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Abstract As a key water quality parameter, dissolved oxygen (DO) concentration, and particularly changes
in bottom water DO is fundamental for understanding the biogeochemical processes in lake ecosystems. Based
on two machine learning (ML) models, Gradient Boost Regressor (GBR) and long‐short‐term‐memory (LSTM)
network, this study developed three ML model approaches: direct GBR; direct LSTM; and a 2‐step mixed ML
model workflow combining both GBR and LSTM. They were used to simulate multi‐year surface and bottom
DO concentrations in five lakes. All approaches were trained with readily available environmental data as
predictors. Indices of lake thermal structure and mixing provided by a one‐dimensional (1‐D) hydrodynamic
model were also included as predictors in the ML models. The advantages of each ML approach were not
consistent for all the tested lakes, but the best one of them was defined that can estimate DO concentration with
coefficient of determination (R2) up to 0.6–0.7 in each lake. All three approaches have normalized mean
absolute error (NMAE) under 0.15. In a polymictic lake, the 2‐step mixed model workflow showed better
representation of bottom DO concentrations, with a highest true positive rate (TPR) of hypolimnetic hypoxia
detection of over 90%, while the other workflows resulted in, TPRs are around 50%. In most of the tested lakes,
the predicted surface DO concentrations and variables indicating stratified conditions (i.e., Wedderburn number
and the temperature difference between surface and bottom water) are essential for simulating bottom DO. The
ML approaches showed promising results and could be used to support short‐ and long‐term water management
plans.

Plain Language Summary Dissolved oxygen (DO) concentrations is the essential water quality
parameter in lake systems. Nowadays, with the development of data‐driven machine learning (ML) models,
prediction of DO concentrations can be achieved via these models in lakes with long‐term DO concentration
observations. This study developed three ML model approaches with one mixed two kind of ML models, and
test them in five lakes. Readily available environmental data and the derived hydrodynamic data from process‐
based hydrodynamic model were used as predictors. All three ML approaches showed promising results, and the
mixed ML approach show better skill in the lake stratifying and mixing irregularly. To predict hypoxia in the
bottom of the lake, the surface DO concentrations and variables indicating water column stratification are
important.

1. Introduction
Dissolved oxygen (DO) is an essential ecosystem variable regularly used to assess water quality, responding to
changes in phytoplankton photosynthesis, ecosystem respiration, mineralization, and lake mixing. Changes in the
duration and frequency of hypolimnetic hypoxia are often used as an indicator of aquatic ecosystem health (Jane
et al., 2021). A decline of DO can have a significant impact on water quality by potentially increasing internal
nutrient loading and further modifying lake trophic state (Orihel et al., 2017), promoting harmful algal bloom
formations (Paerl & Paul, 2012), and reducing fish habitat which eventually can cause severe fish kills (Rao
et al., 2014). Hypoxia is becoming more common in the hypolimnion of lakes due to intensifying thermal
stratification and loss of water clarity (Jane et al., 2021; North et al., 2014). Variables that regulate DO con-
centration include atmospheric forcing, convective mixing, algal biomass, nutrient loading, sediment resus-
pension, and sediment oxygen demand (Müller et al., 2012; Charlton & Lean, 1987; Ladwig et al., 2021a, 2021b).
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A variety of modeling tools, including analytical models (Bouffard et al., 2013; Cortés et al., 2021), and numerical
models, that is, coupled hydrodynamic‐water‐quality models (e.g., Ladwig et al., 2022; Léon et al., 2011) have
been developed to simulate lake DO dynamics via parameterizing and simulation of the regulatory processes
mentioned above. However, water quality simulations tend to be restricted to an individual lake due to the
differing importance of biogeochemical processes within each lake, which must be accounted for by model
parameterization.

State‐of‐art data‐driven machine learning (ML) models have been applied in the wide range of water resource
research, simulating lake water temperature (Read et al., 2019; Yousefi & Toffolon, 2022) and water quality
parameters, for example, phosphorus (P) (Hanson et al., 2020), algal chlorophyll concentrations (Chl) (Kakouei
et al., 2021; Lin et al., 2023), and DO (Ziyad Sami et al., 2022). Inspired by the robust performance of ML in
capturing the nonlinearity patterns in the systems, multiple ML approaches have been applied to simulate DO
concentration, including artificial neural network (ANN), Support Vector Machine (SVM), Extreme Learning
Machine (ELM), etc (Dehghani et al., 2022; Zhu & Heddam, 2020; Ziyad Sami et al., 2022). But most of previous
research assessed the prediction skill based on single‐use of ML model, or compared the skills of multiple ML
models in an individual surface water system. The adaptivity of ML models in lakes with various mixing dy-
namics has not been fully assessed.

In this study, we developed three ML modeling approaches based on two ML models, Gradient Boosting Re-
gressor (GBR) and long‐short‐term‐memory (LSTM) network to simulate multi‐year seasonal‐scale surface and
bottom DO concentrations in five lakes with various sizes and trophic levels. In addition to applying GBR and
LSTM directly, we designed a 2‐step mixed model workflow by inputting the model residuals from a GBR model
into LSTM as the response variable. These ML approaches were trained with available meteorological forcing
data. Further, we used a one‐dimensional (1‐D) hydrodynamic model forced with the same meteorological and
hydrological data to provide additional information on lake thermal structure, and ice cover that was additionally
included as ML model training features. Transferring knowledge from simulations produced by process‐based
(PB) models could improve the generalizable pattern learning of ML models (Jia et al., 2021; Read
et al., 2019). This hybrid approach has achieved promising results in algal bloom predictions in a mesotrophic
lake (Lin et al., 2023), and may also improve predictions of lake DO and, in particular, hypoxia, which is strongly
dependent on lake hydrodynamics.

In addition to evaluate these ML approaches in simulating the variability of DO and detecting hypolimnetic
hypoxia in the lakes, this study also aims to explore the significant factors regulating DO concentrations in each
individual lake. In the following sections, comparison with process‐based (PB) models, as well as the limitations,
and future applications of the ML approaches in the water management are presented and discussed.

2. Materials and Methods
2.1. Study Sites

This study used data from five lakes: Lake Erken (Sweden), Müggelsee (Germany), Lake Furesø (Denmark),
Lake Mendota (USA), and Lake Ekoln (Sweden). Each lake's characteristics are described in Table 1. The
detailed monitoring programs in each lake can be found in Supporting Information S1 (Text S1).

DO sampling interval varies among lakes. Since 2007, a multi‐parameter YSI profiling system was installed at the
Müggelsee observation station providing hourly DO concentration measurements. And since 2015, Lake Erken
improved its automated monitoring program to include a YSI profiling system that collects hourly profiles of DO
concentrations. For these two lakes, the hourly surface DO concentrations were averaged to provide daily surface
values, while the daily the minimum bottom DO concentrations were used to represent the daily bottom values. In
Furesø, Lake Mendota, and Ekoln, DO concentrations were recorded by water samples which have biweekly to
monthly intervals (Text S1 in Supporting Information S1).

In Furesø, a major restoration project started in 2003 to control the internal loading of phosphorus from the
sediment during stratification. Mitigation measures included a combination of hypolimnetic aeration and bio-
manipulation (Gurkan et al., 2006). Since then, hypoxia has been reduced in the bottom waters of the lake
(Johansson et al., 2021).
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The invasive aquatic plant species Nuttall's waterweed (Elodea nuttallii) was first detected in 2011 in Müggelsee,
and has spread rapidly, becoming the most abundant macrophyte species by 2017. The abundance of another
invasive species, the dreissenid mussel, increased with the increasing invasive waterweed, following the invasion
meltdown hypothesis (Wegner et al., 2019). E. nuttallii can largely increase the oxygen production via photo-
synthesis but also can result in extremely low DO in the bottom water of lakes, developing night‐time anoxic
conditions (Vilas et al., 2017).

In Lake Mendota, the grazing activity of freshwater zooplankton, that is, Daphnia, leads to a reduction in algal
biomass in late spring‐early summer, during the so‐called clear water phase (Carpenter & Kitchell, 1988).
However, the lake also experienced the invasion from the spiny water flea, Bythotrephes longimanus (hereafter
Bythotrephes), during the fall of 2009, which led a decline of the daphnia population, reduced grazing of the
spring diatom population, and an overall decline in water clarity. However, although one of the major Daphnia
species (i.e., Daphnia pulicaria) is a preferred prey of Bythotrephes, another smaller‐bodied Daphnia Mendotae,
now increases in spring following the invasion of Bythotrephes (see Figure S1 in Supporting Information S1). The
combined result of these changes was reduced grazing on spring diatom and probably accelerating organic matter
mineralization and hypolimnetic oxygen depletion before summer stratification (Ladwig et al., 2021a, 2021b;
Matsuzaki et al., 2021; Rohwer et al., 2023; Walsh et al., 2017). Surface nutrient loadings for Lake Mendota were
derived from a calibrated catchment model, PIHM‐Lake (see Ladwig et al., 2021a, 2021b for more information).

2.2. Models

2.2.1. Process‐Based (PB) Hydrodynamic Models

One‐dimensional PB hydrodynamic models were used to estimate metrics that describe lake thermal structure and
mixing, and which could also serve as training inputs to the ML models. The 1‐D hydrodynamic model, GOTM
(General Ocean Turbulence Model (Burchard et al., 1999)); was applied in Lake Erken (Mesman et al., 2022;
Moras et al., 2019), and Müggelsee, Furesø, and Lake Ekoln, while GLM (General Lake Model (Hipsey
et al., 2019) was applied in Lake Mendota (Ladwig et al., 2021a, 2021b)). The meteorological variables (i.e., air
temperature, air pressure, solar radiation, cloud cover, wind speed, precipitation, relative humidity) and river
discharge used to train the ML models were also the inputs of the hydrodynamic models (Figure 1). The PB
modeled water temperatures in Müggelsee, Furesø and Lake Ekoln were calibrated against temperature profile
observations, and the root‐mean‐squared‐error (RMSE) are 1.33°C, 1.29°C, 1.51°C. Ladwig et al., 2021a, 2021b
reported GLM was able to simulate water temperature in Lake Mendota with around 1.3°C RMSE and Moras
et al. (2019) showed the RMSE of GOTM modeled water temperature in Lake Erken was around 1.1°C. We used
the daily vertical profiles of simulated water temperature and eddy diffusion (Kz) obtained from the PB models to
derive daily features to train the ML models. The temperature difference (delT) between surface water (averaged
over the upper 3 m) and bottom water (bottom layers) was calculated based on modeled temperature profiles.

Table 1
Physical Characteristics of the Lakes

Characteristics Lake Erkena Müggelseeb Furesøc Lake Mendotad, e Lake Ekolnf

Lake area (km2) 23.7 7.4 9.4 39.6 29.8

Mean/Max depth (m) 9/21 4.9/8 7.4/37.7 12.7/25 15.4/50

Residence time (Years) 7 0.12–0.15 10 4.3 <1

Lake mixing type Dimictic Polymicticg Dimictic Dimicticd Dimictic

Trophic state Mesotrophic Eutrophic Mesotrophic Eutrophic Eutrophic

Averaged DO sampling interval
during ice‐free period (Days)

8 (2004–2014)
1 (2015–2020)

1 18 16 31

Data span (Total years) 2004–2020 (17 years) 2004–2020 (17 years) 1990–2017 (28 years) 1999–2015 (17 years) 1987–2019 (33 years)

Training period (Percentage of data) 2004–2016 (76%) 2004–2016 (76%) 1990–2009 (71%) 1999–2009 (65%) 1987–2008 (67%)

Testing period (Percentage of data) 2017–2020 (24%) 2017–2020 (24%) 2010–2017 (29%) 2010–2015 (35%) 2009–2019 (33%)
aPierson et al., 1992. bKakouei et al., 2022. cGurkan et al., 2006. dFarrell et al., 2020. eBennett et al., 1999. fGoedkoop et al., 2011. gShatwell and Köhler, 2019.
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Mixed layer depth (MLD) was defined as the first depth, from the lake surface, where Kz fell below
5 × 10−5 m2s−1 threshold (Wilson et al., 2020), and Wedderburn number (Wn) was computed based on MLD
calculations (Thompson & Imberger, 1980). Here, Wn indicates the magnitude of wind‐induced upwelling. We
used Lake Analyzer (Read et al., 2011) to estimate thermocline depth (thermD) and Schmidt stability (St). These
parameters, based on the daily temperature profiles, indicate the extent of mixing, hypolimnetic thickness and the
intensity of stratification (Wetzel, 2001), which can be further related to the variability of bottom DO concen-
trations (Cortés et al., 2021; Foley et al., 2012; North et al., 2014).

2.2.2. Direct LSTM and GBR Models

This study applied two ML models, LSTM and GBR, built by the Scikit‐Learn (https://scikit‐learn.org/stable/,
last access: September 2022) and TensorFlow (https://www.tensorflow.org/, last access: September 2022) li-
braries in Python.

GBR is a type of tree model, a class of ML models that are most commonly applied in water resource studies,
including DO prediction (Heddam & Kisi, 2018; Kisi et al., 2020). The model iteratively generates an ensemble of
estimator trees with each tree improving upon the performance of the previous one (Friedman, 2001). The
hyperparameters, including n_estimators, max_depth, learning_rate, subsample, in GBR are optimized via
Randomized Search (RandomizedSearchCV function within Scikit‐Learn library) based on 5‐fold cross valida-
tion. The loss function used within the model was “huber”, a combination of the squared error and absolute error
of simulation. Note that the hyperparameters may differ for each lake, the model was designed to go through
hyperparameter tunning when training data changed. The GBR model can rank the feature importance for each
predictive target (Friedman, 2001), illustrating the key factors which regulate the DO concentrations.

LSTM is a recurrent neural network, built for sequential and time‐series modeling (Hochreiter & Schmid-
huber, 1997). This model architecture has also been applied in many water resource studies (Read et al., 2019),
and has achieved promising results in predicting harmful algal blooms in Lake Erken (Lin et al., 2023). We built a
LSTM with three hidden layers each with 50 neurons in every layer, and each of them is followed by a dropout
layer with 0.2 dropout rate for regularization. The numbers of batchs and epochs are set as 20–100, respectively.
The hyperparameters were chosen based on the tradeoff between computational cost and model performance. The
data were scaled to a given range for generalization purposes via “MinMaxScaler” function, and “Mean Absolute
Error” was used as loss function. The time step of LSTM was set to 7 days, which means the memory of all the
training features within the previous 7 days was used to train the model and predict the targets.

The direct applications of these two models involved using the training features described below (Table 2) and
corresponding targets (Surface and bottom DO concentrations) along the timeseries in the training periods to train

Figure 1. Workflow of three machine learning models. Green arrows represent direct LSTM model, blue arrows represent
direct GBR model, and red arrows represent 2‐step mixed model.
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the models. Model performance (validation) was tested by inputting the features along the timeseries in the testing
periods and comparing the predictive targets with the measurements (Figure 1).

2.2.3. 2‐Step Mixed ML Model Workflow

The 2‐step mixed ML model workflow integrates both the GBR and the LSTM model. First, the GBR was used to
simulate both surface and bottom DO concentrations, and to rank the importance of training features (Fried-
man, 2001) affecting surface and bottom DO, respectively. Secondly, after ranking by importance only the
features in the top 50% were retained in the training of LSTM models so that the more computationally demanding
LSTM training was accelerated by only considering the most significant features. Also, the predictive daily values
of DO concentration from GBR were added into the training data set of LSTM as training features (Figure 1).
Based on the results from the direct GBR model, the seasonal variability of DO concentrations could be repre-
sented, so that the GBR results are reasonable first estimates and can be used as initial values for the training
processes of LSTM models.

2.3. Training Features

The general training features used in every tested lake are daily meteorological data, river inflow data, ice in-
formation, and derived hydrodynamic factors. However, given that the physical and biogeochemical character-
istics and data availability varied for each lake, each lake has its unique set of training features (Table 2).

In addition to the physical variables used to drive PB hydrodynamic models, daily hydrodynamic variables
derived from PB models (i.e., delT, MLD, thermD, Wn) were involved in training features. In Lake Erken, training
features also included accumulated bottom water temperature over past 10 days calculated from observation.

Table 2
Training Features in Each Lake

Features (data types) Lake Erken Müggelsee Furesø Lake mendota Lake Ekoln

River discharge (Metrics)

Air temperature (Metrics)

Air pressure (Metrics)

Precipitation (Metrics)

Wind speed (Metrics)

Humidity (Metrics, 0–100)

Shortwave radiation (Metrics)

Cloud cover (Metrics, 0–1)

delT (Metrics)

Accumulated bottom water temperature over 10 days (Metrics)

Ice duration (Category)a

Days from ice‐off date (Category)b

MLD (Metrics)

Wn (Metrics)

thermD (Metrics)

Water treatment (Binary)

Invasive species (Binary)

Daphnia (Category)c

Accumulated phosphate from river loading (Metrics)

Dissolved organic nutrients from river loading (Metrics)

Inflow temperature (Metrics)

a4 levels: ice duration over 60 days, 30–60 days, less than 30 days, and no ice duration. b7 levels: over 30 days before ice‐off date, 30–20 days before ice‐off date, 10–
20 days before ice‐off date, 10 days before or 10 days after ice‐off date, 10–20 days after ice‐off date, 20–30 days after ice‐off date, over 30 days after ice‐off date. c4
levels: Daphnia biomass >400/m3, 200–400/m3, 50–200/m3, <50/m3.
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The duration of ice cover period could affect the frequency, intensity, and occurrence of winter mixing events, and
further impact the renewal of deep water. Ice related features, that is, ice duration and days from ice‐off date, were
included as training features for the lakes that were routinely ice covered (Lake Erken, Müggelsee, Lake Mendota,
Lake Ekoln; Table 2). Note that we aimed to avoid the direct usage of time‐related features, since the seasonality
related to time strongly affects DO and tends to overwhelm the impact from other features. Also, tree models tend
to perform better when handling categorical data. Thus, the ice duration feature was converted into 4‐level
categorical feature according to the length of ice duration in the previous winter. The days from ice‐off date
feature was also converted into 7‐level categorical feature according to the days before or after ice‐off date
(Table 2).

In Lake Mendota, zooplankton, that is, Daphnia, density which were recorded biweekly were interpolated linearly
into daily values. Original data shows the biomass of Daphnia per m3, but since the data were sparse, we cate-
gorized Daphnia into 4 levels (Table 2). Accumulated Phosphate and Dissolved organic nutrients were estimated
by regression models using discharge and nutrient concentration data from USGS gages (see data in Ladwig
et al., 2021a, 2021b).

To consider other external factors in the specific lakes, we added external training factors, to account for invasive
species in Müggelsee, and Lake Mendota, and hypolimnetic aeration in Furesø. These factors were set as binary
numbers, with one representing period after the invasion in Müggelsee and Lake Mendota, or on‐going water
treatment operation in Furesø.

In addition, DO in the surface and bottom waters were predicted sequentially by the ML models, with predictive
surface DO being included in the training features of the bottom DO.

2.4. Model Evaluation

Mean absolute error (MAE), Root‐mean‐squared‐error (RMSE) and correlation coefficient (R2) of the modeled
surface and bottom DO concentration were used to evaluate each model approach in each individual lake,
respectively. Since the models were tested in the lakes with various trophic states, the MAE were normalized by
the range of observed concentrations in order to be used to conduct inter‐lake comparison (Equation 1).

NMAE = MAE/(max(y) − min ( y)) (1)

To assess the uncertainty induced by variations in the training data, we randomly removed tow individual years
data (6%–15% of data in each lake) out of the whole training periods 30 times and tested the model performances
in the fixed testing periods (Table 1). The results of these 30 times model runs were aggregated to assess the model
performance in each lake.

To further evaluate model performance in detecting hypoxia, we define hypolimnetic hypoxia when bottom DO
concentrations decreased below the specific thresholds. Given that the restoration actions have been taken in
Furesø since 2003, hypolimnetic hypoxia has been reduced. Also, the sample interval of hypolimnetic DO in Lake
Ekoln is over a month, and therefore not sufficient to interpolate the exact timing of anoxia. Thus, we only used
Lake Erken, Müggelsee, and Lake Mendota, to evaluate model performance in detecting hypoxia events. DO
<2 mg/L was used as the criterion for hypoxia in Lake Mendota which experiences serious eutrophication and
anoxia in the seasonal stratified period (Nürnberg, 1995; Scavia et al., 2014), and the criterion was lifted to DO
<3 mg/L in Lake Erken and Müggelsee since eutrophication and anoxia are not as serious as in Lake Mendota and
the DO sampling intervals are higher in these two lakes (Howell & Simpson, 1994). We used the True Positive
Rate (TPR; also refer as recall), and False Positive Rate (FPR) to identify the potential of ML models to accurately
capture the hypoxia and risk of incorrectly send out the hypoxia warning (see Table S1 in Supporting Infor-
mation S1). A model with 100% TPR and 0% FPR would constitute a perfect fit.

3. Results
3.1. Model Performance

Despite diversity in physical size, lake mixing regime and trophic state of the lakes tested in this study, all three
model approaches simulated the seasonal variation of both surface and bottom DO well (see, Figures S2–S11 in
Supporting Information S1). In Figures 2 and 3, R2 and NMAE values of the 30 separate model runs were plotted
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for each lake in order to illustrate the effects of variations in the training data set on the models' predictive power.
For surface DO simulation in the testing periods, three approaches performed best in Lake Erken with direct
LSTM and 2‐step mixed model presenting averaged R2 > 0.6 and averaged NMAE < 0.1, and GBR presenting
averaged R2 > 0.5 and averaged NMAE < 0.1. For bottom DO simulation in the testing periods, direct LSTM
model shows best performance in Lake Erken with averaged R2 > 0.8, and both direct GBR and 2‐step mixed
model presented best performance in Lake Mendota with averaged R2 > 0.8 and NMAE < 0.1 mg/l.

The direct GBR approach showed more stable model performance with less variation in both the training and
testing period (Figures 2 and 3, also see coefficient of variation in Supporting Information S1, Table S2) than the
direct LSTM and 2‐step mixed models. Combining GBR and LSTM into the 2‐step mixed model improved the
accuracy of both surface and bottom DO predictions in Mendota by increasing R2 and decreasing NMAE.

Figure 2. Evaluating metrics of three ML model approaches for DO in the surface water in panel (a–c) training data set, and (d–f) testing data set. Each point represents
one model run, and the points located in the left upper corner of the figure means better model performance.

Figure 3. Similar as Figure 2, but for DO in the bottom water in (a–c) training data set, and (d–f) testing data set.
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Besides, it also decreased the variation of R2 in the surface DO simulations in Lake Erken and the bottom DO
simulation in Lake Mendota (Table S2 in Supporting Information S1). However, in some cases, the 2‐step mixed
model reduced model accuracy, for example, for surface DO simulation in Furesø.

Among the five lakes, the simulations of DO concentrations in Lake Ekoln were the worst with averaged R2 < 0.4
for surface DO in the testing data and <0.6 in the training data, bottom DO had a R2 ∼0.5 in the testing data and
<0.7 in the training data (Figure 4). Also, the modeled predictions had a larger variance than that in other lakes
(Table S2 in Supporting Information S1). This presumably was due to the relatively large sampling interval
(31 days) of DO even in this long data series, which suggests that the performance of ML models to some extent
relies on the temporal resolution of training data.

In Furesø, most testing results showed that ML models learned the effect of oxidation treatment from training data
and achieved generally promising R2 and NMAE values. However, the oxidation treatment failed in 2015–2017
which was not captured by all three ML models (see, Figure S7 in Supporting Information S1). The over-
simplification of the hypolimnetic oxidation to a single binary factor could be one of the reasons.

Overall, every tested ML model showed comparable evaluating metrics in both training and testing data sets
(Figure 4), and the issue of overfitting did exist in Lake Ekoln, which has most sparse observations of DO, and
surface DO prediction in Lake Mendota and Müggelsee. Direct LSTM models, compared to GBR, show more
vulnerability to overfitting since tree models (e.g., GBR) can better address overfitting. To some extent, the 2‐step
mixed model further narrows down the difference in evaluating metrics between training and testing data
compared to direct LSTM models (Figures 2 and 3 and Figures S2–S11 in Supporting Information S1).

Besides, in some model runs the testing data showed even higher MAE and RMSE (e.g., Surface DO in Lake
Furesø, Müggelsee, Figure S6 in Supporting Information S1, Figure 8). This could be attributed to the relatively
longer training period including the measurements from extreme observations (e.g., high values in the winter of

Figure 4. Performance of three ML model approaches. The shade areas represent the density plots of all the results from three approaches, and the symbols (i.e., ×, ♦, ●)
represent the medians of R2 and NMAE of three approaches.
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1993 to 2000, and low values in the summer of 2005; Figure S6 in Supporting Information S1) which did not exist
in the testing period. However, this unusual trend was eliminated when applied normalization to MAE (Figures 2
and 4).

3.2. Hypoxia Detection

All three model approaches captured the low bottom DO values during the stratified season (Figures 5–7). In Lake
Erken and Müggelsee, the models were able to reproduce the trends in declining bottom DO concentration, but the
magnitudes of simulated bottom DO decline were not enough to be counted as hypoxia events, and therefore
counted as False Negative (FN; See Table S1 in Supporting Information S1) (e.g., the hypoxia in the July of 2019
in Lake Erken and in the June of 2020 in Müggelsee). In Müggelsee, the hypolimnetic hypoxia in the stratified
season of 2020 was only captured by the 2‐step mixed model, which also showed better representation of bottom
DO variation in the whole testing period than direct LSTM and GBR approaches (Figure 6). The 2‐step mixed
model outperformed the other two approaches in Müggelsee with an average TPR over 70% and highest TPR
closed to 90% (Figure 8b). In Lake Erken, direct LSTM outperformed the other two approaches, presenting
averaged (∼70%) and highest (∼80%) TPRs of hypoxia detection (Figure 8a). In these two lakes, the FPRs of
three approaches are below 10%, indicating that the possibilities of sending the wrong hypoxia warning are low
(Figures 8d and 8e).

Figure 5. (a) Timeseries of YSI observed and modeled (averaged over 30‐time model runs) bottom DO concentration in Lake Erken during May–September. The shaded
areas represent the 95% confidence interval of each model approach. (b) Observed and modeled hypoxia events in the testing period.

Figure 6. (a) Timeseries of YSI observed and modeled bottom DO concentration (May–September) in Müggelsee. The shaded areas represent the 95% confidence
interval of each model approach. (b) Observed and modeled hypoxia events in the testing period.
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Compared to Lake Erken and Müggelsee, hypoxia at the bottom of Lake Mendota lasted almost the entire summer
stratified period every year in the testing period. For this lake, the three ML approaches did not show any sig-
nificant difference (Figure 7). The TPRs are relatively higher in Lake Mendota than the other two lakes with over
80% for all three ML approaches, presumably due to the longer and more stable hypoxia condition during
stratified season in the bottom of Lake Mendota (Figures 7 and 8c). However, there is also a concomitant higher
FPRs (over 30%) due to slight errors in the timing of the decline and rising in DO during spring and fall indicating
the model is more likely to send an incorrect warning of hypolimnetic anoxia (Figure 8f) when exact timing is

Figure 7. (a) Timeseries of YSI observed and modeled bottom DO concentration (May–September) in Lake Mendota. The shaded areas represent the 95% confidence
interval of each model approach. (b) Observed and modeled hypoxia events in the testing period.

Figure 8. Evaluation of hypoxia detection in three lakes. The blue bars represent the TPRs and FPRs from the averaged hypolimnetic DO concentration predictions with
error bars representing the 95% confidence interval, and the orange bars represent the TPRs and FPRs from minimal hypolimnetic DO concentration predictions over the
30‐time model runs, indicating the highest hypoxia detection.
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critical. Overall, most of the hypoxic period is correctly predicted by all three ML approaches and the 2‐step
mixed model is more outstanding in predicting hypoxia than direct GBR and LSTM in the polymictic lake.

3.3. Feature Ranking

The GBR model can retrieve importance scores that indicates how useful each feature was in the construction of
the boosted decision trees within the model, and it is computed explicitly for each individual decision tree by the
amount that each attribute split point improves the performance measure, weighted by the number of observations
the node is responsible for. At the end, the feature importances are averaged across all of the decision trees within
the model. Thus, this additional benefit of using GBR could help to rank the dominant features controlling DO
concentration variations and hypoxia events. Figure 9 summarizes the top three important features for surface and
bottom DO concentration simulations from the 30 variable training data sets used for the GBR model runs. The
results suggest that surface DO concentration is the essential factor for simulating bottom DO in most of the tested
lakes, except Lake Mendota where surface DO only plays dominant roles in 5 out of 30 model runs, demonstrating
the necessity of adding the predictive surface DO into training features of bottom DO. In Müggelsee, the only
tested polymictic lake, the top 3 important features in simulating surface and bottom DO are consistent over the 30
test runs. The value of the hybrid modeling approach that makes use of information from the process‐based
models (Figure 1) is demonstrated by the importance of the derived hydrothermal variables for the prediction
of DO. Wn, described as the ratio between the wind friction and the gradient of pressure established by the
stratification (Patterson et al., 1984), is the dominant feature in bottom DO simulation except in Furesø which has
an anthropogenic disturbance in the bottom water environment due to reaeration. Also, delT, which indicates the
intensity of stratification played a major role in predicting the bottom DO in three out of five lakes. In Lake
Mendota, delT and Wn play the major roles in controlling bottom DO, indicating that hypoxia was largely
regulated by stratification dynamics (Ladwig et al., 2021a, 2021b). In addition, accumulated phosphate from river
loading (accu_P) is also one of the top features for both surface and bottom DO in Lake Mendota, also
demonstrating that ML models could account for relationships between DO concentration and external loading of
nutrients without explicitly specifying the detailed biogeochemical relationships that would be needed in a
process‐based water quality model.

Figure 9. Top 3 important features in simulating surface (first row panels) and bottom DO (second row panels) in Lake (a, b) Erken, (c, d) Müggelsee, (e, f) Furesø, (g, h)
Mendota, (i, j) Ekoln, y‐axis shows the times of the feature was ranked as the top 3 features in the 30 test runs. The explanations of the short names can be found below, *
accu_BotT: Accumulated bottom water temperature over 10 days, *St: Schmidt stability, *Wn: Wedderburn number, *delT: Temperature difference (delT) between
surface water (averaged over the upper 3 m) and bottom water (bottom layers), *thermd: Thermocline depth, *AirT: Air temperature, *MLD: Mixing layer depth, *Ice‐
off date 3: Over 30 days from ice‐off date, *accu_P: Accumulated phosphate from river loading, *inflow_temp: Water temperature of inflow, *OGM_dop:
Concentration of dissolved organic phosphorus, *SWR: Shortwave radiation, *RelHum: Relative humidity. *Treatment: water treatment operation in Furesø.

Earth and Space Science 10.1029/2023EA003473

LIN ET AL. 11 of 16

 23335084, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023EA

003473, W
iley O

nline Library on [13/02/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



4. Discussion
4.1. Model Performance

The mechanisms that lead to variations in lake DO concentration and hypolimnetic hypoxia are complex and vary
from lake to lake. This study tested the performance of ML approaches in simulating surface and bottom DO
concentration in various lake systems via multiple environmental inputs. In addition to meteorological and hy-
drological inputs, hydrodynamic and ice‐related variables, as well as other external disturbance factors (e.g.,
water treatment action, species invasion) have been considered in the model training. The accuracies of ML
models surpassed results obtained from earlier studies using process‐based models. Mesman et al. (2022) reported
the results from General Ocean Turbulence Model (GOTM) in Lake Erken with RMSE for the full water column
DO around 2.1 mg/L, while RMSEs of 2‐step mixed ML approach were less than 1 mg/L in the surface water and
less than 2 mg/L in the bottom water of Lake Erken. Ladwig et al., 2021a, 2021b applied GLM‐AED2 model in
Lake Mendota, showing RMSE in the surface layer is 2.77 mg/L and in the bottom layer is 3.31 mg/L, while the 2‐
step mixed ML approach has RMSE less than 2 mg/L in both surface and bottom layer. The polymictic char-
acteristics of Müggelsee make the prediction of hypoxia more variable and therefore more challenging. Here, the
2‐step mixed model workflow stands out among the three ML approaches, showing its advantages in this pol-
ymictic lake by successfully capturing the fluctuations in bottom DO concentrations that were recorded by the
high‐frequency YSI sensor.

The results from process‐based modeling (Ladwig et al., 2021a, 2021b) revealed that external nutrient loading has
a minor effect on the onset and duration of anoxia in the hypolimnion of eutrophic lake like Lake Mendota.
However, the feature ranking from our study shows that accumulated external loading of Phosphate (i.e., accu_P)
regulates both surface and bottom DO concentration here (Figure 9). These results do not completely contradict
each other, since even though external nutrient loading may not affect the overall duration of anoxia, it may still
play a role in controlling the variations in DO throughout the ice‐free period.

Further, by accounting for external factors, like water treatment operation in Furesø as binary training features,
three ML approaches can reproduce recovery of hypoxia in the bottom waters of a lake adapting to the treatment
action (See Figure S7 in Supporting Information S1). When we excluded the water treatment feature from Furesø
models (Figure S12 in Supporting Information S1), and all three approaches show obvious deficiency in capturing
the bottom DO concentration. The training data in Furesø spans 20 years (1990–2009) with 7 years (2003–2009)
occurring during oxidation treatment. Such a long historical data series of conditions with and without oxidation
treatment provided the models with sufficient training so that the binary classification allowed the ML model,
especially GBR, to learn the pattern (Breiman, 1984).

The observed response of DO to species invasion (and subsequent food web alterations) in Lake Mendota and
Müggelsee are not as clear as the oxidation treatment effects in Furesø. The high frequency observations in
Müggelsee did not show a clear trend of changing surface DO in response to the invasive species (Figure S8 in
Supporting Information S1). We did observe a slight increase in the lowest bottom DO concentration in Müg-
gelsee during 2011–2017 when Nuttall's waterweed dominated the macrophytes species. None of the three ML
approaches were able to clearly capture this minor trend, but they did simulate the slight relief of hypoxia in 2014–
2017 (Figure S9 in Supporting Information S1). The effect of invasive species involves much more complex
ecological interactions which made it difficult for ML models to capture its overall impact on DO. Further, by
expressing the invasive species response as binary variable masks the seasonal shifts in biomass occurring across
different trophic states, that is, phytoplankton and zooplankton, in each lake's food web.

4.2. Hybrid Model

Successful ML predictions depend on the availability of long‐term high‐frequency data sets that can serve as
training features for the ML algorithms. This can limit training data to measurements of meteorology and stream
discharge which are routinely available at a daily measurement frequency and have been collected over long
historical periods. Here we demonstrate a hybrid modeling approach that uses these same model inputs to first
force a simple 1‐D PB hydrodynamic model that in turn provides additional information describing the thermal
structure and mixing dynamics of lakes. This hybrid model workflow therefore preprocesses available envi-
ronmental inputs to provide additional information that is known to influence the ecology and biogeochemistry of
lakes, and which has been demonstrated to improve algal bloom prediction in Lake Erken (Lin et al., 2023).
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Unlike the knowledge‐/physics‐guided machine learning models proposed by Read et al. (2019), Jia et al. (2021)
and Daw et al. (2022) which encoded the general physical relationship into ML model codes or used PB model
results to pre‐train ML models, our approaches directly use the physical variables generated by PB models as
training features. Although inherent model bias could exist in these physical variables due to approximations and
imperfect parameterizations, they still reveal the changing trend of environment and are critical predictors for DO.

In this study, hydrodynamic training features (e.g., Wn and delT) were found to be of importance for the prediction
of DO in all lakes studied (Figure 9). This was particularly true for the bottom DO that would be of greatest
interest for water management. Here, increased water column stability limits vertical fluxes of DO and nutrients in
the lake, further limiting deep‐water DO renewal. Eventually, DO sinks dominate the mass budget in hypolimnion
resulting in hypoxic conditions.

4.3. 2‐Step Mixed Model Workflow

In principle, carrying the memory of inputs of the previous week should allow the LSTM model to better represent
hypolimnetic DO depletion (Foley et al., 2012). However, due to the more complicated model architecture, it
takes more computational resources to train LSTM model than GBR model, and the model training time is highly
dependent on the length of training data and the number of features. We found that the design of 2‐step mixed
model workflow that first prescreened the training features for the second step LSTM model using the feature
ranking from the GBR model reduces overall computational costs. Even more importantly, the prescreening leads
to an overall improvement in the LSTM performance as can be seen by the difference in the R2 values between
direct LSTM and the 2‐step mixed model workflow results in Figures 2 and 3. The 2‐step mixed model workflow
which also uses the LSTM model showed better performance in detecting hypoxia events in all three tested lakes
where high frequency measurements were available particularly for the polymictic Müggelsee (Figure 8). The
accuracy of the 2‐step approach is promising, with highest TPRs in Lake Erken, Mügelsee, and Mendota, of
over 80%.

The feature ranking provided by GBR model in the mixed model workflow (Figure 9) can also support our
conceptual understanding of the interactions between DO dynamics and physical or biogeochemical processes, to
calibrate the process‐based numerical models (Ladwig et al., 2021a, 2021b), and to better design process‐based
models for specific water systems (Cortés et al., 2021).

4.4. Model Limitations

The major features we used to train the ML models are physical factors (e.g., Wind speed, delT, thermD, etc.)
which have previously been shown to largely explain the DO variations (Bouffard et al., 2013; Cortés et al., 2021),
but very few of these are strongly related to external nutrients loading which could also have an important impact
on oxygen depletion and water quality especially for shallow lakes (Wetzel et al., 2001). Predictions of surface
DO could be affected by not accounting for oxygen depletion due to the oxidation of DOM or DO production due
to photosynthesis. In Müggelsee and Lake Mendota, the two most eutrophic lakes, the accuracy of surface DO
model was lower than bottom DO model. Presumably, this was related to the lack of training data that would be
more directly related to the processes affecting metabolism, that is, phytoplankton community composition,
turnover rates, and biomass changes.

Since the ML model approaches applied here take the lake as a horizontally uniform system, they only resolve the
temporal variations of depth‐discrete (i.e., surface and bottom) DO concentrations. However, this assumption
may not hold in large water systems with complex transport processes, and the training features (e.g., meteo-
rological inputs, MLD, thermD, etc.) at a single point may not be sufficient to simulate the hypoxia in the whole
lake, especially when the hypoxia has the spatial variation and related to the horizontal water mass transportation
(Valipour et al., 2021). One of our tested lakes, Lake Ekoln, is a basin of Lake Mälaren, the third largest lake in
Sweden, and the application of the model in this lake is an example of applying the ML approach to large and
complex water system. In this case, training variables representing the circulation pattern or water mass exchange
between the target region and other parts of the lake may be required if the interactions among the regions in-
fluence hypoxia events in different parts of the lake. Not only the local meteorological conditions, but the
meteorological conditions affecting other parts of the large lake could lead to bottom water mass exchange and
further trigger hypoxia in our region of interest, and should therefore be considered (Jabbari et al., 2019; Rao
et al., 2008).
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4.5. Model Applications

The purpose of this study was to evaluate the possibilities of using ML models to predict concentrations of lake
DO, especially hypolimnetic DO in different lakes using only readily available measurements of meteorology and
hydrology (Table 1). We demonstrate that this is possible. The three ML approaches tested in the study are shown
to be powerful tools for reproducing and predicting DO concentrations, opening the possibility for similar al-
gorithms to be incorporated into forecasting workflows that would predict lake DO, and the onset loss and
duration of hypoxia events. Such a forecasting system could be the cost‐effective choice for early warning and
short‐term forecast of anoxia events, supporting the decision making in drinking water plants, or providing es-
timates of potential fish habitat loss and internal nutrient loading (Nürnberg et al., 2013; Orihel et al., 2017). In the
long term, warmer lake surface temperatures and stronger stratification are obvious effects of climate warming for
numerous lakes across the world, which further suggest potential increases of the occurrence, duration, and extent
of hypoxia in the hypolimnion (Ladwig et al., 2021a, 2021b; North et al., 2014). Our results demonstrate that ML
approaches could also play a role in projecting DO under future climate scenarios (Jane et al., 2021). Our results
highlight that surface DO concentration is an important feature for predicting bottom DO and hypoxia in our
workflow (Figure 9). Thus, predicting surface and bottom DO in sequence with the former variable serving as one
of the model inputs of the latter one can potentially improve the accuracy of hypoxia detection and prediction in
future forecast systems.

Data Availability Statement
Model version 1.0.0 has been archived under https://doi.org/10.5281/zenodo.7613549, and it is also available at
https://github.com/Shuqi‐Lin/Dissolved‐Oxygen‐MLPrediction.git (Lin et al., 2024). All data from this
study have been archived with the code in the “Training data” folder in the format used in the model. Data of
Lake Erken were collected by the Erken laboratory in the archived format used by the Swedish Infrastruc-
ture for Ecosystem Science (SITES), and are available from the SITES data archive at https://hdl.handle.net/
11676.1/qZYc4CMTOyxgvjv_gTAW08SO, Erken Laboratory (2022) (Lake Erken, last access: September
2022). Data of Lake Mendota were archived in Environmental Data Initiative, https://doi.org/10.6073/pasta/
418bf748dc2351f026c25111f7cbfd7e (Ladwig et al., 2021a, 2021b).
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