Brief Announcement: LIT: Lookup Interlocked Table for Range

Queries
dePaul Miller Ahmed Hassan Roberto Palmieri
dsm220@lehigh.edu ahh319@lehigh.edu palmieri@lehigh.edu
Lehigh University Lehigh University Lehigh University
Bethlehem, PA, USA Bethlehem, PA, USA Bethlehem, PA, USA
ABSTRACT overhead, hash tables have been shown to scale better than linked

We introduce the Lookup Interlocked Table (LIT), a highly efficient
data structure that facilitates get, update, and range query opera-
tions. LIT is designed to maintain the high performance of hashing
algorithms while also preserving the order of data for range queries.
It does that by utilizing an order-preserving lookup function to in-
dex data and providing the option to split and resize the indexing
to adapt to changing workloads.

CCS CONCEPTS

« Theory of computation — Data structures design and anal-
ysis; Concurrent algorithms.

KEYWORDS

Data structure, Range Query, Concurrency

ACM Reference Format:

dePaul Miller, Ahmed Hassan, and Roberto Palmieri. 2024. Brief Announce-
ment: LIT: Lookup Interlocked Table for Range Queries. In Proceedings of
the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °24), June 17-21, 2024, Nantes, France. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3626183.3660266

1 INTRODUCTION

Range queries on map data structures are operations that iterate
over the map and return a collection of key-value pairs where
the key falls within a contiguous range. They are emerging as
an essential API for data repositories with key-value semantics,
including Redis [19], RocksDB [7], LevelDB [9], and others [8, 15,
18, 23], and for optimizing the internals of relational databases,
which traditionally perform range queries through predicates [21].

Highly concurrent data structures that support range queries typ-
ically implement operations through costly traversals over linked
data, such as the case of linked lists [2, 5, 17, 22], skip lists 1, 2, 5, 17],
or B-trees [3, 4, 20]. However, it is well known that if range queries
are not supported, hash tables [12] provide a method to limit the
overhead of traversals by partitioning elements into buckets and
index into them by means of a hash function that redirects the
operation to the bucket where the requested element is stored. Be-
cause of the absence of long traversals and minimal housekeeping

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA °24, June 17-21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0416-1/24/06

https://doi.org/10.1145/3626183.3660266

data structures and provide higher performance and locality under
a variety of workloads [10].

It is natural, then, to wonder if it is possible to retain the perfor-
mance advantage of the hash table structure while still providing
ordering between elements. Motivated by the above observation,
in this brief announcement, we introduce the design of the lookup
interlocked table (or LIT). LIT has the structure of a traditional hash
table [12], where each bucket is implemented as a linked list of ele-
ments. However, rather than having a hash function that uniformly
hashes keys to buckets, we utilize a lookup function that maps keys
to buckets and preserves the ordering of keys (i.e., if x < y, then
f(x) < f(y), where x and y are keys).

In LIT, every operation starts by invoking a lookup function that
identifies the bucket where the relevant element is located. This
workflow applies to both elemental operations (i.e., get, remove, or
insert) and range queries, where the lookup function determines the
starting point of the range. After that, for range queries, subsequent
buckets are visited by utilizing an overlay linked structure that
connects all elements of all buckets.

To efficiently handle changing workloads, LIT takes inspiration
from the interlocking structure of the interlocking hash table [14].
In fact, LIT operates through buckets that can map to another level
of buckets, which helps reduce the number of traversals necessary
to reach a node in case many elements happen to be inserted into
a single bucket. This operation is called a “split”. Over time, many
split operations to a single bucket might lead to an increase in the
traversal cost. LIT addresses this issue by efficiently flattening the
structure to a single level to restore the original indexing perfor-
mance and re-balancing elements. We call this operation “resize”.

2 LIT: LOOKUP INTERLOCKED TABLE

The lookup interlocked table (LIT) is a key-value mapping data
structure with support for get, insert, remove, and range queries.
All operations in LIT are linearizable [13]. LIT uses a structure
similar to the chained bucket structure of a hash table [16], along
with a function that preserves the order of the keys.

In addition to partitioning elements into buckets, LIT also allows
each bucket to be further split into more buckets recursively (inter-
locking design [14]). Every time a SPLIT occurs, a new level in LIT
is created. Similar to the terminology used in skip lists [6], we call
the collection of those levels the index layer. However, unlike a skip
list, to map an element into the index layer, LIT utilizes a collection
of lookup functions, one per level. Each lookup function f preserves
the order of keys in its level such that if x < y, then f(x) < f(y).
In principle, any function that preserves this property works. The
most simple function that preserves this property for numbers, is


https://orcid.org/XXX
https://orcid.org/XXX
https://orcid.org/XXX
https://doi.org/10.1145/3626183.3660266
https://doi.org/10.1145/3626183.3660266
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3660266&domain=pdf&date_stamp=2024-06-17

SPAA 24, June 17-21, 2024, Nantes, France

a trivial linear function f, which interpolates a minimum key to a
maximum key, where the function f at the minimum evaluates to
0 and at the maximum it evaluates to the largest bucket index.

Since each bucket is implemented as an ordered list and subse-
quent buckets are also ordered due to the just described lookup
function, the order across subsequent lists is preserved. We inter-
connect all these nodes in the buckets, forming a linked list that
we call data layer. To point a bucket to a location in this data layer,
LIT uses boundary-markers. These special nodes have a key that
matches the minimum key of the bucket they are linked to. The
nature of this data layer allows for traversals when concurrent
modifications occur.

In traditional hash tables, a good hashing function guarantees
that elements in the structures are balanced among buckets. Since
LIT does not rely on hashing, we deploy a different technique,
which enables splitting buckets into other levels.

Below, we detail how LIT implements its operations. For the
sake of clarity, in the next two subsections (2.1 and 2.2), we assume
no concurrent resizes or splits occur. These two operations are then
enabled in 2.3.

2.1 Bucket Lookup

Al LIT operations, both elemental operations and range queries,
start by invoking a search function that uses the index layer to reach
the proper entry point to the data layer by returning a pointer to
the boundary-marker of the bucket to start with. For elemental
operations, this is the bucket to which the element belongs, and
for range queries, this is the bucket to which the element with the
smallest key belongs. Starting from Level 0 (i.e., the initial set of
buckets). First, we read the root level and then utilize the level’s
lookup function to find the subsequent level. We repeat this until
we find a pointer to a boundary-marker ordered before the sought
key.

2.2 Bucket Operations

Starting from the boundary-marker returned from the above search
method, multiple techniques can be potentially used to perform the
operations on the data layer.

Recent literature proposed effective techniques to enable lin-
earizable range queries for concurrent data structures while other
operations can concurrently modify disjoint data [2, 17, 22]. We
choose to use vCAS [22] because, unlike the other blocking tech-
niques [2, 17] it enables the introduction of wait-free range queries
to lock-free data structures. In our implementation, we port vCAS
to the Harris lock-free ordered linked list [11], as originally done
by [22] as well, with the necessary modifications to consider the
fact that our list traverses through buckets of an enclosing index.

vCAS in a nutshell: In a vCAS data structure, all pointers that
are updated using atomic operations are changed to be versioned
CAS (vCAS) objects. These vCAS objects contain a pointer to a
versioned node (VNode) and a reference to a global timestamp,
which is called a Camera. Each VNode contains a value (e.g., the next
pointer in a linked list node) and a timestamp, as well as pointers
to earlier VNode versions of the same object. When modifying a
data structure to use vCAS, all CAS operations are replaced with
performing a CAS on the root VNode of the vCAS object. Two APIs

70

dePaul Miller, Ahmed Hassan & Roberto Palmieri

can be used to read a vCAS object. One returns the current value by
reading the VNode head of the vCAS object. The other returns the
VNode whose version is consistent with a specific timestamp. Our
implementation of vCAS in LIT changes both the indexing nodes
in the index layer and the Harris list’s nodes in the data layer to be
vCAS objects.

Insert/Remove/Get Operations. Now we summarize the main
changes we made to the elemental operations in our vCAS bucket
list. We introduce boundary-marker nodes into the list. These nodes
denote the beginning of a bucket, and are entries into the data
layer. When traversing the data layer, these boundary markers
are skipped, similar to how nodes marked as logically deleted are
ignored. Boundary-markers are also versioned through vCAS like
other nodes in the list.

Wait-Free Range Queries. Range query operations in LIT begin
by traversing the data layer to the bucket associated with the first
key in the range. Then, it uses vCAS to take a logical snapshot of
the data structure. After this, the algorithm traverses the data layer
until the last key in the range. It is worth noting that a range query
might need to traverse multiple buckets to collect the queried range.
This operation is done by simply continuing to traverse the data
layer and crossing the boundary-marker of the next bucket.

2.3 Split And Resize

In order to better balance the LIT data structure, we employ splitting
and resizing. Splitting rebalances a bucket into another level of
multiple buckets. Resizing creates a new root level for the LIT,
which indexes all keys.

Split operations begin after detecting a bucket that exceeds a
threshold of keys mapped to it. We utilize the knowledge that
the lookup function maps keys from a to b to the bucket. We can
determine this from our lookup function. We then create a new
lookup function f” for the new level that maps keys from a to b to
a new set of buckets. For each new (sub-)bucket i, we determine
the smallest key that maps to the bucket, k;, and insert a boundary
marker whose key is k;. Then, we set each bucket in this new level
to point to its corresponding boundary marker. Finally, we use
vCAS to update the previous level’s bucket to point to the new level
instead of the old boundary marker.

Resize operations begin after detecting that the number of levels
exceeds a threshold. We determine a new lookup function f” that
maps the range of the minimum key to the maximum key in the
data structure to the new number of buckets. Similar to the split,
we determine the smallest keys that map to each new bucket. We
insert these keys as boundary markers and point each bucket to
the appropriate boundary marker. We change the root level to this
new level through a vCAS.

3 EVALUATION

To assess the performance of LIT, we contrast its performance
against a state-of-the-art logarithmic linked data structures that
support highly efficient range queries, such as a skip list, enhanced
with the vCAS [22] and the bundling [17] versioning techniques. We
compare these approaches by utilizing the existing implementations
from [17] for the skip lists. In our evaluation, we consider a closed-
loop uniform key-value workload. When evaluating range queries,



Brief Announcement: LIT: Lookup Interlocked Table for Range Queries

we fix the ranges to 50 keys. We prepopulate the data structures to
half of the key range, and the number of buckets for LIT is 10k.

We utilize a testbed with 4 Intel Xeon Platinum 8160 CPU with
hyper-threading enabled, giving us 96 cores with 192 hardware
threads. We evaluate by running on all 192 threads. We run with
8B keys and 8B values. Our implementation is in C++, built with
the clang++-15 compiler.

=>= Lookup Interlocked Table
vCAS Skip List
—8— Bundling Skip List

3 60 A
(o]
=
5
2 40 -
e
(o)}
3
TE 20 A
10000 100000 1000000
Key Range

Figure 1: Uniform 10% Range Queries, 10% Updates, 80% Gets
While Varying Key Range.

In Figure 1, we consider a mixed workload with 10% range
queries, 10% updates, and 80% gets. LIT outperforms a versioned
skip list at large key ranges due to the scalability benefits of uti-
lizing a bucket-based approach. As the key range increases, LIT
outperforms the vCAS skip list by 2.1x and then 4.0x and the bun-
dled skip list by 1.3x and then 2.5x. This is due to LIT’s ability to
better handle update operations at these large key ranges, as well
as the smaller number of required traversals to reach a key. At 10k
keys, LIT is slower than vCAS and a bundled skip list. This can be
attributed to the pre-fetching effect of traversing the linked indexes
of the skip lists. In fact, in the presence of high contention, cache
invalidations dominate the performance. While all data structures
see these effects, due to the common traversal path of such a small
key range in the skip lists, it is constantly updating its cache with
elements that may be accessed in the future.

4 CONCLUSION

We have introduced LIT, a mapping data structure inspired by the
function-based indexing of a hash table. LIT’s unique feature is
that it provides key ordering, which can be used to support range
queries.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-2045976. This research was also
funded by a CORE grant from Lehigh University.

REFERENCES

[1] Sarwar Alam, Humaira Kamal, and Alan Wagner. 2014. A scalable distributed skip
list for range queries. In The 23rd International Symposium on High-Performance
Parallel and Distributed Computing, HPDC’14, Vancouver, BC, Canada - June 23

71

—_
2

—
)

=
i)

=
&

=
it

[15

[16

=
)

(18

[19
[20]

[21

[22

[23

SPAA 24, June 17-21, 2024, Nantes, France

- 27, 2014, Beth Plale, Matei Ripeanu, Franck Cappello, and Dongyan Xu (Eds.).
ACM, 315-318.

Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing epoch-based reclamation
for efficient range queries. ACM SIGPLAN Notices 53, 1 (2018), 14-27.
Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martin Farach-Colton, and
JohnD. Owens. 2019. Engineering a high-performance GPU B-Tree. In Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming (Wash-
ington, District of Columbia) (PPoPP °19). Association for Computing Machinery,
New York, NY, USA, 145-157. https://doi.org/10.1145/3293883.3295706
Muhammad A. Awad, Serban D. Porumbescu, and John D. Owens. 2023. A GPU
Multiversion B-Tree. In Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (Chicago, Illinois) (PACT ’22). Association
for Computing Machinery, New York, NY, USA, 481-493.

Bapi Chatterjee. 2017. Lock-free Linearizable 1-Dimensional Range Queries.
In Proceedings of the 18th International Conference on Distributed Computing
and Networking (Hyderabad, India) (ICDCN °17). Association for Computing
Machinery, New York, NY, USA, Article 9, 10 pages.

Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri. 2018. NU-
MASK: High Performance Scalable Skip List for NUMA. In 32nd International
Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, Octo-
ber 15-19, 2018 (LIPIcs, Vol. 121), Ulrich Schmid and Josef Widder (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 18:1-18:19.

Siying Dong, Andrew Kryczka, Yangin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-Value Store Serving Large-Scale
Applications. ACM Trans. Storage 17, 4, Article 26 (oct 2021), 32 pages.

Robert Escriva, Bernard Wong, and Emin Giin Sirer. 2012. HyperDex: A dis-
tributed, searchable key-value store. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for computer
communication. 25-36.

Google. 2024. LevelDB. https://github.com/google/leveldb

Vincent Gramoli. 2015. More than you ever wanted to know about synchroniza-
tion: Synchrobench, measuring the impact of the synchronization on concurrent
algorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 1-10.

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-
Lists. In Distributed Computing, 15th International Conference, DISC 2001, Lis-
bon, Portugal, October 3-5, 2001, Proceedings (Lecture Notes in Computer Science,
Vol. 2180), Jennifer L. Welch (Ed.). Springer, 300-314.

Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2020. The art
of multiprocessor programming. Newnes.

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (jul 1990),
463-492.

Louis Jenkins, Tingzhe Zhou, and Michael Spear. 2017. Redesigning Go’s Built-In
Map to Support Concurrent Operations. In 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 14-26.

Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen Yang, and
John K. Ousterhout. 2016. SLIK: Scalable Low-Latency Indexes for a Key-Value
Store. In 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver,
CO, USA, June 22-24, 2016, Ajay Gulati and Hakim Weatherspoon (Eds.). USENIX
Association, 57-70.

Maged M Michael. 2002. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures. 73-82.

Jacob Nelson-Slivon, Ahmed Hassan, and Roberto Palmieri. 2022. Bundling linked
data structures for linearizable range queries. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 368-384.
Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Donald
Kossmann. 2017. Fast scans on key-value stores. Proc. VLDB Endow. 10, 11 (aug
2017), 1526-1537.

Redis. 2023. Redis. https://redis.io/docs/

Dimitrios Siakavaras, Panagiotis Billis, Konstantinos Nikas, Georgios I. Goumas,
and Nectarios Koziris. 2020. Efficient Concurrent Range Queries in B+-trees
using RCU-HTM. In SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020. ACM, 571-573.

Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System
Concepts, Seventh Edition. McGraw-Hill Book Company. https://www.db-book.
com/

Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Rup-
pert, and Yihan Sun. 2021. Constant-time snapshots with applications to con-
current data structures. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 31-46.

Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. {REMIX}:
Efficient Range Query for {LSM-trees}. In 19th USENIX Conference on File and
Storage Technologies (FAST 21). 51-64.


https://doi.org/10.1145/3293883.3295706
https://github.com/google/leveldb
https://redis.io/docs/
https://www.db-book.com/
https://www.db-book.com/

	Abstract
	1 Introduction
	2 LIT: Lookup Interlocked Table
	2.1 Bucket Lookup
	2.2 Bucket Operations
	2.3 Split And Resize

	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

