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In this paper, the neutral 2SC phase of color superconductivity is investigated in the presence of a
magnetic field and for diquark coupling constants and baryonic densities that are expected to characterize
neutron stars. Specifically, the behavior of the charged gluons Meissner masses is investigated in the
parameter region of interest, taking into account, in addition, the contribution of a rotated magnetic field. It
is found that up to moderately high diquark coupling constants the mentioned Meissner masses become
tachyonic independently of the applied magnetic-field amplitude, hence signalizing the chromomagnetic
instability of this phase. To remove the instability, the restructuring of the system ground state is proposed,
which now will be formed by vortices of the rotated charged gluons. These vortices boost the applied
magnetic field, having the most significant increase for relatively low applied magnetic fields. Finally,
considering that with the stellar rotational frequency observed for magnetars a field of the order of 108 G
can be generated by dynamo effect, we show that by the boosting effect just described the field can be
amplified to 1017 G that is in the range of inner core fields expected for magnetars. Thus, we conclude that
the described mechanism could be the one responsible for the large fields characterizing magnetars if the
cores of these compact objects are formed by neutral 2SC matter.
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I. INTRODUCTION

It is of great interest to the nuclear physics and
astrophysics communities to elucidate what are the physical
characteristics of the superdense matter that forms the
interior of neutron stars (NS). In this context, to understand
the effect of a strong magnetic field on that medium is
essential due to the fact that magnetic fields of different
intensities populate the entire landscape of these compact
objects. The surface magnetic fields of some radio pulsars
are of the order of 108–1012 G [1]. There are even some
special compact objects called magnetars [2] whose surface
magnetic fields are of the order of 1014–1015 G. Those
values have been inferred from spectroscopic and spin-
down studies of soft-gamma ray repeaters (SGRs) and
anomalous x-ray pulsars (AXPs). In addition, we should
take into account that the inner core magnetic fields of
magnetars can be even larger, which follows from the
magnetic-field flux conservation in stellar media

possessing very large electric conductivities. By using
different arguments, the inner fields have been estimated
to range from 1017 to 1020 G [3,4]. The fact that the stellar
inner medium will be under the effect of such strong
magnetic fields has motivated many works focused on the
study of the equation of state of magnetized NS (see [5] and
references there). On the other hand, to understand what
originates the tremendous magnetic fields that characterizes
magnetars remains as a question under investigation.
Quark matter under sufficiently cold and dense con-

ditions is expected to be realized in the interior of massive
NS [6,7]. Under such conditions, the existence of a color
superconducting (CS) phase is unavoidable. This phase is
characterized by the formation of Cooper pairs of quarks
due to the attractive interaction originating either from the
perturbative one-gluon exchange in the color antisymmetric
channel at ultrahigh baryon density or from the instanton
effects at moderate density. When the masses of the u, d,
and s quarks can be ignored compared to the baryon
chemical potential and all three flavors take part in the
pairing, the ground state is characterized by a spin-zero CS
condensate, giving rise to what is called the color-flavor-
locked phase [8]. This phase is the well-established ground
state at asymptotic high density and low temperature. On
the other hand, at moderate densities, where it is expected
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that the quark interaction is stronger, if the density is high
enough to release quarks from inside the hadrons and
sufficiently low to decouple the s quark dynamics, the
pairing involves only two light flavors and the ground state
is a two-flavor superconducting (2SC) phase [9].
In investigating compact stars, there is another physical

factor to be considered: the electric neutrality of the
medium (given by ∂Ω=∂μe ¼ 0, with Ω the system thermo-
dynamic potential and μe the electric chemical potential),
which can also affect the CS phase specially at moderate
densities where it is expected that the so-called 2SC phase
can be realized. Some authors have already investigated
the neutral 2SC phase in the presence of a magnetic field
[10–13]. Those works had been constrained to study the
evolution of the quark gap Δ and constituent quark mass m
with increasing densities and magnetic fields. Nevertheless,
the effect of an applied magnetic field on the gluon sector of
such an electrically neutral system has been ignored up
to now.
Considering that quark matter in the interior of NS must

be neutral with respect to both electric and color charges
and in β equilibrium (i.e., the weak beta-equilibrium
condition μu þ μe − μνe ¼ μd should be satisfied, with μu
the chemical potential of the u quark, μd the one for the d
quark, μe the electron chemical potential, and μνe that of the
electron neutrinos, which will be here ignored considering
stars in the post-neutrino-emission epoch), it was found
[14] that the pairing dynamics within the 2SC phase results
affected due to the mismatch between the Fermi spheres
of quarks with different flavors. As a consequence,
gapless modes in the spectrum of quasiparticles appear
when the mismatch δμe ¼ μe=2 satisfies the condition
0 < Δ=δμe < 1. This unusual phase is called the gapless
2SC phase (g2SC). Further calculations [15] revealed the
other important consequence that the square of the
Meissner mass of some gluons are negative, signaling an
instability, which was named the chromomagnetic insta-
bility. It is worth to emphasize that the gapless super-
conductivity itself is not the reason for such an instability,
since, for example, in the gapped 2SC phase the squared
Meissner mass of some gluons is also negative when
1 < Δ=δμe <

ffiffiffi
2

p
. The chromomagnetic instability poses

a major challenge in the studies of CS phases with quark
pairing mismatch. Although a consensual conclusion to
remove such an instability has not been reached, possible
alternative solutions already exist in the literature. In this
context, inhomogeneous solutions seem to play an impor-
tant role. Some of them spontaneously break translational
invariance [16–18] through inhomogeneous quark-quark
condensates which involves a momentum-dependent gap.
These kind of inhomogeneous CS phases are based on the
idea of Larkin and Ovchinnikov [19] and Fulde and Ferrell
[20] originally applied to condensed matter. Another
inhomogeneous phase that breaks rotational invariance
has been also considered where gluon vortices are induced

together with the spontaneous generation of a magnetic
field [21]. This second scenario is motivated by the solution
to the so-called “zero-mode problem” that takes place for a
charged spin-one field in the presence of a magnetic field
larger than the field square Meissner mass [22–25].

In the present work, we will show that in the presence of
a magnetic field the unstable neutral 2SC phase will be
stabilized by restructuring its ground state by the formation
of a gluon vortex condensate as follows from the well-
known solution of the zero-mode problem, which has been
already found in different contexts as for Yang-Mills fields
in [22], for the W�

μ bosons of the electroweak theory in
[23], for the charged gluons of the magnetic-color-flavor-
locked phase of CS in [24] and even for higher-spin fields
in the context of string theory in [25]. In the magnetized
neutral 2SC system, the gluon vortex solution will be even
reinforced for certain density regions in the presence of a
magnetic field as we will show in this work.
Something else to notice is that an important character-

istic of spin-zero CS phases is the lack of Meissner effect in
contrast to the conventional superconductivity. Although
the original electromagneticUð1Þem symmetry is broken by
the formation of quark Cooper pairs, a residual Ũð1Þ
symmetry still remains. The massless gauge field associ-
ated with this symmetry in the 2SC phase is given by the
linear combination of the conventional photon field Aμ and
the eighth-gluon field G8

μ [26] as Ãμ ¼ cos θAμ − sin θG8
μ.

The field Ãμ plays the role of a long-range in-medium
electromagnetic field, which is also called the rotated
electromagnetic field, while the orthogonal combination
G̃8

μ ¼ sin θAμ þ cos θG8
μ is massive. The mixing angle

depends on the coupling constants through the relation
tan θ ¼ e=

ffiffiffi
3

p
g, with g and e the strong and electromag-

netic coupling constants, respectively. In this paper, we will
investigate the effect of the rotated magnetic field asso-
ciated with Ãμ on neutral 2SC matter and especially on the
Meissner masses of gluons that acquire rotated electric

charges, Gð4;5;6;7Þ
μ , and which are the ones associated with

the tachyonic modes in this medium. The mechanism that
serves to remove in this context the chromomagnetic
instability is due to the formation of gluonic vortices
together with the generation of a magnetic field. Thus,
we will also show how much the applied magnetic field can
be boosted by the generation of the gluon vortices that can
be induced at the moderately high baryon density expected
to be reached in NS. Finally, based on those results, one of
the main outcomes of this paper will be to present a natural
mechanism to explain the possible origin of the strong
magnetic fields exhibited by magnetars.
The rest of the paper is organized as follows: In Sec. II,

we review the Nambu-Jona-Lasinio (NJL) formulation of
the 2SC neutral phase of CS in the presence of a uniform
magnetic field. The results for the gap, Δ, and electric
chemical potential, μe, found in this section will be used
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then in the subsequent sections. In Sec. III, the Meissner
mass of the rotationally charged gluons is calculated for
different values of the diquark coupling constant in the
range of baryonic densities that are considered to be of
interest for NS. It will be shown that, for coupling constants
not extremely high, the Meissner mass exhibits a tachyonic
behavior at moderately high magnetic fields in the whole
range of densities under consideration. This is what has
been called the chromomagnetic instability phenomenon. It
will be discussed how this instability is removed by
redefining the system ground state through the formation
of gluon vortices. A peculiar effect generated by these
vortices is the amplification of the magnitude of the applied
magnetic field. By numerical calculations we will see that
small fields up to 1015 G will be boosted in 2 orders of
magnitude. This effect will be used then in Sec. IV as a
mechanism to produce the high strength that the magnetar
magnetic fields can reach in its interior. In Sec. V, we
present the concluding remarks.

II. COOPER PAIR CONDENSATE AT B ≠ 0
IN THE NEUTRAL MEDIUM

We consider in this paper a two-flavor NJL model of
massless quarks in the presence of an external constant and
uniform rotated magnetic field (from now on we are going
to ignore the term “rotated,” but it will be indicated by a
wavy-hat notation on top of the magnitudes). The
Lagrangian reads

L ¼ ψ̄ ½iγμð∂μ þ iẽ Q̃ ÃμÞ þ μγ0�ψ
þ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τ3ψÞ2�
þ GDðψ̄iγ5T2τ2ψCÞðψ̄Ciγ5T2τ2ψÞ; ð1Þ

where ψT ¼ ðu; dÞ is the quark doublet and ψC ¼ Cψ̄T is
its charge conjugate with C ¼ iγ2γ0 the charge conjugation
operator andGS andGD the coupling constants of the scalar
and diquark channels of the four-fermion interaction
theory, respectively. Here, T2 is the second Gell-Mann
matrix in color space, and τ2;3 are Pauli matrices in flavor
space. Q̃ is the rotated charge matrix defined as

Q̃ ¼ Qf × 1c − 1f ×
T8
c

2
ffiffiffi
3

p ð2Þ

in units of ẽ ¼
ffiffi
3

p
geffiffiffiffiffiffiffiffiffiffiffi

3g2þe2
p > 0. Here, Qf ¼ diagð2=3;−1=3Þ

is the original electromagnetic charge matrix for quarks,
and T8

c ¼ diagð1= ffiffiffi
3

p
; 1=

ffiffiffi
3

p
;−2=

ffiffiffi
3

p Þ is the eighth Gell-
Mann matrix. To be explicit, the Q̃ charges for different
quarks are given in Table I and for the different gluons in
Table II. In this convention, the only diquark pairs are urdg
and ugdr. These pairs are neutral with respect to Q̃. This is

the reason why there is no Meissner effect for B̃ due to the
absence of a charged ground state.
For the external magnetic field, we impose the Landau

gauge, in which the electromagnetic potential is given by
Ãμ ¼ ð0; 0; B̃x; 0Þ. This corresponds to a constant and
uniform magnetic field B̃ in the positive z direction.
Note that in the 2SC phase the linear combinations of
the gluon fields

G�
μ ¼ 1ffiffiffi

2
p ðG4

μ ∓ iG5
μÞ; H�

μ ¼ 1ffiffiffi
2

p ðG6
μ ∓ iG7

μÞ ð3Þ

carry Q̃ charges, while the remaining gluon fields are
neutral with respect to Q̃.
The quark chemical potentials related with electrical and

color neutralities as well as β equilibrium can be expressed
by the following matrix in color-flavor space:

μij;αβ ¼ ½μδij − μeðQfÞij�δαβ þ
2ffiffiffi
3

p μ8δijðT8Þαβ; ð4Þ

with components that can be more explicitly written for
each quark as

μur ¼ μug ¼ μ̄ − δμe; ð5Þ

μdr ¼ μdg ¼ μ̄þ δμe; ð6Þ

μub ¼ μ̄ − δμe − δμ8; ð7Þ

μdb ¼ μ̄þ δμe − δμ8: ð8Þ

The notations μ̄ ¼ μ − 1
6
μe þ 1

3
μ8, δμe ¼ 1

2
μe, and δμ8 ¼

μ8 have been used. Notice that with the definitions (5)–(8)
the weak beta-equilibrium condition μu þ μe − μνe ¼ μd is
satisfied for each quark color. The chemical potentials μe
and μ8 are dynamical parameters that have to be determined
from the electrical and color neutrality equations. The color
chemical potential μ8 is usually very small compared with
the other chemical potentials μe and μ [27]. We, therefore,
will assume μ8 ¼ 0 in the following calculations, since as

TABLE I. Q̃ charge for different quarks.

ur ug ub dr dg db
1
2

1
2

1 − 1
2

− 1
2

0

TABLE II. Q̃ charge for different gluons.

G1
μ G2

μ G3
μ Gþ

μ G−
μ Hþ

μ H−
μ G̃8

μ

0 0 0 1
2

− 1
2

1
2

− 1
2

0
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has been found by other authors it will not significantly
change the results.
The partition function reads

Z ¼
Z

Dψ̄Dψ expðSeffÞ ð9Þ

with Seff the effective action in Euclidean space given by

Seff ¼
Z

β

0

dτ
Z

d3x

�
ψ̄

�
−γ0

∂

∂τ
þ γ · ði∇þ ẽ Q̃ÃÞþμγ0

�
ψ

þ1

2
Δψ̄iγ5T2τ2ψ̄Cþ1

2
Δ�ψ̄Ciγ5T2τ2ψ −

jΔj2
4GD

�
; ð10Þ

which is obtained from Eq. (1) by assuming Δ ¼
2GDhψ̄Ciγ5T2τ2ψi and making the mean field approxima-
tion. Note that we are not considering the chiral conden-
sation. From previous results [11], we see that for the
density region μ > 320 MeV the chiral condensate already
vanished. Thus, in our calculations we will consider only
the region with μ > 320 MeV, which, on the other hand, is
the region where Δ ≠ 0 [11].
Introducing the Nambu-Gorkov spinors,

ΨðQ̃Þ ¼
� ψ ðQ̃Þ
ψC
ð−Q̃Þ

�
; Ψ̄ðQ̃Þ ¼

	
ψ̄ ðQ̃Þ ψ̄C

ð−Q̃Þ


; ð11Þ

where ψ ðQ̃Þ ¼ ΩðQ̃Þψ with charge projectors for the field
representation ψT ¼ ður; ug; ub; dr; dg; dbÞ given by

Ωð0Þ ¼ diagð0; 0; 0; 0; 0; 1Þ; ð12Þ

Ωð1
2
Þ ¼ diagð1; 1; 0; 0; 0; 0Þ; ð13Þ

Ωð−1
2
Þ ¼ diagð0; 0; 0; 1; 1; 0Þ; ð14Þ

Ωð1Þ ¼ diagð0; 0; 1; 0; 0; 0Þ ð15Þ

in color and flavor space. Those projectors satisfy

ΩηΩη0 ¼ δηη0Ωη; η; η0 ¼ 0;� 1

2
; 1; ð16Þ

and

X
η

Ωη ¼ 1: ð17Þ

The effective action can be written as

Seff ¼
Z

β

0

dτ
Z

d3x

�
1

2

X
Q̃

Ψ̄ðQ̃ÞS−1ðQ̃ÞΨðQ̃Þ −
Δ2

4G

�
ð18Þ

with

S−1ðQ̃Þ ¼

0
B@ ½Gþ

ðQ̃Þ0�−1 Φ−
ðQ̃Þ

Φþ
ðQ̃Þ ½G−

ðQ̃Þ0�−1

1
CA: ð19Þ

The diagonal elements are given by

½G�
ð1
2
Þ0�−1 ¼ −γ0

∂

∂τ
þ γ ·

�
i∇þ 1

2
jẽ Ã j

�
� ðμ̄ ∓ δμeÞγ0

ð20Þ

and

½G�
ð−1

2
Þ0�−1 ¼ −γ0

∂

∂τ
þ γ ·

�
i∇ −

1

2
jẽ Ã j

�
� ðμ̄� δμeÞγ0;

ð21Þ

½G�
ð0Þ0�−1 ¼ −γ0

∂

∂τ
þ γ · i∇� ðμ̄þ δμe − δμ8Þγ0; ð22Þ

½G�
ð1Þ0�−1 ¼ −γ0

∂

∂τ
þ γ · ði∇þ jẽ Ã jÞ � ðμ̄ − δμe − δμ8Þγ0:

ð23Þ

The off-diagonal elements are given by

Φþ
ðQ̃Þ ¼ 0; Q̃ ¼ 0; 1; ð24Þ

Φþ
ð1
2
Þ ¼ −Φþ

ð−1
2
Þ ¼

�
0 Δiγ5

−Δiγ5 0

�
; ð25Þ

and

Φ−
ðQ̃Þ ¼ γ0½Φþ

ðQ̃Þ�†γ0: ð26Þ

Thus, we obtain the thermodynamical potential

Ω¼−
1

βV
lnZ −

1

12π2

�
μ4eþ 2π2T2μ2þ 7π4

15
T4

�

¼ Δ2

4G
−
X
ðQ̃Þ

lndetS−1ðQ̃Þ−
1

12π2

�
μ4eþ 2π2T2μ2þ 7π4

15
T4

�

ð27Þ

with the contribution in the parentheses coming from the
electrons, which must be introduced to maintain the system
neutrality and β equilibrium.
Carrying out the sum in Matsubara frequencies, we

finally have
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Ω ¼ −
1

12π2

�
μ4e þ 2π2T2μ2 þ 7π4

15
T4

�
þ Δ2

4G

−
Z

d3p
ð2πÞ3

X
σ¼�

�
Eσ
ð0Þ þ 2T ln

�
1þ e−

Eσð0Þ
T

��

−
2jẽ Q̃ B̃ j
ð2πÞ2

Z
dp3

X∞
l¼0

�
1 −

1

2
δl;0

�

×
X

Q̃¼1;�1
2

X
σ;ξ¼�

�
Eσ
ðQ̃Þξ þ 2T ln

�
1þ e−

EσðQ̃Þξ
T

��
; ð28Þ

where EQ̃ are the spectrum of the quasiparticles given with
their corresponding degeneracies by

E�
ð0Þ ¼ �μdb þ jpj ð×2Þ; ð29Þ

E�
ð1Þ ¼ �μub þ jp̄ðþÞj ð×2Þ; ð30Þ

E�
ð1
2
Þ� ¼ �δμe þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp̄ð1

2
Þj � μ̄Þ2 þ Δ2

q
; ð31Þ

E�
ð−1

2
Þ� ¼ �δμe þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp̄ð−1

2
Þj � μ̄Þ2 þ Δ2

q
ð32Þ

with p̄ðQ̃Þ ¼ ð0; sgnðQ̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jẽ Q̃ B̃ j

p
; p3Þ and Eσ

ð1Þξ ¼ Eσ
ð1Þ

understood. In the present paper, we shall treat μe as a
dynamical parameter whose value should be determined by
minimizing the thermodynamical potential together with
the gap equation for Δ:

∂Ω
∂Δ

¼ ∂Ω
∂μe

¼ 0; ð33Þ

which will be solved numerically. The NJL model param-
eters, i.e., the three-momentum cutoff Λ and the coupling
constant GS, are chosen to be Λ ¼ 653.3 MeV and
GSΛ2 ¼ 2.14, which was fixed by fitting the pion mass
and its decay constant measured in experiment [28].
However, the coupling constant GD in the diquark channel
was not fixed by any phenomenologies. We will simply use
the convention that GD was proportional to GS, i.e.,
GD ¼ ηGS, with values η ¼ 0.75, 0.85, 0.95, and 1.15.
In Figs. 1 and 2, we present for two different values of

magnetic fields the solutions of the minimum equa-
tions (33) in the range of baryonic chemical potentials
from 320 to 500 MeV, which are expected to correspond
to the typical density region of compact stars. Comparing
Figs. 1 and 2, we notice that the magnetic field does not

FIG. 1. The solutions of the gap Δ and mismatch δμe versus baryonic chemical potential for different diquark couplings at a magnetic-
field value of 1016 G.
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significantly affect the behavior of Δ and δμe in the
parameter range under consideration. As expected, the
coupling strength η affects significantly the value of
the gap Δ producing a significant increase. The electric
chemical potential, on the other hand, also increases with
η. This is indicating that, as more quarks having a positive
conventional electric charge condense in Cooper pairs, the
system needs a larger number of electrons to keep its
electric neutrality.

III. THE REMOVAL OF THE
CHROMOMAGNETIC INSTABILITY OF
NEUTRAL 2SC MATTER AT B ≠ 0 AS A

MECHANISM TO BOOST A MAGNETIC FIELD

The gluon screening properties in the neutral 2SC phase
can be studied by calculating the gluon polarization tensors
considered in detail in Ref. [15]. In principle, for suffi-
ciently high magnetic fields the polarization tensor of
charged particles can change their Lorentz tensorial struc-
ture, showing a space anisotropy determined by the field
direction [29]. Nevertheless, for astrophysical applications
to compact objects since eB ≪ μ2, the anisotropy in the
Lorentz structure of the polarization operator becomes a
second-order effect that can be neglected, and, hence, we

can keep the polarization operator structure characteristic of
a dense medium at zero field, reducing the effect of the
magnetic field to its dependence on Δ and μe.
In [15], it was found that, while the Meissner masses of

the three gluons that correspond to the unbroken SUð2Þc
subgroup are vanishing as expected, the charged gluons
that correspond to the broken generators of the SUð3Þc
group could be imaginary in some parameter regions. The
explicit Meissner masses for the charged and the rotated
eighth gluon fields are given, respectively, by

m2
M;charged ¼

2αsμ̄
2

3π

�
Δ2 − 2ðδμeÞ2

Δ2

þ 2
δμe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμeÞ2 − Δ2

p
Δ2

θðδμe − ΔÞ
�

ð34Þ

and

m2
M;8̃ 8̃

¼ 4ð3αs þ αÞμ̄2
27π

�
1 −

δμeθðδμe − ΔÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμeÞ2 − Δ2

p �
; ð35Þ

where α ¼ g2=4π and αs ¼ e2=4π.
We must also indicate that, if the magnetic field is taken

into account in the calculation of the polarization operators

FIG. 2. The solutions of the gap Δ and mismatch δμe versus baryonic chemical potential for different diquark couplings at a magnetic-
field value of 1018 G.
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from where the gluon Meissner masses are obtained, we
should expect corrections into Eqs. (34) and (35) propor-
tional to ẽ B̃ =μ̄2 ≪ 1. This is a weak radiative effect that
will be of the order of αsẽ B̃ and that can be neglected as
compared with the tree contribution to the Meissner masses
of the order of ẽ B̃ produced by the magnetic-field direct
interaction with the charged gluons through the anomalous
magnetic moment term iẽf̃μνGþ

μ G−
ν , as we will see below.

Thus, in our calculations the magnetic field will enter in the
Meissner masses (34) and (35) only through the depend-
ence of Δ and μe on this.
From (34) and (35), one can see that the squared

Meissner masses of the charged gluons can be negative
in the region 0 < Δ=δμe <

ffiffiffi
2

p
and for the eighth rotated

gluon in the region 0 < Δ=δμe < 1. The appearance of
those negative square Meissner masses is pointing out to
the existence of an instability that is called the chromo-
magnetic instability.

A. Charged gluon Meissner masses versus baryonic
chemical potential at B ≠ 0

In Figs. 3 and 4, we plot the ratio of the Meissner mass of
charged gluons,m2

M=m
2
g, with respect to the so-called gluon

mass m2
g ¼ 4αsμ̄

2=3π, versus the baryonic chemical

potentials of interest for NS. Using different parametriza-
tions for the coupling constant amplitude coefficient η, the
results are shown in Fig. 3 at a moderate magnetic-field
value of 1016 G and in Fig. 4 for a higher value of 1018 G.
In both sets of graphs, only when the coupling turns very
high (i.e., for η ¼ 1.15) does the Meissner masses stop
being tachyonic. We call attention to the oscillations in the
graphs which are originated by the discontinue change in
the occupation of different Landau levels as μ varies at a
constant field. These are the known de Haas–van Alphen
oscillations.
Comparing Figs. 3 and 4, we also observe that, going

from moderate to strong magnetic-field values, m2
M does

not significantly change. We also want to call attention to
the fact that the Meissner mass does not change monoton-
ically with the baryonic chemical potential, since its
dependence is through two quantities, Δ and δμe, which
vary indistinctly with μ.

B. Induced magnetic field in the neutral 2SC phase

We should notice that the rotated magnetic field also
plays a very peculiar additional role on theMeissner masses
of the charged quarks in the color superconducting phase.
Since the rotated magnetic field contains a component
associated with the eighth gluon, it contributes to the

FIG. 3. The ratio of the squared Meissner mass of charged gluons to the magnetic mass for different diquark couplings at a magnetic-
field value of 1016 G.
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Meissner masses of the charged gluons through the non-
Abelian interaction with the charged gluons.
This can be seen taking into account the effective action

for the charged gluon fields, G�
μ , in the background of the

in-medium rotated magnetic field H̃, taken along the z
direction, which is given by [21,24]

Γc
eff ¼

Z
d4x

�
−
1

4
ðf̃μνÞ2 −

1

2
ðΠ̃μG−

ν − Π̃νG−
μ Þ2

− ½ðm2
Dδμ0δν0 þm2

MδμiδνiÞ þ iẽf̃μν�Gþ
μ G−

ν

þ g2

2
½ðGþ

μ Þ2ðG−
ν Þ2 − ðGþ

μ G−
ν Þ2� þ

1

λ
Gþ

μ Π̃μΠ̃νG−
ν

�
ð36Þ

with Π̃μ ¼ ∂μ − iẽÃμ the covariant derivative, f̃μν ¼
∂μÃν − ∂νÃμ, the Debye mass mD, the Meissner mass
mM, and λ an arbitrary gauge fixing parameter in the ’t
Hooft gauge. Essentially, the effective action (36) is the one
of a spin-1 charged boson field in a magnetic field. Because
of the anomalous magnetic moment term iẽf̃μνGþ

μ G−
ν , even

in the case when m2
M > 0, one of the charged gluon modes

becomes imaginary once the field surpasses a critical value,
i.e., ẽ B̃ > ẽB̃c ¼ m2

M. This is the well-known zero-mode

problem for the Yang-Mills fields in the presence of a
magnetic field [21–25]. The solution to this zero-mode
problem is the formation of an inhomogeneous gluon field
condensate hG�

μ i together with the amplification of the
applied magnetic field.
Replacing in (36) with the condensate ansatz employed

in Ref. [24], where hG−
1 i ¼ −ihG−

2 i ¼ Gðx; yÞ, hG−
3 i ¼

hG−
0 i ¼ 0, and hGþ

i i ¼ hG−
i i�, we find the system free

energy F. Then, in the presence of an applied rotated
magnetic field H̃ and an induced rotated magnetic field B̃,
the Gibbs free energy is obtained as G ¼ F − B̃ H̃, which
in our case reads

G ¼ F 0 − 2G†Π̃2G − 2ð2ẽ B̃−m2
MÞjGj2 þ 2g2jGj4

þ 1

2
B̃2 − H̃ B̃; ð37Þ

where F 0 is the free energy density of the normal phase
(G ¼ 0) at zero applied field. As can be seen from the third
term of the rhs of (37), ẽ B̃ enters as a negative square mass.
In the case that m2

M > 0 if ẽ B̃ > m2
M=2, the corresponding

gluon mode becomes tachyonic and the ground state of the
system has to be modified. In the case of neutral 2SC
matter, the situation in most of the region of interest at

FIG. 4. The ratio of the squared Meissner mass of charged gluons to the magnetic mass for different diquark couplings at a magnetic-
field value of 1018 G.
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moderate values of baryonic density is even more pressing,
sincem2

M < 0. Thus, in this case a magnetic field, no matter
how weak it can be, will activate the mechanism (i.e., no
critical field is needed).
To find the new ground state where the instability is

removed, we should minimize the Gibbs free energy with
respect to G and B̃. Hence, we find the system of equations

−Π̃2G − ð2ẽ B̃−m2
MÞGþ 2g2jGj2G ¼ 0; ð38Þ

2ẽjGj2 − B̃þ H̃ ¼ 0; ð39Þ

from where we can find the vortex condensate solution G
and the induced magnetic field B̃. Note that, because of the
different sign in the applied and induced fields, the field B̃
can be dynamically induced by the contribution of the
gluon anomalous magnetic moment 2ẽjGj2, which comes
from the original term in (36) iẽf̃μνGþ

μ G−
ν . Also see that

from (39) the induced field B̃ is larger than the applied field
H̃. This is the magnetic-field boosting mechanism that can
be activated in this circumstance. Our goal from now on is
to see how this mechanism can work to produce the strong
fields exhibited by magnetars.

C. Gluon vortices and magnetic-field amplification

In principle, we could solve the coupled equations (38)
and (39) to obtain the inhomogeneous gluon condensate
and the induced magnetic field in the medium. But those
equations are involved nonlinear partial differential equa-
tions difficult to solve directly. Instead, we will use the
constraint that the mass of the charged gluons must be less
than twice the color superconducting gap, since otherwise
the gluon will decay into two quasiparticles. With this
goal, we first substitute 2ẽjGj2 in (38) by using (39) and
transform the resulting equation to momentum space by
using the following suitable transformation for charged
scalar fields [30]:

GðpÞ ¼
Z

d4xEpðxÞGðxÞ ð40Þ

with

EpðxÞ ¼ N expðip0x0 þ ip2x2ÞDnðρÞ; ð41Þ

where DnðρÞ is the parabolic cylinder functions with argu-
ment ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jẽ B̃ j

p
ðx1 − p2=ẽ B̃Þ, N ¼ ð4πjẽ B̃ jÞ1=4= ffiffiffiffiffi

n!
p

is the normalization factor, and n ¼ 0; 1; 2;… denotes the
Landau levels. We, thus, obtain in momentum space

�
−½ðp0Þ2 − ẽ B̃ð2nþ 1Þ� − ð2ẽ B̃−m2

MÞ −
g2ðH̃ − B̃Þ

ẽ

�
×GðpÞ ¼ 0: ð42Þ

We can then deduce the dispersion relation of the charged
gluons:

E2
n ¼ ẽ B̃ð2nþ 1Þ − ð2ẽ B̃−m2

MÞ −
g2ðH̃ − B̃Þ

ẽ
: ð43Þ

The stability requires that the rest energy of the charged
gluons must be smaller than twice the quasiparticle energy
gap, i.e.,

E2
n¼0 ¼ m2

M − ẽ B̃−
g2ðH̃ − B̃Þ

ẽ
≤ ð2ΔÞ2: ð44Þ

Therefore, the equality

m2
M − ẽ B̃−

g2ðH̃ − B̃Þ
ẽ

¼ 4Δ2 ð45Þ

will give the induced field B̃ for each applied field H̃. From
the solutions of the gap equation and the squared Meissner
mass in Figs. 1–4, together with Eq. (45), one can find the
induced field B̃ as a function of the applied field H̃ as is
shown in Fig. 5.
From Fig. 5, we notice that the boosting effect is most

noticeable at relatively low field H̃. On the other hand,
decreasing the applied magnetic field below 1015 G, the
value of the induced field does not significantly change
from the one obtained at 1015 G, since for the baryonic
chemical potential under consideration both applied field
strengths can be considered as weak fields, coinciding their
results in a good lead with the zero-field approximation.

IV. POSSIBLE ORIGIN OF THE INNER
MAGNETIC FIELD OF MAGNETARS

In this section, we will discuss a possible mechanism that
can serve to generate the inner magnetic field of magnetars.
The subclass of neutron stars known as magnetars [31],

B

1×1015 5×1015 1×1016 5×1016 1×1017 5×1017 1×10182.0×1017

4.0×1017

6.0×1017

8.0×1017

1.0×1018

1.2×1018

1.4×1018

H

η=0.85, μ=400 MeV

FIG. 5. The induced field B̃ versus the applied field H̃ for a
diquark coupling η ¼ 0.85 and baryonic chemical potential
μ ¼ 400 MeV. Both applied and induced fields are in Gauss.
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where the AXPs and the SGRs are included, exhibits
magnetic fields that can reach values of the order of
1015 G on the star surface [32]. Even higher magnetic
fields of the order of 1017 G are expected to be sustained in
their interiors, as suggested by various recent observations
(see, e.g., [33] and references therein), as well as from
theoretical estimations [4] and according to some numerical
simulations [34].
One way to explain how the field amplification that

occurs in magnetars is originated, the so-called dynamo
mechanism [35], is considered. This mechanism is respon-
sible for the conversion of kinetic energy of an electrically
conducting fluid into magnetic energy. Based on this idea,
let us consider the energy equipartition between the star
magnetic energy and the rotational kinetic energy, which is
given by

�
4

3
πR3

��
B2

8π

�
¼ 1

2
Iω2 ¼ 1

5
MR2

4π2

P2
; ð46Þ

whereM and R are the stellar mass and radius, respectively,
I is the moment of inertia of a spinning sphere, P is the
stellar period of revolution, and B is the stellar mag-
netic field.
If we write the energy equality equivalent to (46) for the

Sun and then divide (46) by this second equation, we obtain

B ¼ B⊙

ffiffiffiffiffiffiffiffiffiffiffi
MR⊙

M⊙R

s
P⊙

P
¼

�
0.8 × 109

P

�
G ð47Þ

with M⊙, R⊙, and P⊙ being the solar mass, radius, and
rotational period, respectively. In (47), we are taking the
accepted values M ¼ 1.4M⊙ and R ¼ ð0.14 × 10−4ÞR⊙.
Regarding P⊙, since the Sun is not a rigid body, it has
different rotational periods depending on the altitude. We
will consider here its minimum value of 25.67 days, which
is the period at its equator and that corresponds to
P⊙ ¼ 2.2 × 106 s. Considering that B⊙ ¼ 1 G in Fig. 6,
we plotted the magnetic field B versus the period of rotation
P of magnetars obtained from (47) with P taken from the
McGill online magnetar catalog [36].
The magnetic-field strengths found in Fig. 6 are of the

order of those observed in millisecond pulsars [37], but
they are far from the expected 1017 G inner field expected
for magnetars. Hence, we see that the order of magnitude of
the magnetic field which corresponds to the macroscopic
rotational kinetic energy of the star is not enough to induce
the large inner field of the magnetars. This result suggests
that the origin of this field could be associated with a
microscopic mechanism that should be able to boost the
inner field to larger values.
We want to propose that precisely the mechanism we

are describing in this paper can play this role. From Fig. 5,
we see that if the core is formed by neutral 2SC

color-superconducting quark matter in the chromomag-
netic-unstable phase, an applied magnetic field of the order
of 1015 G can be boosted to the expected value of 1017 G.
Remarkably, this boosting mechanism works not only for
moderately large applied magnetic field, but also for fields
with smaller magnitudes, say, of the order of 108 G.
From (45),

ẽ B̃

�
g2

ẽ2
− 1

�
¼ g2

ẽ2
ẽ H̃þ4Δ2 −m2

M: ð48Þ

If the external field satisfies g2

ẽ H̃ < 4Δ2 −m2
M with

−m2
M > 0, then

ẽ B̃

�
g2

ẽ2
− 1

�
≃ 4Δ2 −m2

M: ð49Þ

Thus, if the diquark coupling strength is not so large that it
makes the squared Meissner mass positive and comparable
with 4Δ2, the induced magnetic field B̃ becomes of the
order of the larger parameter between Δ and mM.
Therefore, the dependence of the boosted field on the
external field exists only implicitly in the gap and Meissner
mass, which, however, are almost constant for small and
moderate external fields. Hence, the magnitude of an
induced field B̃ for an applied field H̃ of the order of
108–109 G will be essentially the same as that for H̃ of the
order of 1015 G, from where we conclude that in the region
with μ∈ ½320; 450� MeV and 1.15 > η > 0.75 the induced
field is of the order of B̃ ∼ 1017 G as can be seen from
Fig. 7, where Eq. (49) was used. There, we see that the
expected value of 1017 G for the inner field of magnetars
can be achieved by the proposed mechanism. We call
attention that in Fig. 7 the results for η ¼ 1.15 are not
plotted. It is because at that couplingm2

M > 0 in the density
region under consideration (see Figs. 3 and 4) and we need
a strong-field approximation (ẽ B̃ > m2

M=2) to produce the

2 4 6 8 10 12
P (s)0

2×1015

4×1015

6×1015

8×1015

B (G)

FIG. 6. Induced magnetic field versus star spin period obtained
by considering the energy equipartition between the star magnetic
energy and its rotational kinetic energy and taken the spin periods
from the McGill online magnetar catalog [36].
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instability, which is a different situation than the one we are
considering in the plots in Fig. 7.

V. CONCLUDING REMARKS

In this paper, we attempt to find a mechanism that
explains how the magnetar magnetic fields are generated.
Magnetars are compact astronomical objects endowed with
very large magnetic fields. Using the observational data
reported in the McGill online magnetar catalog [36], we
calculated the magnitude of the generated stellar magnetic
field by using the correlation between the star rotational
energy and its magnetic energy. The found result was not
sufficient to reproduce the expected field strength and
suggests that the star field is not only produced by a
dynamo effect of a charged rotational plasma, but for some
qualitatively different inner mechanism.
Then, assuming that the star core is formed by neutral

2SC matter at intermediate baryonic densities, we showed
that, at the densities of interest and for diquark coupling
moderately large, the phase exhibits the so-called chromo-
magnetic instability with imaginary Meissner masses for
the rotationally charged gluons. In this situation, an applied
magnetic field of any value will enforce the instability. This
is the so-called zero-mode problem for spin-one charged
fields in the presence of a magnetic field [21–25].

To remove the instability in this situation, a restructuring
of the ground state is proposed by the condensation of
gluon vortices. This condensate, in addition to removing
the instability, serves to boost the applied magnetic field.
We showed that in the parameter region of interest a field of
the order of 108 G that could be generated by dynamo
effect for the rotational frequencies reported for magnetars
[36] will be boosted to 1017 G by the mechanism here
described. This value of 1017 G is the one indicated in
several works as the most feasible one for the interior of
magnetars [4]. The lowest magnitude observed for the
surface magnetic field [36] can be justified by taking into
account that in going from the core to the surface the
magnetic field should decrease in order to satisfy the
magnetic flux conservation in such a medium with a very
high electric conductivity.
In this work, the findings about the zero-mode problem

for dense quark matter in the presence of a magnetic field
[21,24] have been applied to the neutral 2SC phase at
B ≠ 0. Then, defining the diquark coupling and baryonic
chemical potential in the expected parameter region for NS,
we found the corresponding quantities as the gap, electric
chemical potential, and Meissner masses of charged gluons
that will determine how much a weak field can be boosted
by the found mechanism. Hence, we found numerically
how much a weak magnetic field can be boosted under the
given conditions of interest for magnetars.
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