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Unravelling viral ecology and evolution over 
20 years in a freshwater lake
 

Zhichao Zhou    1,2,3, Patricia Q. Tran    1,4, Cody Martin    1,5, Robin R. Rohwer    6, 
Brett J. Baker    6,7, Katherine D. McMahon1,8 & Karthik Anantharaman    1,9,10 

As freshwater lakes undergo rapid anthropogenic change, long-term studies 
reveal key microbial dynamics, evolutionary shifts and biogeochemical 
interactions, yet the vital role of viruses remains overlooked. Here, 
leveraging a 20 year time series from Lake Mendota, WI, USA, we 
characterized 1.3 million viral genomes across time, seasonality and 
environmental factors. Double-stranded DNA phages from the class 
Caudoviricetes dominated the community. We identified 574 auxiliary 
metabolic gene families representing over 140,000 auxiliary metabolic 
genes, including important genes such as psbA (photosynthesis), pmoC 
(methane oxidation) and katG (hydrogen peroxide decomposition),  
which were consistently present and active across decades and seasons. 
Positive associations and niche differentiation between virus–host pairs, 
including keystone Cyanobacteria, methanotrophs and Nanopelagicales, 
emerged during seasonal changes. Inorganic carbon and ammonium 
influenced viral abundances, underscoring viral roles in both ‘top-down’  
and ‘bottom-up’ interactions. Evolutionary processes favoured fitness 
genes, reduced genomic heterogeneity and dominant sub-populations.  
This study transforms understanding of viral ecology and evolution in 
Earth’s microbiomes.

Viruses that infect bacteria and archaea (phages) are the most abundant 
biological entities in ecosystems. Phages can reshape microbial metab-
olism, drive nutrient cycling and influence global biogeochemical 
cycles1,2. Uncultivated viral genomes obtained from metagenomes have 
substantially enriched the collection of viruses in public databases and 
improved our understanding of viruses in nature3. In the largest public 
viral database to date (the Integrated Microbial Genome/Virus database 
v4, IMG/VR v4), freshwater lake viruses accounted for approximately 
15% of all viral genomes, ranking them first among all environmental 
subtypes. Despite the substantial virus sequence deposition compared 

with other environments such as oceans and soil, viruses in freshwater 
lakes remain understudied. Globally, freshwater lakes are undergo-
ing rapid change due to landscape and climate alterations. Microbial 
communities are foundational players in freshwater ecology4, and 
characterizing the diversity, function, ecology and evolution of their 
viruses will improve our understanding of a major ‘top-down’ control 
of microbial communities.

Time-series studies have been adopted in the field of microbial 
ecology and have revealed microbial dynamics, population variation 
and ecological impacts of microorganisms on natural ecosystems.  
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Functional and metabolic reprogramming of host metabolism by 
AMGs can maintain, drive or short-circuit important metabolic steps, 
providing viruses with fitness advantages11,13–15. The involvement of 
AMGs in freshwater ecosystems has been rarely reported, except for 
recent studies of methane oxidation and photosynthesis in freshwater 
lakes16, compared with well-studied instances of photosynthesis17–19, 
sulfur oxidation12,20,21, ammonia oxidation22 and ammonification23 in 
the oceans. In addition, research linking how viral populations and 
their ecological functions are influenced by environmental factors 
remains elusive.

In this Article, we leveraged time-series metagenomes collected 
over 20 years (2000–2019; the ‘TYMEFLIES’ (Twenty Years of Metage-
nomes Exploring Freshwater Lake Interannual Eco/evo Shifts) metage-
nome project) to study freshwater viral diversity, ecology and their 
association with metabolism and their hosts.

Results
Freshwater lakes harbour enormous uncharacterized viral 
diversity
In this study, we analysed a total of 471 metagenome samples. For each 
year, we divided the samples into six seasons (Fig. 1a and Supplementary 
Table 1). These seasons—ice-on, spring, clearwater, early summer, late 
summer and fall—were defined by environmental data and most accu-
rately represent microbial phenology24,25. Our analysis identified a total 
of 1,820,639 viral scaffolds, with an average of approximately 2,600 

The establishment of long-term microbial and biogeochemical obser-
vation projects, such as Hawaii Ocean Time-series5 and Bermuda Atlan-
tic Time-series6, have notably improved our understanding of long 
timescale influences of climate change and environmental alteration on 
microbial dynamics and matter and energy flows. In addition to allow-
ing observations and analyses of temporal variation, time-series studies 
can also contribute to an understanding of evolutionary progression. 
For example, a 6 year time series of lake pelagic bacterial community 
composition in Lake Mendota (Wisconsin, USA) highlighted regular 
interannual dynamics and the link between the microbial community 
and seasonal drivers, which reflected the climate variation7. By har-
nessing the advantage of tracing population microdiversity changes, 
a 9 year time-series study of lake microorganisms in Trout Bog Lake 
(Wisconsin, USA) revealed the evolutionary processes of bacterial spe-
ciation, which were subjected to two distinctive evolutionary models 
coexisting in the same environment8. However, few time-series studies 
have been conducted to date involving a comprehensive characteriza-
tion of viral communities, except for a recent ecogenomic characteriza-
tion of virophages9. By harnessing time-series metagenomics of Lake 
Mendota and Trout Bog Lake in Wisconsin, USA, the characterization of 
25 uncultivated virophages revealed virus–host relationships between 
virophages and giant viruses, and unravelled ecological and evolution-
ary patterns over multiple years9.

There are known potential viral associations with geochemistry, 
primarily through the activity of auxiliary metabolic genes (AMGs)10–13. 
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Fig. 1 | Statistics of viral scaffolds and genomes. a, The number of metagenomes 
obtained in each season across 20 years. b, Statistics of total metagenomic 
scaffolds and viral scaffolds across 471 metagenomes. Scaffold numbers 
were first normalized by 100 million reads/metagenome to overcome uneven 
sequencing depth across samples. c, Length and completeness of viruses after 
binning. CheckV quality to completeness range: complete (100%); high quality 
(90.0–100.0%); medium quality (50.0–89.99%); low quality (0.01–49.99%); not 

determined. The box plots in b and c show the median (central line), the mean 
(dark red dot with labelled values), the interquartile range (spanning from the 
25th to the 75th percentiles) and the whiskers. For simplicity, outliers are not 
shown. d, Non-metric multidimensional scaling plots presenting viral genome 
distribution among seasons. The viral genome abundances were calculated at the 
family level. ANOSIM, analysis of similarity.
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viral scaffolds per metagenome (Fig. 1b and Supplementary Table 2). 
Applying a stringent binning approach, we obtained 1,307,400 vMAGs 
(viral metagenome-assembled genomes or viral bins) (Fig. 1c, Extended 
Data Fig. 1 and Supplementary Table 3). In this study, a substantial 
number of viral genomes were generated, constituting approximately 
one-quarter of the entries within the IMG/VR v4 database, which encom-
passes around 5.6 million high-confidence viruses3.

The use of viral genome binning significantly improved the length 
and completeness of our viral sequence collections, as assessed by 
CheckV26, leading to a notable enhancement in overall viral genome 
quality (Fig. 1c, Extended Data Fig. 1 and Supplementary Table 4). Fur-
thermore, we clustered all vMAGs into 749,694 species based on 97% 
sequence identity. The number of species identified in our samples 
is comparable to approximately one-quarter of all virus species cata-
logued in the IMG/VR v4 database (high-confidence viruses) (749,694 

versus 2,917,521), underscoring the substantial viral diversity in fresh-
water lakes. It is worth noting that the rarefaction curve of species did 
not plateau, suggesting that there is still a considerable amount of 
unknown viral diversity in freshwater lakes (Extended Data Fig. 1d). To 
delve deeper into the patterns observed, we examined the viral genome 
distribution at the family level, revealing distinct separation among 
viral communities across different seasons (Fig. 1d). Collectively, this 
not only highlights the richness of viral species but also emphasizes 
the seasonal and dynamic nature of viral communities.

Viral taxonomic classification revealed that dsDNA viruses in the 
class Caudoviricetes were the predominant group, followed by nucleo-
cytoplasmic large DNA viruses in the class Megaviricetes (Fig. 2a). 
Most viral species identified within Caudoviricetes could not be taxo-
nomically classified further, highlighting the need to investigate the 
extensive diversity of this class in freshwater environments. Less than 
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Fig. 2 | Seasonal abundance distribution of viruses and viral hosts. a, Seasonal 
abundance distribution of viruses at the family level. Families of relative 
abundance <0.5% across all seasons were combined as ‘The rest’. The ‘NA;NA’ 
taxon within Caudoviricetes and Megaviricetes indicates families unclassified 
within the respective classes. Similarly, the ‘NA;NA;NA’ taxon under ‘Others’ 
represents other unclassified families. NA, not determined. b, Seasonal 

abundance distribution of viral hosts at the family level. Families of relative 
abundance <0.5% across all seasons were combined as ‘The rest’. Unclassified 
host families were not depicted in the bar plot. In addition, each bar plot includes 
a ‘Mean’ bar, indicating the average percentage of relative abundances for all six 
seasons, with corresponding mean percentages clearly labelled in each plot.
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20% of the viral community received host prediction assignments 
(Fig. 2b). Across all six seasons, Bacteroidota were the most abundant 
host phylum, followed by Cyanobacteriota and Gammaproteobacteria, 
consistent with the dominant phyla identified in a parallel prokaryotic 
study25. The host prediction results revealed a diverse range of virus 
hosts, underscoring the extensive uncharted territory in this field.

AMG distribution patterns range from broad to narrow host 
specificity
We identified 143,751 AMGs from viral genomes, which clustered into 
574 protein families (Kyoto Encyclopedia of Genes and Genomes (KEGG) 
ortholog groups, KOs, hereafter referred to as AMG clusters) (Supple-
mentary Table 5). These protein families showed a diverse functional 
repertoire, comprising 12 distinct categories in total covering impor-
tant biogeochemical transformations of C, N and S (Fig. 3, Extended 
Data Fig. 2, Supplementary Table 6 and Supplementary Results). This 
repertoire was larger than those reported in previous studies (34 
clusters discovered in the Global Ocean Survey communities and 322 
clusters discovered in pelagic and benthic communities of the Baltic 

Sea)27,28, highlighting the high diversity of our recovered vMAGs. The 
roles played by freshwater AMGs encompass crucial processes such 
as photosynthesis, methane oxidation, CO2 fixation for energy and 
carbon metabolisms, nitrogen metabolism for nucleotide biosynthe-
sis, and sulfur metabolism for organosulfur degradation and sulfide 
production. Meanwhile, the viral genome and AMG expression results 
revealed that active viruses also contained actively expressed AMGs, 
indicating viral involvement in host metabolic functions and biogeo-
chemical processes over time (Supplementary Results). We propose 
that, similar to other ecosystems, these AMGs likely provide substantial 
fitness benefits to viruses.

Two modes of viral auxiliary metabolism (namely, broad and 
narrow) were discovered based on their distribution across broad 
or narrow host ranges, respectively. Broad host range AMGs were 
high-abundance AMG protein families that showed a high-occurrence 
distribution (identified in >85% of all samples), were unaffected by 
seasonal change and were resilient to intra-population dynamics of spe-
cific AMG-carrying viral species (Fig. 3f and Extended Data Fig. 3). These 
AMG protein families were primarily involved in sulfur metabolism 
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and cofactor and folate biosynthesis. Viral auxiliary metabolism for 
organic and inorganic sulfur transformations often results in the pro-
duction of sulfide as an end product29, which benefits host survival, 
growth, amino acid synthesis, protein function and virion assembly 
(Supplementary Results).

Conversely, narrow host range AMGs revealed AMG protein fami-
lies with limited host ranges that performed specific functions (Fig. 3g 
and Extended Data Fig. 4). Examples of these AMG families include 
psbA/D, which encode photosystem II reaction centre domains D1/
D210,11,14,30. These AMG families can maintain photosynthetic activity 
of infected cyanobacteria13. Previous research suggests cyanophages 
can either decouple carbon fixation from photosynthesis13,31 or sup-
press the Calvin cycle and alter host metabolism towards the pentose 
phosphate pathway for NADPH generation and deoxynucleotide bio-
synthesis32. In our analyses, we also identified specific AMG families 
associated with the pentose phosphate pathway, such as gnd and zwf. 
Other examples include crtG, which is responsible for antioxidant 
production and mitigating stress from reactive oxygen species33 in 
Burkholderiaceae, thereby enhancing the overall fitness of virocells, 
and inuJ, which encodes for enzymatic degradation of sucrose into 
glucose in Chitinophagaceae, potentially serving as a means of energy 
preservation to support viral propagation.

Distribution of AMGs in different members of a viral species
To understand how AMGs are distributed across viral populations, we 
analysed variation in AMG clusters within different members of a viral 
species. We found that ~30% of AMG clusters and species combinations 
had high presence ratios (defined as ratio of presence among all the 
members; top 75–100% quartile), indicating widespread distribution 
across viral species (Extended Data Fig. 3a). This pattern held steady 
regardless of species size.

Focusing on the largest species (4th quartile) with the highest AMG 
presence (75–100% quartile), we observed that high-occurrence AMG 
clusters had presence ratios above 95% and were more abundant, indi-
cating that these clusters were consistently carried by multiple viruses 
across samples. Over the 20 year time series, these high-occurrence 
AMGs appeared consistently across different seasons (Extended Data 
Fig. 3b).

Seasonal patterns of virus–host dynamics and inter-viral 
competition
Combining two decades of relative abundance data revealed seasonal 
patterns of virus and host abundance. We examined three keystone 
microbial taxa: Cyanobacteria, Methanotrophs and Nanopelagicales 
(ultrasmall acI within Actinobacteriota). In our analysis, we considered 
the abundances of both AMG-containing and non-AMG-containing 
viruses (Fig. 4). Among the 13 examined AMG clusters, when the viral 
genome completeness was high (75–100%), the majority of species 
members contained the corresponding AMG cluster (>85%) (Fig. 4a). 
This underscores the efficacy of delineating AMG-containing species 
representatives to represent all AMG-containing viruses.

In three groups of Cyanobacteria, namely, Planktothrix, Micro-
cystis and Cyanobiaceae, host and virus abundances were positively 
correlated (Fig. 4b). In addition, the peak abundance time points 
for these viruses (specifically, the non-AMG-containing fractions) 
and hosts showed consistent patterns over two decades. In the case 
of Planktothrix, the virus onset date lagged the host onset date by 
~20 days, while the onset time points for viruses and hosts in Micro-
cystis and Cyanobiaceae remained nearly identical. Previous research 
indicates host physiology and habitat controls influence viral progeny 
and suggests that fast-growing hosts could provide more resources for 
viral production34,35. Therefore, one plausible explanation is that the 
Planktothrix virus population shows an extended lag phase, allowing 
for substantial replication when hosts achieve notable abundance 
levels at the start of the annual growth cycle. This observation suggests 

a potential competition for the overlapping ecological niche, particu-
larly concerning light and nutrient resources36, in which both viruses 
and hosts actively participate. This dynamic pattern provides valuable 
insights for studying the mechanisms underpinning niche competition 
and temporal succession.

Similar to patterns observed in Cyanobacteria, four methanotroph 
genera also had positive host-to-virus abundance correlations and sea-
sonal abundance patterns (Fig. 4c). It is worth noting that UBA10906 
emerged as the most abundant genus, outcompeting the other three 
genera. Its peak abundance occurs later in the summer, extending 
into the fall and lasting longer compared with the other three genera. 
Specifically, we noted that the ratio of Methylocystis viruses containing 
pmoC (particulate methane monooxygenase subunit C) to their hosts 
was of a similar magnitude to the ratio of Methylocystis viruses lack-
ing pmoC to hosts. By contrast, the comparisons involving the other 
three genera consistently showed that pmoC-containing viruses were 
less abundant by one order of magnitude than viruses lacking pmoC. 
Viral-encoded pmoC has the potential to augment aerobic methane 
oxidation16. An earlier study in soils showed that Methylocystis viruses 
were the most abundant viruses receiving the CH4-derived carbon in 
soil microcosm incubations fuelled by 13C-CH4

37.
Similarly, two Nanopelagicales (acI group) genera showed a posi-

tive correlation between their host-to-virus abundance (Fig. 4d). The 
abundance of Planktophila during summer seasons is probably sup-
pressed due to high concentrations of H2O2 produced by abiotic photo-
chemical actions and biotic cyanobacterial and algal metabolisms which 
peak during this period38. This suppression leads to a noticeable decline 
in Planktophila populations. While catalases encoded by katG are vital 
for reducing H2O2 levels and stabilizing Planktophila growth39, the low 
abundance of katG-containing viruses infecting Planktophila suggests 
they are insufficient in bolstering catalase activity to counteract the 
stress from elevated H2O2. Furthermore, haem is an essential cofactor 
in the generation of catalases. The ahbD-containing Planktophila virus 
abundance also represented a declining trend in late summer and fall 
(data not shown), indicating a constraint in virus-assisted haem synthe-
sis for catalase production. Consequently, despite the presence of these 
viruses, the high H2O2 concentrations during summer likely contribute 
substantially to the observed decline in Planktophila abundance.

Among these three host groups with important biogeochemi-
cal roles, the ratios of AMG-containing viruses to hosts were con-
sistently one to two orders of magnitude lower than those of 
non-AMG-containing viruses to hosts. Considering that most previ-
ous studies did not enumerate the abundance of AMG-containing 
viruses in nature, there might have been an excessive emphasis on the 
importance of viral AMGs associated with the metabolism of specific 
substrates (such as pmoC for methanotrophs in methane utilization) 
or enhancing rate-limiting enzymes (such as psbA for Cyanobacte-
ria to optimize photosynthesis). Furthermore, we propose that the 
previous belief that AMG-containing viruses are more prevalent and 
important in the community primarily stems from isolated viruses and 
metagenomes from the open ocean and other marine environments. 
For instance, almost all Myoviruses and over half of Podoviruses infect-
ing Cyanobacteria are believed to have psbA in their genomes, and 89% 
of recruited Cyanopodovirus scaffolds from Global Ocean Sampling 
Expedition (GOS) datasets contain psbA genes40. However, based on the 
findings of this study from a freshwater environment, observations of 
relative abundances suggest that non-AMG-containing viruses over-
whelmingly prevailed and closely mirrored the seasonal fluctuations of 
their hosts. This implies that non-AMG-containing viruses make up the 
majority of viral communities. Overall, we propose that the magnitude 
of influence of AMGs on viral fitness, metabolism, ecosystem function, 
biogeochemistry and their adaptations to hijacking hosts likely needs 
re-evaluation in future research41. Furthermore, comprehensive studies 
are essential to explore the interactions between non-AMG-containing 
viruses and hosts.
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Temporally variable viruses have a high contribution to the 
AMG pool
To better understand the ecological and evolutionary roles of biogeo-
chemically important viral populations, we analysed the coverage of 

viral species representatives. In line with seasonal patterns of AMG 
cluster abundance (Supplementary Dataset 1), viral species contain-
ing psbA peaked in late summer (Supplementary Table 7), leading us 
to select late summer as a representative time point for each year. 
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Fig. 4 | Viral–host correlation and seasonal change patterns for 
Cyanobacteria, methanotrophs and Nanopelagicales. a, Bar plot representing 
comparison of viral genome completeness to percentage of species’ members 
that contain AMGs. Species with representative genomes containing the 
corresponding AMGs were considered. b, Seasonal change of viral and host 
abundances for Cyanobacteria groups. The first line chart depicts abundances 
of viruses and hosts of Cyanobiaceae, Microcystis and Planktothrix. Individual 
lines represent mean abundances derived from interpolated values calculated 
at intervals of 5 days. The second chart depicts abundance fractions of 
Cyanobiaceae, Microcystis, Planktothrix and other Cyanobacteria during 
seasonal change. The third box plot depicts viral/host abundance ratios 
of Cyanobiaceae, Microcystis and Planktothrix across all time points (with 
biological replicate numbers n = 241, 330, 106). c, Seasonal change of viral 

and host abundances for methanotroph genera. The first line chart depicts 
abundances of viruses and hosts of four methanotroph genera. The second 
box plot depicts viral/host abundance ratios of four methanotroph genera 
(with biological replicate numbers n = 81, 50, 32, 75). d, Seasonal change of viral 
and host abundances for Nanopelagicales genera. The first line chart depicts 
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75th percentiles), the whiskers and the outliers.
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Time-series data revealed that four psbA-containing viral species 
persisted throughout 15 or more of the 20 years (Extended Data 
Fig. 5a). However, these persistent species were not always the most 
abundant in terms of AMG content. Only two of the four had high 
AMG abundance (≥10%). Similarly, pmoC-, katG- and ahbD-containing 
viral species with high occurrence differed from those with high AMG 
abundance (except for one katG-containing viral species and two 
ahbD-containing viral species) (Extended Data Fig. 5b–d). This indi-
cates that persistent species containing AMGs are not typically the 
most abundant annually; instead, the pool of AMGs is driven by spe-
cies that fluctuate year to year. As AMGs regulate key host functions, 
these findings suggest that temporally variable viral species may 
play an important role in critical biogeochemical processes, such as 
photosynthesis and methane oxidation.

Viral persistence is linked to evolutionary progressions and 
soft genome-wide sweeps
To examine intra-population diversity among persistent viral species, 
we studied viral species with AMGs encoding four important functions 
(psbA for photosynthesis, pmoC for methane oxidation, katG for reduc-
ing H2O2 stress and ahbD for haem synthesis) (Supplementary Table 7 
and Supplementary Results). We studied the normalized abundance 
of viral scaffolds on a per-nucleotide basis (see details in Methods). In 
our analysis of the 471 metagenomes, four of the six psbA-containing 
viral species showed a positive correlation between species abundance 
and nucleotide diversity (P < 0.05) (Supplementary Table 8). Moreo-
ver, two ahbD-containing viral species characterized by high occur-
rence showed a positive correlation between species abundance and 
single-nucleotide polymorphism (SNP) density (P < 0.05).

We subsequently expanded our analysis to encompass all viral 
species containing AMGs. Of these, 221 out of 865 species with valid 
nucleotide diversity results and 262 out of 776 species with valid SNP 
density results showed significant positive correlations with viral 
abundance, respectively. By contrast, only 23 out of 865 species with 
valid nucleotide diversity results and 12 out of 776 species with valid 
SNP density results showed significant negative correlations with viral 

abundance, respectively (Supplementary Table 8). These findings 
suggest that viral intra-population diversity is mainly governed by 
the neutral theory42, wherein an augmented population size generally 
leads to increased nucleotide diversity and SNP density. Positively 
selected genes within these persistent viral populations (Supplemen-
tary Table 9) encoded enzymes associated with purine biosynthesis, 
viral RNA synthesis, DNA repair, controlling of cellular and viral DNA 
and messenger RNA turnover, transcriptional regulation and bacte-
rial cell wall penetration, as well as auxiliary metabolisms related to 
photosynthesis (psbA), haem synthesis (ahbD) and folate biosynthesis 
(moaA). Such findings suggest a mechanism of viral fitness selection 
associated with viral infection and host regulation, virion replication 
and host metabolism redirection or augmentation2,12,43.

In certain viral species, whole-genome genetic heterogeneity 
gradually decreased (Fig. 5a), as evidenced by the fact that persis-
tent psbA- and ahbD-containing viral species showed an increasing 
SNP allele frequency over time, as shown by linear regression (high 
regression slope) and Spearman’s rank correlation tests (significant P 
value) (Supplementary Table 10). We examined the genes containing 
these increasing-frequency SNP alleles. Six of the nine viral genes were 
positively selected within these two vMAGs; three were annotated with 
important functions (psbA and ahbD for auxiliary metabolisms, restric-
tion endonuclease type II-like genes for host genome degradation, 
nucleotide recycling for viral replication44 and exclusion of superinfec-
tions45), contributing to viral fitness. This indicates that, while these 
high-occurrence viral species persist over time, their sub-populations 
have changed. Specifically, selection favoured some sub-populations 
with advantageous alleles. Nevertheless, the mean allele frequencies 
across genomes remain relatively low (~0.7), implying that either the 
genome-wide sweep remains ongoing or viral populations undergo a 
‘soft sweep’, wherein selection favoured a few sub-populations from 
large, diverse populations46–48. Bacteriophages typically have higher 
genomic diversity and recombination rates than bacteria49,50. Due to 
the high microdiversity that existed before the start of this study, it 
will take a longer time for sub-populations with selection advantages 
to take over the population. Concurrently, an elevated recombination 
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Fig. 5 | Microdiversity changes of persistent viral populations. a, Pattern of SNP 
allele frequency variation. SNP alleles are organized in ascending order based on 
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rate seems to counteract selection, promoting recombination among 
sub-populations with distinct micro-niches, thereby preserving 
genome-wide diversity.

In addition, for some viral populations, certain genes have either 
increased or decreased gene frequencies over time (Fig. 5b and Supple-
mentary Table 11). The increasing-frequency gene repertoire encodes 
structural proteins, such as chaperones of endosialidase (tail fibre 
proteins for initial absorption of virus into the host51), baseplate, base-
plate wedge and tail tube proteins; viral core function proteins, such as 
fibronectin type III containing protein (probably for virus–cell surface 
interaction52) and cell wall hydrolase (for host cell wall degradation 
and facilitating bacteriolysis and virion release53); and an AMG protein 
(PmoC). This indicates the importance of virus structural proteins, viral 
infection proteins and auxiliary metabolic proteins in strengthening viral 
fitness. This scenario suggests a similar genome-wide selection pattern in 
that certain sub-populations that harboured important functional genes 
in the lake before this study (before 2000) gradually became dominant 
in the populations from 2000 to 2019. Collectively, despite viral popula-
tions having a high level of diversity and rate of recombination, selections 
for genes with fitness advantages and genome-wide selections still play 
an important role in viral population dynamics.

Environmental constraints shape viral communities via 
top-down and bottom-up controls
Host dynamics are controlled by both top-down (for example, grazing 
by protists, viral lysis) and ‘bottom-up’ (for example, water tempera-
ture, nutrient concentrations) drivers4. We expect these dynamics to 
also manifest in measured viral abundances and potential viral roles. 
We focused on Cyanobacteria and their viruses to explore whether 
available limnological measurements could explain their dynamics. The 

number of duration days in which the Cyanobacteria and Cyanobacteria 
virus abundances were >20% of their peak abundances were related to 
the environmental parameters using Spearman’s rank correlation test. 
The number of duration days should reflect an integrated influence of 
the environmental conditions during the summer season. As expected, 
water temperature and Secchi depth (a measure of water clarity) were 
positively correlated with both Cyanobacteria and their viruses (Fig. 6a 
and Supplementary Table 12).

These relationships reflect the intricate balance of both top-down 
and bottom-up factors that shape the environment, viruses, bac-
teria and predators within the ecosystem. Phosphorus, acting as a 
bottom-up factor, stimulates phytoplankton growth54. This increase in 
phytoplankton biomass forms the basis for further ecological interac-
tions. Inorganic carbon serves as the primary carbon source for cyano-
bacteria through photoautotrophy, promoting both cyanobacteria 
and viral proliferation in a bottom-up manner. In addition, several 
cyanobacteria can assimilate organic carbon concurrently during pho-
tosynthesis, and the mixotrophic metabolism accelerates the growth 
of Cyanobacteria55,56. This aligns with the observed positive correlation 
between organic carbon and Cyanobacteria (Fig. 6b). Ammonium also 
correlated positively with cyanobacterial virus abundance. As the pri-
mary nitrogen source for assimilation by Cyanobacteria57, it promotes 
Cyanobacteria growth, which in turn supports the proliferation of 
Cyanobacteria viruses. Conversely, reflecting a top-down control, as 
Cyanobacteria abundance increases, zooplankton density increases, 
showing a typical predator–prey dynamic. The increased cyanobacte-
rial abundance provides more hosts for cyanobacteria viruses, which 
leads to the elevation of virus abundance as evident from the observed 
correlations in virus-to-host abundance. These top-down interactions 
are critical in regulating the populations within the ecosystem.
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Discussion
Our study highlights the enormous volume of unknown viral diversity 
found in a single temperate freshwater lake and additionally suggests 
that other freshwater systems, such as tropical lakes, are likely purvey-
ors of viruses playing important roles in nutrient and biogeochemical 
transformations that require further investigation.

Few studies have focused on the evolution and environmental 
analyses of viral population dynamics9, especially over long timescales 
such as for a two-decade time-series study of the natural environment 
conducted here. In this study, persistently distributed viral popula-
tions of high occurrence underwent both positive gene selection and 
genome-wide selection. Three evolutionary processes were inferred: 
selection favoured genes associated with fitness, genomic heteroge-
neity decreased over time and sub-populations carrying certain genes 
became dominant. Similar to a lake green sulfur bacterial population in 
which SNP variations were slowly purged and some genes were either 
swept through or lost within the population over time8, our study 
indicates the universality of evolutionary processes in both viruses 
and microorganisms. These processes can be jointly explained by the 
concept that some sub-populations with advantageous traits acquired 
through mutations or horizontal gene transfer outcompete others and 
become predominant in the observed populations8,46,47, which appear 
to be ‘stable’ when only viewed from a macrodiversity perspective.

In the evolutionary arms race between viruses and their hosts, 
‘kill-the-winner’ and other forms of dynamics frequently occur, caus-
ing fluctuations in the abundance of various viral strains58. Despite 
these fluctuations, certain viral species persist over extended periods 
and show high occurrence over time, indicating their evolutionary 
success in adapting to changing environmental conditions. These 
high-occurrence viral species may represent a ‘royal family’ viral spe-
cies in the model used to explain the kill-the-winner dynamics59, where 
certain sub-populations with enhanced viral fitness have descend-
ants that become dominant in subsequent kill-the-winner cycles. It is 
probable that these high-occurrence viral species maintain a stable 
presence at the coarse diversity level while undergoing continuous 
genomic and physiological changes at the microdiversity level. For 
example, the selection of viral genes associated with resistance and 
counter-resistance results in enhanced bacterial cell wall penetration, 
initial absorption into the host cell and virus–cell surface interactions. 
Therefore, the sustained interactions and co-evolution of viruses and 
hosts over time suggest better adaptation of highly abundant viral 
species to local environmental conditions.

Concurrently, we identified environmental factors, such as inor-
ganic carbon and ammonium, that might indirectly influence viral 
abundance through virus–host interactions. Our observations suggest 
a complex interplay of bottom-up controls, such as nutrient availability 
and primary production, and top-down controls such as predator–prey 
dynamics. Overall, our findings underscore the necessity for further 
research on viruses in microbiomes and ecosystems and for a holistic 
approach that places viral studies in the broader context of biodiver-
sity, virus–host interactions and the physico-chemical constraints 
existing in natural environments.

Methods and materials
Samples
In this study, 471 water filter samples were collected from a pelagic 
integrated 12 m depth zone in Lake Mendota, Madison, WI, USA (GPS: 
43.0995, −89.4045). Lake Mendota is a eutrophic freshwater lake located 
in Madison, WI (size, 39.4 km2; average depth, 12.8 m; pH, 8.5) and an 
important component within the North Temperate Lakes Long Term 
Ecological Research project started in 1981. The samples were collected 
over several time points across different seasons each year, and the 
total sample period spanned 20 years (2000–2019). For each sample 
date, an approximately 250 ml integrated water sample was collected 
by filtering through a 0.2 μm pore size polyethersulfone Supor filter 

(Pall Corporation)58. Filters were stored at −80 °C for long-term stor-
age. For omics sequencing, DNA extraction was conducted by using the 
FastDNA Spin Kit (MP Biomedicals) with minor modifications.

Environmental parameters
Environmental parameters were acquired from the sampling station at 
Lake Mendota (GPS: 43.0988, −89.4054) through the North Temperate 
Lakes Long Term Ecological Research program (https://lter.limnology.
wisc.edu/) and are available through the Environmental Data Initiative 
(https://edirepository.org/), including water temperature60–64, dis-
solved oxygen60,61,64, Secchi depth63,65,66, major ions67, limnological 
nutrients68, chlorophyll-a69, phytoplankton biomass70 and zooplank-
ton density71.

Days>20%peak abundance ∼ ? (
DaysEarly summer

DaysEarly summer+Late summer
× Env paraEarly summer

+ DaysLate summer
DaysEarly summer+Late summer

× Env paraLate summer) × r

(1)

r =
DaysEarly summer+Late summer
DaysEarly summer+Late summer

(2)

The two equations presented above show the method to assess 
potential correlations between the duration of days (Days) in which 
the abundance is maintained at >20% of the peak abundance (for both 
cyanobacteria and cyanobacteria viruses) and the average environ-
mental parameters (Env para) throughout summer seasons. These 
environmental parameters were obtained from both Early summer 
and Late summer, and their significance was weighted based on the 
dates of each summer season. In equation (1), the symbol ‘~?’ denotes 
evaluating the presence of potential correlations with significant sup-
port for the contents on both sides of the equation. In equation (2), ‘r’ 
represents the ratio used to standardize the summer dates for each year 
in relation to the mean summer dates. Duration days were determined 
by computing the abundance profile using an interpolation function 
for each year, with intervals of 5 days. The interpolation function was 
applied to abundance data within the time range of −45 to 160 days 
(since the start of early summer for each year). The years that could not 
meet the entire time range were excluded from the correlation analysis. 
The Spearman’s rank correlation test with Fisher z-transformation was 
used, and the P value was provided. The mean value of each parameter 
for every season was calculated by averaging all the measurements 
within that specific season (some missing values were denoted as ‘NA’).

Metagenome sequencing and processing
Extracted DNA from 471 samples was submitted to the Department 
of Energy Joint Genome Institute (DOE JGI) (Walnut Creek, CA) for 
metagenomic sequencing. Illumina regular fragments with ~300 bp 
length were made for metagenome library construction; afterward, 
the high-throughput sequencing was conducted using the Illumina 
NovaSeq S4 (Illumina), yielding paired-end reads of 150 bp each and 
approximately 1.5 × 108 reads (accounting for both ends) per sample. 
The metagenome assembly was performed by metaSPAdes v3.14.172 
and annotated by the IMG annotation pipeline (IMGAP) v5.0.2073 imple-
mented in the Integrated Microbial Genomes & Microbiomes system 
(https://img.jgi.doe.gov/m/).

Virus identification and genome binning
VIBRANT v1.2.174 was used to identify and annotate virus (bacterio-
phage) scaffolds from metagenomic assemblies with default settings. 
Only viral scaffolds (including both provirus and non-provirus) longer 
than 2,000 bp were used for downstream analysis. vRhyme v1.0.075 
was used to reconstruct vMAGs from the identified viral scaffolds with 
default settings. The following four criteria were used to refine the best 

http://www.nature.com/naturemicrobiology
https://lter.limnology.wisc.edu/
https://lter.limnology.wisc.edu/
https://edirepository.org/
https://img.jgi.doe.gov/m/


Nature Microbiology | Volume 10 | January 2025 | 231–245 240

Resource https://doi.org/10.1038/s41564-024-01876-7

vMAG (or bin) collection suggested by the default result of vRhyme: 
(1) Proviruses identified by VIBRANT were excluded from binning. (2) 
Two or more temperate (non-provirus) viral scaffolds cannot be in the 
same bin. (3) Viral scaffolds identified by CheckV v0.8.126 (database 
checkv-db-v0.6) as ‘Complete’ were excluded from binning. (4) The 
maximum number of bin redundancy should be ≤1. Any predicted 
bins that did not meet the above four criteria were split into individual 
viral scaffolds. CheckV was also used to estimate the vMAG quality 
with default settings. As CheckV can only process single-contig viral 
genomes, for each vMAG, we first linked vMAG scaffolds with 1,500 
‘N’s to make temporary ‘single-contig’ viral genomes.

Virus clustering
We first clustered all viral genomes into families and genera using the 
gene sharing and amino acid identity (AAI) method76. Specifically, 
an all-vs-all DIAMOND BLASTP (v0.9.14.115) was performed for all 
virus genome protein sequences with the settings of ‘--evalue 1e-5 
--max-target-seqs 10000 --query-cover 50 --subject-cover 50’. Then, 
the gene-sharing numbers between each pair of genomes, as well as 
the average amino acid identity of shared proteins, were parsed from 
DIAMOND BLASTP results. Edges (based on the minimum values of gene 
sharing and AAI) and nodes (viral genomes) were parsed accordingly 
for both families and genera, then filtered and subjected to MCL-based 
(v14.137) network clustering77. The edge filtering criteria and settings 
of the Markov clustering (MCL) inflation factor were adopted from a 
previous publication76 (https://github.com/snayfach/MGV/tree/mas-
ter/aai_cluster).

For non-singleton genera, we further clustered them into spe-
cies. dRep v3.2.278 was used for dereplicating all viruses within each 
genus with the settings of ‘-l 2000 --ignoreGenomeQuality -pa 0.8 -sa 
0.95 -nc 0.85 -comW 0 -conW 0 -strW 0 -N50W 0 -sizeW 1 -centW 0’. 
The resulting representatives (the best representative viral genomes 
picked according to genome length) together with singleton genera 
and individual viral genomes that were not assigned to any genera were 
the final collection of species.

Taxonomic classification
We combined three approaches to conduct taxonomic classification. 
For the first and second approaches, we adopted the procedure as 
described in the instructions as suggested previously3. For searching 
against National Center for Biotechnology Information (NCBI) Refer-
ence Sequence (RefSeq) viral proteins, DIAMOND BLASTP v0.9.14.115 
was used to BLAST against NCBI RefSeq viral proteins (2023-01-13 
release)79 using all the TYMEFLIES viral proteins with settings of ‘blastp 
-evalue 1e-5 --query-cover 50 --subject-cover 50 -k 10000’. For any viral 
genome with ≥30% of proteins having significant hits to NCBI RefSeq 
viral proteins, a ≥50% majority taxonomy was assigned based on the 
taxonomy (using reformatted International Committee on Taxonomy 
of Viruses (ICTV) taxonomy with eight ranks) of the best hits of indi-
vidual proteins. For the viral orthologous groups (VOG) marker hid-
den Markov model (HMM) searching approach, hmmsearch (HMMER 
v3.1b280) was used to search against VOG database v97 (2021-04-19 
release, http://vogdb.org) using all the TYMEFLIES viral proteins. Only 
587 VOG marker HMM profiles were used as the reference for taxo-
nomic classification3. The criteria for positive hits were score ≥40 and 
E < 1 × 10−5. The taxonomy of a viral genome was obtained based on 
individual markers detected using a simple plurality rule if multiple 
hits were present. For the third approach, geNomad v1.5.1 was used to 
annotate viruses and get taxonomy from the annotation result using 
default settings81. For each vMAG, we first linked vMAG scaffolds with 
1,000 Ns to make temporary single-contig viral genomes to meet the 
input requirement of geNomad.

If a viral genome was not assigned taxonomy by any of the 
above three approaches while it was placed in a genus with the other 
member(s) assigned using the NCBI RefSeq viral protein searching 

approach, the lowest common ancestor (LCA) of this genus was used 
as the taxonomic classification (in this case, the deepest LCA rank is 
limited to the genus level). All the aforementioned taxonomic clas-
sification approaches were labelled in accordance with the taxonomy 
obtained. If overlaps occurred, the top-order approach was given the 
highest priority.

Host prediction
We used three approaches for predicting the hosts of viruses. For 
the first approach, iPHoP v1.2.0 (re. 82) was used to predict the host 
from all viruses (N-linked sequences to make temporary single-contig 
viral genomes) using the default settings. The TYMEFLIES species 
representative metagenome-assembled genomes (2,855 MAGs total, 
dereplicated by dRep with 96% sequence identity cut-off) were added 
to the default iPHoP database ‘Sept_21_pub’25. The host prediction to 
genome results (based on host-based tools, including ‘blast’, ‘CRISPR’, 
and ‘iPHoP-RF’ results) were finally assigned with the following rules: 
(1) If blast or CRISPR results were obtained for one virus genome, the 
result with the highest confidence score was assigned as the final result. 
(2) If only iPHoP-RF results were obtained for one virus genome, the 
result with the highest confidence score was assigned as the final 
result. For the second approach, we predicted the viral host based 
on the AMG identity match between AMGs and microbial counter-
part genes. The viral AMGs were identified, filtered and summarized 
(for details, refer to the following section). The counterpart genes in 
prokaryotic hosts (with the same KEGG Orthology) were parsed out 
from all TYMEFLIES MAGs. For any viruses that had AMGs connected 
to their counterparts in TYMEFLIES MAGs (potential viral contigs 
were excluded as mentioned above) based on the cut-off of sequence 
identity ≥60% (with DIAMOND BLASTP options of ‘--query-cover 70 
--subject-cover 70’), the AMG viral–host connections were established. 
Similarly, such multiple viral–host connections based on AMGs for a 
virus were aggregated, and the lowest rank with ≥80% consensus was 
determined as the host taxonomy. For the third approach, a TYMEFLIES 
MAG that contained the scaffold where the provirus was located was 
determined as the host.

If a viral genome was not assigned a host by any of the three 
approaches while it was placed in a species with the other member(s) 
assigned, the LCA of the host taxonomy for this species was used. Note 
that only the provirus, AMG host prediction and blast or CRISPR-based 
iPHoP results were used to get host predictions from other species 
members. All the results were labelled with corresponding host tax-
onomy prediction approaches. The overlapped host taxonomies were 
resolved based on the following order of priority: (1) provirus within 
a host genome; (2) blast-based iPHoP result; (3) CRISPR-based iPHoP 
result; (4) AMG match to host genome; (5) iPHoP-RF result; (6) derived 
from species host taxonomy.

AMG summary
The AMGs identified by VIBRANT in the above section were first filtered 
according to the following criteria: (1) Edge-located AMGs (AMGs 
located at either end of a scaffold) were filtered. (2) AMGs that had any 
KEGG v-score or Pfam v-score (assigned by VIBRANT) ≥1 were filtered. 
(3) AMGs with flanking genes (four genes on either the upstream or 
downstream sites) having a KEGG v-score <0.25 were filtered. (4) AMGs 
with annotation by COG category as ‘T’ or ‘B’ were filtered. The fil-
tered AMGs were then summarized by adding the information, includ-
ing date and season, KO hit and name, Pfam hit and name and KEGG 
metabolism, pathway and module. The AMG cluster occurrence (the 
number of metagenomes in which an AMG cluster can be found) and 
abundance (the mean normalized abundance of AMG cluster contain-
ing viruses in the metagenomes that this AMG cluster can be found) 
were obtained by summarizing AMG cluster containing viruses and 
were used to make scatter plots to find potential relationships using 
R v4.1.3 (R library ‘ggpmisc’).

http://www.nature.com/naturemicrobiology
https://github.com/snayfach/MGV/tree/master/aai_cluster
https://github.com/snayfach/MGV/tree/master/aai_cluster
http://vogdb.org


Nature Microbiology | Volume 10 | January 2025 | 231–245 241

Resource https://doi.org/10.1038/s41564-024-01876-7

The summary of AMG cluster abundance for each season (a season 
from 20 years combined) and each year-season (a season from each 
year; for example, ‘2000-Spring’) was conducted using the following 
steps: (1) Calculate AMG cluster abundance (normalized by 100 million 
reads per metagenome) in each metagenome. (2) Calculate AMG clus-
ter abundance for each season by adding up AMG cluster abundances 
from all metagenomes of this season (the AMG cluster abundance was 
normalized by the number of metagenomes in this season). (3) Calcu-
late AMG cluster abundances for each year-season by adding up AMG 
cluster abundances from all metagenomes of this year-season (the AMG 
cluster abundance was normalized by the number of metagenomes in 
this year-season). (4) Generate AMG cluster abundance trend plots for 
each season (20 years combined) and each year-season (resulting in 20 
facets for all 20 years) using R (R library ‘ggpubr’).

AMG cluster variation
In non-singleton species, we investigated the AMG cluster variation by 
calculating the presence ratio of the AMG clusters across all the viral 
members within the species. To investigate how the viral genome com-
pleteness influences AMG cluster variation within a viral species, we 
selected several important AMG clusters for analysis. Viral genomes 
were categorized into five completeness levels: ‘75–100% complete’, 
‘50–75% complete’, ‘25–50% complete’, ‘0–25% complete’ and NA. For the 
species with its species representative genome containing a specific AMG 
cluster, we calculated the AMG cluster containing ratio (as a percentage) 
by dividing the number of AMG cluster containing viral genomes by the 
total number of viral genomes within each completeness category. The 
results that represent the relation of virus completeness to the AMG 
cluster containing percentage for species’ members across all selected 
AMG clusters were plotted using bar plots in R (R library ‘ggplot2’).

The influence of species size (number of viral genomes in the 
species) on the AMG cluster variation was analysed by dividing the 
combinations of AMG cluster and species into four quartiles accord-
ing to the species size. The combination of AMG cluster and species 
was used for AMG cluster variation analysis because some species can 
contain multiple AMG clusters. The mean AMG cluster presence ratio 
for each AMG cluster from the AMG cluster and species combinations 
of the first quartile (75–100%) of AMG cluster presence ratio category 
(the highest presence ratio) with the species size in the fourth quartile 
(the largest species size) was calculated. It was then plotted against the 
AMG cluster count fraction (the percentage of occurrences of a single 
AMG cluster among all AMG clusters within a species) to illustrate the 
relationship. The presence tables of AMG clusters for each season 
(20 years combined) were obtained for individual AMG clusters. They 
were compared with the available metagenomes for each season. The 
percentage of AMG cluster containing metagenome number over the 
total metagenome number in each season was calculated for each 
high-occurrence AMG cluster (distributed >400 metagenomes).

AMG cluster carrying viruses and host diversity
To get the alpha diversity of viruses and their hosts for each AMG cluster, 
we used the family-level taxonomy. Viruses with uninformative assign-
ments (for example, ‘Unclassified’, NA;NA, and ‘o__;f__’) were excluded. 
To evenly reflect alpha diversity, 100 viruses with informative family 
assignment and 25 viruses with informative host family assignment 
were randomly selected for each AMG cluster. Any AMG clusters that 
could not meet the required number of viruses were excluded. Alpha 
diversities (represented by Simpson indices) of viruses and viral hosts 
were obtained by R (R library ‘vegan’), and they were plotted against AMG 
cluster occurrence to find potential relationships (R library ggpmisc).

AMG coverage ratio, viral genome abundance and MAG 
abundance calculation
The mapping reference for viral abundance calculation was the col-
lection of viral species representative genomes. These genomes were 

also the longest among species members. The AMG counterpart 
gene-containing microbial scaffolds from all metagenomes were also 
included to avoid potential mis-mapping of microbial reads to viral 
AMGs. The mapping process was conducted by Bowtie 2 v2.4.5 using all 
metagenomic reads with default settings. The resulting bam files were 
subjected to viral abundance and microdiversity analysis by MetaPop 
v0.0.6083 using the settings of ‘--id_min 93 --snp_scale both’ (gene files 
from the above VIBRANT analysis were used in place of self-annotation 
by MetaPop; modifications were made to the gene files to adapt them 
to MetaPop requirements).

A custom script ‘cov_by_region.py’ was used to parse the 
site-specific depth file (within ‘04.Depth_per_Pos’ directory of Meta-
Pop result from the above section) to get the AMG coverage and viral 
scaffold coverage (excluding all the AMG regions). We obtained the 
normalized viral genome coverage by first calculating the average of 
all its scaffold coverage values (excluding all the AMG regions) and then 
normalizing it by setting each metagenome read number as 100 million. 
Note that all scaffold coverages from a viral genome needed to pass the 
cut-off of ≥0.01; otherwise, we assigned this viral genome as ‘absent’.

After summarizing viral genome coverages across all the metage-
nomes, we set a custom viral genome presence cut-off as follows: 
coverage ≥0.33 and breadth ≥50%. Then, based on these ‘present’ 
viral genomes, we obtained the corresponding viral genome cover-
age (referred to as ‘abundance’) and AMG coverage values across all 
the metagenomes, as well as the AMG coverage ratios (AMG coverage 
divided by its corresponding viral genome coverage). Using the same 
criteria for scaffold coverage cut-off and viral genome coverage and 
breadth cut-offs, we calculated the viral genome abundance for the 
other non-AMG-containing viruses.

TYMEFLIES species representative MAGs were used as the map-
ping reference for conducting metagenomic read mapping using 
Bowtie 2 with default settings. CoverM v0.7.0 was used to calculate 
contig abundance using the settings of ‘--min-read-percent-identity 
93 -m metabat’. The MAG was assigned as present in each metagenome 
with a breadth cut-off of 10%. The MAG abundance was calculated by 
computing the average contig abundance using the ratios of contig 
length to genome length. The MAG taxa abundance (at the family level) 
for each season was summarized using similar methods described 
above (refer to the second paragraph of the section ‘AMG summary’).

Virus composition pattern analysis
The abundance of viruses at the family level across all metagenomes 
was summarized. Subsequently, we generated non-metric multidimen-
sional scaling plots using R (R library vegan and ggplot2). These plots 
represent the ordination of metagenomes based on pairwise distances 
of virus composition among all the metagenomes. According to the 
metagenome-to-season corresponding relationship, the analysis of 
similarity (ANOSIM) test was conducted to inspect whether there was 
a statistical difference among metagenomes from different seasons 
using R (R library vegan) with options of ‘distance = ‘bray’, permuta-
tions = 9999’.

Virus and host association analysis
For the calculation of Cyanobacteria virus and host abundances, 
we mainly focused on the three Cyanobacteria groups: Cyanobi-
aceae, Microcystis and Planktothrix. Within each group, we com-
puted the abundances of MAGs, psbA-containing viral genomes and 
non-psbA-containing viral genomes, specifically from the 0 day of early 
summer for each year. Subsequently, we used an interpolation func-
tion to generate abundance profiles for each year, with 5 day intervals. 
To plot the mean curves for virus and host abundances, we initially 
obtained the mean values of abundance percentages (normalized 
by the highest abundance within 1 year) for each time point. We then 
multiplied these mean abundance percentages by the highest abun-
dance within that respective year. This approach was implemented to 
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mitigate the impact of substantial abundance fluctuations from year 
to year. The mean value for each time point was calculated based on 
valid abundances from at least 3 years. Subsequently, for each of the 
Cyanobacteria groups, we plotted the mean abundance curves for all 
viruses and hosts in a single line chart frame using Python 3 (Python 
library ‘matplotlib’).

For the calculation of methanotroph virus and host abundances, 
we mainly focused on the four methanotroph genera: Methylocys-
tis, UBA6136, Methylomonas and UBA10906 (Supplementary Fig. 1). 
Similarly, within each genus, we computed the abundances of MAGs, 
pmoC-containing viral genomes and non-pmoC-containing viral 
genomes, specifically from the 0 day of late summer for each year. 
The remaining methods were consistent with those described in the 
preceding paragraph to plot the mean abundance curves for all viruses 
and hosts. For the calculation of Nanopelagicales virus and host abun-
dances, we mainly focused on two genera: Planktophila and Nanope-
lagicus. Similarly, within each genus, we computed the abundances 
of MAGs, katG-containing viral genomes and non-katG-containing 
viral genomes, specifically from the 0 day of clearwater for each year. 
The remaining methods were consistent with those described in the 
preceding paragraph to plot the mean abundance curves for all viruses 
and hosts.

To calculate the viral-to-host abundance ratios for each group 
mentioned in the previous paragraphs, we considered pairs of virus and 
host abundances that met specific criteria. Specifically, at each time 
point, both the virus and host abundance percentages were required to 
be non-null (not ‘nan’) and greater than 10% to be considered valid pairs. 
Subsequently, box plots were created to show the viral-to-host abun-
dance ratio distribution for each group using R (R library ‘ggplots2’ and 
‘scales’) with the ratio range displayed with log-transformed values.

Microdiversity analysis
The microdiversity parameters were parsed based on the results of 
MetaPop (the ‘Microdiversity’ folder). Only viral scaffolds that passed 
the requirement of microdiversity calculation (breadth ≥70% and depth 
≥10) were taken into consideration. Similar to the methods described 
in the above sections, the following microdiversity parameters for 
each metagenome, each year-season, each season and/or each year 
were calculated and summarized accordingly: nucleotide diversity 
(pi) for viral genome and viral genes, SNP density for viral genomes, 
rates of non-synonymous (pN) and synonymous (pS) polymorphism 
(pN/pS) for viral genes and fixation index (FST) for viral scaffolds. The 
correlations between viral genome abundance with nucleotide diversity 
and SNP density were calculated by Python 3 using Spearman’s rank 
correlation test with the P value provided.

To investigate the populational genetic alteration between sum-
mer and winter (Late summer versus Ice-on), and between the begin-
ning and ending years (2000–2003 versus 2016–2019), we conducted 
similar MetaPop analyses by aggregating the relevant metagenomic 
reads. Likewise, we calculated and summarized the four microdiversity 
parameters accordingly.

Yearly SNP allele frequency was calculated by parsing SNPs across 
the full length of the viral genome. The ‘reference’ alleles were chosen 
to be the predominant alleles of viral genomes in 2018. The choice was 
made because 2018 has the most metagenomes (n = 44) in the latter 
years, and a yearly changing trend from the beginning to the ending 
years can be depicted simply. SNP allele frequency was the percentage 
of reads matching the reference allele at each SNP locus.

Yearly gene frequency was calculated to reflect the gene rela-
tive abundance change in the viral species population along the time 
series. Gene frequency was estimated as the coverage of each gene 
divided by the mean coverage of all other genes in the genome. To 
set the detection limit for genome coverage, the mean coverage of all 
genes in the genome was required to be ≥5. Genes of length <450 bp 
were excluded from the analysis. In addition, to avoid the coverage 

variation influenced by the ‘all-to-all’ read mapping method (the default 
setting of Bowtie 2), the positions within the first and last 150 bp of a 
scaffold were excluded from coverage calculations. To get a statistically 
meaningful gene frequency, there was another requirement that the 
gene number in a genome with a valid coverage (not NA) should be over 
50% of the total gene number. A gene frequency of 1.0 indicates that, 
statistically compared with the other genes in the genome, each virus 
in the population encodes one copy of the gene. Gene frequencies were 
considered significantly increased or decreased within a population 
if the change in gene frequency was ≥1.0. The yearly changing trend of 
gene frequency was fitted to the linear regression by Python 3.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The metagenomic datasets (including assemblies and raw reads) are 
all available under JGI Proposal ID 504350 at the platform of the Inte-
grated Microbial Genomes & Microbiomes system (https://img.jgi.doe.
gov/m/). The retrieved viral genomes were deposited in NCBI Biopro-
ject PRJNA1130067. At the same time, the TYMEFLIES viral genomes 
and related properties, including annotations for viral proteins, taxo-
nomic classification, host prediction and virus clustering results, are 
available via Figshare at https://figshare.com/articles/dataset/TYME-
FLIES_vMAGs_and_related_properties/24915750 (ref. 84). The raw envi-
ronmental parameter spreadsheets are available in the Environmental 
Data Initiative (https://edirepository.org/) database.

Code availability
Codes used in this project are available via GitHub at https://github.
com/AnantharamanLab/TYMEFLIES_Viral.
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Extended Data Fig. 1 | Summary of viral scaffolds and genomes. a Binned/
unbinned scaffold percentage after binning by vRhyme and bin member number 
frequency for all bins (vMAGs). Only bin member numbers with frequencies > 1% 
are shown in the bar plot. Numbers of scaffolds and numbers of bins are labeled 
accordingly. b Length and completeness change after binning, and CheckV 
quality to viral genome length distribution. Viral scaffold or/and vMAG (viral 
genome) numbers are labeled accordingly. “Viral scaffolds”: total viral scaffolds 
before binning; “vMAGs+unbinned scaffolds”: vMAGs and unbinned scaffolds 

after binning; “vMAGs”: vMAGs after binning; “Binned scaffolds (within vMAGs)”: 
binned scaffolds (the scaffolds that are in the vMAGs) after binning; “Unbinned 
scaffolds”: unbinned scaffolds after binning. Statistical significance was assessed 
using two-sided t-tests for the indicated comparisons, with p-values indicating 
significance between comparisons. c The number of viral scaffolds, vMAGs, 
species, and genera. d The rarefaction curve of species-level vOTU numbers.  
Ten replicates with a random starting sample were made to generate error bars.
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Extended Data Fig. 2 | AMG metabolisms and functions. a AMGs involved  
in photosynthesis, b AMGs involved in methane and related metabolism,  
c AMGs involved in nitrogen metabolism, d AMGs involved in CO2 fixation,  
e AMGs involved in sulfur and related metabolism, f AMGs involved in nucleotide 
metabolism, g AMGs involved in amino sugar and nucleotide sugar metabolism,  
h AMGs involved in pyruvate metabolism, i AMGs involved in porphyrin,  
haem, and cobalamin metabolism, j AMGs involved in folate biosynthesis,  
k AMGs involved in nicotinate and nicotinamide metabolism, l AMGs involved in 
riboflavin metabolism, m AMGs assigned to AMG clusters with other important 

functions (distributed in >300 metagenomes), n AMGs assigned to clusters  
with other important functions. Gene symbols, the corresponding enzyme name, 
and CAZy ID for genes in n were depicted in brown together with the occurrence 
and abundance values (labeled as “occurrence|abundance”; occurrence, the 
number of metagenomes in which an AMG cluster can be found; abundance, 
the mean normalized abundance of AMG carrying viruses in the metagenomes 
in which this AMG can be found). Dotted arrows indicate steps that are not 
encoded by AMGs. Detailed information on each AMG cluster can be found in 
Supplementary Table S6.
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Extended Data Fig. 3 | AMG cluster variation in species and high occurrence 
AMG cluster distribution across different seasons. a AMG cluster variation in 
viral species. The left bar plot represents the AMG cluster presence ratio pattern 
among all AMG cluster and species combinations. The x-axis indicates the size 
category of species and the number of AMG cluster and species combinations. 
The y-axis indicates the fractions of four quartiles of AMG cluster presence ratios. 
The right scatter plot represents the AMG cluster count fraction (the percentage 
of one AMG cluster being encountered among all AMG clusters within a species) 
to the mean AMG cluster presence ratio (the percentage that one AMG cluster 
appears among all members within a species) across all species. This scatter 

plot used the AMG cluster and species combinations of the 1st quartile (75-100%) 
of AMG cluster presence ratio category (the highest presence ratio) with the 
species size in the 4th quartile (the largest species size), which was shown as 
the connection by dash lines. High occurrence AMG clusters (distributed > 400 
metagenomes) were colored red, and other AMG clusters were colored green. 
b Seasonal distribution of high occurrence AMG clusters (distributed > 400 
metagenomes)) across metagenomes. The percentage indicates the AMG  
cluster containing metagenome number over the total metagenome number  
in each season.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Resource https://doi.org/10.1038/s41564-024-01876-7

Extended Data Fig. 4 | The taxonomic distribution (classified to the family level) of predicted hosts for eight AMG cluster-containing viruses with low Simpson 
indices. Unclassified hosts were not depicted and low abundance families (with abundance < 5% in all eight AMG clusters) were integrated into a group named “Others”.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Species and AMG abundance across the time-series. 
The seasonal abundance distribution, species and AMG abundance percentage, 
and total species and AMG abundance across 20 years for psbA- (a), pmoC- (b), 
katG- (c), ahbD-containing (d) viruses are summarized. In each subpanel, high 
occurrence species were picked according to the occurrence across 20 years, 
high abundance AMGs were picked according to the non-zero mean relative 
abundance across 20 years, and the abundance for each year was represented by 
the season with the highest/second to the highest species abundance in each year 
(Late Summer for psbA, Fall for pmoC, Late Summer for katG, and Early Summer 

for ahbD). Species and AMGs were colored in blue and orange, respectively. 
Star-labeled AMGs indicate the overlap of the high occurrence species and high 
abundance AMG in subpanels a, c, d. The abundance values (for both species 
and AMGs) were normalized by 100 M reads/metagenome. For psbA- and ahbD-
containing viruses, only species with ≥ 20 occurrences out of 471 metagenomes 
were included in the analysis; for pmoC- and katG-containing viruses, only 
species with ≥ 5 occurrences out of 471 metagenomes were included in the 
analysis. The species and AMG abundance percentage calculation was based on 
the total occurrence-filtered viral species.
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