
Brief Announcement: ROMe: Wait-free Objects for RDMA
Jacob Nelson-Slivon

jjn217@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Reilly Yankovich
rdy221@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Ahmed Hassan
ahh319@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Roberto Palmieri
palmieri@lehigh.edu
Lehigh University
Bethlehem, PA, USA

ABSTRACT
Ensuring data consistency under remote direct memory access
(RDMA) is challenging due to the combined e!ects of various hard-
ware components. This brief announcement introduces remote
object memory (ROMe), the "rst technique to guarantee wait-free
consistent reads of arbitrarily sized objects over RDMA without
the use of specialized hardware, and while allowing the concurrent
execution of con#icting local updates. We integrated ROMe into
ROMe-KV, an RDMA-enabled key-value store whose underlying B-
link tree nodes are ROMe objects that enable supporting wait-free
linearizable range queries.

CCS CONCEPTS
• Information systems → Parallel and distributed DBMSs; •
Software and its engineering → Distributed programming
languages.

KEYWORDS
Consistency, Distributed Data Structures, RDMA

ACM Reference Format:
JacobNelson-Slivon, Reilly Yankovich, AhmedHassan, and Roberto Palmieri.
2024. Brief Announcement: ROMe: Wait-free Objects for RDMA. In Proceed-
ings of the 36th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3626183.3660262

1 INTRODUCTION
Remote Direct Memory Access (RDMA) is a networking technology
being deployed in a growing number of computing clusters [3, 4,
6, 16, 17, 22]. It innovates over traditional network infrastructures
(e.g., Ethernet) by introducing the capability for a process to read
and write remote memory directly over a network (i.e., one-sided op-
erations) while also bypassing the host kernel [10]. RDMA improves
performance over traditional communication [6]; however, data
consistency in RDMA-enabled systems involves unique challenges
not present in other networking technologies [10, 13, 18].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3660262

Consistency for small RDMA objects is provided directly by hard-
ware [1, 10, 11]. However, three drawbacks arise when considering
arbitrarily large RDMA-accessible objects (ie., spanning two ormore
cache lines). First, RDMA primitives cannot be used for arbitrarily
large objects. Second, most RDMA implementations do not support
atomicity between remote and local operations, which means local
processes must use RDMA loopback [10] to access RDMA-accessible
objects safely, leading to increased network card congestion [13].
Finally, cache lines may be retrieved in parallel [18], meaning there
is no guaranteed ordering between writes to memory and RDMA
reads that exceed a single cache line.

Method Max. Obj. Size Progress Spec. Hardware
Locking [2, 4] ↑ blocking no

Versioning [6, 17] ↑ blocking no
Checksums [16, 21] ↑ blocking no
Cache coherence cache line (e.g., 64B) wait-free no
Honeycomb [15] ↑ wait-free yes

ROMe ↑ wait-free no

Table 1: Summary of RDMA data consistency methods.

Existing solutions to the above problems are summarized in
Table 1. It is important to note that all these approaches are blocking
except for Cache Coherence and Honeycomb [15]. The former is
limited to objects whose size does not exceed a cache line, and the
latter requires specialized hardware.

In this brief announcement, we introduce ROMe, an abstraction
to develop RDMA-aware data management systems in which reads
are guaranteed to terminate after a "nite number of steps (i.e., wait-
freedom) regardless of concurrent writes and without limitations
on the size of the accessed memory. It also guarantees that remote
reads do not interfere with ongoing updates. Finally, it eliminates
the need for RDMA loopback.

2 SYSTEM MODEL
Consider a system consisting of a set of RDMA-enabled nodes in
a data center. A host exposes a region in main memory accessible
to processes on one or more client nodes via RDMA. We de"ne
a local process as one that is resident on the host and interacts
with its RDMA-accessible memory through the underlying memory
subsystem (i.e., shared-memory APIs). Hence, in order to avoid
RDMA loopback, a local process does not use RDMA. Otherwise, a
remote process can communicate with a local process by sending
messages or by direct access to the remotely accessible memory via
RDMA.

371

https://doi.org/10.1145/3626183.3660262
https://doi.org/10.1145/3626183.3660262
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3660262&domain=pdf&date_stamp=2024-06-17

SPAA ’24, June 17–21, 2024, Nantes, France Jacob Nelson-Slivon, Reilly Yankovich, Ahmed Hassan, & Roberto Palmieri

Our design adopts a common approach that restricts remote
processes to using RDMA read operations when directly accessing
host memory [16]. If a remote process on node 𝐿 𝐿 wishes to update
the memory on the host 𝐿𝑀 , it sends a message to 𝐿𝑀 to perform the
operation on its behalf. This can be done using either two-sided
RDMA operations [12] or a message channel built using one-sided
writes [6, 7].

3 REMOTE OBJECT MEMORY
In ROMe, a local process accumulates changes to memory in an
append-only log and atomically updates a reference to the head
of the log, making newly written log records visible to remote
processes. Remote operations can then use the log to reconstruct
a consistent view of the memory. To avoid an unbounded log, the
object is occasionally compacted, meaning that a snapshot of the
current state replaces the original object using a copy-on-write
mechanism [20].

An object encoded using ROMe consists of the following meta-
data that, when combined, amounts to the object’s current state:
- The base region is an immutable memory region that represents
the initial abstract state of memory. This portion must be written
before any remote accesses are made.

- The active region consists of the current log o!set (CLO) and other
user-de"ned metadata that can be updated in place. To ensure
consistent access with concurrent writes, this region must never
span multiple cache lines, but a level of indirection can be used if
needed.

- The log region records updates to the memory in the base region.
Once written, log records are immutable.

- The supplemental region is a region for any additional metadata
that may be required to synchronize updates but is not used for
remote reads.
Our design assumes that the above regions all reside in contigu-

ous memory.
Next, we describe how operations produce a consistent view of

the above memory regions.

3.1 Writes
Updates to the object "rst check whether there is room in the log re-
gion. If there is, then a log record corresponding to the modi"cation
is written and the CLO is updated to point to it, with the appropriate
memory fences between them. Since the write to the CLO is cache
coherent, readers (local and remote) are guaranteed to observe the
log record.

3.2 Reads
Remote operations utilize RDMA while local reads avoid RDMA
entirely, which is a unique characteristic of our design compared to
state-of-the-art solutions. Both reads follow the same steps. First,
the operation reads the active region. Using the CLO obtained from
this initial read, the operation then reads the remaining regions
and reconstructs the current state of the memory corresponding to
the observed CLO. Since the CLO is only updated after a log record is
written, both local and remote reads of the memory are linearized
at the moment they read the CLO. All previous logs are guaranteed
to be written and immutable, and future log records will be ignored.

Regardless of size, remote reads require exactly two RDMA read
operations, which is e!ectively the overhead to implement wait-
freedom.

3.3 Compaction
To avoid an unbounded log, we assign a log capacity and clean
up the memory whenever the log becomes full. Similar to LSM-
tree databases (e.g., [8]), we call this step compaction. During com-
paction, the most recent log records are reconciled with the base
region to generate the base region of a new object, applying the
copy-on-write [20] strategy. Once the newly allocated memory is
initialized, the system then coordinates, making it visible to remote
readers. Utilizing copy-on-write is an important design choice that
enables wait-free read operations.

4 EVALUATION
To demonstrate the e!ectiveness of ROMe, we develop ROMe-KV,
a range-partitioned, sharded B-link tree [9, 14] that supports wait
free linearizable remote range queries by encoding its data struc-
ture nodes as ROMe objects. For ROMe-KV, our ROMe nodes are
structured as:

(1) The base region of each node contains the initial state of the
node, consisting of possibly many key-value pairs or child
pointers, along with metadata used during traversals: its
version at initialization, the minimum and fence keys, and a
pointer to its right sibling.

(2) The log region holds an array of log records containing up-
dates to the base region.

(3) The active region contains only the CLO, as it is the only meta-
data updated in place that is required by remote operations.

(4) The supplemental region includes a lock, a pointer to the
node’s left sibling, the version of the most recent update, and
a logical deletion #ag.

Our evaluation utilizes the CloudLab testbed [19] and we run our
experiments on an 11-node cluster of r6525 nodes, which consist
of two 32-core AMD 7543, running at 2.8GHz, 256GB of memory
and are equipped with a dual-port Mellanox ConnectX-6 100 Gbps
RNIC. Our implementations are written in C++ and compiled using
Clang 12 with -O3 optimization and -std=c++20. We pin cores to
the same NUMA zone as the RNIC to control for NUMA e!ects.
Our workload uses 8B keys and 8B values. In practice, the 8B values
can be pointers to larger values.

In our experiment, we analyze the scalability of remote read-only
clients in the presence of a local workload on a single server node
using the YCSB B workload [5], representing a workload consisting
of 95% reads and 5% writes. We use a Zip"an distribution, with a
skew of 𝑀 = 0.99. In addition to regular YCSB, we also run concur-
rent read-only clients, which execute a workload consisting of scans
whose start keys are sampled from the same Zip"an distribution as
the YCSB workload, and whose length is uniformly generated be-
tween 5000-10000 elements. This workload represents an analytical
background task that should not interfere with request handling.
Read-only requests are performed as one-sided remote traversals.
We use remote read-only clients to focus on the performance of
the request handling workload without network overheads. The

372

Brief Announcement: ROMe: Wait-free Objects for RDMA SPAA ’24, June 17–21, 2024, Nantes, France

aim is to determine the mutual e!ects of a local workload and re-
mote readers. This represents one of the important use cases for
our design in which long-running analytical workloads execute
concurrently with updates.

Throughput is measured as the average instantaneous through-
put during a 10-second period, recorded at 50ms intervals. For
per-client (and per-worker) results, the shaded region represents
one standard deviation from themean. This experiment is initialized
with 5M entries in the data repositories.

(a) Worker throughput

(b) Read-only client throughput

Figure 1: ROMe-KV scalability for YCSB B local workload
and read-only clients.

Figure 1 con"rms the e!ectiveness of our design goals. Figure 1a
shows the scalability of the local workload at di!erent numbers
of clients, while Figure 1b shows the scalability of clients at dif-
ferent local workload con"gurations. Our single ROMe-KV server
can simultaneously support a local workload achieving over 2.4
Mops/s and a remote read-only workload of over 90 Kops/s. In the
"gure, all con"gurations provide similar performance (overlapping
lines). That means, with increasing numbers of clients, and di!erent
amounts of workers, the performance of both the server and the
clients are not negatively a!ected.

5 CONCLUSION
This brief announcement proposed ROMe, a novel solution to pro-
viding consistent access to objects with arbitrary sizes via RDMA.
We then developed a distributed key-value store built from a B-link
tree whose nodes are encoded using ROMe to suppport wait-free
linearizable range queries.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. CNS-2045976. This research was also

funded by a CORE grant from Lehigh University and a gift grant
from the Stellar Dev. Foundation.

REFERENCES
[1] ARM. 2018. Arm CoreLink CCI-550 Cache Coherent Interconnect Technical Ref-

erence Manua. https://developer.arm.com/documentation/100282/0100/?lang=en.
https://developer.arm.com/documentation/100282/0100/?lang=en

[2] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. PVLDB 9, 7 (2016),
528–539. https://doi.org/10.14778/2904483.2904485

[3] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. 2018. E$-
cient Distributed Memory Management with RDMA and Caching. Proceedings of
the VLDB Endowment 11, 11 (jul 2018), 1604–1617.

[4] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi, Yanzhe Chen, Zhaoguo Wang,
Binyu Zang, and Haibing Guan. 2017. Fast In-Memory Transaction Processing
Using RDMA and HTM. ACM Transactions on Computer Systems 35, 1 (jul 2017),
1–37.

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing - SoCC '10. ACM Press.

[6] Aleksandar Dragojevi%, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation. 401–414.

[7] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Low-Latency Communication for Fast DBMS Using
RDMA and Shared Memory. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE. https://doi.org/10.1109/icde48307.2020.00131

[8] Google. 2019. LevelDB:. https://github.com/google/leveldb.
[9] Goetz Graefe. 2010. Modern B-Tree Techniques. Foundations and Trends in

Databases 3, 4 (2010), 203–402. https://doi.org/10.1561/1900000028
[10] In"niBand Trade Association 2007. In"niBand Architecture Speci"cation Volume

1. In"niBand Trade Association. Release 1.2.1.
[11] Intel. 2012. Intel Data Direct I/O Technology (Intel DDIO): A Primer. https:

//www.intel.com/content/dam/www/public/us/en/documents/technology-
briefs/data-direct-i-o-technology-brief.pdf

[12] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be General and Fast. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). USENIX Association, Boston, MA, 1–16.

[13] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, Chuanxiong Guo,
and Danyang Zhuo. 2022. Collie: Finding Performance Anomalies in RDMA
Subsystems. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22). USENIX Association, Renton, WA, 287–305.

[14] Philip L. Lehman and s. Bing Yao. 1981. E$cient Locking for Concurrent Opera-
tions on B-trees. ACM Transactions on Database Systems 6, 4 (dec 1981), 650–670.
https://doi.org/10.1145/319628.319663

[15] Junyi Liu, Aleksander Drakojevi%, Shane Flemming, Antonios Katsarakis, Dario
Korolija, Igor Zablotchi, Ho cheung Ng, Anuj Kalia, and Miguel Castro. 2024.
Honeycomb: ordered key-value store acceleration on an FPGA-based SmartNIC.
IEEE Trans. Comput. 73, 857–871. https://doi.org/10.1109/TC.2023.3345173

[16] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-E$cient Key-Value Store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 103–
114. https://www.usenix.org/conference/atc13/technical-sessions/presentation/
mitchell

[17] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and
Jinyang Li. 2016. Balancing CPU and Network in the Cell Distributed B-Tree
Store. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 451–464. https://www.usenix.org/conference/atc16/
technical-sessions/presentation/mitchell

[18] PCI-SIG. 2014. PCI Express Base Speci"cation Revision 4.0. (2014).
[19] Robert Ricci, Eric Eide, and The CloudLab Team. 2014. Introducing CloudLab:

Scienti"c Infrastructure for Advancing Cloud Architectures and Applications.
USENIX 39, 6 (Dec. 2014).

[20] Dennis M. Ritchie and Ken Thompson. 1974. The UNIX time-sharing system.
Commun. ACM 17, 7 (jul 1974), 365–375. https://doi.org/10.1145/361011.361061

[21] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad Deshmukh,
Dan Gibson, Milo M. K. Martin, Amanda Strominger, Thomas F. Wenisch, and
Amin Vahdat. 2021. CliqueMap: Productionizing an RMA-Based Distributed
Caching System. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
ACM. https://doi.org/10.1145/3452296.3472934

[22] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and
Cost-E$cient Storage Engine using DRAM, NVMe, and RDMA. In Proceedings of
the 2022 International Conference on Management of Data. ACM. https://doi.org/
10.1145/3514221.3526187

373

https://developer.arm.com/documentation/100282/0100/?lang=en
https://developer.arm.com/documentation/100282/0100/?lang=en
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1109/icde48307.2020.00131
https://github.com/google/leveldb
https://doi.org/10.1561/1900000028
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://doi.org/10.1145/319628.319663
https://doi.org/10.1109/TC.2023.3345173
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mitchell
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/3452296.3472934
https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3514221.3526187

	Abstract
	1 Introduction
	2 System Model
	3 Remote Object Memory
	3.1 Writes
	3.2 Reads
	3.3 Compaction

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

