary roadway status (flooded/open); = Usually, binary status is reported, but sometimes flood depth at roads is available;

= Water depth at roads is always available; = Flood depth and flow velocity at road links are available.
c Transition: □ = Typically transition from open to flooding is reported, but the change from flooded to normal condition is not reported; □□ = State transitions from open to
flooded and from flooded to open are continuously reported.
d Spatial availability: ⋆ = Low spatial availability (usually only for major roadways or limited by the availability of sensors); ⋆⋆ = Moderate data availability (usually available
for arterial links); ⋆⋆⋆ = High data availability (usually available for collector streets); ⋆⋆⋆⋆ = Highest spatial availability (usually available for even residential/local streets).
e Time delay: ⋄ = Data are typically available instantaneously; ⋄⋄ = Data are usually available without much delay; ⋄ ⋄ ⋄ = Data could be delayed significantly.
f Accuracy: = Low accuracy reports are possible due to several factors; data could contain noise or errors; = Reports are usually accurate but could contain errors;

= Reports are accurate and validated.
Bias: §= Data might be biased (e.g., usually available for densely populated regions thus could misrepresent the spatial distribution of flood impacts).
Cost to acquire data for a future implementation in Houston or a similar region: $ = Free; $$ = Low; $$$ = Moderate; $$$$ = High.
OpenSafe Mobility uses rainfall radar data and a physics-based flood model to infer current flood conditions.
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ser groups into trust categories might help improve the reliability of
rowdsourcing data.

.3.3. Traffic speed data
The Anonymous Wireless Address Matching (AWAM) system of

ouston TranStar [39] employs multiple roadside AWAM readers.
hese readers sense the MAC address from Bluetooth-enabled devices
uch as cellular phones, mobile GPS systems, and in-vehicle naviga-
ion systems as they pass the reader station. The report times of a
evice at successive AWAM readers are used to estimate the road-
ay segment’s average travel time and speed. The Houston TranStar
peed Map archive was used to acquire historical traffic data for this
tudy. Houston TranStar has maintained a database of 15-min average
peeds for 485 freeway links in Houston since January 2009. Houston
ranStar also provides API access to the traffic speed data for real-time
pplications.

.3.4. Sensors
Houston is amongst the most extensively gaged region in the US,

ith more than 50 gages in the study region. The USGS and the Harris
ounty Flood Control District (HCFCD) are the primary operators of
hese gages. USGS offers API access to real-time and historical data,
hereas HCFCD data is only available through a web dashboard, neces-
itating web scraping. Data from 40 USGS-operated gages were used in
his investigation due to their ease of access. Following Section 2.3.3,
istorical gage data for selected gages are collected and processed to
stimate flood extents. Flood extents are then used to estimate water
epth at roads; roads with a depth of greater than 50 cm are considered
looded in this study.

.3.5. Citizen service portals
This study uses historical reports from the City of Houston (CoH)

11 citizen service portal to identify flooded regions. Flood reports
rom Hurricane Harvey are collected and geolocated. As described
n Section 2.3.8, flood reports are encoded using the standard street
ddress in CoH 311 data, thus preventing the accurate localization of
he reported condition. At each time step, all roads located within a
uffer of 30 m (100 f t) of an active flood report are considered flooded
n this study.
13

f

.3.6. OpenSafe Mobility
OpenSafe Mobility [72] is a mobility-centric situational awareness

ystem that uses real-time radar data and a physics-based flood model
o identify flooded roads. A version of the OpenSafe Mobility frame-
ork has been operational since September 2021 for the Brays Bayou
atershed area in Houston, Texas. For this study, OpenSafe Mobility is
xpanded to include other watersheds in the Houston region. The newly
onsidered regions include (a) Greens and Hunting Bayou Watersheds;
b) Sims and Vince Bayou Watersheds; (c) White Oak Bayou Watershed;
nd (d) Buffalo Bayou Watershed. New physics-based flood models are
eveloped and calibrated for each region using historical rainfall from
ax Day Flood (2016). Together the five models (one pre-existing and
our newly developed models) cover most of the study area, thereby
ignificantly improving the data availability. Historical rainfall radar
ata are used in this study to reenact model outputs for Hurricane
arvey.

.3.7. Traffic cameras
Houston TranStar [39] operates more than 700 live traffic cameras.

n automated deep learning model that can sense road conditions from
raffic cameras can significantly improve data availability, especially
or major roadways. Existing labeled image datasets are either limited
n size or unsuitable for inferring road conditions from low-resolution
raffic cameras. The lack of relevant annotated data necessitated the
evelopment of an image classifier from scratch. This study collected
nd labeled 2300 images related to roadway flood conditions. Flooded
mages are collected from various sources, including traffic camera
mages, Flickr, Bing, Google search, Twitter and others. The collected
mages are then manually inspected to filter images featuring roads—
ither flooded or open. The shortlisted images are then annotated using
upervise.ly annotation platform. Two classes are considered while an-
otating images. The considered classes are (a) roads either not flooded
r with minor flood and passable to most vehicles and (b) flooded roads
hat could pose unsafe road conditions. The annotated images are then
anually cross-checked to ensure quality. The images are then used
o train deep-learning-based image classifiers using transfer learning.
he best among the trained models (based on ResNet-34 [83]) can
etect open and impassable roads using traffic camera data with 83%
ccuracy. For this case study, historical traffic camera data are collected

or the study region. Due to the delay in data collection and the absence
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Fig. 15. Prediction, measurement, and update steps for a road link in OpenSafe Fusion. The model is initialized at time step T1 with an initial probability of the road link flooding
et at 50%, encoding the lack of information on roadway status. At T2, the model maintains the initial belief since no observation was received. After obtaining a flood observation
rom the OpenSafe Mobility flood model, the model believes the link may be flooded at step T3. OpenSafe Fusion sees typical traffic speeds at the link at T4, and it now updates
ts belief to a likely open road. At T5, OpenSafe Fusion receives more evidence from a traffic camera that the road is open, leading to an updated belief that the link is probably
pen. (Images courtesy of © Houston TranStar, Google LLC, Mapbox).
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of archived data, data from all Houston TranStar cameras through
Hurricane Harvey are not available. The limited images collected (n
= 15) are used here to demonstrate the application of automated deep
learning workflow to sense flooding on roads.

3.3.8. Social media
Despite recent advances in annotated datasets [84–86] and reliable

geocoding tools (e.g., Google Geocoding API), limited testing during
this study reveals that more research is required to enable automated
identification and mapping of flooded roads and entities from tweets.
Specifically, adding social media to OpenSafe Fusion did not signifi-
cantly improve its accuracy but introduced noise to observations due to
the lack of specificity in observations derived from tweets. To elaborate,
existing annotated datasets [84–86] can identify informative tweets,
lassify relevant tweets into preidentified humanitarian categories, and
stimate infrastructure damage severity from tweets. However, the
atasets cannot estimate flood depth or severity from tweets. Thus,
ew datasets that can estimate flood depth or severity from tweets are
ecessary. Further, existing annotated datasets for geographic feature
xtraction (and geocoding tools) focus on standard street addresses
nd place names, thus, failing to identify roads as entities reliably.
ence, an entity extraction dataset that can identify roads and other
eographic features are necessary. Finally, existing annotated datasets
ocus on either classification or entity extraction and are not suited
or mapping the identified flood impacts to the affected entity. To
laborate, consider the tweet, ‘‘Brompton St. South of Holcombe Blvd.
s Flooded’’. While processing this tweet, an entity extractor can iden-
ify two entities: Brompton St. and Holcombe Blvd. A tweet classifier
an identify that the tweet is related to flooding. However, models
rained on existing datasets might not help identify the flooded road
ection from the two identified entities. Thus, a new joint entity and
elation extraction dataset that maps the flood condition to entities
s required to facilitate an accurate mapping of flood impacts. Such a
ataset should map flood conditions to entities (e.g., entity::Brompton
t.—relation::attribute—condition::Flooded) and also help identify the
ffected portion of the entity (e.g., entity::Brompton St.—relation::South
f—entity::Holcombe Blvd.). In summary, a new dataset that can es-
imate flood depth or severity, identify roads and other entities, and
ap the relation between entities and flood severity are necessary for
everaging social media data. Since OpenSafe Fusion is intended for
mergency response applications, it was decided not to leverage social
edia data in this case study and initiate the development of datasets
hat can accurately identify flooded roads from tweets.
14
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.4. Validation results

This section reenacts Hurricane Harvey in OpenSafe Fusion to crit-
cally evaluate its performance. The main stages of OpenSafe Fusion
re illustrated in Fig. 15. First, the OpenSafe Fusion model is activated
hen flood-inducing conditions are detected in the study area. Once
ctivated, OpenSafe Fusion uses the road transportation network of the
tudy region to begin analysis. The road transportation network used in
his example is extracted from OpenStreetMap and contains more than
2,000 road links. All major highways and arterial roads are covered,
hile some residential streets are not considered for this case study.
n the beginning, all road links are assigned an initial probability of
looding. In this example, the initial probability of flooding is set at
0% to encode the model’s lack of knowledge about the initial state of
he roads. Once initialized, OpenSafe Fusion will collect, process, and
use data at regular intervals. The time interval between runs is set to
ne hour for this demonstration. For a real-time application, shorter
ime steps could be used to ensure the recency of model predictions.
During a new time step, previous states of the road, past obser-

ations, and external actors can be used to predict the state of the
oad link in the next time step. Fig. 16 shows the average transition
robability for roads in Houston during Halloween Day Flood (2015),
emorial Day flood (2015), and Tax Day Flood (2016). Here, Open-
afe Fusion road network and physics-based flood models are used to
rack link states and estimate the state transition for each time step
Fig. 16). In all three cases, the transition probability of an open road
emaining open (𝑃 (𝑋𝑡+1 = 𝑂𝑝𝑒𝑛|𝑋𝑡 = 𝑂𝑝𝑒𝑛)) in the next time step
1 h) is 0.99. The transition probability of flooded roads remaining
looded (𝑃 (𝑋𝑡+1 = 𝑓𝑙𝑜𝑜𝑑𝑒𝑑|𝑋𝑡 = 𝑓𝑙𝑜𝑜𝑑𝑒𝑑)) hovers between 0.90 and
.99 (mean transition probability is 0.97 for all events). While some
luctuations can be observed for transition probability for flooded to
looded transitions in the early stages of flooding, the value quickly
onverges to 0.97. Insights from the three past events indicate that the
rediction step can be approximately modeled as a Markov Process,
specially for Hurricane Harvey, as it was a slow-moving flood event.
his study uses two Prediction models (Table 2): P1 and P2. A road
ink is initialized with the P1 model as it holds the assigned initial
robability of flooding. Once the link is observed, OpenSafe Fusion
witches the prediction model to P2. With each time step, Prediction
odel P2 will move the state of the road closer to the open state.
Next, observations from data sources are collected and processed

sing the data processing workflows described above. Only the Pre-
iction step is executed if no observations are available during a
ime step (see time step T2 in Fig. 15). If observations are available,

ata fusion is initiated using the formulation presented in Eq. (11).
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Table 2
Model parameters for OpenSafe Fusion Hurricane Harvey case study. Only OpenSafe Mobility and Traffic Camera reports both open and flooded
status. While Traffic Speed data only reports open status, the remaining sources only observe flooding.
Model Model ID Description

Transition model P1 𝑃 (𝑋𝑡+1 = 𝑓 |𝑋𝑡 = 𝑓 ) = 0.99 ; 𝑃 (𝑋𝑡+1 = 𝑜|𝑋𝑡 = 𝑜) = 0.99
P2 𝑃 (𝑋𝑡+1 = 𝑓 |𝑋𝑡 = 𝑓 ) = 0.97 ; 𝑃 (𝑋𝑡+1 = 𝑜|𝑋𝑡 = 𝑜) = 0.99

OpenSafe Mobility OSM-1 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.90
𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 1∕(1 + 𝑒−𝑐1∗(𝑤𝑑−𝑐2)); c2 = 2, c1 = 2

Traffic camera CAM-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.83 ; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.83
Traffic speed SPEED-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.95; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.95
TxDOT TXDOT-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.95; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.95
UFlood UFLOOD-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.70; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.70
Citizen portal COH-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.85; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.85
Sensors USGS-1 𝑃 (𝑧 = 𝑓 |𝑋 = 𝑓 ) = 0.85; 𝑃 (𝑧 = 𝑜|𝑋 = 𝑜) = 0.85
Twitter TW-0 –
Fig. 16. Figures showing the evolution of flood impacts on roads during three recent floods in the study region. Similarity can be observed in the distribution of flooded duration
and the temporal evolution of flood impacts on roads (i.e., the number of flooded roads). More importantly, consistent transition probability between flooding states observed in
the modeled flood events indicates that a Markov model can be used to model the Prediction step.
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Eq. (11) disregards data source interdependencies, overemphasizing
imultaneous observations from interdependent sources. In this initial
tudy, sufficient historical data was unavailable to model and study
he interdependencies among data sources and their impacts on data
usion accuracy. Future research should investigate interdependencies
mong data sources and model them if it improves model accuracy.
or this case study, four sources (OpenSafe Mobility, Sensors, Traffic
amera, and Citizen Portals) independently observe flooding, while
hree sources (UFlood, TxDOT, and Twitter) might have dependencies
n other sources. Consider, for example, a TxDOT employee reporting
looding after observing a flooded road from a traffic camera.
Table 2 reports 𝑝(𝑧|𝑥) (see Eq. (11)) for the considered data sources.

hese models are based on historical data (for Citizen Portals and
ensors), model performance (for camera data), insights from similar
tudies [82](for U-Flood), design considerations (for TxDOT), or a pre-
iminary informed assumption (for OpenSafe Mobility). For OpenSafe
obility, the sigmoid function with two parameters is used to model
(𝑧 = 𝑓 |𝑥 = 𝑓 ). Leveraging the sigmoid function enables OpenSafe
usion to dynamically change model confidence based on the predicted
lood depth (𝑤𝑑 in feet) at roads. Further, the sigmoid formulation
lso facilitates road-link-specific flood threshold selection to consider
otential ponding effects due to numerical errors. After measurement
nd update, OpenSafe Fusion pauses until the next time step is initiated.
he process of prediction, measurement, and update continues with
15

g

ach time step until the stopping criteria is reached (e.g., OpenSafe
usion detects no flooded road in the study area).
Fig. 17 shows the spatial distribution of road condition observations

rom select sources and OpenSafe Fusion. OpenSafe Mobility, U-Flood,
nd TxDOT are the three sources that provided the majority of flood
bservations. While TxDOT and traffic speed observations are primarily
or major highways, other sources also offer data on minor streets, thus
ddressing the need for detecting local road conditions. The reports
rom CoH 311 data are mainly focused on residential streets, whereas
ata from gages is centered close to bayous. Since U-Flood was an
d hoc situational awareness tool deployed during Hurricane Harvey,
he data is only available starting August 31, 2017. Contrasting Open-
afe Fusion data availability with individual sources indicates that it
uccessfully improved data availability throughout the event, even for
inor roads—thus achieving one of the main goals of OpenSafe Fusion.
etter data availability can translate to better situational awareness and
mproved roadway safety.
The effectiveness of data fusion in achieving just situational aware-

ess and overcoming data inequities depends primarily on the avail-
bility of reliable observations from multiple data sources. Fig. 17
ndicates that OpenSafe Fusion observations are available throughout
rban Houston, while other sources exhibit clustering around select
eighborhoods (U-Flood; Fig. 17c) or sparse availability (Fig. 17b, e–
) outside major highways or bayous. While fusion can help reduce
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Fig. 17. Spatial distribution of data availability from various sources and OpenSafe Fusion during Hurricane Harvey. All roads with observations are marked using black lines.
For OpenSafe Mobility, roads without flood depth data can be considered open.
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situational awareness data inequity, it cannot eliminate them entirely
(data-rich regions will always have better situational awareness). How-
ever, any reduction in situational awareness bias will promote equitable
emergency response. With only U-Flood reports, responders might pri-
oritize the observed areas, leading to unjust resource allocation and
reduced emergency response efficiency in other communities. In con-
trast, OpenSafe Fusion enables better sensing for all regions, thus
promoting just resource allocation and safer and efficient emergency
response navigation. Finally, better characterization of data sources
and enhancing the accuracy of OpenSafe Fusion workflows could also
enable the framework to offer just situational awareness.

Fig. 18 evaluates OpenSafe Fusion performance using ground truth
data collected from images showing road conditions (both flooded
and open). These images are collected from diverse sources, including
TranStar, Twitter, and ESRI [87]. The impacted roads are located,
and water depth over roads are estimated by contrasting collected
images with terrain data from Google Map. Additionally, this study only
considers pictures whose time of capture is known. TranStar camera
data are used to increase the validation data availability; consequently,
OpenSafe Fusion model results are generated without considering the
traffic camera data source. For each observation, flood depth obtained
from the image is compared to the OpenSafe Fusion predicted proba-
bility of flooding (Fig. 18). Next, OpenSafe Fusion model performance
is quantified using the following five metrics: AUC (0.84), Weighted
F1-Score (0.87), Balanced accuracy (0.88), Weighted Precision (0.88),
and Weighted Recall (0.875). For developing these metrics, roads with
a probability of flooding higher than 0.5 are classified as flooded.
Further, Fig. 18 also reports the Confusion Matrix and ROC curve. The
findings show that in 87 percent of cases, OpenSafe Fusion can detect
the state of roads accurately. OpenSafe Fusion, in particular, has a low
false negative rate (1∕14 or 7.14%; Fig. 18). For situational awareness, a
low false negative rate is vital since incorrectly designating roads open
can pose safety risks and result in detours and delays.

A closer examination of wrongly predicted roads indicates that lack
of real-time observations and terrain with a predisposition for ponding
are the two main reasons for incorrect classification. A significant
source of data for OpenSafe Fusion is OpenSafe Mobility. OpenSafe
Mobility’s flood models are currently unable to simulate stormwater
networks; as a result, low-lying areas that are predominantly drained by
the stormwater network will be misclassified as flooded. Such regions
are easily discernible from the digital terrain model. It is possible to
16
ignore OpenSafe Mobility observations from these regions or establish
a higher bar for declaring a road to be flooded.

Ablation studies (Fig. 19) are performed to examine OpenSafe Fu-
ion further. Specifically, six experiments are run to offer insights
nto the performance, data availability, accuracy, and robustness of
penSafe Fusion. In each experiment, one data source is held back
nd used as the ‘‘ground truth’’, while the remaining data sources
re used to run OpenSafe Fusion. Next, OpenSafe Fusion predictions
re then compared to the held-back data set, and performance met-
ics (AUC and Weighted F1) are estimated for each time step. While
xtensive validation studies are essential before adopting OpenSafe
usion, the ablation study presented here offers initial insights into
he characteristics of the OpenSafe Fusion framework. Fig. 19 reports
he temporal distribution of data availability and model performance
or each scenario. With the exception of OpenSafe Mobility, OpenSafe
usion outperforms all other data sources in terms of data availability.
ut of the network’s 62,000 roadways, OpenSafe Fusion continuously
onitors around 37,000 of them. Most highways without observations
re found near the periphery of Houston (Fig. 17).

Further, caution should be exercised when interpreting temporal
variation of AUC and F1 scores. While estimating these measures, the
held-back data source is considered the ground truth, which often is
not true. For data sources that use physical sensors (cameras, speed
data, and gages), OpenSafe fusions predictions show good temporal
performance. For other sources (TxDOT, CoH 311), OpenSafe Fusion
performance is low during the initial phases of flooding. On closer
examination, some inherent characteristics of these data sources might
have contributed to the low OpenSafe Fusion model performance. To
elaborate, all TxDOT flood reports are not flooded. Entire stretches of
highways are often marked flooded proactively due to partial closure
of a link or flooding of access roads. In some cases, traversable roads
are marked flooded to caution drivers about the presence of water.
Similarly, for COH-311 data, many initial reports might be related
to nuisance flooding. Ablation studies indicate that, for the selected
case study, (a) OpenSafe Fusion observes more road links than all
sources except OpenSafe Mobility. It also highlights OpenSafe Fusion’s
ability to observe road status during the initial stages of flooding; (b)
OpenSafe Fusion provides acceptable accuracy when compared to other
sources, particularly considering physical sensors; and (c) OpenSafe

Fusion exhibits robustness by accurately monitoring roads even if a
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Fig. 18. Validation of OpenSafe Fusion using geolocated images during Hurricane Harvey.
Fig. 19. Results from ablation studies. Comparison of data availability (top) and temporal variation in F1 and AUC scores (bottom) between individual data sources and OpenSafe
Fusion (OSF).
specific data source becomes unavailable (a common occurrence during
major flood events).

Finally, Fig. 20a shows the predicted roadway status on 28 August
2017 at 5 AM. From the figure, it is evident that a majority of roads in
the urban centers of Houston are observed. Moreover, the unobserved
roads are primarily located in the suburban regions—primarily because
of the limited data generation from this region. Deploying additional
17
data in the suburban regions could further enhance data availability.
Similarly, Fig. 20b shows the network-level impact of flooding on
hospital access. Specifically, it identifies regions with significant loss
of connectivity to hospitals; such regions are more vulnerable due to
the lack of hospital access. OpenSafe Fusion results are finally com-
municated via a web dashboard and REST API. OpenSafe Fusion and
the accompanying web tool are designed after extensive user feedback
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following the tenets of user-centered design. For additional details,
please refer to Panakkal et al. [11].

Completeness of OpenSafe Fusion predictions can be assessed
through four key dimensions: availability, timeliness, certainty, and
accuracy. Availability, measured as the percentage of road links ob-
served, provides insight into spatial data availability (Figs. 17 and
9). In this case study, OpenSafe Fusion typically observed 60% of
oads, except when OpenSafe Mobility data was not included (Fig. 19;
arts a–d and e–f). Further, Fig. 20 indicates that urban Houston has
more complete observations for flooded roads than suburban areas in
the periphery. Timeliness, measured as the time elapsed since the last
observation from data sources for each road link, can identify regions
with potentially outdated data. However, timeliness was not examined
in this case study as archived data was used, and the time of data
reporting was unavailable. Certainty, gauged through the predicted
probabilities (Fig. 20), offers stakeholders a sense of OpenSafe Fusion’s
confidence in the estimated roadway status. For instance, OpenSafe
Fusion is more confident in its assessment when it estimates a 98%
probability of flooding than 60% for a link. Real-time accuracy can
be calculated by comparing OpenSafe Fusion predictions (such as in
ablation studies) to a reliable, independent source uniformly distributed
through the study region. Ideally, the independent source should be
selected such that excluding it from the data fusion process should
not diminish the overall performance and data availability of OpenSafe
Fusion. Finally, while ablation and validation studies offer insights on
model performance, a comprehensive assessment of OpenSafe Fusion
performance is still lacking; especially, a detailed comparison study
with other tools and frameworks under diverse conditions is required.
Ideally, OpenSafe Fusion should be evaluated holistically, consider-
ing model performance on five dimensions: availability, timeliness,
uncertainty, fairness [88], and accuracy.

4. Discussions and conclusions

This paper presents the methodological underpinning of the Open-
Safe Fusion framework. OpenSafe Fusion addresses a key impediment
to improving situational awareness – the lack of reliable real-time data
on road conditions during flooding – and offers a real-time mobility-
centric situational awareness framework. While additional research
is required, the presented case study show that fusing multi-modal
observations from existing data sources can significantly improve our
ability to sense flood impacts at the link and network levels in real time.
Specifically, (a) this study demonstrated that carefully designed source-
specific workflows considering data source characteristics enable the
extraction of road condition data from diverse sources, even sources
that do not directly observe flooded roads—thus significantly increas-
ing data availability; (b) this study also addressed the methodological
challenges in fusing observations from sources diverse in characteristics
and reliability to estimate the probability of roadway flooding. The
presented link-level data fusion approach is adaptable, modular, and
efficient and can effectively model the spatiotemporal variation in
source characteristics; (c) this study illustrated that a data fusion-based
approach can offer a real-time situational awareness framework capa-
ble of monitoring road conditions of a majority of roadways and yield
comprehensive and credible estimates of flood impacts at the road link
and network levels. Moreover, such a data fusion-centric approach also
has the potential to be more robust and equitable; finally, (d) the study
offers tools, methods, and insights to enable real-time data processing,
data fusion, data augmentation, and network analysis. Communities
can tailor the framework to their region and available data sources to
enhance roadway situational awareness—thus promoting community
resilience.

OpenSafe Fusion advances the current state-of-the-art in mobility-
centric flood situational awareness. Specifically, it is the first open-
source framework designed following the tenets of the user-centered
18

design process [11] and adhering to responsible design principles [89–
93] that offer interpretable and grounded real-time probabilistic esti-
mates of flood impacts on road transportation infrastructure. OpenSafe
Fusion framework can significantly improve data availability and ac-
curacy compared to existing situational awareness models depending
on limited data sources (e.g., physical sensors, physics-based models,
alerts). Compared to machine learning methods, OpenSafe Fusion offers
interpretable, transparent, and grounded predictions; for each road
link, users can identify the real-time observations used by OpenSafe
Fusion to make predictions. Machine learning and physics-based mod-
els often remain static in their initial configuration and parameters,
thereby failing to adapt to the changing conditions (e.g., new pumps,
terrain changes, new detention basins), resulting in diminishing perfor-
mance, which could often go unnoticed until significant errors occur.
OpenSafe Fusion, on the other hand, will constantly adapt to changing
ground conditions as it primarily leverages ground observation; in
addition, the degrading performance of any source-specific workflow is
easier to notice in the context of other observations. OpenSafe Fusion
can promote situational awareness data equity by combining obser-
vations from multiple reliable urban sources. Compared to existing
data fusion-based situational awareness tools, OpenSafe Fusion stands
apart in its ability to leverage diverse urban sources that directly
or indirectly observe roadway status. Finally, the OpenSafe Fusion is
human-centered, contestable, and tenable to human oversight, thus
promoting user trust, adhering to responsible design principles, and
offering guardrails against significant model errors.

While the limited case study presented here precludes generaliza-
tion, the presented proof-of-concept alludes to several advantages of
the proposed framework. First, by leveraging existing data sources,
communities could improve situational awareness without deploying
and maintaining physical sensors at scale. Repurposing existing sources
leveraging open-source tools is especially advantageous to communities
without significant resources. Second, as demonstrated in the case
study and ablation experiments, OpenSafe Fusion can improve data
availability—spatially (throughout the watershed for both pluvial and
fluvial floods) and temporally (through all stages of flooding). The
improvement in data availability is especially prominent for regions
with multiple data sources. Enhanced spatial and temporal data avail-
ability could translate to enhanced safety and efficiency of emergency
response. Third, based on the limited case study presented here and in
the context of situational awareness tools used in Houston, OpenSafe
Fusion is robust and fault-tolerant as it uses multiple data sources.
While sensor errors or unavailability of data sources could reduce the
model performance, OpenSafe Fusion might still provide reliable re-
sults if other sources observe flooding. Deploying replicas of OpenSafe
Fusion on multiple computers that are not co-located can ensure the
availability of OpenSafe Fusion during power outages that frequently
accompany flooding. Fourth, OpenSafe Fusion can produce reliable
results by leveraging data from multiple data sources. The reliability
of OpenSafe Fusion will depend on several factors, including data
availability and the accuracy of data collection, processing, fusion,
and augmentation workflows. Moreover, understanding the data char-
acteristics (e.g., accuracy, bias) and factors influencing them under
diverse conditions is essential for effectively fusing observations. Fifth,
OpenSafe Fusion can help reduce inequities in situational awareness
data availability. Many frameworks rely on limited data sources and,
consequently, carry biases in the availability and accuracy of the re-
lying sources. For example, social sensors might be concentrated near
urban regions, and physical sensors are more affordable for affluent
communities. Inequities in data sources could translate to inequities
in situational awareness. By combining diverse sources and leveraging
data augmentation, OpenSafe Fusion might be able to reduce inequity.
Although OpenSafe Fusion might help ameliorate inequity in situa-
tional awareness data availability and accuracy, it cannot eliminate
it—model results might be more accurate in regions with reliable and

abundant data than in regions with sparse or unreliable data.
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Fig. 20. OpenSafe Fusion predicted roadway status (a) and connectivity loss (b) to hospitals at a time step during Hurricane Harvey.
The advantages of OpenSafe Fusion should be considered in the
context of its limitations. First, OpenSafe Fusion requires reliable data
sources; limited, incomplete, or biased data will affect model perfor-
mance. Second, OpenSafe Fusion used the discrete formulation of the
Bayes Filter to fuse observations from sources. Consequently, the like-
lihoods, prior, and posterior are all discrete, and the model produces
a deterministic estimate for the probability of a road link flooding.
Additional data fusion strategies could be adopted to characterize the
probability of roadway closure and associated uncertainties in the
continuous domain. Third, a Markov model is sufficient for modeling
OpenSafe Fusion’s prediction step in Houston since reliable data is
available at regular intervals. A Markov-based prediction step might
not be appropriate for applications in data-scarce regions. It might be
beneficial to develop generative or time series models that can predict
the potential state of the system (and the uncertainty bounds) over
multiple time steps without frequent observations. Fourth, since suf-
ficient historical data was unavailable to learn interdependencies, the
data fusion model adopted here neglected the dependencies between
sources. Neglecting data source interdependencies may result in errors,
and once data is available, more refined fusion models that can account
19
for sensor interdependencies can be developed. Fifth, exhaustive testing
and validation studies are required to validate OpenSafe Fusion and
its components before a widespread deployment. Ideally, the Open-
Safe Fusion framework should be deployed, and model performance
should be validated over diverse storm types, including flash floods,
compound floods, severe storms, and multi-peak events. Additionally,
the framework’s transferability and scalability should be assessed by
implementing it in communities of various sizes, ranging from megac-
ities to small towns. Sixth, it might be challenging for communities
without sufficient resources to develop, deploy, and maintain Open-
Safe Fusion. To facilitate faster adoption and application, the authors
envision national agencies (e.g., FEMA) or non-profit organizations
developing, validating, maintaining, and updating OpenSafe Fusion
components and making them available to communities through API
calls and easily usable modular tools. A service-based approach might
allow communities with limited resources to leverage state-of-the-art
situational awareness tools and overcome technological and financial
accessibility and affordability barriers—thus promoting social equity
and community resilience. Finally, this study used distance-based met-
rics to measure network-level flood impacts; future implementations
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could also use real-time traffic speed data to estimate travel time-based
metrics to better inform situational awareness and emergency response
decision-making.

Our future work will continue to improve the OpenSafe Fusion
framework and its components. A prototype OpenSafe Fusion web
tool is currently being tested for usability following the tenets of
user-centered design [11]. Once deployed, OpenSafe Fusion will be
upported by extensive data collection, processing, and archiving work-
lows to develop a rich dataset of sensor observations. While a wealth
f literature exists on data fusion [94,95], it predominantly deals with
hysical sensors or sensors with known or stationary characteristics.
penSafe Fusion, in contrast, employs sensors whose characteristics are
on-stationary, frequently unknown, and affected by various complex
ariables, such as location, socioeconomic and environmental factors.
he gathered dataset will help characterize data sources accurately,
valuate and enhance data processing workflows, and facilitate the
evelopment of data fusion models that can capture the complex in-
erdependencies among the data sources. Further, each component of
penSafe Fusion can be improved. Additional sources, such as data
rom connected cars and the Internet of Things, could be considered.
imilarly, improved data processing workflow will be developed and
ested. For example, Panakkal et al. [72] report the development
nd performance of OpenSafe Mobility. Additional data labeling and
odel development are underway to accurately and precisely extract
oadway status from text data (e.g., tweets) and estimate flood depth
rom traffic camera images. While the current version of OpenSafe
usion offers the probability of road link flooding, future versions
hould offer flood hazard (depth and velocity) and vehicle-specific
tability at the road links, leveraging data from relevant sources (as
utlined in Table 1). Further, opportunities exist to improve the data
ugmentation model to consider short- and long-range spatial correla-
ion in flooding and roadway status. Historical or simulated flood or
oad condition data will be used to develop spatial correlation models
o support data augmentation. Better data augmentation models can
mprove data availability in data-scarce regions, detect outdated data,
nd provide a check against malicious or misinformed data from social
ensors when combined with the human-in-the-loop strategy. Likewise,
hile human-in-the-loop strategy offers potential benefits such as en-
bling human supervision, enhancing transparency, contestability, and
ser trust, concerns arise regarding its practicality and usability in
igh-pressure emergency response situations with limited resources.
xtensive validation studies, testing, and refinement might be required
o operationalize an effective human-in-the-loop workflow. Finally,
he performance of OpenSafe Fusion will be reviewed after major
torm events, and the insights gathered will be used to improve the
ramework and its components further.
In summary, this paper addresses the need for reliable real-time
obility-centric situational awareness data—a long-standing problem
ith societal significance. The proposed framework offers tools and
ethods to sense flood impacts at the link- and network levels. The
penSafe Fusion architecture is simple, practical, and modular, allow-
ng communities to reuse existing data sources to improve situational
wareness and upgrade the framework when more data or better
odels become available. While extensive additional validation studies
re required, OpenSafe Fusion offers communities a potential pathway
o improved situational awareness—a vital contribution to community
esilience in an epoch of climate-exacerbated flood risk.
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