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ABSTRACT

Remote direct memory access (RDMA) networks are being rapidly
adopted into industry for their high speed, low latency, and reduced
CPU overheads compared to traditional kernel-based TCP/IP net-
works. RDMA enables threads to access remote memory without
interacting with another process. However, atomicity between local
accesses and remote accesses is not guaranteed by the technology,
hence complicating synchronization significantly. The current so-
lution is to require threads wanting to access local memory in an
RDMA-accessible region to pass through the RDMA card using a
mechanism known as loopback, but this can quickly degrade perfor-
mance. In this paper, we introduce ALock, a novel locking primitive
designed for RDMA-based systems. ALock allows programmers
to synchronize local and remote accesses without using loopback
or remote procedure calls (RPCs). We draw inspiration from the
classic Peterson’s algorithm to create a hierarchical design that
includes embedded MCS locks for two cohorts, remote and local. To
evaluate the ALock we implement a distributed lock table, measur-
ing throughput and latency in various cluster configurations and
workloads. In workloads with a majority of local operations, the
ALock outperforms competitors up to 29x and achieves a latency
up to 20x faster.
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1 INTRODUCTION

Coordinating access to shared resources is a fundamental chal-
lenge in concurrent computation and has motivated the widespread
adoption of hardware enabled synchronization mechanisms like
compare-and-swap (CAS), whose importance in concurrent com-
puting is indubitable. An atomic CAS operation enables an arbitrary
number of threads to agree on a value in a wait-free manner [13],
making it a powerful tool for building mutual exclusion primitives.
The value of atomic CAS operations is likewise evident in the in-
creasingly popular network communication technology, remote
direct memory access (RDMA).

Remote direct memory access is a popular network communi-
cation technology that aims at implementing the shared-memory
abstraction in the distributed setting by allowing a thread to access
memory on a remote machine without interacting with another
process [15, 30, 31]. In addition to its ability to read and write mem-
ory on another machine, RDMA also enables threads to perform
atomic read-modify-write (RMW) operations on remote memory,
like compare-and-swap.

An important factor to consider when dealing with RDMA op-
erations is that the atomicity between local (i.e., shared-memory)
and remote (i.e., RDMA) accesses is not guaranteed. That means:

i) RDMA reads and writes are only atomic with their local
counterparts for accesses within a single cache line [10]
(typically only 64 bytes); and

ii) RDMA RMW operations are not atomic with local RMW
operations.

Essentially, from the perspective of local memory, a remote RMW is
nothing more than a read followed by a write to the same memory
location. As a result, the lack of atomicity for RMW operations
makes it significantly more difficult to synchronize local and remote
accesses.

In practice, RDMA RMW operations are frequently used in
RDMA-based distributed systems when synchronizing concurrent
accesses (e.g., [6, 7, 35, 36]). To ensure atomicity between opera-
tions in these systems, threads performing local accesses must use
the loopback mechanism, which allows a thread to access RDMA
memory on its own machine by passing through the local RDMA
network interface controller (RNIC) [37]. Although fast compared
to other network communication, RDMA is still at least an order
of magnitude slower than shared memory operations [17, 37], and
suffers from non-uniform memory access (NUMA) behaviors [25],
degrading performance for local accesses. Additionally, the RDMA
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loopback mechanism can cause poor performance due to internal
congestion [19]. In Section 2, we discuss an empirical study we
conducted to confirm our claims about loopback congestion and
the scalability issues of RDMA.

Alternatively, systems could leverage remote procedure calls
(RPCs) to allow all synchronization to be handled exclusively by
threads on receiving nodes. However, RPCs follow the traditional
send/receive programming model, which has been shown to nullify
the performance benefit of directly accessing remote memory [29].
However, in practice, RPCs are still used in RDMA-based systems
(e.g., [10, 18, 24, 33, 38]), and their prevalence is attributed in part
to the challenges associated with synchronizing local and remote
accesses.

In this paper, we describe a new locking primitive, ALock, de-
signed to capture the nuanced requirements of synchronizing local
and remote accesses in RDMA-aware systems without using loop-
back or RPCs. In our solution, we enforce that threads performing
local accesses only use local (i.e., shared-memory) operations. How-
ever, since atomicity is not guaranteed among local and remote
(i.e, RDMA) RMW operations, we require a new mutual exclusion
algorithm between these two groups of operations.

Our Design. The intuition behind the ALock design begins with
reducing the problem to a two-process mutual exclusion. A natural
choice is to find inspiration from Peterson’s algorithm [27], a well-
known, starvation-free, and fair mutual exclusion protocol for two
processes using only shared memory to communicate (more details
about Peterson’s algorithm can be found in Section 3.1).

To allow for multi-thread synchronization, we extend Peterson’s
algorithm to include two cohorts (as opposed to just two threads),
remote and local. Threads within each cohort compete amongst
each other to determine a leader. The leaders of the two cohorts
then compete using our modified version of Peterson’s lock algo-
rithm to successfully acquire the ALock, finally entering the critical
section. Thanks to this hierarchical design, threads within each
cohort can use APIs that are guaranteed to be atomic with each
other. Specifically, threads performing local accesses can use shared-
memory operations, and threads performing remote accesses can
use RDMA operations. Notably, there is no need to use the loopback
mechanism anymore.

In addition to eliminating loopback for local accesses, it is critical
to limit the number of RDMA operations for remote accesses in
order to prevent congestion in the RNIC, which causes performance
deterioration (see Section 2). For this reason, we take advantage of
the design of the widely used MCS queue lock [23], which allows
threads to spin locally while waiting in a queue to acquire the
lock. This combination of locks has similar characteristics to lock
cohorting [9], which decouples the synchronization within a cohort
with the synchronization among cohorts.

To evaluate the ALock, we build a distributed lock table and
measure the throughput and latency on multiple cluster configura-
tions under various contentions, ratios between local and remote
accesses, and workloads. We compare against the commonly used
RDMA CAS-based spinlock and an RDMA-enabled MCS Queue
lock. In the presence of a majority of local operations, ALock out-
performs competitors up to 29x. As a result, data repositories that
use one-sided RDMA operations and currently rely on specialized
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hardware or loopback to achieve atomicity between remote and lo-
cal operations can relax these constraints and improve performance
with ALock.

To the best of our knowledge, we are the first to fully develop a
solution that solves mutual exclusion specifically for RDMA in a
manner that does not require involving the loopback RNIC or RPC
handling for local accesses, is starvation-free and fair.

The ALock is released as an open-source project and can be
found at [4]. A preliminary design of this work appears in [26].

The formal TLA+ specification of the ALock’s correctness, live-
ness, and fairness can be found in our Technical Report [5].

2 RDMA SCALABILITY AND PITFALLS

RDMA is a technology increasingly affecting the design of many
distributed systems due to its unquestionably fast operations. These
operations include APIs to send/receive messages but also to oper-
ate directly on remote memory (named one-sided operations). The
presence of these one-sided operations is considered RDMA’s true
breakthrough because it challenges the message-passing model,
which is typically used to design distributed interactions. Although
promising as a technology, RDMA’s programmability still requires
innovations, such as our ALock, as its performance scalability is
hampered by two factors, namely the loopback network congestion
and QP thrashing [19, 32].

To assess the performance of RDMA loopback and show the
network saturation pitfalls it comes with, we perform a simple
experiment to verify our intuition. We run a simple spinlock algo-
rithm using 1000 locks, which shows low to no logical contention,
on a single machine equipped with an Intel Zeon E5-2450 processor
with 8/16 cores/threads and one Mellanox dual port CX3 RNIC. As
shown in Figure 1, the peak throughput is reached at a few threads.
After that, the loopback traffic drains the PCle bandwidth, causing
accumulation in the RNIC’s RX buffer and slowing down the CAS
operations despite the lack of logical contention.

166 RDMA Loopback Scalability
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Figure 1: RDMA Spinlock with 1k locks on 1 Node.

Another well-documented problem with RDMA in large-scale
data centers is connection scalability. In order for one-sided RDMA
operations to avoid the involvement of the host CPU, the RNIC also
manages the connection context. This connection context, some-
times referred to as QP Context (QPC), maintains all the attributes
required for both sending data and keeping track of the connection
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state. Typical commercial RNICs such as the ConnectX-4 require
256 bytes to maintain the QPC for each RDMA connection [22]. The
Infiniband specification states that the RNIC can handle at most
224 QPCs [15]. However, at 256 bytes each, this would require the
RNIC to have 4GB of space to store QPCs for all 224 connections.
In reality, the RNIC has a very small cache on its chip, which is
not nearly enough to maintain all of its connections. Recent work
has shown that the message rate of commodity RNICs declines
after 450 connections [32]. As a result, RDMA-enabled systems can
experience a side effect known as QP thrashing. This occurs when
the number of QPs being used does not fit in the RNIC cache, so the
RNIC is continuously loading and evicting QPCs from the cache,
quickly degrading performance. Systems using RDMA loopback
for local accesses can still be affected by QP thrashing regardless of
whether the memory is local to the requesting thread.

The design of the ALock directly solves the first issue of using
loopback in the presence of workloads accessing local memory.
Also, it limits QP thrashing by removing % QPs from the system
(where n represents the number of nodes) if we assume an identical
workload on each node.

3 BACKGROUND
3.1 Peterson’s Algorithm

Peterson’s algorithm (also referred to as Peterson’s lock) by Gary
L. Peterson [27] is a well-known algorithm for mutual exclusion
that is both starvation-free and fair. It only relies on read and write
operations to coherent shared memory to synchronize. Since atomic
read and write operations can be used over remotely accessible
memory, Peterson’s algorithm can also be implemented directly
over RDMA, with the appropriate memory fences, to coordinate
access between a local and remote thread.

Peterson’s algorithm uses two variables: a boolean array flag
of size 2 and an integer victim. A process announces its interest in
entering the critical section by setting its flag to true and setting
itself as the victim. By doing so, the algorithm guarantees fairness
as the waiting process will always access the critical section next,
regardless of any performance differences between the two threads.
After completing the critical section, the process sets its flag to
false to indicate it does not want to execute anymore. The waiting
thread waits until the executing process sets its flag to false, or the
thread is no longer the victim. By alternating access to the critical
section through the use of the "victim" variable, the algorithm
ensures both processes eventually gain access.

3.2 MCS Lock

Mellor-Crummy and Scott presented a scalable mutual exclusion
algorithm for multiprocessors in 1991, the MCS lock [23]. The
algorithm is fair because it is equivalent to a FIFO-pattern queue. It
is also contention-free, as each processor spins on a local variable.
This property is desirable when extending the MCS lock to be
used in a distributed system, as remote spinning severely limits
performance due to network congestion.

A process interested in acquiring the lock first allocates a locally-
accessible descriptor, which contains a boolean flag to spin on and a
pointer to form the queue. To acquire the lock, the process adds its
descriptor to the end of the queue. If the process has a predecessor,
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the process spins on its local boolean variable until its predecessor
passes the lock by writing to the variable. Otherwise, the process
is the head of the queue and is the lock holder. To release the lock,
the process writes to the boolean variable of its successor. If the
process has no successor, the tail is set to NULL.

4 SYSTEM MODEL

We model an RDMA-based distributed system as a set of nodes
N and threads! T, for which tg is a thread running on node n;
with identifier j. All threads can access an RDMA-accessible shared-
memory partitioned among the nodes. In our model, all data and
metadata are stored in RDMA-accessible memory. Similar to pre-
vious RDMA system models [1], we assume that threads are asyn-
chronous and that accesses to memory are failure-free.

The notion of locality is crucial in our model. Although not
new [12], we define it in relation to the APIs a thread uses to operate
on RDMA-accessible memory. Definitions 4.1 and 4.2 define local
and remote access.

Definition 4.1 (Local Access). A thread tlj, executing on node
n;, performs a local access using shared-memory operations if the
RDMA-accessible memory being accessed is stored on n; .

Definition 4.2 (Remote Access). A thread tg, executing on node
n;, performs a remote access using RDMA operations if the RDMA-
accessible memory being accessed is not stored on n; .

For each class of access (local or remote), memory is accessed
through three operations: read, write, and compare-and-swap. We
denote the shared-memory (or local) operations using Read, Write
and CAS, and the RDMA (or remote) operations with rRead, riWrite
and rCAS. As shown in Table 1, the atomicity of operations between
classes is not guaranteed due to the design of RDMA.

Remote (RDMA)
Access (8B) I pod Write CAS
~ Read Yes Yes Yes
g | Write | Yes Yes No
— RMW Yes Yes No

Table 1: Atomicity between 8-byte local and remote accesses.

Since remote operations complete asynchronously, local and re-
mote access to a given memory location may be reordered [8]. As
a result, an rCAS operation appears to a thread performing local
accesses as if it were a Read followed by a Write. Hence, interleaves
with other local operations are possible. Thus, the programming
model requires that programmers wait until operations are com-
plete by using appropriate memory fences to guarantee correct
ordering [15].

We say a memory object is operation-asymmetric if, given two
threads, the intersection of the operations they can perform on that
object is not equal to their union. ALocks are designed to deal with
the operation asymmetry of RDMA-accessible memory, hiding the
complexity from the programmer while simultaneously optimizing
for it.

The theory literature often refers to threads as processes. These names are inter-
changeable in our context.
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5 ALOCK ALGORITHM AND DESIGN

ALock innovates over the idea of lock cohorting [9] by defining
cohorts with respect to the APIs used by threads operating on
the lock. More specifically, in our case, two cohorts are defined as
follows: one cluster of threads performing local accesses, and one
cluster of threads performing remote accesses.

The ALock is a composition of two of our modified MCS queue
locks, one for each cohort, and our modified Peterson’s algorithm.
Elements in the MCS queues of the above MCS locks are made of
descriptors, which are memory regions describing the state of the
lock request. Since lock requests can be generated by threads from
any node in the system, these MCS queues are effectively linked to
possibly distributed memory. For simplicity, we refer to each MCS
queue by its tail (i.e., the pointer to the last element of the queue). To
maximize performance and reduce the amount of metadata required,
the remote and local tails (tail_r and tail_l, respectively) are also
interpreted as the status flags used in Peterson’s algorithm [14].
Recall from Section 3.1 that, when the flag is set to true for process ¢,
that means 1 is either interested in capturing the lock or is currently
in the critical section. Similarly, in our algorithm, tails contain either
a NULL pointer or a pointer to a descriptor. The latter indicates
that the remote (tail_r) or local (tail_I) cohort is interested in or
has acquired the lock. Embedding Peterson’s flag semantics into
the MCS queues avoids an additional, possibly remote, memory
operation. Also, as required for the Peterson’ algorithm, we include
the boolean victimfield, which is used to yield the lock to a waiting
thread of the other cohort.

Metadata. The metadata used by a thread to interact with an
ALock is represented in Algorithm 1. Two descriptors are allocated
in RDMA-accessible memory, one LocalDescriptor, which is used
by threads that are local to the ALock, and one RemoteDescriptor,
which is used by threads that are remote to the ALock. Each of
these descriptors has a budget field associated with it. In short,
the budget is used to introduce fairness between ALock’s cohorts.
A comprehensive discussion about that can be found later in the
section.

Algorithm 1: ALock Metadata

1 Struct ALock contains

2 rdma_ptr<RemoteDescriptor> tail_r;
3 rdma_ptr<LocalDescriptor> tail_l;
4 | int victim;

5 Struct LocalDescriptor contains

6 int local_budget;

7 LocalDescriptors* next;

8 Struct RemoteDescriptor contains
9 int remote_budget;

10 rdma_ptr< RemoteDescriptor> next;

The ALock provides two operations, Lock (rdma_ptr<ALock>)
and Unlock (rdma_ptr<ALock>), shown in Algorithm 2.

Lock Procedure. Upon initiating a Lock(rdma_ptr<ALock>)
operation, it is first determined whether the thread is performing
a local (see Definition 4.1) or remote (see Definitions 4.2) access
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Algorithm 2: ALock Operations

1 Lock(rdma_ptr<ALock>) begin

2 passed < qLock(rdma_ptr<ALock>)
3 if passed = false then

4 L pReacquire(rdma_ptr<ALock>)

5 Unlock(rdma_ptr<ALock>) begin
6 L return qUnLock (rdma_ptr<ALock>)

on the requested lock. This is done by checking the ID of the node
where the lock is located, which is embedded in the first 4 bits of
the RDMA pointer. Based on the classification of the lock access
request, the thread first competes to be the leader of either the
remote or local cohort for that lock via our modified remote or local
MCS Queue algorithm (see Algorithm 3). In our algorithm, if the call
to gLock (rdma_ptr<ALock>) returns false on Line 6, that means
there is no current lock holder. Therefore, the thread needs to then
compete in our modified Peterson’s algorithm (see Algorithm 4)
in order to finally acquire the ALock. Otherwise, if gqLock (rdma_
ptr<ALock>) returns true on Line 13 of Algorithm 3, we say the
MGCS lock was passed. This means that the thread did not swap
onto an empty MCS queue. Instead, it waited for a predecessor to
hand over the lock by spinning on a local variable in its descriptor.
This local variable is written by a predecessor in order to notify the
thread that it now owns the lock.

Algorithm 3 shows the modified MCS algorithm for remote ac-
cesses, whereby the algorithm for local accesses simply requires
replacing each remote access with a local (i.e., shared-memory) one.
For simplicity, let us assume this is the first time the lock is ever ac-
quired. Because of that, gLock (rdma_ptr<ALock>) returns false,
meaning the lock was not passed, and therefore, the thread needs
to participate in our modified Peterson’s algorithm (Algorithm 4)
to finally obtain the ALock.

The steps of ALock’s Lock (rdma_ptr<ALock>) operation (Alg. 2
Line 1) for a remote access are as follows. First, the thread announces
its interest in obtaining the cohort lock by swapping its descriptor
onto the remote tail (tail_r) of the lock (Line 3). Assuming that
this is the first time the ALock is ever acquired, the rCAS on Line 3
will succeed on its first attempt. Otherwise, if the queue was not
empty, the rCAS uses the learned value, prev, to retry the rCAS
and swap the descriptor onto the tail of the queue. The MCS queue
designed for the remote cohort now only contains this thread’s
descriptor. As mentioned earlier, a thread requesting a local lock
performs the same steps to acquire the ALock but uses shared-
memory APIs to interact with the local tail (tail_l), compete to
become the leader of the local cohort, and participate in Peterson’s
algorithm to synchronize with the leader of the remote cohort.

Unlock Procedure. Unlocking the ALock is done by invok-
ing the Unlock (rdma_ptr<ALock>) operation. The thread first at-
tempts to remove its descriptor from the appropriate (i.e., local or
remote) tail of the MCS queue. Under the assumption that no other
concurrent lock request occurres, the modified tail now points to
NULL, which means the thread is leaving the critical section defined
by Peterson’s algorithm and thus indicates the ALock is success-
fully unlocked. On the other hand, if another thread has issued a
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Algorithm 3: Modified Remote MCS Queue Lock
Data: (constants) kInitBudget; (global) tail_r;
(process-local) desc
1 gLock(rdma_ptr<ALock>) begin
2 desc « RemoteDescriptor(null)

3 prev « rCAS(tail_r, nullptr, &desc)

4 if prev = nullptr then

5 L desc.remote_budget « kInitBudget
6

7 desc.remote_budget « —1

return false ; // Lock was not passed

8 rWrite(&(prev->next), &desc)

// Spins locally

9 while desc.remote_budget = —1 do wait ;

10 if desc.remote_budget = 0 then

11 pReacquire() ; // Provides fairness
12 desc.remote_budget « kInitBudget

13 | return {rue; // Lock was passed
14 qUnlock(rdma_ptr<ALock>) begin

15 curr = rCAS(tail_r, &desc, nullptr)

16 if curr # &desc then
// Wait for successor to enqueue

17 while desc.next = nullptr do wait;
// Pass the lock
18 rWrite(&(desc.next->remote_budget),

desc.remote_budget - 1)

qIsLocked() begin
20 L return rRead(tail_r) # nullptr

=
©

Algorithm 4: Modified Peterson’s Lock
Data: (global) cohort[2], victim

1 pReacquire() begin

2 | id < getCid();

// Get ID of process cohort

3 other « 1-id

4 victim«id; // Yield lock to waiting cohort

5 while cohort[other].qgIsLocked() or victim= id
do

6 L wait

lock request to the ALock in the meantime, the tail will no longer
be equal to the thread’s descriptor. Following the original MCS
algorithm, releasing the lock when a successor is present requires
notifying the successor of the lock release by writing to a special
state field within the successor’s descriptor. As mentioned earlier,
we refer to notifying the successor of the lock release as passing
the lock. This process is further described in Section 5.1.

Adding Fairness. As described so far, the above algorithm is
unfair because the lock may be passed indefinitely among threads
of the same cohort. To address fairness, we introduce a budget
policy that uses a counter to decide when a cohort must release
the ALock. To enforce the budget policy, we extend the classic
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Peterson’s algorithm to support a reacquire operation. With this
operation, a thread releases the lock by first setting its cohort as
the victim and then immediately attempts to reacquire the lock. In
the following sections, we refer to the counter variable budget as
an indicator of whether a lock should be released or passed to the
waiting successor. Specifically, if the budget is 0, the lock must be
released regardless of a present waiting request. Since the lock is
released after a bounded number of cohort lock acquisitions, and
the lock is itself fair (i.e., a waiting thread cannot be overtaken),
our approach is fair [9].

Example. For the sake of clarity, we define an example to show
the procedure that two competing threads of opposite cohorts fol-
low in order to synchronize on the ALock. We model a cluster with
two nodes, nq and ny. One lock resides on each node, /; on ny
and Iy on ny. We also have one thread on each node, t; and t. For
t1, all access requests made on [; will be considered local, and all
access requests made on l» will be considered remote. Likewise, for
t2, access requests made on l; will be considered local, and access
requests made on /; will be considered remote. In Figure 2, we show
the steps taken by ¢; to lock l; followed by ¢z attempting to lock
concurrently.

In the first frame (I), we show the 2-node cluster as described
with one lock and one thread on each node. As shown in frame @),
each thread has a remote descriptor (RD) and local descriptor (LD)
that are both initialized with -1 and NULL values for the budget and
next pointer, respectively. The first step taken by #; to lock  is to
perform a rCAS on the tail of its cohort’s MCS queue, which in this
case is the remote cohort. After successfully performing a rCAS
on the remote tail (Frame (), the thread engages in Peterson’s
algorithm as the queue was empty when the thread enqueued its
descriptor. As shown in Frame (@), #; sets the victim variable to be
its cohort (REMOTE), and then enters the while loop, which checks
that either the victim is no longer set to REMOTE, or that the local
tail’s cohort is unlocked. In this example, the local tail is currently
NULL (unlocked), so T immediately acquires Peterson’s lock. After
seeing that its budget is now non-negative, ¢; learns that it has
acquired the lock and enters its critical section (Frame (5)).

While ¢; is in its critical section, ¢ also attempts to lock l. In
Frame (5), we see f locks its cohort by swapping its local descriptors
address into the local tail. Again, since the queue is empty when
the thread adds itself, it must engage in our Peterson’s algorithm.
Frame (6 shows fy first sets the victim to be LOCAL, then spins
while the victim is still LOCAL or the remote tail is locked (i.e., not
null). In Frame (7), we see that ¢; unlocks ly by performing an rCAS
on the remote tail to set it back to NULL, removing its descriptor
from the queue. At this point, ¢, will exit the while loop since the
remote tail is now unlocked, and upon seeing its now non-negative
budget (Frame (8)), tz has acquired the lock and is able to enter its
critical section.

In summary, our technique enables local and remote threads to
synchronize via two independent locks integrated into the hier-
archical ALock algorithm. By using a budgeted MCS queue lock
as the embedded cohort lock, we can provide fairness. Lastly, our
approach is RDMA-aware since threads performing local accesses
avoid RDMA loopback, and threads performing remote accesses
limit remote spinning, completely avoiding it in the case competing
for Peterson’s lock is not required.
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Figure 2: Execution of the ALock algorithm in a system with two nodes, one lock per node, and one thread per node.

5.1 ALock’s MCS lock

In this section, we describe the modifications we made to the origi-
nal MCS queue algorithm for remote accesses. It should be noted
that the local version of the algorithm can be obtained by directly
replacing each remote operation with a local one. This algorithm
maintains a global variable, tail_r, which is a remote reference to
the corresponding slot in the cohort array of Algorithm 4 that acts
as the tail of the lock queue.

In gLock(), a thread atomically swaps a new descriptor into
tail_r and then waits until the thread is at the head of the queue,

20

finally returning whether the queue was empty at its onset. The
value swapped into the tail of the queue contains an address of
the remotely accessible descriptor (desc), which is the requesting
thread’s local metadata. If tazl_r was not previously set (i.e., was
NULL), the call to qlock() on Line 2 of Algorithm 2 returns false
since the cohort lock was not passed to the calling thread. Otherwise,
if the tail was not NULL, the thread performs an rWrite operation
to the current tail’s next pointer containing the address of the
thread’s RemoteDescriptor. The locking thread then spins locally
on its budget field shown in Line 9 of Algorithm 3 while waiting
for its predecessor to pass the lock. Once the budget field is set to a
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non-negative value via a rWrite operation by the predecessor, the
lock is considered to be passed to the successor.

After acquiring the lock and performing its critical section, a
thread attempts to release the lock following the conventional MCS
queue algorithm, which tries to rCAS the tail of the queue back
to a NULL value. Recall that if the rCAS operation in qUnlock()
is successful, then it also releases the Peterson’s lock, since the
corresponding cohort is now unset. Otherwise, the thread passes
the lock to the next waiting thread by performing a rWrite to the
location returned by the attempted rCAS. At worst, each Unlock ()
operation requires an rCAS operation followed by an riWrite.

To support our fairness policy, we alter the original MCS queue
algorithm to support a budget, similar to the technique used by
Dice et al. [9]. A lock is passed during the Unlock() operation
by setting the budget of a waiting thread’s descriptor to a non-
negative integer that represents the number of remaining lock
acquisitions. When the budget reaches zero, a requesting thread
must call pReacquire() on the ALock. If there is a waiting thread
of the opposite cohort, it will be allowed to proceed when the
thread sets itself to be the victim (Algorithm 4 Line 4). Otherwise,
the calling thread reacquires the ALock and resets the budget.

As mentioned earlier, the choice of the MCS algorithm is in part
due to its inherent reduction of network contention. When the
queue is empty, a lone thread requires a single rCAS to acquire the
MCS lock, followed by a single rRead to participate in Peterson’s
algorithm. Otherwise, if the queue is not empty, the calling thread
spins on its local descriptor, avoiding remote spinning and thus
reducing network traffic.

5.2 ALock’s Peterson’s Algorithm

Our modified Peterson’s lock algorithm (Algorithm 4) has two
global variables: cohort, which is a two-element array of cohort
locks, and victim, which determines the cohort that yields execu-
tion. We replace the flag variables in the classic Peterson’s algorithm
with this array of cohort locks. Threads engage in Peterson’s al-
gorithm after becoming the leader of their cohort’s MCS Queue
if they are 1) the only thread currently requesting the lock; or 2)
passed a budget of 0, requiring the cohort to release the ALock.

In pReacquire(), a thread first yields the lock to the waiting
cohort by setting the victim to be its own cohort. Recall that a
thread’s cohort is defined for each operation as remote or local
based on whether the access for the lock is remote or local. The
wait condition (Line 5) in our modified algorithm is similar to the
original Peterson’s algorithm. Checking if the competing thread
has finished executing is done by checking whether the other MCS
queue cohort has been unlocked. As mentioned in Section 4, the
memory semantics of RDMA is not sequentially consistent. This
requires adding atomic thread fencing instructions after locking
and before unlocking and using atomic load and stores for shared
memory operations. Crucially, any interleaving of instructions in
concurrent calls to Lock (rdma_ptr<ALock>) will only allow a sin-
gle thread access to the critical section, assuming that sequential
consistency is enforced.
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6 EVALUATION

In this section, we present the performance results of our ALock.
As competitors, we ported two well-known locking algorithms,
spinlock, and MCS lock, to RDMA. The former simply repeats
RDMA rCAS until it succeeds. For the latter, we implement an
RDMA-aware queue and integrate it into the original MCS lock
algorithm. Both these implementations use RDMA for all their
operations, regardless of locality. In other words, while ALock only
performs RDMA operations on remote memory, the competitors
use the local RDMA loopback card to perform RDMA operations
on local memory.

All our code is written in C++ and compiled with -std=c++20
at optimization level -O3. All competitors are optimized for RDMA
operations. Each metadata is padded to a size of 64 bytes in order
to prevent false cache-line sharing (pictured in Figure 3 for ALock),
and RDMA pointers remain small at 8 bytes to be friendly to RDMA
atomic operations. We use rdma_ptr<T> to represent an RDMA
pointer to an object of type T, which is located in RDMA-accessible
memory. The first 4 bits of the pointer embed the node ID where
the memory resides, followed by 60 bits to represent the memory
address on that node. For our experiments, we used 20 machines
from the CloudLab [28] testbed running on Ubuntu 22.04. Each
machine is equipped with an Intel Zeon E5-2450 processor with
8/16 cores/threads and one dual-port Mellanox ConnectX-3 RNIC.

0x0 0x10 0x20 0x40

L1

tail | tail; Jvictim
64B

Figure 3: 64B-aligned ALock containing 8B pointers to the
remote and local cohort tails, and an integer victim field to
indicate the current victim cohort. Values are padded to the
address alignments shown.

To test our competitors, we implement a distributed lock table
in which locks are partitioned equally across nodes. We measure
the throughput and latency of operations that encompass both one
lock and one unlock operation. We vary the logical contention by
changing the size of the lock table (i.e., the number of locks). In
our experiments, we use 20 locks for a high-contention scenario,
100 for medium contention, and 1000 for low contention. We also
experiment with different workload levels by varying the number
of application threads per node, as well as the number of nodes.
Lastly, we also vary the percentage of operations performed by
application threads on local locks. For example, when we refer to
95% locality, it means 95% of the operation a thread performs during
the experiment target locks that are stored in the same node where
the threat executes (i.e., local accesses as defined in Section 4).

We conduct our study by first analyzing the impact of the budget
on the performance of ALock. The results of these experiments
inform our decision to choose a remote and local budget for our
remaining experiments. We then continue by measuring throughput
and latency under different conditions.
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6.1 Choosing a Budget

As described in Section 5, the ALock algorithm provides fairness
through the use of a budget. However, the budget has a double
effect: preventing starvation while also minimizing the cost of the
lock reacquire operation. There is an asymmetric cost associated
with the reacquire operation for remote and local threads because a
local thread needs just shared-memory operations to participate in
the reacquire, while a remote thread needs RDMA operations. For
this reason, we have two separately defined budget configurations:
one local budget and one remote budget(see Algorithm 1).

Our intuition is that keeping the local budget low minimizes
the time that a thread requesting a remote lock may spin in the
high-contention workload scenario. On the other hand, threads
that are requesting a remote lock and waiting for it to be released
benefit from a higher remote budget as it reduces the number of
times the reacquire operation is invoked.
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Figure 4: Relative speedup compared to the baseline remote
budget of 5.

We performed a series of experiments with various workloads
and cluster configurations to confirm our intuition and inform our
choice for both the local and remote budgets. We found that the
most impactful factor for the budget is the contention as provided
by the workload. Figure 4 shows the average performance improve-
ment relative to a baseline configuration having both remote and
local budgets set to 5. In the plot, we show ALock’s performance
while increasing the remote budget from 5 to 10 and 20. Results are
averaged under 95%, 90%, and 85% locality workloads on a 20-node
cluster with 100 locks (medium contention).

As shown by the plot, limiting the local budget while increasing
the remote budget improves total throughput by up to 23%. We
attribute this to the fact that competing in the Reacquire operation
is much more costly for threads requesting remote locks rather than
local locks due to the cost of the remote spinning encountered in
Peterson’s algorithm when contention from the local cohort is
present. Even without local contention, the cost of two additional
remote operations at the minimum needed for the remote cohort
to reacquire is much more costly than the cost of two additional
local operations needed for the local cohort to reacquire [17]. These
findings informed us to choose a remote budget of 20 and a local
budget of 5 for the rest of the experiments.
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6.2 Throughput Evaluation

In Figure 5, we report the throughput in terms of operations (i.e.,
one successful lock and unlock) per second. We vary the size of the
system, the workload, and the contention level.

We first discuss the case of 100% locality. Because of the signif-
icant gap in performance, we isolated this workload on separate
plots (Figures (d), (h), (1)). As evident by the plots, the ALock sig-
nificantly outperforms the spinlock and MCS lock at low, medium,
and high contention levels. Specifically, the ALock performs up
to 24x as many operations as the MCS Lock and 22x as many op-
erations as the spinlock, even under high contention with just 20
locks. Our ALock is able to take full advantage of the beneficial
operation asymmetry here and only use shared-memory operations.
Additionally, there is no contention in Peterson’s algorithm due to
the absence of the remote cohort.

Moving away from 100% locality, we focus on the high-contention
case (Figures (a), (e), (i)). The spinlock and MCS lock are both over-
whelmed in these cases. The most extreme contention is in Figure
(i). With up to 240 threads competing for just 20 locks in the 20-node
configuration, the workload creates congestion in the RNIC, which
quickly degrades performance. Conversely, the ALock outperforms
the MCS lock by up to 29x and the spinlock by up to 24x. Avoiding
the performance bugs introduced by loopback traffic allows the
ALock to take full advantage of the passing lock mechanisms.

As the contention decreases, ALock continues to perform well,
but competitors’ performance increases, resulting in a smaller gap
(Figures (b), (f), (j)). Changing from 20 to 100 locks, the MCS lock
is no longer overwhelmed by the logical contention and, like the
AlLock, takes advantage of spinning locally and passing the lock as
the workload scales. Interestingly, and somehow counter-intuitive,
although the ALock maintains its scalability, it experiences a de-
crease in throughput as the contention decreases. This is due to
the fact that passing the lock cannot always be extensively used
without enough contention.

The spinlock, however, saturates quickly and suffers as the work-
load scales. Since the spinlock uses remote spinning, the card’s
congestion increases with the number of threads, causing unde-
sirable performance. We attribute this behavior to the congestion
introduced by the loopback mechanism, and QP thrashing. In fact,
with 8 threads and 10 nodes, the RNIC already needs to maintain
1280 QPs. However, recent work has shown that performance de-
grades as the number of concurrent connections grows past 450
[32]. In comparison, the ALock throughput scales with the number
of threads as it avoids loopback and limits QP thrashing, outper-
forming the simple spinlock approach by more than 4x with 240
total threads in the system (Figure (j)).

Finally, as contention decreases (Figures (c), (g), (k)), the ALock
increases its performance gains as the workload’s locality increases.
Without logical contention, passing the lock becomes less relevant,
but the asymmetry cost of remote and local operations becomes
more evident. The ALock improves by 40% when increasing from
85% to 90% locality and improves by an additional 75% when in-
creasing to 95% locality using five nodes. The spinlock and MCS
lock are also able to scale their performance with the number of
threads but at a slower pace than ALock. However, they do not
experience the performance benefits that ALock can from the use
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Figure 5: Throughput for a variety of workloads on 5, 10, and 20 nodes. The X-axis is the number of threads per node.

of shared-memory operations as the workload locality increases. In
this case, the ALock outperforms the MCS lock by up to 3.8x and
the spinlock by up to 3.3x.

6.3 Latency Evaluation

In Figure 6, we report the cumulative distribution of the latency of
operations (i.e., one lock and unlock). In our experiments, we varied
the workload, contention level, and size of the system. We chose
only to include results for the 20-node cluster in order to show the
latency at scale. That is because there are minimal differences in the
plots with 5 and 10 nodes, except for the performance of spinlock,
whose scalability can be better assessed with 20 nodes.

In the 100% local workloads (Figures (a), (b), (c)), the ALock
significantly outperforms its competitors. Since the ALock is com-
posed of 100% local operations, the latency is close to that of local
memory accesses. Specifically, in the high-contention case with
20 locks (Figure (a)), the ALock is as much as 17x faster than the
MCS lock and 33x faster than the spinlock. As the number of locks
increases, ALock’s tail latency also increases since the passing of
the lock can no longer be always used as the contention decreases.
On the contrary, the spinlock experiences a much more drastic tail
in the high-contention cases with 20 locks (Figures (a), (d), (g), (j))
as it is overwhelmed by the logical contention, causing congestion
in the card. The MCS lock, similar to the ALock, takes advantage
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of spinning locally in these high-contention cases to avoid such a
large tail. However, since it still requires many RDMA operations,
the MCS lock competitor still experiences a latency of up to 17x
longer than the ALock under high contention. In low contention
and 100% locality (Figure (c)), the ALock latency is still an average
of 10x faster than spinlock and 13x faster than MCS lock.

Moving away from 100% locality and looking at the case of
medium contention with 100 locks (Figures (e), (h), (k)), we see that
ALock and MCS lock, which share a similar structure, perform very
similarly. In these workloads, the logical contention is enough for
both the ALock and MCS lock to take advantage of passing the lock
and spinning locally, allowing the MCS lock to avoid saturation.
On the other hand, the spinlock’s long tail latency can be attributed
to the congestion caused by remote spinning.

In the case of low contention (Figures (f), (i), (1)), ALock outper-
forms MCS by an average of 2.1x in the 95% local workload and
1.35x in the 85% local. With the absence of logical contention, both
ALock and MCS lock are unable to benefit from passing. However,
being unable to pass the lock results in the MCS lock requiring
many more remote operations, whereas the ALock can benefit from
the locality of the workload. This is evident when looking at Fig-
ures (i) and (1). As the locality decreases from 90% to 85%, the gap
between the ALock and MCS lock’s performance shrinks.
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Figure 6: Latency CDF for a 10 node cluster with 8 threads under different workloads. The X-axis is latency in nanoseconds.

7 RELATED WORK

Mutual exclusion is a known problem in which access to a shared
resource is coordinated among two or more concurrent threads [21].
Specifically, at most one thread may execute its critical section at
a time. A naive solution to multi-thread mutual exclusion is a fil-
ter lock [27], which extends Peterson’s lock for multiple threads.
Briefly, threads compete for access to successive levels that each
hold back one thread. The number of levels is equal to one less than
the number of threads that might acquire the lock. Unfortunately,
this would require both remote spinning and a number of remote op-
erations proportional to the number of threads that might contend
for the lock, even if a thread executes in isolation. Lamport’s Bakery
algorithm [14] also demonstrates the same undesirable behavior
for remote threads.
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Similar to lock cohorting [9], a strategy for NUMA-aware syn-
chronization, our approach allows a group of threads to compete
amongst themselves before acquiring a global lock, in our case the
ALock. Our technique explicitly couples the Peterson’s and MCS
locks to achieve behavior tailored to the respective access types in
our system, remote and local. By embedding the cohort locks in Pe-
terson’s lock, locking and unlocking the MCS queue simultaneously
sets and un-sets the Peterson’s flag variable. As a result, we avoid an
additional remote operation for remote accesses while maintaining
the integrity of the ALock. The application of lock cohorting in
a distributed setting is a natural extension of the technique but it
requires rethinking the design to optimize for operation asymmetry
between local and remote accesses, yielding a lock primitive that is
of independent interest.
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To the best of our knowledge, our approach is the first mutual
exclusion primitive designed for RMDA that provides local-only
access for threads requesting local locks while maintaining fair-
ness and avoiding RPCs. A notable alternative is the technique
pioneered by Wei et al. [34], which allows local accesses to be pro-
tected by hardware transactional memory (HTM) while remote
accesses acquire a lock using RDMA rCAS. This technique only
applies to architectures supporting HTM, which is increasingly
disabled due to security concerns [16, 20]. Due to cache coherent
I/O, a local hardware transaction is aborted whenever a remote
thread acquires the lock. Local operations use local accesses in the
common case, but a fallback path using RDMA is also required.
Another potential option is to leverage RDMA-accessible memory
permissioning, which atomically revokes remote access [2, 15], to
devise a mutual exclusion algorithm. However, this approach is
known to be slow [3] and is not easily made starvation-free since
remote access may be continuously revoked by threads performing
local accesses.

Recently, new cache coherent interconnects like CXL have at-
tracted attention and are expected to play a role in implementing
disaggregated memory patterns. Cache coherence can make it pos-
sible to use both RDMA and local atomic operations without the
need for an additional synchronization mechanism. However, to
fully take advantage of CXL will require RNIC redesign and may
still come with a performance tradeoff for coherency. At the current
state of the technology (not yet released), these considerations are
mostly speculation [11].

8 CONCLUSION

In this paper, we face the challenge of synchronizing accesses in
RDMA-based systems and define operation asymmetry to capture
the disparate behavior of how remote and local threads operate on
RDMA memory. We propose a fair, starvation-free mutual exclusion
primitive that enables local and remote accesses to synchronize
globally in a manner that is abstracted away from the programmer
while optimizing for their individual characteristics. Inspired by
lock cohorting, we embed RDMA-aware MCS locks into a modi-
fied version of the well-known Peterson’s algorithm to create the
ALock. To the best of our knowledge, our technique is the first mu-
tual exclusion solution that allows synchronizing local and remote
accesses while avoiding known RDMA scalability issues (abuse of
RDMA loopback and RPCs).
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