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Abstract— We present domain adaptive processor (DAP),
a programmable systolic-array processor designed for wireless
communication and linear algebra workloads. DAP uses a
globally homogeneous but locally heterogeneous architecture,
uses decode-less reconfiguration instructions for data streaming,
enables single-cycle data communication between functional units
(FUs), and features lightweight nested-loop control for periodic
execution. Our design demonstrates how configuration flexibility
and rapid program loading enable a wide range of commu-
nication workloads to be mapped and swapped in less than
a microsecond, supporting continually evolving communication
standards such as 5G. A prototype chip of DAP with 256 cores
is fabricated in a 12-nm FINFET process and has been verified.
The measurement results show that DAP achieves 507 GMACs/J
and a peak performance of 264 GMACs.

Index Terms—12-nm FINFET, accelerator, array processor,
digital signal processing, domain-specific hardware, multicore,
programmability, systolic array, wireless communication.

I. INTRODUCTION

ROMPTED by the demise of Dennard’s scaling [1], there
is an increased use of accelerators to augment general-
purpose processing. These accelerators provided a viable
solution to bridge the gap between the growing computational
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demands and the transistor advancements [2], [3], [4], [5], [6].
However, the application space for customized designs which
target a specific computational function is limited, and the
gain of increasing the number of accelerators is constrained
by on-chip resources. Eventually, this approach will hit the
“accelerator wall” [7], [8]. Therefore, the tradeoff between
performance, efficiency, and flexibility has become a key
concern, especially for wireless communication workloads.

A. Wireless Communication

Crucial to modern society, wireless communications range
from radar stations to wearable devices. Given their compute-
intensive nature, they require cutting-edge performance, and
their ubiquity necessitates high efficiency. Furthermore, with
the frequent introduction of new protocols and the need to run
various kernels concurrently, flexibility and interoperability are
of paramount importance.

B. Limitations of Conventional Computing Platforms

CPUs and GPUs offer versatility but face challenges with
performance and efficiency overheads. These overheads stem
from operations such as memory transfer, instruction decoding,
and unpredictable program execution (e.g., branching) [9].
Field-programmable gate arrays (FPGAs), which offer gate-
level reconfigurability, are promising but come with non-trivial
hardware overheads. In addition, FPGAs suffer from long
reconfiguration times at microsecond scales [10].

Dedicated application-specific integrated circuits (ASICs),
while highly efficient, feature a hardcoded datapath. This
inflexibility makes them ill-suited for wireless communication
tasks that require adaptability to frequently introduced stan-
dards and computational kernel modifications. As a result, the
challenge would be finding a balance between efficiency and
flexibility, coupled with rapid reprogrammability.

C. Kernel Characteristics

Wireless communication kernels focus on data streaming
operations with minimal control flow. A single functional unit
(FU) operates continuously or periodically for many cycles,
streaming data to other FUs in a highly deterministic manner.
The acceleration of such kernels is particularly well-suited
for systolic-array architectures [11], [12], [13]. While these
architectures achieve high efficiency, they traditionally have
limited flexibility.
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D. Proposed Solution

Addressing these challenges, we introduce domain adaptive
processor (DAP) [14], a programmable fabric designed to
execute a diverse range of wireless communication kernels
with near-ASIC energy efficiency. Unlike existing designs that
prioritize full programmability or optimization for a specific
kernel, DAP focuses on the target domain. It achieves high per-
formance and efficiency while offering the required flexibility.
After a thorough study of the workloads, both the architec-
ture and the microarchitecture are optimized. This results in
co-optimized hardware implementations and mappings tailored
to each kernel’s unique characteristics. Moreover, multiple
kernels can be mapped onto the fabric simultaneously, forming
a complete workload. This reduces memory access and traffic
in and out of the fabric, ensuring energy consumption and
latency focus on computation. The proposed solution indi-
rectly contributes to overall system efficiency by optimizing
baseband processing, which, in turn, can lead to reduced
energy consumption system wide. Enhancements in baseband
processing efficiency can lower the computational overhead,
potentially allowing for more energy-efficient data transmis-
sion strategies to be implemented in the system front-end.

The contributions of this work are as follows.

1) We design a systolic-array architecture consisting
of lightweight processing elements (PEs) tailored
for domain-specific = computations in  wireless
communication.

2) We propose a custom instruction set architecture (ISA),
co-designed with the architecture that maximize FUs’
parallelism through data-level parallelism, instruction-
level parallelism, and pipeline parallelism.

3) We demonstrate examples of mapping wireless commu-
nication and linear algebra kernels on DAP, ensuring
high throughput and latency reduction.

4) We implement a prototype chip of DAP that
includes 256 PEs, which is fabricated in a 12-nm
FINFET technology. The performance and efficiency
are evaluated by executing more than ten kernels on
the prototype chip. Measurement results show that DAP
maintains an efficiency to within 2.23 x of fixed-function
accelerators running the same kernels.

The previous works similar to DAP include Yuan and
Markovi¢ [15], Cerqueira et al. [16], and Nagi et al. [17]. The
former two approaches incorporate a network on chip (NoC)
system to connect multiple cores in addition to systolic con-
nections while the last one uses multi-layered interconnects.
In contrast, DAP features a pure systolic connection between
all units. This design choice results in a lighter architecture
by eliminating the need for packet routers, switches, and
arbitration, thanks to the deterministic nature of the target
domain. The direct connection between cores and FUs more
closely mimics an ASIC implementation, which is aligned
with DAP’s design goal. While Yuan and Markovi¢ [15]
and Nagi et al. [17] also target wireless communication
kernels, leveraging their high data-reuse nature, DAP show-
cases a broader range of kernel mappings. Conversely, Catena
emphasizes on circuit-level optimizations such as power-gating
and fine-grained clock-gating for improved energy efficiency.

On the other hand, DAP’s main concern lies on the microar-
chitectural level, aiming to maximize hardware reuse and
minimize switching activity. A comprehensive discussion on
reconfigurable accelerators, dataflow machines, and multicore
architectures can be found in Section VII.

E. Article Structure

The remainder of this article is structured as follows.
Section II delves into the DAP architecture, while Section III
presents the microarchitectural optimizations. Section IV
presents examples of kernels and workloads mapped onto
DAP. Section V outlines the prototype chip implementation
and experimental methodology. Section VI presents and ana-
lyzes the measured results.

II. ARCHITECTURE

In this section, we delve into the architecture of DAP.

A. Design Characteristics

DAP is a programmable accelerator specifically designed
to cater to the requirements of wireless communication work-
loads. It combines traditional techniques with innovative
approaches. The major design features of DAP include the
following.

1) Systolic: DAP’s PEs are connected in a systolic array,
facilitating direct interconnections. This design helps
reduce data transfer latency, increase data reuse, and
minimize energy consumption in interconnects.

2) Programmable: Each PE in DAP offers programmability
in its datapath and FU operations. With a custom ISA,
it can activate multiple FUs within a single PE in
the same cycle, boosting parallelism and computation
throughput.

3) Concurrence: Operating under a multiple instruction,
multiple data (MIMD) paradigm, each PE functions
autonomously. PEs can form kernels, and multiple ker-
nels can run concurrently and independently. This design
promotes multitasking and seamless integration of inputs
and outputs from different kernels, optimizing data reuse
and reducing memory access.

B. Architecture Overview

Fig. 1 shows a high-level view of DAP’s architecture. The
core of DAP are the PEs, interconnected with neighboring PEs
in all eight directions to form a tight matrix. DAP is optimized
for 32-bit fixed-point complex number computations, and it
supports four different PE types equipped with FUs tailored
for complex and real number arithmetic (Table I). These PEs
group into locally heterogeneous clusters. However, these clus-
ters are replicated across the fabric for uniformity. The custom
ISA, detailed in Section II-D, facilitates the simultaneous
activation of multiple FUs (“parallelism” column in Table I),
ensuring high throughput.

For data transfers, DAP uses a systolic approach, elimi-
nating the need for an additional NoC. Global scratchpad
memories, positioned at the borders of each systolic array row,
store input/output data and essential programming instructions
for the PEs. Management units (MUs) connect the PE array
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Fig. 1.
Scratchpad memory is connected to the PE array through MUs.

TABLE I

DIFFERENT TYPES OF PES PROVIDE VARIOUS AMOUNT OF PARALLELISM,
CONTAIN DIFFERENT FUS, AND SUPPORT A WIDE
RANGE OF COMPUTATION

Type Function Parallelism Operation
MAC MAC 6 Multiplication, Addition,
Subtraction, Convolution
COR-DIV Nonlinear 2 Rotation, Vectorization
Division, Square Root
IS Buffer 2 Indexed Access
FIFO, FILO
Logical Logical 2 Bitwise Logical
Compare, RELU

and the global scratchpads. Each MU oversees two PE rows,
ensuring seamless data movement, reliable data streams, and
PE state configurations.

C. PE Overview

Each PE in the array can transition between four operational
states. LOAD for loading programs into the instruction mem-
ory (IMEM), EXECUTE for program execution, ROUTE for
acting as a programmable router, and IDLE where everything
is clock-gated. In the ROUTE state, once the connections
between ports are defined at the program’s initiation, the archi-
tecture enables flexible dataflow throughout the systolic array.
This design eliminates the need for repeated packet arbitrations
and ensures efficient communication between non-adjacent
PEs without the necessity of loading extensive programs solely
for data transfer.

Fig. 2(a) displays the general architecture of the PEs. While
the foundational structure remains consistent across PE types,
the FUs vary. Non-FU components ensure flexibility and swift
reconfiguration in the dataflow and control. The common units
[Fig. 2(a)] are: State control, loop control, and the register
unit. The state control unit, configured via a pipelined bus
connected to the MU, stores the current operational state of
the PE. Another essential component is the loop control, which

DAP architecture overview. Four types of PEs with different FUs form a locally heterogeneous, globally homogeneous systolic array of 256 PEs.

acts as a program counter in sync with the instruction memory,
and it is designed to support nested “for” loops.

The register unit manages the connections of the crossbar
and internal PE datapaths, including data buffering, FU mode
configuration, and crossbar settings’ adjusting. This results
in seamless, direct streaming between FUs, guaranteeing
zero-cycle latency for inter-FU communications and signifi-
cantly optimizing data movement while conserving buffering
energy. The breakdown of area and power of different compo-
nents in all PE types is shown in Table II, while the distribution
of each type of PE within the PE array is shown in Table III.

The highlight of the architecture is the decoder-less FU
activation paired with the dynamic routing reconfiguration.
Combined with an efficient nested-loop program control, these
elements substantially reduce overhead, demanding a minimal
instruction memory footprint of only 128 entries per PE.

D. Stream Instruction

Fig. 2(b) portrays the intricate architecture of an MAC
PE, detailing control signals and datapath. Communication
kernels depend on data streaming operations with little or no
control flow where a single FU is executed continuously or
periodically for many cycles, streaming data into other FUs
in a highly deterministic manner. The traditional cycle-upon-
cycle instruction fetch and decode has been replaced with
stream instructions that set the crossbar’s data flow config-
uration and the operation of FUs (which are enabled or not)
concurrently and, combined with loop control, determine the
duration of the configuration. The instruction fields are directly
copied into the control registers after the instruction is fetched
from the instruction memory. Therefore, the instruction decode
overhead is essentially eliminated.

All the operations, including loop control, activation, and
configuration, are executed in the same cycle. Hence, a single
instruction can stay in place for many cycles, greatly mini-
mizing control overhead. Since instruction fields are directly
copied into the control registers, instruction decode overhead is
essentially eliminated and since embedded loop control greatly
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TABLE 1T
AREA/POWER BREAKDOWN OF DIFFERENT COMPONENTS IN ALL TYPES OF PES
PE Type MAC IS CORDIV Logical Average
Distribution Area (%) |Power (%) |Area (%) |Power (%) |Area (%) |Power (%) |Area (%) |Power (%)|Area (%)|Power (%)
Functional Units 35.4 85.2 67.9 61.8 53.8 78.2 11.7 47.2 49.6 80.5
PE Control 0.53 1.06 0.62 5.92 0.81 3.26 1.80 8.22 0.76 2.67
Loop Control 1.17 0.38 1.38 1.88 1.79 1.05 3.90 2.58 1.74 0.81
Datapath 45.8 10.6 17.5 20.6 27.0 12.1 45.7 28.4 29.3 11.0
Instruction Memory| 17.1 2.76 12.6 9.80 16.6 5.39 36.9 13.6 18.6 5.02
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Fig. 2. (a) Overview of PE architecture of all four types of PE, the only difference is the FU type. (b) Detail dataflow (black lines) and control signal (blue

lines) of an MAC-type PE.

TABLE III
DISTRIBUTION OF DIFFERENT TYPES OF PES IN THE PE ARRAY

PE Type Area (%) Power (%)
MAC 36.8 61.8
1S 31.9 11.1
CORDIV 24.3 20.2
Logical 7.00 6.90

reduces program size. An entire DAP can be programmed
hundreds of cycles (sub-us), enabling on-the-fly kernel swap-
ping (unlike FPGAs) for simultaneous support of multiple
protocols that share PEs in a time-multiplexed fashion. The
exact bitwidth of each field is specified in Table IV.

E. Detailed Dataflow

The dataflow’s complexity extends beyond control signals
due to potential interactions among ports, FUs, and various
storage registers through two crossbars. This intricate connec-
tion allows DAP’s dataflow to mimic fixed datapath hardware
accelerators. During execution, data stream from one unit to
another within a single cycle. Transferring data from an FU
in one PE to another FU in a neighboring PE takes only

TABLE IV

CONSTRUCT OF INSTRUCTION FIELDS IN DIFFERENT TYPES OF PE, ACTI-
VATION ACTIVATES PORTS AND FUS, LOOP CONSTRUCT FOR LOOPS IN
THE PROGRAM, AND CONFIGURATION CONTROLS THE CROSSBAR
AND FU MODES THROUGH THE REGISTER UNIT

PE Type Activation Loop Configuration Total
MAC 10 bits 2 bits |42 bits (4 in parallel) | 54 bits
1S 8 bits 2 bits 17 bits (2 in parallel) | 27 bits
COR-DIV 6 bits 2 bits 19 bits (2 in parallel) | 27 bits
Logical 6 bits 2 bits | 19 bits (2 in parallel) | 27 bits

two cycles, marking a significant enhancement in communica-
tion efficiency compared with NoC-based designs. Traditional
CPUs typically implement several FUs and registers, leading
to large, multi-port register files, resulting in significant power
and area overhead. Instead, we restrict the data movement
based on common compute patterns and handle connections
between the FUs with two sequential crossbars that are pre-set
with the stream instructions.

Each FU’s inputs are directly connected to specific registers
(or small queues with four entries in the MAC PE) thereby
eliminating the need for multiple register outputs. The FU’s
outputs then connect to the 12-input to 12-output crossbar
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(a) Loop control architecture that supports up to three nested “for” loops. (b) Table of operations for different “loop control” field in the instruction.
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Operation
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Fig. 4. Different operations of the CMAC unit in DAP, including (a) complex mode, (b) real mode, and (c) operation fusion.

which allows direct FU-to-FU streaming. In addition, data can
be routed into Move registers or a global FIFO (four entry)
through a smaller 16-to-4 crossbar. Global FIFO and Move
registers are independent of the input register of FUs to reduce
the complexity of crossbars. Data can be routed into Move
registers or global FIFO through a smaller crossbar to allow
additional data storage, data alignment, and data broadcasting
to a selectable set of FU inputs.

III. MICROARCHITECTURE

This section discusses various microarchitecture optimiza-
tions that improve the performance and efficiency of DAP.

A. Loop Control

The implementation of nested “for” loops in DAP programs
is supported by a loop control unit (Fig. 3) in each PE and
2-bit loop field (Table IV) in the instructions. Shift registers
record the return address and the remaining number of loop
iterations. Both the registers shift to the right when entering a
new loop and shift to the left when the loop number reaches
zero. We implemented three levels of shift registers, supporting
three nested loops, which were found sufficient for a wide
range of communication kernels. Infinite loop and looping a
single instruction are also supported.

B. Dual-Mode CMAC Unit

There are two CMAC units (Fig. 4) inside each MAC PE.
Each can be reconfigured as either one complex- number MAC
[Fig. 4(a)] or four real-number MACs [Fig. 4(b)]. This feature
greatly benefits real-value kernels such as 2-D convolution
(2DConv) by providing 4x the number of MAC units (eight
total for the MAC PE).

C. Operation Fusion

Fig. 4(c) illustrates the concept of operation fusion. Multi-
pliers in the CMAC FU occupy two pipeline stages to meet the
target frequency and adders can meet the timing constraints in
a single stage. However, the multipliers continue to set the
clock frequency, leaving adders with significant delay slack.
We use this slack, by adding two operation-fused adders which
execute in a single cycle with the CMAC adders, providing
additional computation without impacting clock frequency.

Operation fusion is especially useful in supporting additions
of three elements. For example, the bias addition and partial
sum accumulation of 2DConv can be merged into a single
CMAC unit. Operation fusion is also applied to the logical
units for cascaded operations such as comparisons to further
reduce latency.

D. Management Unit

The MU, which serves as a bridge between the scratchpad
memory and the PE array, is shown in Fig. 5. Inside the
MU, there are memory mapped registers, PE managers, and
data transceivers. The memory mapped registers configure the
data transceivers, PE manager, and data crossbar. The PE
managers are connected to the control bus that is connected
to the “state control” block in each PE. The PE managers can
change the PE states, start or stop the PE, and program the
routing direction when the PE is in ROUTING state. The data
transceiver provides various address generation patterns and
can modify data on the fly. Address generation includes tem-
poral access to change the throughput and spatial access, such
as bit reverse ordering for the fast Fourier transform (FFT).
Data modification such as conjugation and real/imaginary part
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Fig. 5. DAP MU between the scratchpad memories and the PE array,
including PE manager, data transceiver, and memory mapped register.

swapping is also supported. The crossbar provides flexible
dataflow. For example, data from one transceiver can be
multicast into multiple PEs, and multiple datastream can also
be time-interleaved into the same PE.

IV. MAPPING

This section presents examples of mapping various kernels
and workloads on DAP to demonstrate its flexibility. The main
considerations for mapping computations on DAP are as given
below.

1) Ensuring high throughput for streaming computations.

2) Enabling back-to-back computation for kernels that

operates on blocks of data with clear boundary (e.g.,
FFT).
3) Minimizing switching activity on datapath.

A. Max/Min Filter

A 1-D max/min filter implementation on DAP follows
the divide-and-conquer algorithm proposed by Coltuc and
Bolon [18]. Fig. 6 illustrates an example of a max filter with
a window size of 3. The FILOs are implemented by the IS
PEs, and the comparison is done by the logical PEs. Both
the recursive and elementwise operations are realized by the
flexible dataflow inside PEs. This mapping scheme is scalable
for any window size and ensures the throughput of one output
per cycle with the same number of PEs.

B. Two-Dimensional Convolution

Fig. 7 illustrates the mapping of 2DConv with one input and
two kernels. Note that “kernel” here should not be confused
with kernel mapping on DAP. Each kernel is assigned to a
row of PEs, and an entire row in a kernel is stored inside
one MAC PE, using the many real number MACs from the
MAC units. This mapping reuses the row-stationery concept
proposed by Chen et al. [19], [20]. The IS PEs are used as
buffers for storing and transferring partial sums to the next
stage for accumulation.

C. Orthogonal Frequency-Division Multiplexing

Fig. 8 shows the mapping of orthogonal frequency-division
multiplexing (OFDM) on DAP. There are two phases in

OFDM; packet detection is performed in phase 1, while
FFT, channel estimation, and demodulation are computed in
phase 2. During packet detection, the output of finite impulse
response (FIR) is directly used as the input of auto-correlation
without leaving the PE array, which reduces memory access.
The summation and multiplication are all assigned to the MAC
PEs, and the other PEs serve as routers. Upon packet detection,
DAP is reprogrammed to reuse the same PEs for channel
estimation, FFT, and symbol demodulation. The COR-DIV PE
(Table I) is used for channel estimation, and the demodulation
stage is fused with the last butterfly in FFT.

D. Multiple-Input Multiple-Output Minimum Mean Square
Error

Fig. 9 shows the mapping of multiple-input multiple-output
(MIMO) minimum mean square error (MMSE) detection. The
first phase is to compute the MMSE matrix with a combination
of kernels, including matrix multiplication, QR decomposition,
and back substitution. Then, we reprogram the array to per-
form matrix—vector multiplication, which is the second phase.
We take the MMSE matrix computed in the first phase and
multiply it with the incoming vectors.

V. PROTOTYPE CHIP AND TESTING METHODOLOGY

This section describes the implementation of the DAP
prototype chip and presents an overview of the benchmarking
methodology and evaluation criteria.

A. Prototype Chip Implementation

The prototype chip of DAP is implemented in a 12-nm
FinFET process and occupies 21 mm? die area (Fig. 10). There
are 256 PEs in the prototype chip, 64 for each type. Since all
the connections between the PEs and the peripheral blocks are
systolic, the system is highly scalable even if implemented in
different technology nodes. The design is partitioned hierarchi-
cally with PEs as hard macros. An on-chip digital-controlled
oscillator drives a single clock tree, capable of spanning clock
frequencies from 40 MHz to 2 GHz. To measure the operating
frequency, the system clock is routed through a 1024-divider
and connected to an oscilloscope via an output pad. At 1.0 V,
the system operates at 506 MHz, corresponding to 969 mW
and 264 GMAC:s.

B. Baseline and Test Methodology

The prototype chip is evaluated against fixed-function
accelerators (Anders et al. [21] and Desoli et al. [22]) to
showcase its ability to provide generalizations without incur-
ring significant overhead. In addition, DAP is also compared
with programmable processors (Yuan and Markovi¢ [15],
Cerqueira et al. [16], and Nagi et al. [17]) to demonstrate the
effectiveness of domain specialization.

To guarantee a balanced comparison that takes into account
varying technology nodes and performance benchmarks,
a meticulous technology scaling at iso-throughput was applied
based on SPICE simulations of FO4 energy and delay. The
energy consumption is measured from a single power supply;
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Fig. 6. Mapping of max filter with a window size of 3 on DAP, five PEs are used, including two IS PEs for data shuffling and three logical PEs for actual

comparison.
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all major portions of the test chip (core logic, on-chip SRAM,
and clock network) are included in the measurements.

Over 15 computational kernels have been verified on DAP.
However, for brevity and clarity, only those with well-defined
benchmarks are showcased in Section VI. These kernels
include a variety of operations common to the wireless com-
munication domain, e.g., FIR, FFT, and QR decomposition.
Other kernels include linear algebra kernels, 2Dconv, and

Mapping of OFDM on DAP FIR and autocorrelation in phase 1 and FIR, FFT, channel estimation, and demodulation in phase 2.

general matrix multiplication (GeMM). The performance and
efficiency of comprehensive workloads such as OFDM and
MIMO MMSE detection were also measured. The detailed
mapping of the kernels and workloads on DAP was covered
in Section IV. In selecting kernels and workloads, the aim was
to ensure a broad coverage across various FUs within different
PEs. For instance, FIR primarily targets MAC operations,
while kernels such as 2Dconv, FFT, and GeMM use the
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voltage—frequency scaling measurement, and comparison with Fig. 10. (a) Micrograph of prototype chip and (b) summary table of DAP.

the prior works discussed in Section V.

A. Measurement Results of Individual Kernels and Workloads

Table V summarizes the throughput and efficiency of dif-
ferent benchmarks on two operating points of DAP. The peak
performance operating point was measured when supplied
with a nominal voltage, and the other was assessed by scaling
down the voltage, ensuring that adequate throughput is still
achieved. These kernels include FIR, GeMM, 2DConv, FFT,
QR decomposition, back substitution, OFDM, and MIMO.

FIR, GeMM, and 2DConv are similar kernels that
largely involve MAC computations. However, their maximum
throughput and efficiency differ due to individual dataflow
and mapping characteristics. The first difference arises from
the use of IS PEs. Both GeMM and 2DConv require IS to
store matrix weights and partial sum, respectively, whereas
FIR relies solely on MAC PEs. Second, utilization of FUs

varies. FIR and 2DConv can map computations onto both
CMAC units in an MAC PE, while GeMM is constrained to
using just one, since the neighboring IS PE only stores one
row. In other words, to compute the same amount of MAC
operations per cycle, GeMM would require twice the number
of PE, which accounts for the 40% drop in the peak efficiency
when compared with FIR.

The performance and efficiency of FFT are close to 2DConv
when measured in GMACs and GMACs/] since the two
shared similar datapath and computation (Section 1V). How-
ever, Gsamples/s and nJ/FFT are more appropriate metrics.
QR decomposition, back substitution, and MMSE are iterative
and more compute-intensive, resulting in lower throughput.

The number of PE required to compute each kernel and
workload is also listed in Table V. However, the PEs that are
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TABLE V
MEASUREMENT RESULTS OF KERNELS/WORKLOADS
Kernel / Workload Peak Performance Efficiency / Throughput Trade-off Number of «
Required PEs
Throughput Efficiency Throughput Efficiency
FIR (GMACs, GMACs/J) 252.2 254.5 45.19 409 0.5/ tap
GeMM (GMACs, GMACs/)) 148.1 162.2 42.33 242.13 2 / row
2DConv (GMACs, GMACs/J) 231.7 250.5 58.35 375.63 2 / row
256 pt FFT (Gsamples/s, nJ/FFT) 441 53.96 0.974 31.6 13
4 X 4 QR (Mmatrix/s, nJ/matrix) 16.07 19.3 3.54 8.62 12
4 X 4 Back Substitution (Mmatrix/s, nJ/matrix) 107 2.69 15.67 1.24 2
OFDM (Gbits/s, Gbits/J) FIR, FFT, autocorrelation 46.46 59.57 9.896 108.74 19
MIMO MMSE (Mmatrix/s, nJ/matrix) 1.95 178.5 0.33 82.89 20
DMV (Gbits/s, Gbits/J) 213.12 310.68 34.87 576.76 2
* Routing PEs excluded.
600 TABLE VI
Max Efficiency: 0.42V COMPARISON WITH DEDICATED ACCELERATORS, ANDERS ET AL. [21]
500 507GMACS/J, 2.13GMAC 102 AND DESOLI ET AL. [22]
= g 2D Convolution GeMM
g 400 g This Work [ISSCC’ 17 [22]* | This Work | VLST' 18 [21]**
= © Technology 12 nm 28 nm 12 nm 14 nm
E:—.300 § Voltage (V) 0.65 0.575 0.65 0.9
é Max Perf 1.0V 101 E Efficiency (GMACs/J) 375 810 242 541
2200 27azng ;/3\? aJnczeé4G'|v|Ac S Bnergy Gép 2.10x 223%
£ : s/l s g all bitwidth are 16 bits
e *Listed numbers are scaled to iso-throughput and technology
100 **Throughput cannot match DAP, compare with max throughput reported
04 \ \ I \ \ —10° TABLE VII
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Supply Voltage (V) COMPARISON WITH PROGRAMMABLE ARCHITECTURES
Fig. 11. DAP efficiency and performance at different supply voltage levels. Technology Thilszl:}:rk VLSZ(;:J]S]* VLSI:;L:G]*** JSS?;?:H[W]
Total Cores 256 16 16 784
Cores per Die 256 16 16 196
. . Data Memory per Core (KB) 1.47 None 0.5 0.03
used for routing are excluded since the number depends on Frequency Range (MHz) 855506 | 25500 01207 | 80-1100%*
PE Connection topology and Shape Of the mapped kernell FIR (GMACs/J) 409, 0.65V | 467%*, 0.73V 26, 0.54V 543%% (0.42V
4x4 QR (nJ Matrix) 8.62, 0.65V | 6.05%*, 0.49V N/A N/A
256 Point FFT (nJ/FFT) 316, 0.65V N/A 1855, 0.54V N/A
. . Matrix Multiplication™**** (GMACs/J) | 422, 0.65V N/A N/A 5517, 0.42V
B' V()ltage—FrequnCy Scallng AnalySls Max Throughput per Die (GMACs) 264 126 N/A 5007%##*
: : Number of Kernels 17 5 5 4
Fig. 11 shows the peak performance and peak efficiency of i ars 16 bits

DAP under different supply voltages. GMACs and GMACs/J
are chosen as metrics instead of OPs. Therefore, non-linear
functions such as CORDIC and division are excluded, and a
non-terminating, artificial kernel that maximizes PE utilization
is mapped on DAP for measurement. The prototype chip of
DAP achieves a peak efficiency of 507 GMACs/J at 0.42 V
and a peak performance of 264 GMACs at 1.0 V.

C. Comparison With Similar Prior Works

Table VI shows comparison of DAP with hardware acceler-
ators Desoli et al. [22] and Anders et al. [21], on 2DConv and
GeMM. All the bitwidths are 16 bits, and the listed results
are scaled using iso-throughput and FO4 SPICE simulation
to accommodate for the difference in voltage, frequency, and
technology node. DAP maintains an efficiency to within 2.23 x
of when compared with hardware accelerators. This is due to
the nature of FUs directly connected to each other, enabling
DAP to form ASIC-like dataflow. Table VII shows compar-
ison of DAP with previous works Yuan and Markovié [15],

*includes only compute cores, interface and peripheral circuits
## Calculated from plot and scaled to iso-throughput and for technology
*##% Throughput cannot match DAP, compare with max throughput reported.
##%k% estimated based on plots.
wdkkx JSSC’23 [17] reports real number 8x8 matrix multiplication. DAP
can perform both real and complex number matrix with larger sizes.
VLSI'19 [16] can perform matrix multiplication, but efficiency cannot be
calculated as throughput is not provided.

Cerqueira et al. [16], and Nagi et al. [17], three programmable
processors. Out of the four, DAP has the largest number of
cores per die and the largest amount of average data memory
per core. The prototype chip is more efficient than Catena,
within 1.5x of the work of Yuan and Markovi¢ [15], and
within 1.3x of the work of Nagi et al. [17] DAP reports the
greatest number of mapped kernels.

VII. RELATED WORKS

In addition to the prior works discussed in Sections I and VI,
DAP is compared with programmable architecture for wireless
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communication, reconfigurable hardware, multi-core processor
with systolic connection, and spatial dataflow architecture.

A. Programmable Architecture for Wireless Communication

Various programmable architectures have been developed
for the wireless communication domain [23], [24], [25], [26].
Some works run an entire workload concurrently while others
focus on processing a single kernel at a time. Asynchronous
array of simple processors (AsAP) and its related works [27],
[28], [29] use fine-grained clock control for different process-
ing units and demonstrate the mapping of an entire workload
onto the compute fabric. SODA [30] is a multi-core DSP
processor that captures algorithmic behavior with a wide single
instruction, multiple data (SIMD) unit. Pedram et al. [31] and
REVEL [32] highly emphasize on matrix factorization kernels
that are hard to vectorize due to their inductive nature. REVEL
proposed a hybrid systolic array architecture composed of
simple systolic compute cores and more complex dataflow
cores, while Pedram et al. [31] thoroughly analyzed the algo-
rithms and mapped them onto a homogeneous architecture.
DAP demonstrates mapping examples of both single kernels
and entire workloads, providing fast reconfigurability and high
efficiency.

B. Reconfigurable Hardware

The ASICs from [33], [34], and [35] leverage pro-
grammable interconnect in respective targeted applications.
Smets et al. [33] used programmable routers to support multi-
ple image processing kernels, while the ASIC implementations
from [34] and [35] reconfigure between the multiplication
and merge phases of an outer-product-based sparse matrix
multiplication algorithm. These ASICs use reconfigurability to
broaden the capabilities of a fixed-function design. In contrast,
DAP supports a wider variety of computation kernels while
retaining performance and efficiency.

C. Multi-Core Processor With Systolic Connection

The designs [23], [36], [37], [38] are multi-core pro-
cessors providing spatial data transfer through systolic-like
connection. All the connections in DAP are systolic and
programmable without the need to implement a complicated
NoC system. This enables DAP with performance efficiency
characteristics close to equivalent ASIC implementations of
different computation kernels.

D. Spatial Dataflow Architecture

DAP is also compared with spatial architecture with
dataflow execution [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63]. Dataflow architectures [41],
[64], [65], [66], [67] and hybrid dataflow von-Neumann archi-
tectures [42], [68] are different from von-Neumann execution
and instead map dataflow graphs onto architecture explicitly
while execution is triggered by data arrival. In comparison,
DAP retains PC-based execution but forms dataflow-like con-
nection between FUs in steady state of execution.

VIII. CONCLUSION

This work introduces DAP, a domain-specific processor that
aims to accelerate the computation of wireless communication
and linear algebra kernels. DAP is a programmable acceler-
ator with a co-designed custom ISA tailored for the target
domain. DAP maintains an efficiency to within 2.23x of the
fixed-function accelerators that execute only a single kernel.
Among programmable domain-specific processors, it has the
highest number of reported mapped kernels while providing
fast re-programmability. In short, DAP successfully balances
performance, flexibility, and efficiency.

REFERENCES

[1] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and
A. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE J. Solid-State Circuits, vol. SSC-9, no. 5,
pp. 256268, Oct. 1974.

[2] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and
G. Reinman, “Accelerator-rich architectures: Opportunities and pro-
gresses,” in Proc. 51st ACM/EDAC/IEEE Annu. Design Autom. Conf.,
Jun. 2014, pp. 1-6.

[3] 1. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “ASIC
clouds: Specializing the datacenter,” in Proc. ACM/IEEE 43rd Annu.
Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 178-190.

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” IEEE Micro,
vol. 32, no. 3, pp. 122-134, May 2012.

[5] M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen of
the coming dark silicon apocalypse,” in Proc. Des. Autom. Conf., 2012,
pp. 1131-1136.

[6] Y. S. Shao and D. Brooks, ‘“Research infrastructures for hardware
accelerators,” Synth. Lect. Comput. Archit., vol. 10, no. 4, pp. 1-99,
Nov. 2015.

[71 A. Fuchs and D. Wentzlaff, “The accelerator wall: Limits of chip
specialization,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2019, pp. 1-14.

[8] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general pur-
pose acceleration by exploiting common data-dependence forms,” in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2019,
pp. 924-939.

[9] R. Hameed et al., “Understanding sources of inefficiency in general-

purpose chips,” in Proc. 37th Annu. Int. Symp. Comput. Archit.

New York, NY, USA: Association for Computing Machinery, Jun. 2010,

pp. 3747, doi: 10.1145/1815961.1815968.

K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:

A survey of architectures, methods, and applications,” ACM Comput.

Surv., vol. 51, no. 4, pp. 1-39, Jul. 2018, doi: 10.1145/3193827.

Kung, “Why systolic architectures?” Computer, vol. 15, no. 1,

pp. 3746, Jan. 1982.

H. T. Kung, “Systolic communication,” in Proc. Int. Conf. Systolic

Arrays, 1988, pp. 695-703.

O. Menzilcioglu, H. T. Kung, and S. W. Song, “Comprehensive eval-

uation of a two-dimensional configurable array,” in Proc. 19th Int.

Symp. Fault-Tolerant Comput. Dig. Papers, 1989, pp. 93-100.

K.-Y. Chen et al., “A 507 GMACs/J 256-core domain adaptive systolic-

array-processor for wireless communication and linear-algebra kernels in

12 nm FINFET,” in Proc. IEEE Symp. VLSI Technol. Circuits, Jun. 2022,

pp. 202-203.

F.-L. Yuan and D. Markovic¢, “A 13.1 GOPS/mW 16-core processor for

software-defined radios in 40 nm CMOS,” in Proc. Symp. VLSI Circuits

Dig. Tech. Papers, Jun. 2014, pp. 1-2.

J. P. Cerqueira, T. J. Repetti, Y. Pu, S. Priyadarshi, M. A. Kim, and

M. Seok, “Catena: A 0.5-v sub-0.4-mW 16-core spatial array accelerator

for mobile and embedded computing,” in Proc. Symp. VLSI Circuits,

2019, pp. C54-C55.

S. S. Nagi, U. Rathore, K. Sahoo, T. Ling, S. S. Iyer, and D. Markovic,

“A 16-nm 784-core digital signal processor array, assembled as a 2 x 2

dielet with 10-pum pitch interdielet I/O for runtime multiprogram recon-

figuration,” IEEE J. Solid-State Circuits, vol. 58, no. 1, pp. 111-123,

Jan. 2023.

[10]

(1]
[12]

[13]

[14]

[15]

[16]

(17]

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 13,2025 at 18:51:25 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/1815961.1815968
http://dx.doi.org/10.1145/3193827

682

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

D. Coltuc and P. Bolon, “Very efficient implementation of max/min
filters,” in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing (NSIP), Antalya, Turkey, A. E. Cetin, L. Akarun,
A. Ertiizin, M. N. Gurcan, and Y. Yardimci, Eds. Istanbul, Turkey:
Bogazici University, Jun. 1999, pp. 520-523.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292-308, Jun. 2019.
M. Anders et al, “2.9TOPS/W reconfigurable dense/sparse matrix-
multiply accelerator with unified INT8/INTI6/FP16 datapath in 14NM
tri-gate CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2018,
pp. 39-40.

G. Desoli et al., “A 2.9TOPS/W deep convolutional neural network SoC
in FD-SOI 28 nm for intelligent embedded systems,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 238-239.
B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 891-902,
Apr. 2017.

A. K. Yeung and J. M. Rabaey, “A 2.4 GOPS data-driven reconfigurable
multiprocessor IC for DSP,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 1995, pp. 108-109.

A. T. Tran, D. N. Truong, and B. M. Baas, “A complete real-time
802.11a baseband receiver implemented on an array of programmable
processors,” in Proc. 42nd Asilomar Conf. Signals, Syst. Comput.,
Oct. 2008, pp. 165-170.

H. Zhang et al., “A 1-V heterogeneous reconfigurable DSP IC for wire-
less baseband digital signal processing,” IEEE J. Solid-State Circuits,
vol. 35, no. 11, pp. 1697-1704, Nov. 2000.

Z. Yu et al.,, “An asynchronous array of simple processors for DSP
applications,” in [EEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2006, pp. 1696-1705.

Z. Yu et al., “AsAP: An asynchronous array of simple processors,” IEEE
J. Solid-State Circuits, vol. 43, no. 3, pp. 695-705, Mar. 2008.

D. N. Truong et al., “A 167-processor computational platform in 65 nm
CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1130-1144,
Apr. 2009.

Y. Lin et al, “SODA: A low-power architecture for software
radio,” in Proc. 33rd Int. Symp. Comput. Archit. (ISCA), 2006,
pp. 89-101.

A. Pedram, A. Gerstlauer, and R. A. van de Geijn, “Algorithm,
architecture, and floating-point unit codesign of a matrix factorization
accelerator,” [EEE Trans. Comput., vol. 63, no. 8, pp. 1854-1867,
Aug. 2014.

J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid
systolic-dataflow architecture for inductive matrix algorithms,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2020,
pp. 703-716.

S. Smets, T. Goedemé, A. Mittal, and M. Verhelst, “A 978 GOPS/W
flexible streaming processor for real-time image processing applications
in 22 nm FDSOL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2019, pp. 44-46.

S. Pal et al., “A 7.3 m output non-zeros/J sparse matrix-matrix multi-
plication accelerator using memory reconfiguration in 40 nm,” in Proc.
Symp. VLSI Technol., Jun. 2019, pp. C150-C151.

D.-H. Park et al, “A 7.3 m output non-zeros/J, 11.7 m output
non-zeros/GB reconfigurable sparse matrix—matrix multiplication accel-
erator,” IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 933-944,
Apr. 2020.

M. B. Taylor et al., “The raw microprocessor: A computational fabric for
software circuits and general-purpose programs,” IEEE Micro, vol. 22,
no. 2, pp. 25-35, Mar. 2002.

A. M. Jones and M. Butts, “TeraOPS hardware: A new massively-
parallel MIMD computing fabric IC,” in Proc. IEEE Hot Chips 18 Symp.
(HCS), Aug. 2006, pp. 1-15.

S. Kim et al., “Versa: A 36-core systolic multiprocessor with dynam-
ically reconfigurable interconnect and memory,” [EEE J. Solid-State
Circuits, vol. 57, no. 4, pp. 986-998, Apr. 2022.

K. Sankaralingam et al., “TRIPS: A polymorphous architecture for
exploiting ILP, TLP, and DLP,” ACM Trans. Archit. Code Optim., vol. 1,
no. 1, pp. 62-93, Mar. 2004, doi: 10.1145/980152.980156.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 60, NO. 2, FEBRUARY 2025

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

K. Sankaralingam et al., “Distributed microarchitectural protocols in
the TRIPS prototype processor,” in Proc. 39th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO). Washington, DC, USA: IEEE Com-
puter Society, Dec. 2006, pp. 480-491, doi: 10.1109/MICRO.2006.19.
S. Swanson et al., “The WaveScalar architecture,” ACM Trans. Comput.
Syst., vol. 25, no. 2, pp. 1-54, May 2007. [Online]. Available: https://doi-
org.proxy.lib.umich.edu/10.1145/1233307.1233308

F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and
Y. Etsion, “Hybrid dataflow/von-Neumann architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1489-1509, Jun. 2014.

V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in Proc. IEEE 17th
Int. Symp. High Perform. Comput. Archit., Feb. 2011, pp. 503-514.

V. Govindaraju et al., “DySER: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38-51, Sep. 2012.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in Proc. 44th Annu. Int. Symp. Comput.
Archit., Jun. 2017, pp. 416-429.

B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in Proc. 13th Int. Conf. Field
Program. Log. Appl. (FPL), in Lecture Notes in Computer Science,
vol. 2778, Lisbon, Portugal, P. Y. K. Cheung, G. A. Constantinides,
and J. T. de Sousa, Eds. New York, NY, USA: Springer, Sep. 2003,
pp. 61-70, doi: 10.1007/978-3-540-45234-8_17.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart memories: A modular reconfigurable architecture,” in Proc. 27th
Int. Symp. Comput. Archit., Jun. 2000, pp. 161-171.

F. Liu, S. Ghosh, N. P. Johnson, and D. I. August, “CGPA: Coarse-
grained pipelined accelerators,” in Proc. 51st ACM/EDAC/IEEE Design
Autom. Conf. (DAC). New York, NY, USA: Association for Computing
Machinery, Jun. 2014, pp. 1-6, doi: 10.1145/2593069.2593105.

W. Lee et al., “Space-time scheduling of instruction-level parallelism
on a raw machine,” ACM SIGPLAN Notices, vol. 33, no. 11, pp. 46-57,
Oct. 1998, doi: 10.1145/291006.291018.

E. Mirsky and A. DeHon, “MATRIX: A reconfigurable computing
architecture with configurable instruction distribution and deploy-
able resources,” in Proc. IEEE Symp. FPGAs Custom Comput.
Mach. (FPGA), Apr. 1996, pp. 157-166.

E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and
A. DeHon, “Stream computations organized for reconfigurable execution
(SCORE),” in Proc. 10th Int. Workshop Field-Program. Log. Appl.
Berlin, Germany: Springer-Verlag, 2000, pp. 605-614.

J. Balfour, W. J. Dally, D. Black-Schaffer, V. Parikh, and J. Park,
“An energy-efficient processor architecture for embedded systems,”
IEEE Comput. Archit. Lett., vol. 7, no. 1, pp. 29-32, Jan. 2008.

J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of CGRA,” in Proc. IEEE 22nd
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2014,
pp. 9-16.

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, “MorphoSys: An integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol. 49, no. 5, pp. 465-481, May 2000.

R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler,
“A design space evaluation of grid processor architectures,” in
Proc. 34th ACM/IEEE Int. Symp. Microarchitecture (MICRO).
Washington, DC, USA: IEEE Computer Society, Dec. 2001,
pp. 40-51.

C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD—Reconfigurable
pipelined datapath,” in Proc. 6th Int. Workshop Field-Program. Log.,
Smart Appl. Berlin, Germany: Springer-Verlag, 1996, pp. 126-135.

D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Specifying
and compiling applications for RaPiD,” in Proc. IEEE Symp. FPGAs for
Custom Comput. Mach., Apr. 1998, pp. 116-125.

T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia
array coprocessor,” in Proc. ACM/SIGDA 6th Int. Symp. Field Program.
Gate Arrays, Monterey, CA, USA, J. Cong and S. Kaptanoglu, Eds.,
1998, p. 261, doi: 10.1145/275107.275164.

M. Gao and C. Kozyrakis, “HRL: Efficient and flexible
reconfigurable logic for near-data processing,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit. (HPCA), Mar. 2016,
pp. 126-137.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 13,2025 at 18:51:25 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/980152.980156
http://dx.doi.org/10.1109/MICRO.2006.19
http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1145/2593069.2593105
http://dx.doi.org/10.1145/291006.291018
http://dx.doi.org/10.1145/275107.275164

CHEN et al.: DAP: A 507-GMACs/J 256-CORE DAP FOR WIRELESS COMMUNICATION AND LINEAR ALGEBRA KERNELS 683

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

A. Carsello et al., “Amber: A 367 GOPS, 538 GOPS/W 16 nm SoC
with a coarse-grained reconfigurable array for flexible acceleration of
dense linear algebra,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI
Technol. Circuits), Jun. 2022, pp. 70-71.

R. Prabhakar et al., “Plasticine: A reconfigurable accelerator for parallel
patterns,” IEEE Micro, vol. 38, no. 3, pp. 20-31, May 2018.

M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar operand
networks: On-chip interconnect for ilp in partitioned architectures,” in
Proc. The 9th Int. Symp. High-Perform. Comput. Archit. (HPCA), 2003,
pp. 341-353.

R. D. Wittig and P. Chow, “OneChip: An FPGA processor with
reconfigurable logic,” in Proc. IEEE Symp. FPGAs Custom Comput.
Mach. (FPGA), Apr. 1996, pp. 126-135.

E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235-1245, Sep. 1987.

J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic
data-flow processor,” ACM SIGARCH Comput. Archit. News, vol. 3,
no. 4, pp. 126-132, Dec. 1974, doi: 10.1145/641675.642111.

K. Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-
token dataflow architecture,” IEEE Trans. Comput., vol. 39, no. 3,
pp. 300-318, Mar. 1990.

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static data flow,” in Proc. Int. Conf. Acoust., Speech, Signal Process.,
vol. 5, 1995, pp. 3255-3258.

T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,”
ACM SIGARCH Comput. Archit. News, vol. 43, no. 3S, pp. 298-310,
Jun. 2015, doi: 10.1145/2872887.2750380.

Kuan-Yu Chen (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan,
in 2018, and the M.S.E. and Ph.D. degrees in electri-
cal and computer engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2020 and 2024,
respectively.

His research interests include digital circuit design,
domain-specific programmable accelerators, and
computer architecture.

Chi-Sheng Yang received the B.S. degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, in 2018, and the M.S.
degree in electrical and computer engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2020.

His research interests include VLSI design
and computer architecture, especially in
high-performance and high-efficiency accelerator
design.

Yu-Hsiu Sun received the bachelor’s degree from
National Taiwan University, Taipei, Taiwan, in 2018,
and the master’s degree from the University of
Michigan, Ann Arbor, MI, USA, in 2020.

His research focused on high-speed ASIC to
ASIC/FPGA interface while working under Prof.
Hun-Seok Kim in the University of Michigan.
He then started his career at Qualcomm from
2021 developing SG/LTE ASIC.

Chien-Wei Tseng (Graduate Student Member,
IEEE) received the B.S. and M.S. degrees in
electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2011 and 2014,
respectively, and the Ph.D. degree in electrical engi-
neering from the University of Michigan, Ann Arbor,
MI, USA, in 2024.

His research interests include high-frequency ana-
log/RF circuit design, clocking circuit design, and
digital signal processing.

Morteza Fayazi (Graduate Student Member, IEEE)
was born in Tehran, Iran, in 1994. He received the
B.Sc. degree major in electrical engineering and
minor in computer science from the Sharif Univer-
sity of Technology (SUT), Tehran, in 2017, and the
M.S. degree in electrical engineering and computer
science from the University of Michigan, Ann Arbor,
MI, USA, in 2020, where he is currently pursuing
the Ph.D. degree.

His research interests include circuit design
automation and machine learning.

Xin He received the B.Eng. degree in software engi-
neering from Sichuan University, Chengdu, China,
in 2011, and the Ph.D. degree in computer science
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing,
China, in 2017.

He was an Assistant Research Scientist at the
University of Michigan, Ann Arbor, MI, USA,
until 2022. His research interests include computer
architecture especially on application-specific accel-
eration, deep learning, approximate computing, and
interconnection networks.

Siying Feng received the Ph.D. degree in computer
engineering from the University of Michigan, Ann
Arbor, Austin, MI, USA, in 2022, under the super-
vision of Prof. R. Dreslinski.

She is currently working as a Senior Engineer
with Arm. Inc. Her research interests focused on
application-specific and reconfigurable architecture
design for workloads with irregular data access
patterns.

Yufan Yue (Graduate Student Member, IEEE)
received the dual B.S. degree from Shanghai Jiao
Tong University, Shanghai, China, and the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2020.
He is currently pursuing the Ph.D. degree in elec-
trical and computer engineering from the University
of Michigan.

He was an Intern with Qualcomm Technologies
Inc., San Diego, CA, USA, in Summer 2024,
where he worked on 6G FEC Decoder Design. His
research interest involves the design of reconfig-

urable multi-mode forward error correction accelerators and domain-specific
hardware architecture, especially for wireless communication.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 13,2025 at 18:51:25 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/641675.642111
http://dx.doi.org/10.1145/2872887.2750380

684

Trevor Mudge (Life Fellow, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana—Champaign, Champaign,
IL, USA.

He is the Bredt Family Professor of computer
science and engineering at the University of Michi-
gan, Ann Arbor, MI, USA. He is the author of
numerous articles on computer architecture, pro-
gramming languages, VLSI design, and computer
vision. He has chaired 59 Ph.D. theses in these
areas.

Dr. Mudge is a fellow of the ACM and a member of the IET and the British
Computer Society. In 2014, he received the ACM/IEEE CS Eckert—-Mauchly
Award and the University of Illinois Distinguished Alumni Award.

Ronald Dreslinski (Senior Member, IEEE) received
the B.S.E., M.S.E., and Ph.D. degrees from the Uni-
versity of Michigan, Ann Arbor, MI, USA, in 2001,
2003, and 2011, respectively.

He is currently an Associate Professor of com-
puter science and engineering at the University of
Michigan. His work focuses on hardware and circuit
designs for a post-Moore’s Law world.

Dr. Dreslinski received the 2015 IEEE Young
Computer Architect Award.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 60, NO. 2, FEBRUARY 2025

Hun-Seok Kim (Senior Member, IEEE) received
the B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2001,
and the Ph.D. degree in electrical engineering
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2010.

He is currently an Associate Professor with the
University of Michigan, Ann Arbor, MI, USA.
His research interests focus on system analysis,
novel algorithms, and VLSI architectures for low-
power/high-performance wireless communications,
signal processing, computer vision, and machine learning systems.

Dr. Kim was a recipient of the DARPA Young Faculty Award in 2018 and the
National Science Foundation (NSF) CAREER Award in 2019. He has served
as an Associate Editor for IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,
and IEEE SOLID STATE CIRCUITS LETTERS.

David Blaauw (Fellow, IEEE) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, USA, in 1986, and the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana—Champaign, Champaign,
IL, USA, in 1991.

Until August 2001, he worked for Motorola, Inc.,
Austin, TX, USA, and since August 2001, he has
been at the faculty of the University of Michigan,
Ann Arbor, MI, USA, where he is the Kensall
D. Wise Collegiate Professor of EECS. He has
published more than 600 articles, has received numerous best papers, and
holds 65 patents. His research has covered ultralow-power digital and analog
circuits for mm-sensors, hardware for neural networks in edge devices, and
high-performance accelerators.

Dr. Blaauw has served on the IEEE International Solid-State Circuits Confer-
ence’s technical program committee and received the 2016 SIA-SRC faculty
award for lifetime research contributions to U.S. semiconductor industry.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 13,2025 at 18:51:25 UTC from IEEE Xplore. Restrictions apply.



