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Abstract

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the
differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs)
and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic
resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural
networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional
diagnostic approaches, providing more accurate and early differentiation of these lesions. The review
incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS)
dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of
statistical rigor and automated segmentation in developing reliable Al models. By drawing on these insights
and addressing the challenges posed by small, single-institutional datasets, the paper aims to demonstrate
how AI applications can improve diagnostic precision, enhance clinical decision-making, and ultimately lead
to better patient outcomes in managing sellar region cystic lesions.

Categories: Neurology, Radiology, Physical Medicine & Rehabilitation
Keywords: ai and machine learning, artificial intelligence, cystic brain lesions, rathke's cleft cyst, solitary brain
lesions mri

Introduction And Background

The prevalence of sellar region cystic lesions varies depending on the type, with pituitary adenomas being
the most common, accounting for approximately 10%-15% of all intracranial tumors, while Rathke cleft cysts
(RCCs) and craniopharyngiomas (CPs) are less frequent but clinically significant [1,2]. Other less common
masses of these regions are arachnoid cysts, dermoid cysts, and others. All these masses have been well
documented and found regularly in clinical practice. Diagnosing and treating such lesions require an
interdisciplinary approach that includes an endocrinologist, ophthalmologist, neurosurgeon, radiologist,
and pathologist [3]. The frequency of detection of these diseases has increased in recent years due to the
advancement of technologies, new and better techniques, and active observation on the part of physicians.
Differentiation of these masses has been achieved due to more focused and clear views via magnetic
resonance imaging (MRI); however, the accuracy of this diagnosis is still a challenge to inexperienced
physicians or physicians working in rural settings. This standard procedure for differentiating RCCs from
other lesions relies heavily on standard T1-weighted (T1W) and T2-weighted (T2W) MRI techniques [4]. In
the standard T1W technique, the strength of the MRI signal depends heavily on protein concentration levels
within the cyst, with the cyst wall generally showing little to no enhancement levels. Newer techniques, such
as postcontrast three-dimensional fluid-attenuated inversion recovery (3D FLAIR), have been shown in
recent studies to differentiate RCCS from adenomas and CPs, as shown in Table /. An extremely fine
gradient of enhancement to the cyst wall was shown when using 3D FLAIR, which was not present in the
more general T1W, T2W procedure. This allowed researchers to differentiate between the two, which can be
visualized in Figure 1.
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Imaging
technique

T1-weighted MRI

T2-weighted MRI

3D Fluid-
Attenuated
Inversion
Recovery
(FLAIR)

Post-contrast
T1-weighted MRI

MRI Texture
Analysis

Strengths

Good for visualizing anatomical details

and tissue contrast differences.

Effective for identifying fluid-containing

cysts due to high signal intensity.

Capable of highlighting subtle
differences in cyst wall enhancement
that may not be visible on T1 or T2.

Enhances visualization of lesion

boundaries and vascularization, aiding

in differentiation.

Provides quantitative features such as
GLCM-Contrast and HISTO-Skewness

that improve differentiation.

Limitations

Limited sensitivity in distinguishing
between cystic components and
solid tissue.

It may not reliably differentiate
between cystic lesion types if signal
characteristics overlap.

It can be affected by image artifacts
or motion, requiring high-quality
imaging for accurate analysis.

The potential for contrast-related
side effects requires careful patient
selection.

Requires advanced image
processing and Al integration for
meaningful interpretation.

Diagnostic accuracy for different
lesion types

Provides some differentiation between

pituitary adenomas and
craniopharyngiomas.

Useful in detecting cystic changes in
Rathke cleft cysts and other fluid-filled
structures.

Has shown promise in differentiating
Rathke cleft cysts from other lesions
like craniopharyngiomas.

Useful for distinguishing between
enhancing craniopharyngiomas and
non-enhancing cystic lesions.

Shown to be effective in classifying
cystic pituitary adenomas vs. Rathke
cleft cysts using radiomic features.

TABLE 1: Different characteristics of imaging techniques for sellar lesions.

GLCM - gray-level co-occurrence matrix
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FIGURE 1: Analysis of various imaging techniques and their relevant
clinical applications.

The permission to reproduce has been granted by the original publishers[4].

Substantia Nigra (SN), Corticospinal Tract (CST), Red Nucleus (RN), Decussation of the Superior Cerebellar

Peduncle (DSCP), Superior Cerebellar Peduncle (SCP), Medial Lemniscus (ML), Central Tegmental Tract (CTT),
Middle Cerebellar Peduncle (MCP).

The variance in diagnostic ability across medical professionals transfers itself into the delay or irrelevant
management of the condition, which is a loss to the patient's life. There is a clear need for additional
assistance in the early diagnosis of these lesions, as delay in diagnosis can have fatal consequences [5].

An artificial neural network (ANN) has an input layer, a hidden layer, and an output layer [1]. Deep learning
(DL) is an ANN with numerous hidden layers that seeks to learn multilayer input representations to produce
predictions or classifications [6]. With DL, an Artificial intelligence (AI) analyzes various photos to extract
clinical data. Al based on DL has been tested in several medical domains.

AT has proved helpful in recent years in detecting and aiding physicians in the early diagnosis of diseases,
which benefits the patient by improving the prognosis and treatment. There has been a great deal of work in
detecting Parkinson's disease early in its course through Al, and lung pathologies are diagnosed early with
the help of Al, making it a credible novel approach for the early diagnosis of these cystic lesions in the
pituitary [7].

This paper investigates the potential of Al and machine learning (ML) to enhance the differentiation of
cystic lesions in the sellar region, such as pituitary adenomas, RCCs, and CPs, through the use of advanced
neuroimaging techniques, particularly MRI. The goal is to explore how Al-driven models, including
convolutional neural networks (CNNs), DL, and ensemble methods, can overcome the limitations of
traditional diagnostic approaches, providing more accurate and early differentiation of these lesions.
Despite advances in MRI techniques, the differentiation of sellar region cystic lesions, such as pituitary
adenomas, RCCs, and CPs, remains a challenge due to overlapping imaging characteristics and the reliance
on subjective radiological interpretation. Studies, such as those evaluating the diagnostic accuracy of MRI
texture analysis, have demonstrated that standard MRI techniques, like TIW and T2W imaging, often lack
the sensitivity to reliably distinguish between cystic and solid components or identify subtle differences in
lesion types, particularly in resource-limited or rural settings. The review incorporates findings from critical
studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset for MRI-based brain
research, highlighting the significance of statistical rigor and automated segmentation in developing
reliable AI models. By addressing these challenges and leveraging AI's ability to analyze complex imaging
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data, the paper aims to demonstrate how Al applications can improve diagnostic precision, enhance clinical
decision-making, and ultimately lead to better patient outcomes in managing sellar region cystic lesions.

Studies included in this review must focus on the application of Al and ML methods to the differentiation of
cystic lesions in the sellar region, such as pituitary adenomas, RCCs, and CPs. Research should involve MRI-
based imaging techniques as a primary diagnostic tool and include AI models like DL, CNNs, or other ML
algorithms for analyzing imaging data. Articles must present original research, systematic reviews, or meta-
analyses published in peer-reviewed journals. Only studies available in English and published in the last 20
years will be included to ensure the relevance and recency of AI methodologies.

Studies will be excluded if they do not specifically address the use of Al or ML for differentiating sellar region
cystic lesions. Research focusing solely on other types of brain tumors or neurological conditions, such as
gliomas or neurodegenerative diseases, will be omitted. Case reports, editorials, letters to the editor, and
conference abstracts that lack full methodological details will not be considered. Additionally, articles that
do not use MRI or fail to detail the Al or ML models applied will be excluded to ensure the review focuses on
comparable techniques. Research involving pediatric populations or datasets with low-quality imaging will
also be excluded, as this review is centered on adult patients with high-quality imaging studies.

Review
Differentiating CP from other tumors in the sellar region

A paper by Qin et al. provides an extensive review of the role of Al in diagnosing CPs, a complex brain tumor
with a bimodal age distribution and varied clinical presentations [8]. Qin et al. highlight the diagnostic
challenges posed by CPs, which include hypothalamic-pituitary dysfunction, visual disturbances, and
neurological symptoms due to tumor compression. The review emphasizes that traditional radiological
diagnosis, while widely used, is time-consuming and subjective, making Al-based approaches attractive for
enhancing diagnostic accuracy and efficiency. Al, particularly through radiomics, allows for extracting
detailed imaging features, such as intensity, shape, and texture, from MRI and CT scans, which can then be
analyzed using ML and DL models [8].

Qin et al. discuss multiple AI applications across three main diagnostic areas: differential classification,
tissue invasion prediction, and gene mutation status. For differential classification, models such as support
vector machines (SVMs) and random forests (RFs) have successfully distinguished CPs from similar lesions
based on MRI texture and histogram features. In predicting tissue invasion, ML algorithms, including Lasso
regression and SVM, analyze MRI features to identify aggressive tumor growth patterns, aiding preoperative
planning. Regarding gene mutations, Qin et al. explain how Al can predict BRAF and CTNNB1 mutations,
which are critical in determining targeted therapy [8]. LifeX medical software (LifeX, Copenhagen, Ethiopia)
extracted texture features, including HISTO, gray-level co-occurrence matrix (GLCM), and gray-level run
length matrix (GLRLM), with 10 commonly used features selected based on prior reports [8].

Zhang et al. conducted a study to observe and analyze the characteristics of CPs and pituitary adenoma [9].
A data set of 126 patients was collected from a single institution. They reviewed the qualitative features
mentioned in the reports. Five magnetic resonance (MR) image characteristics were suggested to be
significantly different between pituitary adenoma and CPs. Two types of tumors were differentiated in T1-
weighted imaging (T1WI) images by HISTO-Skewness, GLCM-Contrast, and GLCM-Energy. Analysis of the
logistic regression (LR) algorithm suggested that GLCM-Energy from contrast-enhanced TIWI (which
indicates the superiority of GLCM-energy compared to the other two for TIW1) could be taken as an
independent predictor [9].

For T2WI, the HISTO-skewness and GLCM-contrast form could be taken as independent predictors. For
cystic changes, HISTO-skewness and GLCM-contrast in T2ZW1 images were found to be good predictors [8].
The results confirmed the potential value of this ML method in the differential diagnosis of CPs and
pituitary adenoma, which will prove helpful for clinicians in making decisions. IBM SPSS (IBM Corp.,
Armonk, NY) and MedCalc software (MedCalc, New York City, NY) were employed for statistical analysis. The
main limitation was that it was a small database from a single institution, except for inevitable selection
bias. However, this is also suggestive, that there is potential for early diagnosis and differentiation of CPs
and pituitary adenoma [8,10].

Methods of more accurate diagnosis

Until now, we have discussed how to differentiate CPs from other common tumors in the sellar region.
However, those methods had some obvious issues like small datasets and not-so-apprehensive issues like
overfitting and cross-entropy loss. Prince et al. worked on navigating and solving such hidden yet essential
issues. He adopted DL and transfer learning methods for a more accurate diagnosis of CP, which can
potentially generalize the results for the entire population. Children's Hospital in Colorado was accessed to
obtain the dataset. They used CT images and T1W contrast-enhanced MRI. To enhance model robustness,
the use of data augmentation and regularization techniques allowed Prince et al. to overcome dataset
limitations by creating variations within the limited data, thus reducing model sensitivity to overfitting.
Additionally, they addressed cross-entropy loss by optimizing the network's training algorithm, leading to a
more stable learning process that could adapt well to new data. Importantly, the integration of transfer
learning expanded the model’s generalizability, allowing the diagnostic framework to potentially scale across
broader populations and diverse clinical settings. By fine-tuning a pre-trained model with highly specific
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sellar region images, the approach effectively leveraged prior knowledge, making it a compelling tool for rare
disease diagnostics.

Another method that has become popular in recent times is the transfer learning method. These studies and
methods underscore AI's transformative potential in diagnosing complex cystic lesions in the sellar region,
notably by achieving higher accuracy than human assessments through advanced models like transfer
learning and radiomics. These models address limitations posed by small datasets and overlapping imaging
characteristics, enhancing clinicians' diagnostic precision for rare and similar-appearing lesions. This
advancement promises earlier, more reliable diagnoses, ultimately improving patient outcomes.

Human performance for diagnosis was reported at 0.87, much less than the performance of this model,
which had an AUPR of 0.99+0.01 for CT and 0.99+0.02 for MRI. This groundbreaking work shows that Al can
guide the clinician in diagnosing such rare diseases [11].

Prince et al. did another study to improve efficiency in diagnosis even with small datasets using transfer
learning. He used two data augmentation techniques to diagnose adamantinomatous CP (ACP) from small
datasets [12]. They gathered a small CT and MRI data set from a children’s hospital. The accuracy of the
diagnosis was 85.3% and 83.3%, respectively, which is an improvement of 38% due to the GA-improved
model [12]. This paper and the earlier research by Prince et al. lay a foundation for future advances in DL,
even if someone is working with small datasets. The DL network showed the best results when combined
with the CT and MRI datasets, making it an approach to diagnose these brain lesions. Still, more work can be
done on these data augmentation techniques to improve efficiency further such as the use of classification
models [12]. Classification models would be useful because they can enhance the accuracy and specificity of
diagnosing different lesion types within small datasets.

Other diagnostic challenges exist, such as lesions in the anterior skull base which include pituitary adenoma,
CP, meningioma, and RCCs as shown in Figures 2A-2D [13]. The ability of a radiologist to differentiate
between these four lesions based purely on MRI is often dictated by their level of experience and can be
extremely difficult due to the overlapping similarities between them [13]. Therefore, Zhang et al. took data
from a single institutional database in which 235 patients with pathologically proven pituitary adenoma, CP,
meningioma, or Rathke fissure cyst were included in the study cohort [13]. An area under the receiver
operating characteristic (ROC) curve, referred to as the area under the curve (AUC), was used to indicate the
level of differentiation ability using more modern methods. Zhang et al. found an AUC of more than 0.8 by
including linear discriminant analysis (LDA), SVM, RF, Adaboost, k-nearest neighbor (k-NN), Gaussian Naive
Bayes (GaussianNB), LR, GBDT, and decision tree (DT) [13]. The combination of LASSO and LDA achieved the
best comprehensive effect among all the models. The only limitation was a small database, but now new
models are overcoming this limitation, like multi-model imaging statistics. Radiomics-based ML could be the
future of early diagnosis [13].
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FIGURE 2: Different lesions on contrast-enhanced T1-weighted image.

Permission to use was obtained from the original publishers [13].

(A) Craniopharyngioma; (B) meningioma; (C) pituitary adenoma; (D) Rathke cleft cyst.

While diagnosing lesions with radiological methods has been quite useful, new models are also necessary to
perform molecular diagnosis. Exemplifying this is the two histological subtypes of CPs: ACP and papillary
CP (PCP) [14]. Multiple mutations are correlated with CP, but the most common are BRAF and CTNNB1
mutations [14]. Early identification of these mutations can help clinicians prescribe effective therapies.

BRAF and CTNNB1 mutations are found to be strongly correlated with the pathological subtypes of CPs,
which means the diagnosis of pathological subtypes and gene mutations has excellent significance for
effective adjuvant-targeted therapy. Chen et al. used MRI to predict the BRAF and CTNNB1 mutations
(Figures 3A-3C) [14]. Data from 44 patients were taken from a single study institution [14]. The pathological
diagnosis between ACP and PCP was made using four features. The area under the AUC of 0.89, accuracy
(ACC) of 0.86, sensitivity (SENS) of 0.89, and specificity (SPEC) of 0.85 were found from these features [14].
These results provided possibilities for molecular diagnosis of these diseases, which would further help make
a clinical judgment for the patient's benefit [14].
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FIGURE 3: Violin plots of distinctive MRI features for pathological,
BRAF, and CTNNB1 mutation analysis in sellar region tumors.

Permission was granted from original publishers [14].

Lesions other than CPs also need attention such as pituitary adenomas. A pituitary adenoma is another
tumor that can be present in the Sellar region. Early diagnosis of this tumor will help prevent features of
hormonal deficiencies and ocular manifestations. Zhu et al. did a preoperative study of the softness of
pituitary tumors [15]. They gathered data from 152 patients from a single institutional database. Of those
datasets, 112 were T1 MRI images, and 40 were T2. The newly customized semi-supervised model got an
accuracy of 91.78%. This suggests possibilities for diagnosing and grading pituitary tumors; however, as it
goes with every research for diseases like this, available datasets are too small, leading to problems in
generalizing these results [15].

Zeynalova et al. also worked on diagnosing pituitary macroadenomas (PMAs) [16]. Fifty-five patients who
had pituitary adenoma were recorded. Of them, 13 had hard, and 42 had soft Pituitary adenomas. The
artificial neural network (ANN) classifier correctly classified 72.5% of the PMAs analyzed using histogram
analysis, and its AUC was 0.71. For SIR evaluation, the precision was 74.5% and the AUC was 0.551.
Therefore, histogram analysis performed better than SIR evaluation and could be used for the early diagnosis
of pituitary tumors [16].

Building on advancements in Al-driven neuroimaging, several recent studies have demonstrated the
potential of ML models to enhance diagnostic precision for complex brain lesions, even within the
constraints of small and specialized datasets. Fan conducted research to predict preoperative treatment
response in invasive functional pituitary adenomas using radiomic signatures and selected clinical features
from MRI. In a cohort of 163 patients (108 primary and 55 validation), LR analysis yielded AUCs of 0.834 and
0.808, respectively, while a combined model incorporating radiomic signature and Knosp grade achieved
AUCs of 0.832 and 0.811, demonstrating significant diagnostic potential prior to surgery [17].

Machado evaluated the prognostic value of radiomic characteristics for predicting relapse in nonfunctioning
pituitary adenoma (NFPA) following initial surgery. In a retrospective study of 27 patients (10 with
recurrence, 17 without), radiomic features from 3D T1 contrast-enhanced MRI were analyzed. The model
achieved up to 96.3% accuracy for 3D features and 92.6% for 2D features (P < 0.02), indicating the potential
for MRI-based features to predict NFPA recurrence [18].

Ugga examined aggressive growth in pituitary adenomas via the ki-67 labeling index, utilizing ML to
analyze texture-derived MRI parameters in 89 patients post-surgery. k-NN classification reached a precision
of 91.67% with an F-score of 0.92, highlighting that texture-based MRI can effectively identify PMAs with
high proliferation, providing a focused and cost-effective diagnostic tool [19].

Using ML methods, Zhang wanted a preoperative prediction of non-functioning pituitary adenoma (NFPA)
subtypes [20]. They enrolled 112 patients, of which 75 were for training and 37 for testing. They used T1W
MRI and contrast-enhanced T1W MRI (CE-T1). From both imaging modalities, 1,428 quantitative features
were extracted. The T1 MRI showed AUC values of 0.8313 and 0.8042 for the training and test sets,
respectively. The CE-T1 image features did not give meaningful results [20]. A nomogram that consists of
gender and T1 radionics signature showed satisfactory results (Concordance index (CI) = 0.854 and 0.857,
respectively) in training and test sets, respectively. This model proved to be suitable in terms of superior
performance, thus suggesting that Al is the future of early and easy diagnosis of lesions like these [20].

Wang et al. studied the differentiation between a cystic pituitary adenoma and an RCC using radionic models
using ML methods [21]. Two hundred fifteen patients were enrolled in this study. MRI comprised T1, T2, and
post-contrast TITW MRI. One hundred five cases were of cytostatic pituitary adenoma, and 110 cases were of
RCC, and they were divided into training (n=172) and test sets (n=43). In the test set, using the ANN
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classifier, the AUC was 0.848, with an accuracy of 76.7%, a sensitivity of 73.9%, and a specificity of 80.0%.
This demonstrated that the ANN classifier performed better than the multiparametric or semantic model,
which had AUC = 0.792 and AUC = 0.823. The radiologist showed an accuracy of 69.8% and 74.4%. This
means that MR-based radionics can be used as a differentiating and diagnostic modality for diagnosing
pituitary adenoma and RCCs [21].

Hale explores the application of ML models to predict the grade of meningiomas (WHO grade I vs. II) using
MRI data to enhance preoperative planning and prognostication, traditionally guided by LR. The authors
trained multiple classifiers - k-NN, SVM, naive Bayes, and ANN - on data from 128 patients with confirmed
meningiomas, analyzing MRI-derived features including tumor volume, peritumoral edema, necrosis,
draining vein presence, tumor location, and patient sex. Each model was optimized and evaluated through
ROC curves and AUC values, with cross-validation applied to improve accuracy. Results showed the ANN
achieved the highest accuracy (AUC = 0.8895), surpassing LR (AUC = 0.731 and 0.8423 with quadratic terms)
and other ML models, demonstrating its superior ability to process complex imaging data. These findings
underscore the clinical potential of ML, especially ANNS, in predicting tumor grades and improving surgical
planning by aiding clinicians in identifying higher-grade meningiomas. When integrated into broader
studies, such as differentiating cystic lesions in the sellar region, ML models can further streamline
diagnostics for rare and complex lesions, enhancing accuracy and patient outcomes across radiologic
applications [22]. This research supports the utility of ML classifiers in accurately distinguishing between
lesion types based on MRI data. This aligns with the approach for cystic lesions in the sellar region, where
classifiers such as those used here can enhance differentiation accuracy, especially in cases where
radiographic features overlap.

Meningioma diagnosis is common nowadays due to high-end imaging methods but grading them accurately
is still challenging; Coroller researched determining tumor grades that may help make a proper, accurate
clinical decision [23]. 175 patients with meningioma with T1 MRI were included. The results were measured
using the AUC and the odds ratio (OR). 12 radiographic features (8 radiomic and 4 semantic) were strongly
associated with the meningioma grade. High-grade tumors exhibited necrosis/hemorrhage (ORsem = 6.6,
AUCrad = 0.62-0.68), intratumoral heterogeneity (ORsem = 7.9, AUCrad = 0.65), nonspherical shape (AUCrad
=0.61), and larger volumes (AUCrad = 0.69) compared to low-grade tumors. Radiomic and semantic
classifiers have an AUC of 0.78 and 0.76, respectively. Combining these further increases the classification
power, which is AUC= 0.86. This study helped lay the foundation for an accurate judgment of tumor grade,
which is especially important to plan treatment and assess the prognostic value of the present lesion [23].

Hsieh et al. worked on new segmentation methods using the integration of fuzzy-c-mean (FCM) and region-
growing techniques for automated tumor image segmentation [24]. The purpose being served here is
accomplishing one crucial ML step automatically to get even quicker computations and diagnosis of the
condition. MRI was included, specifically non-contrast T1 and T2W MR images. Images of a group of 29
patients were gathered [24]. The percent match (PM) value was 87.82 + 15.91%, and the correlation ratio (CR)
value was 0.79 £ 0.15. Therefore, this method was better than the automatic pathway. The paired t-test
confirmed the results, providing a P-value of 0.02344 (< 0.05) for PM and 0.03392 (< 0.05) for CR. All these
findings indicate that this system is a reliable and efficient method of brain tumor detection. The
development of these methods will have an enormous impact on the early diagnosis of these types of
lesions.

Hu conducted a similar study to diagnose grade 1 and 2 meningioma. 316 patients were observed, of which
229 had grades 1 and 87 had pathologically diagnosed high-grade 2 meningiomas [25]. The conventional
magnetic resonance imaging (cMRI) + apparent diffusion coefficient (ADC) + susceptibility-weighted
imaging (SWI) model demonstrated the best performance without or with subsampling, with AUCs of 0.84
and 0.81, respectively. The multiparametric radiomic model was the best model to diagnose and assess the
tumor grade of meningioma, which will help with early and more accurate treatment plans [25].

Bohara attempted to create a new model: intravoxel incoherent motion (IVIM) histogram analysis [26]. They
used this to differentiate low-grade meningiomas (LGM) and high-grade meningiomas (HGMs). IVIM MRI
was mandatory for this study, and 59 patients were selected. Of those, 45 had low-grade cancer, while 14
had HGM [26]. Compared to LGM, HGM showed significantly higher standard deviation (SD), variance, and
coefficient of variation (CV) of ADC (p< 0.006-0.028; AUC, 0.693-0.748), D (p< 0.004-0.032; AUC, 0.670-
0.752), and significantly higher CV off (p< 0.005-0.024; AUC=0.737). Therefore, LGM and HGM did not have
significant differences. There was a relationship between ki-67 and the histogram parameters. This article
gives us information on one other method that can be used to diagnose meningiomas and grade them to
benefit the patient by providing an early and accurate treatment [26].

Yitao et al. worked on the early diagnosis of gliomas [27]. This paper explored the feasibility and
effectiveness of using ANNS to classify gliomas. Data was taken from the institutional database. One
hundred thirty patients were included in the study. Their accuracy rate was 90.32%, the average sensitivity
was 87.86%, and the average specificity was 92.49%. The AUC was 0.9486. Thus, an ANN is highly likely to
diagnose and grade glioma [27].

Ranjith et al. studied using ML methods to differentiate benign and malignant Gliomas [28]. This was a
retrospective study, and 28 patients were selected for the study. WHO grade 2 was classified as benign, while
grade 3 and grade 4 were classified as malignant? Three classifiers performed best, while RF was the best
performer in AUC (0.911), and the best sensitivity was locally weighted learning (86.1%). These show
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promising results and potential for further use in research and clinical settings to diagnose and grade
gliomas [28].

Al-Dahmani et al. determined the epidemiology of sellar and suprasellar masses in Nova Scotia, Canada [29].
Data from all pituitary-related referrals within the province were prospectively collected in interlinked
computerized registries starting in November 2005. They conducted a retrospective analysis on all patients
with SM seen within the province between November 2005 and December 2013. About 1,107 patients were
identified, of which 1,005 were alive and residing in the province. They found the mean age at presentation
was 44.6+18 years, with an overall female preponderance (62%). Of patients with SM, 837 (83%) had
pituitary adenomas, and 168 (17%) had nonpituitary lesions. The relative prevalence and the standardized
incidence ratio, respectively, of various SM were nonfunctioning adenomas (38.4%; 2.34), prolactinomas
(34.3%; 2.22), Rathke's cyst (6.5%; 0.5), growth hormone-secreting adenomas (6.5%; 0.3), CPs (4.5%; 0.2),
adrenocorticotropic hormone-secreting adenomas (3.8%; 0.2), meningiomas (1.9%), and others (3.9%; 0.21).
At presentation, 526 (52.3%) had masses >1 cm, 318 (31.6%) at <1 cm and 11 (1.1%) had functioning
pituitary adenomas without discernible tumors, whereas tumor size data were unavailable in 150 (14.9%)
patients. The specific pathologies and their most common presenting features were nonfunctioning
adenomas (incidental headaches and vision loss), prolactinomas (galactorrhea, menstrual irregularity, and
headache), growth hormone-secreting adenomas (enlarging extremities and sweating), adrenocorticotropic
hormone-secreting adenoma (easy bruising, muscle wasting, and weight gain) and nonpituitary lesions
(incidental, headaches, and vision problems). Secondary hormonal deficiencies were shared, ranging from
19.6% to 65.7%; secondary hypogonadism, hypothyroidism, and growth hormone deficiencies constituted
most of these abnormalities. This was the most extensive North American study to date to assess the
epidemiology of SM in a large, stable population. Given their significant prevalence in the general
population, more studies are needed to evaluate these masses' natural history and help allocate appropriate
resources for their management [29].

Al for detecting sellar regions

Tian et al. conducted a contrastive analysis for CP and meningioma while studying qualitative features for
images captured by MR images and quantitative features for images captured by MRI texture features [30].
An institutional database was used to collect data from 127 patients with CP and meningioma. Sixty-three
patients had CP, and 64 patients had meningioma. There were two classifiers found that showed positive
results for early diagnosis and differentiation between CP and meningioma. This expands the possibilities of
diagnosing other such tumors as well. These classifiers, HISTO-Skewness and GLCM-Contrast on contrast-
enhanced images, can be used as independent predictors. The HISTO-skewness of the T2ZWI MR images can
also be used as an independent predictor. These classifiers offer varied approaches to predictive modeling:
k-NN categorizes based on the similarity of new data points to known cases, while SVM distinguishes
categories by finding an optimal boundary between them. Naive Bayes provides probabilities based on
assumed feature independence, and ANN models use interconnected layers to learn complex patterns in
data. Each model was optimized, and results showed the ANN achieving the highest accuracy (AUC = 0.8895),
outperforming traditional LR. This study emphasizes that ML, particularly ANNs, can handle complex
imaging features with greater precision, supporting clinicians in identifying higher-grade meningiomas and
enhancing preoperative planning. Integrating these findings with radiomic studies, such as differentiating
CP from meningioma, highlights ML’s potential to distinguish challenging, similar-appearing lesions in the
sellar region, ultimately advancing diagnostic accuracy and improving patient outcomes. Independent
predictors provide credibility for using these classifiers for early and accurate diagnosis. Furthermore, the
two types of features (quantitative and qualitative) were related, so there is little or no need to obtain both
to diagnose these two diseases [8].

Zhang et al. used LifeX software to extract data concerning 46 texture features of the tumor, including
HISTO, GLCM, GLRLM, gray-level zone length matrix (GLZLM), and neighborhood gray-level dependence
matrix (NGLDM) [20]. MR features were evaluated using the chi-square or Fisher tests, while texture features
were evaluated using the Mann-Whitney U test. Binary LR analysis was used to evaluate the noteworthy
features. The results indicated that some of these classifiers, which extracted certain features, can be used
as independent predictors to detect and differentiate these two tumors. All statistical analyses were
performed with SPSS software. This method gave positive results for diagnosing and differentiating CP and
pituitary adenoma. The only limitation is that this was used for a small dataset. Applying this method to
larger datasets can assist clinicians in clinical practice [20,31].

Prince et al. used the transfer learning method to obtain the pre-training model of ImageNet through the
TensorFlow application module [11,12]. Too much noise from the extracted data is known as overfitting. This
noise de-powers the value of any research, and to overcome this, they customized a three-term loss function
consisting of sigmoid focal cross-entropy, triplet hard-loss, and Correlation alignment. This is a novel
approach to correcting cross-entropy loss. In this study, the effectiveness of the modified loss function was
verified. Thus, proving this customization is successful. In addition, a metaheuristic parameter optimization
method was adopted to mitigate the calculation loss of the model. For preprocessing, the standard scale
function of Scikit-Learn was used. For primary classification from other tumors. The long short-term
memory model (LSTM) was employed. This work describes a DL approach utilizing transfer learning and a
state-of-the-art custom loss function for predicting CP [11,12].

Prince also applied two data enhancement techniques: the random augmentation technique and
transformation of adversarial networks of data enhancement (TANDA), to diagnose CP adamantinomatous
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from small data sets. These methods can be combined with other methods to overcome the problem of
generalization with small datasets. These methods also solve the issue of over-fitting [11,12].

Zhang et al. analyzed 40 texture features that were extracted from the MRI of 235 patients, combined with
clinical parameters (age, gender, and many more) to identify tumor types [13]. Additional selection methods
were adopted, like distance correlation, RF, most minor absolute shrinkage and Lasso, extreme gradient
boosting, and gradient boosting DT (GBDT). Nine classification models were employed, including LDA, SVM,
RFs, Adaboost, k-nearest neighbor (k-NN), Gaussian Naive Bayes, LR, GBDT, and DT. Using these classifiers
to classify multiple diverse types of lesions is a unique approach, and the positive results suggest that future
researchers explore multiple classifiers to accurately classify different kinds of lesions within the same
anatomical region [13,32].

Chen et al. gathered 464 features using quantitative location methods, and 555 high-throughput features
were extracted using MATLAB from MRI to predict BRAF and CTNNB1 mutations [14]. Two features were
applied to estimate the BRAF V60OE mutation and three for the CTNNB1 mutation. Both had an accuracy of
0.91 and 0.86, respectively. Extracting data on the tumor's genetic makeup is a novel diagnostic method that
has not been explored enough. This could prove to be a possibility to overcome the extended duration of
laboratories to diagnose the gene makeup of any lesions [33].

Zhu et al. used the CycleConsisnet Adversarial Networks (CycleGAN) model to complete the samples of 152
patients [15]. Densely Connected Convolutional Networks (DenseNet) - Deep Residual Networks (ResNet)-
based autoencoder framework was used for extraction optimization. Convolutional repetitive neural network
(CRNN) classification model to classify pituitary tumors based on their predicted softness levels. This
method proved to be effective for diagnosing pituitary adenoma [15,34].

Another method for diagnosing pituitary adenoma using artificial methods is by Zeynalova et al. [16]. He
used histogram features to segment the dataset manually. Reproducibility analysis, collinearity analysis, and
feature selection were used for dimension reduction. ANNs use a classifier. Surgical and histopathological
findings were taken as reference. The findings were compared using the AUC [16].

Fan and Machado also conducted an experiment in which they attempted to use ML methods to detect and
predict outcomes related to pituitary adenomas [16,17]. Fan focused on using LR analysis on the extracted
features as radiomic signatures. He also used Knosp grade to increase the discriminative abilities of the
model. On the other hand, Machado considered a few features such as sex, age at first surgery, and whether
remnant tissue was present. Traditional statistical methods were used to obtain differences between the two
groups. Five standard ML algorithms were combined with radiomic features, which showed satisfactory
results, thus confirming the effectiveness of this model for detecting pituitary adenomas [17-19].

Zhang et al. also worked on diagnosing nonfunctioning pituitary adenoma. For the experiment, they used a
straightforward approach [20]. They extracted quantitative features from the available data set. An SVM
algorithm was used. A predictive model was trained, and validation was performed by AUC analysis. This
paper suggests that even the application of simple methods can provide benefits in diagnosing diseases [20].

Ugga et al. conceptually went in depth about diagnosing the disease and predicting the ki-67 proliferation
index, which helps assess the potential of further tumor expansion. From T2W MRI, 1,128 quantitative
features were extracted. Multiple selection methods were used to recognize the most critical features [19].
The k-NN classifier predicted the high and low proliferation index. The train test approach was used for
algorithm validation [35,36].

Radiomic models were constructed using four classifiers, and Wang et al. performed fivefold cross-validation
to differentiate between cystic pituitary adenoma and RCC. Thus, an integrated model was made by
combining radionics and semantic features. The diagnostic performance was checked using both tests. The
receiver operating characteristic curve was used to evaluate and compare the performance of the models.
The ANN classifier was used for classification. This experiment showed satisfactory results for using
predictive Al models to detect the two tumors [21].

Hale conducted an experiment to grade meningioma. In this experiment, the neuroradiologist interpreted all
MRI images using different parameters to obtain a primary dataset. Several binary classifiers were used, such
as k-NN models, SVMs, naive Bayes classifiers, ANNs, and LR models. All these classifiers and algorithms
will serve the purpose of grading the tumor. The AUC-receiver operating characteristic curve was used for
comparisons. Six preoperative imaging and demographic variables, such as tumor volume, degree of
peritumoral edema, presence of necrosis, tumor location, patient sex, and the presence of draining vein,
were used to construct a singular custom model. This model showed positive results, implying that simple
ML methods can be used to grade meningioma and other tumors [22].

Coroller et al. also worked on grading the tumors, and the first step was to quantify the image features and
characteristics from the available dataset; 15 radiomic features and 10 semantic features were extracted. RF
classifiers were used and validated on another individual dataset for classifiers. The AUC and the OR were
used to measure the results. This method was also simple, the same as diagnosing and grading meningioma
[23].
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Improving the process of any ML method is also crucial. Hsieh et al. improved the segmentation process by
integrating FCM and region growing techniques. The first step was pixel aggregation using FCM clustering,
which gave 32 groups of images from each patient group out of 29 patient groups. Using knowledge-based
information, the selected system formed one single tumor image from multiple tumors containing images of
those groups. This automatic verification method was compared to another semi-supervised method. The
morphology operator optimized the image. The results were compared to the “ground truth” (GT) on the
pixel level. Analysis was conducted based on PM and CR. While comparing it with the GT, this analysis
showed a positive match with a fair level of correspondence. The positive results confirmed improved and
better segmentation techniques, further increasing the efficiency of early diagnosis of tumors [24].

Hu et al. used three characteristics. Al for this study to grade meningioma tumors. Radiomic features from
conventional images, ADC maps, and SWI. All of them were extracted based on the volume of the tumor.
The classification performance of different radiomic models (cMRI, ADC, SWI, cMRI+ADC, cMRI+SWI,
ADC+SWI, and cMRI+ADC+SWI models) was evaluated using a nested leave-one-out cross-validation
(LOOCV) approach, combining the selection of features of LASSO and the RF classifier with the synthetic
minority oversampling technique (SMOTE). The performance was predicted using the receiver operating
characteristic curve, and AUC was then compared using Delon’s test [25].

Bohara et al. also created a new model to classify IVIM parameters for meningioma tumors such as
(perfusion fraction, f; true diffusion coefficient, D; and pseudo diffusion coefficient, D*) as well as the
apparent diffusion coefficient (ADC) were generated. The region of interest was mapped manually, and the
parametric values underwent histogram analysis. Mann-Whitney U test was used for statistical analysis.
AUC values were used to quantify the results. Spearman rank correlation coefficients were used to evaluate
correlations between histogram parameters and ki-67 expression [26].

Yitao et al. extracted 41 features based on MRI-enhanced T1W two-dimensional images to make a machine-
learning algorithm for the early diagnosis of gliomas. Feature selection was done using an ANN to obtain the
optimal model. Random image features were extracted to train the neural network. Half of the patients were
used as a training group, and the other half had undergone glioma classification on a neural network.
Hundredfold repetitions were made for training and validation, and the results were averaged. After feature
selection, five features were selected. This study was successful in making an early diagnosis of the glioma
tumors [27].

Jiang et al. employed radiomics and DL approaches to extract features from gadolinium-enhanced MRIs of
399 patients, aiming to distinguish between four cystic lesion subtypes: pituitary apoplexy, cystic pituitary
adenoma, RCC, and cystic CP [36]. Their model achieved an average accuracy of 75.32%, outperforming
traditional clinical methods by approximately 8%. This work aligns with the goals of the current study by
emphasizing the clinical utility of ML for improving diagnostic accuracy in complex neuroimaging cases [36].
The approach of Jiang et al. underscores the importance of non-invasive ML methods for preoperative
diagnosis, reinforcing the potential for ML to streamline clinical workflows and improve surgical planning
by distinguishing between lesions that may otherwise be difficult to classify visually. Integrating similar ML-
based techniques in the current study could further refine the differentiation process and bolster the overall
accuracy of lesion classification, particularly in ambiguous cases [36].

The diagnostic performance metrics across various studies underscore the significant potential of Al and ML
models in advancing the differentiation of cystic lesions in the sellar region, as shown in Table 2. The high
accuracy and AUC values achieved by models employing DL techniques, such as CNNs and transfer learning,
indicate that these approaches can outperform traditional diagnostic methods. This is particularly
important for complex cases where imaging characteristics overlap, as Al can detect subtle features that may
elude human interpretation. Additionally, the use of radiomic texture features like GLCM-contrast and
HISTO-skewness has consistently shown promise in improving diagnostic accuracy, suggesting that
texture-based analysis could be a cornerstone in Al-driven neuroimaging. However, the limitations
highlighted across the reviewed studies, such as small sample sizes and single-center data, suggest a need
for more robust, multi-center datasets to validate the generalizability of these Al models. Addressing these
challenges by integrating large, diverse datasets and adopting standardized validation techniques could
significantly enhance the clinical applicability of Al, providing more reliable and early differentiation of
sellar region cystic lesions. Expanding research efforts to optimize Al algorithms for these complex
neuroimaging tasks not only holds promise for improving patient outcomes but also sets the stage for Al to
become an indispensable tool in radiology and neuro-oncology.

Sensitivity Specificity Accuracy Dataset o o
Study Al model used AUC | Key findings & limitations
(%) (%) (%) size (n)
e Showed good differentiation between pituitary
Zhang et al Logistic adenoma and craniopharyngioma using MRI
" regression, 85.4 88.2 86.8 0.89 126 o )
2020 [9] texture features. Limited by single-center data
GLCM-energy .
and small sample size.
Demonstrated the effectiveness of ANN for
differentiating cystic pituitary adenoma and
Wang et al., Artificial neural : ‘ating cystic pilultary
73.9 80.0 76.7 0.85 215 Rathke cleft cysts. Model performance was
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2021 [21]

Prince et al.,
2020 [12]

Machado et
al., 2020 [18]

Zhu et al.,
2020 [15]

Chen et al.,
2019 [14]

Tian et al.,
2020 [30]

Fanetal,,
2019 [17]

Yitao et al.,
2018 [27]

Ugga et al.,
2019 [19]

Zhang et al.,
2018 [20]

Wang et al.,
2021
(Radiomic
Model) [21]

Hale et al.,
2022 [22]

Hsieh et al.,
2011 [24]

Jiang et al.,
2020 [36]

network (ANN)

Deep learning,
transfer
learning

Radiomic
model (3D MRI)

Semi-
supervised
model
(CycleGAN)

Radiomics
(BRAF &
CTNNBH1
Prediction)

SVM, HISTO-
skewness,
GLCM-contrast

Logistic
regression with
radiomic
signature

Artificial neural
network (ANN)

k-nearest
neighbor (k-
NN), texture
features

Support vector
machine (SVM)

Multiparametric
radiomic model

Multiple binary
classifiers
(ANN, SVM,
etc.)

Fuzzy
clustering &
region growing

Radiomics &
deep learning
hybrid model

87.0

92.6

74.5

89.0

80.1

83.2

87.9

91.7

83.1

76.7

88.9

87.8

78.3

90.0

96.3

85.0

83.7

81.1

92.5

90.0

80.4

80.0

86.0

79.0

81.0

0.99

0.92

0.71

0.89

0.84

0.83

0.95

0.92

0.83

0.79

0.89

0.79

0.75

152

27

55

44

127

163

130

89

112

215

175

29

399

higher than radiologists, but the dataset size
was limited.

Used deep learning methods with transfer
learning for classifying adamantinomatous
craniopharyngioma. High performance
achieved, but risk of overfitting due to small
sample size.

The predictive model showed high accuracy
for detecting recurrence in non-functioning
pituitary macroadenomas. The small dataset
limits generalizability.

Applied CycleGAN-based semi-supervised
learning for pituitary adenoma texture
classification. Performance was better for
texture analysis than conventional evaluation.

Utilized radiomics for predicting molecular
mutations in craniopharyngioma. Good
predictive accuracy, but the limited dataset
may impact model reliability

Differentiated craniopharyngioma from
meningioma using texture features from MRI.
Relatively small sample size and potential
selection bias noted.

The model showed potential in predicting
treatment response for invasive functional
pituitary adenomas. However, sample bias
due to single-center data was a limitation.

Applied ANN for early diagnosis of gliomas.
The high accuracy rate was achieved, but
there was a lack of multi-center data for
validation.

Predicted high proliferative index in pituitary
macroadenomas using MRI-based texture
analysis. Results were promising, but further
validation with larger datasets is needed.

Demonstrated the effectiveness of SVM for
preoperative prediction of non-functioning
pituitary adenoma subtypes. The single-
institution dataset was a limitation.

Combined radionics and semantic features for
differentiating sellar cystic lesions. Moderate
diagnostic performance suggests a need for
model optimization.

Different classifiers were applied to grade
meningiomas based on MRI features. Results
indicated good performance across
classifiers, but dataset variation may affect
reproducibility.

Integrated fuzzy clustering for automated
segmentation of meningioma on non-contrast
MRI. The small sample size limited
generalizability.

Differentiated four cystic lesion subtypes using
a hybrid approach. Demonstrated higher
accuracy than traditional methods but
highlighted the need for larger, diverse
datasets.

TABLE 2: Performance of differing Al platforms on sellar lesion detection
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GLCM - gray-level co-occurrence matrix, GLRLM - gray-level run length matrix, Al - Artificial intelligence

The study by Beam et al. highlighted several challenges in implementing ML for these conditions, such as the
lack of reproducibility, robustness, and generalizability in existing models. Additionally, the study proposed
a quality assessment tool to address these issues and suggested improvements for future research, such as
reporting platforms and hyperparameters, as well as better validation methods. This systematic review is
directly relevant to the current study as it emphasizes the need for standardized approaches and robust
validation, critical for building reliable AI models in medical imaging. Both studies aim to leverage ML to
improve diagnostic accuracy for sellar region lesions, with the current study focusing on the specific
differentiation of cystic lesions using advanced MRI techniques. Incorporating the recommendations from
Beam et al., such as improving reproducibility and clinical significance, would strengthen the design and
application of Al models in the differentiation of sellar cystic lesions [37].

Differentiating cystic lesions in the sellar region of the brain using Al highlights the significant challenges in
diagnosing lesions such as pituitary adenomas, RCCs, and CP. These lesions share similar imaging
characteristics and are located in a complex neuroanatomical area. Analyzing MRI with Al and ML models
can improve diagnostic accuracy and early detection.

Al databases on brain tumors

Medical Segmentation Decathlon

In this context, integrating the Medical Segmentation Decathlon (MSD) dataset, mainly its brain tumor
segmentation task, offers a valuable opportunity to enhance the generalizability and robustness of Al
models applied to the sellar region. The MSD dataset contains a variety of multi-parametric MRI scans,
including T1W, post-Gadolinium contrast (T1-Gd), T2W, and FLAIR sequences, which can aid in the
segmentation of brain tumors, such as gliomas. The complexity of glioma segmentation, involving the
identification of edema and enhancing and non-enhancing tumor regions, is highly relevant to the
differentiation of sellar region cystic lesions [38].

By leveraging MSD’s multi-parametric MRI data, the Al models discussed in your paper can benefit from the
same strategies used to enhance the segmentation of brain tumors [39]. For example, the MSD dataset’s
successful application of the nnU-Net architecture, which dynamically adapts pre-processing, network
topology, and post-processing depending on the dataset, has shown exceptional results across multiple
tasks. Using such generalizable Al models can greatly improve the differentiation of cystic lesions,
particularly when the imaging features of these lesions overlap significantly with those of other brain
structures [38].

Additionally, the use of Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD) metrics from
the MSD study to validate the segmentation performance of the Al models for the sellar region is highly
applicable [38]. These metrics, which have been extensively validated across multiple clinical tasks, provide
a robust framework for evaluating the accuracy of segmentation models in neuroimaging. Incorporating
these metrics into your study ensures that the Al models for sellar region lesions are evaluated using the
same rigorous standards as those applied in the MSD [38].

Furthermore, the MSD dataset’s inclusion of multi-site data and its ability to generalize across various tasks
demonstrate the importance of cross-validation in Al models. The variability inherent in the sellar region's
neuroanatomy makes generalizability crucial in ensuring the clinical relevance of Al-based diagnostic tools
[38]. By training models on both the sellar region data and the MSD brain tumor dataset, your study could
improve the robustness of Al models, making them more adaptable to real-world clinical settings [38].

Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

A study by Chandra Sekaran and Clement presents an innovative approach for brain tumor segmentation
using their G-Net framework, which integrates advanced components such as Self-Attention, Squeeze
Excitation, Fusion, and Spatial Pyramid Pooling blocks [29]. This architecture was designed to enhance the
accuracy and efficiency of brain tumor segmentation, specifically in handling MRI [39]. Each component in
the G-Net framework plays a unique role in improving the model's performance. The Self-Attention Block
allows the model to focus on the most informative areas of an image, enabling accurate localization of
tumor boundaries [39]. This is particularly important for complex tumors where fine detail is crucial. The
Squeeze Excitation Block recalibrates channel-wise features, enabling the network to better capture fine-
grained information in the input, ultimately improving segmentation precision. Furthermore, the Spatial
Pyramid Pooling Block provides multi-scale contextual information, effectively allowing the network to
handle tumors of varying sizes and complexities [40]. The integration of these components creates a highly
sophisticated and effective tool for brain tumor segmentation, and the G-Net architecture outperformed
standard segmentation models, such as U-Net, in their evaluation. When tested on the BRATS dataset, the
G-Net model achieved a Dice similarity score of approximately 93%, significantly improving over traditional
methods. This design offers a more detailed and robust way to segment brain tumors [40]. It could apply to
other brain abnormalities, including cystic lesions in the sellar region. The model’s ability to capture
complex spatial and channel-wise dependencies could be adapted to improve Al-driven approaches for
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differentiating between sellar cystic lesions, such as pituitary adenomas, RCCs, and CPs [39].

Similarly, the BRATS (Multimodal Brain Tumor Image Segmentation Benchmark) study by Menze et

al. aimed to establish a standardized benchmark for evaluating the performance of brain tumor
segmentation algorithms [40]. The challenge involved 20 state-of-the-art tumor segmentation algorithms
applied to a dataset comprising both natural and synthetic MRIs of brain tumors. A key finding from the
BRATS challenge was the significant variation in human annotations. Dice scores ranged from 74% to 85%,
highlighting the inherent difficulty of segmenting brain tumors, even for expert human raters. This
variability underscores the complexity of segmenting tumor subregions, such as the enhancing tumor core
and necrotic regions. This is a similar challenge in differentiating various types of cystic lesions in the sellar
region [40].

One of the most essential takeaways from the BRATS study was that no single segmentation algorithm
performed optimally across all tumor subregions. Instead, different algorithms excelled in different sub-
tasks, such as segmenting the enhancing tumor core versus the necrotic core. This result led the researchers
to explore ensemble methods, where several good algorithms were fused using a hierarchical majority vote,
leading to overall better performance than any individual algorithm. This finding is particularly relevant to
differentiating cystic lesions in the sellar region. Al models may need to be fine-tuned for each lesion type
(such as differentiating between cystic and solid tumors with cystic components). By combining multiple AI
models, as shown in BRATS, researchers can potentially achieve higher segmentation accuracy than relying
on a single model [40]. Additionally, BRATS identified that generative and discriminative models were both
applicable but had different strengths; for instance, generative models could incorporate prior knowledge
about the appearance of the tumor and were better at generalizing across different datasets, while
discriminative models directly learned the relationship between image intensities and segmentation labels.
This balance between learning from raw data and incorporating prior domain knowledge could be especially
useful for differentiating sellar cystic lesions, which share standard imaging features but require precise and
accurate segmentation to aid in diagnosis [40].

Menze et al.’s findings from the BRATS challenge highlight the importance of adopting a multi-model
approach in the context of brain lesion differentiation. The significant variability in human annotations of
tumor subregions underscores the complexity of such tasks, akin to the challenges encountered in
differentiating sellar lesions. The BRATS study demonstrates that no single algorithm consistently performs
optimally across all subregions of brain tumors, emphasizing the need for ensemble methods that combine
multiple algorithms to achieve better accuracy. This insight directly applies to the differentiation of cystic
lesions in the sellar region, where integrating generative and discriminative models could enhance
performance and overcome limitations associated with individual AI models [40].

Open Access Series of Imaging Studies (OASIS)

The OASIS dataset study (Kaggle, San Francisco, USA) [41] provides a valuable resource for advancing Al
models in neuroimaging, particularly in understanding brain aging and neurodegenerative diseases. The
OASIS was created to provide longitudinal MRI data that includes both nondemented and demented older
adults. It is a critical tool for studying brain atrophy and its progression in conditions such as Alzheimer’s
disease (AD) [41]. The dataset comprises MRI scans from 150 individuals aged 60 to 96, with follow-up
imaging sessions occurring at least one year apart. This allows for the tracking of changes in brain structures
over time. The data, including metrics like normalized whole-brain volume (nWBV), demonstrated
significant atrophy in individuals with AD, who experienced an annual decline in nWBV of 0.87%, compared
to 0.49% in nondemented individuals. These findings underscore the utility of longitudinal MRI data in
capturing subtle anatomical changes associated with aging and cognitive impairment [41].

This longitudinal approach to understanding brain changes is highly relevant to the goals of this paper,
which seeks to differentiate cystic lesions in the sellar region using Al. Although the OASIS dataset focuses
primarily on AD and brain aging, its detailed segmentation and processing techniques apply to
differentiating other brain pathologies, such as cystic lesions [41]. Tracking brain volume changes over time
offers an opportunity to adapt these methods to study lesion progression, potentially distinguishing
between benign and malignant cystic lesions in the sellar region. The high contrast-to-noise ratio and multi-
session MRI data provided in OASIS offer a strong foundation for developing Al models that require high-
quality imaging data for accurate segmentation and classification [41].

A study by Ardekani et al. investigated the presence of sexual dimorphism in the corpus callosum (CC),
focusing on the midsagittal CC cross-sectional area (CCA) using MRI data from the OASIS database. Previous
studies had presented conflicting conclusions regarding gender differences in the CCA, often due to small
sample sizes and inconsistent methodologies. This study aimed to resolve these discrepancies by utilizing a
larger sample size and applying advanced statistical controls to account for confounding factors such as
brain size and age. The null hypothesis proposed that there would be no difference in CCA between males
and females once brain size was controlled.

The study analyzed MRI scans from 316 subjects, including 119 males and 197 females, ranging in age from
18 to 94 years. The researchers employed multiple regression analysis to control for brain size and age. Their
findings revealed that females had a significantly larger CCA than males after adjusting for these factors,
with a statistical significance of P < 0.03 in the full sample [42]. In a subset of 74 young adults (aged 18-29),
matched closely for brain size, the difference between males and females was even more pronounced (P <
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0.0005), reinforcing the presence of sexual dimorphism in the CC. The study also found a significant
relationship between age and CCA, with the CCA decreasing as age increased and a positive correlation
between brain size and CCA [42].

The study's results rejected the null hypothesis, proving that females have a larger CCA than males, even
after accounting for brain size and age. These findings not only demonstrate sexual dimorphism but also
confirm that CCA decreases with age and is positively correlated with intracranial volume. This
comprehensive analysis contributes significantly to understanding gender differences in brain morphology
[42].

This study is highly relevant to the paper's goals, as it demonstrates how publicly available MRI datasets,
such as OASIS, can effectively investigate structural differences in the brain with high precision and
statistical rigor [42]. The automated segmentation methods used for the CC provide a valuable framework for
exploring other areas of brain structure, such as cystic lesions in the sellar region [42]. Using multiple
regression analysis to control for confounding variables illustrates how statistical approaches can enhance
the accuracy of results, which is crucial for developing Al models aimed at differentiating lesions.
Furthermore, the emphasis on large sample sizes and rigorous controls aligns with the objectives of building
reliable and generalizable Al models for medical imaging applications [42].

The methodology and automated processing pipeline developed in this study offer important insights for
improving the precision of segmentation tasks, which is particularly valuable when training AI models for
lesion differentiation. By leveraging high-quality MRI data and utilizing public datasets like OASIS, this
paper can adopt similar techniques to investigate structural differences in cystic lesions, ultimately
improving the Al-based differentiation models and contributing to enhanced diagnostic outcomes in
neuroimaging [42].

Discussion
Findings on AI's Role in Diagnosing Sellar Cystic Lesions

The literature reviewed highlights the potential of Al and ML models, specifically CNNs and other DL
techniques, in improving the differentiation of cystic lesions in the sellar region of the brain. Lesions such as
pituitary adenomas, RCCs, and CPs are challenging to differentiate due to their overlapping imaging
characteristics, but AI-driven models have shown promising advancements in diagnostic accuracy [40,41].
Models using transfer learning and ensemble methods have significantly improved, suggesting that these Al
tools can outperform traditional neuroimaging techniques [42]. Leveraging advanced segmentation
techniques, such as attention mechanisms and multi-scale feature extraction, these models provide better
differentiation between lesions by detecting subtle morphological variations [11,12]. Additionally, publicly
available datasets like OASIS and BRATS have proven essential for developing and validating AI models,
highlighting the importance of large, high-quality datasets in training effective diagnostic models.

Al models based on DL techniques have significantly enhanced diagnostic accuracy by detecting nuances in
imaging features that may escape manual interpretation. These findings are consistent with other areas of
neuroimaging, such as glioma segmentation in the BRATS dataset [41], where Al models have demonstrated
a superior ability to differentiate complex structures. The automatic extraction of features from medical
images, without reliance on handcrafted features, allows these models to perform more effectively on
complex cases like sellar region lesions [11,12]. Importantly, studies utilizing the OASIS dataset show how
controlling for confounding variables like brain size and age creates more accurate and generalizable Al
models. As a result, these Al applications hold significant potential for improving diagnostic outcomes by
facilitating earlier and more precise diagnoses, which is crucial in preventing complications arising from
delayed or incorrect diagnosis [16].

The findings in this paper align with research from other domains of neuroimaging, particularly the
segmentation of brain tumors in the BRATS dataset [40]. In glioma studies, AI models successfully
distinguished between tumor subregions by enhancing cores and necrotic regions, a challenge similar to
differentiating cystic lesions in the sellar region [11,12]. These models’ success highlights the potential for
multi-modal imaging techniques, such as MRI combined with other imaging modalities (like CT or
functional imaging), to enhance diagnostic precision. Applying ensemble methods in neuroimaging, which
involves fusing the outputs of several models, proved to be highly effective for brain tumor differentiation
and could be similarly helpful for cystic lesions, where single-model approaches might be insufficient [41].
The OASIS dataset’s longitudinal tracking of brain atrophy further supports the need for similar datasets
focusing on cystic lesions to track changes over time and enhance diagnostic accuracy [41].

Clinical Implementation

Integrating Al tools into clinical workflows is essential to ensure these models serve as complementary aids
to existing diagnostic processes rather than disrupt them. Al can function as a decision-support tool by
providing secondary assessments for radiological evaluations, especially in cases where traditional
approaches struggle to distinguish between cystic lesions in the sellar region, such as pituitary adenomas,
RCCs, and CPs, due to overlapping imaging characteristics [42]. Al tools can help flag ambiguous cases that
require further review, thereby enhancing diagnostic confidence [8]. By pre-analyzing imaging studies and
highlighting regions of interest, Al can also improve the efficiency of radiologists. For sellar cystic lesions,
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this could include providing automated segmentations, estimates of lesion volume, or likelihood scores for
different lesion types, which reduces the time radiologists spend on routine tasks and allows them to focus
on more complex cases [43].

To effectively integrate Al it is important to address barriers such as a lack of training in Al technologies,
reluctance to trust Al results, or concerns about workflow disruption. The study should explore potential
solutions, including incorporating AI education into medical training programs and conducting workshops
on interpreting Al-generated outputs [44]. Another key aspect is the explainability of AI models, as many
clinicians may be hesitant to trust “black-box” models that do not provide insights into how decisions are
made. To foster trust, the study should focus on explainable Al techniques that offer visualizations or
explanations for Al decisions, such as heatmaps indicating the regions of an MRI that most influenced a
diagnosis [44]. These measures can make Al outputs more interpretable and acceptable to clinicians.

For clinical use, Al models must undergo rigorous validation and regulatory approval processes. The paper
should explore how the study’s AI model aligns with current regulatory standards, such as those set by the
U.S. Food and Drug Administration (FDA) for software as a medical device (SaMD) [45]. Clinical validation
studies demonstrating improved patient outcomes or diagnostic accuracy are necessary for regulatory
approval [46]. Additionally, Al tools should integrate seamlessly into existing hospital information systems,
such as Picture Archiving and Communication Systems (PACS) and Electronic Health Records (EHRs). The
paper could discuss technical requirements for integration, including data interoperability standards like
DICOM for medical imaging and HL7 for EHR data exchange, ensuring that Al tools fit into existing systems
to minimize workflow disruption [45].

Automation of clinical workflows is another potential benefit of Al integration. For example, if a sellar
lesion is detected on an MRI, the Al system could automatically recommend further imaging or lab tests
based on the lesion's characteristics, streamlining the diagnostic process [47]. Al could also assist with
automated report generation, providing radiologists with a draft report based on Al analysis, thus saving
time on documentation. However, it is important to consider the financial aspects, as implementing Al
involves not only upfront costs for software and training but also ongoing maintenance expenses. The study
should present a cost-benefit analysis weighing these costs against potential savings from reduced
diagnostic errors, faster diagnosis, and decreased need for follow-up imaging, which could help justify the
adoption of Al tools within hospital budgets [46].

To optimize the integration process, it would be beneficial to involve a multi-disciplinary team that includes
radiologists, neurosurgeons, endocrinologists, and ophthalmologists. The paper should outline strategies for
engaging these specialists in developing Al protocols, ensuring that the AI models meet the specific needs of
each specialty. Once deployed, AI models must be monitored for performance in real-world settings.
Establishing a feedback loop where radiologists can report cases where the Al tool made errors or provided
inaccurate results will be crucial. This feedback could then be used to retrain the AI model, thus continuously
improving its accuracy over time. Continuous performance monitoring ensures that the Al system remains
clinically relevant and adaptive to new diagnostic trends.

Limitations

One limitation of this review is the relative scarcity of literature focusing specifically on Al applications for
sellar region cystic lesions [39]. Most research in Al-driven neuroimaging has focused on solid brain tumors
or neurodegenerative diseases, with less attention paid to cystic lesions. Additionally, while this review
highlights the potential of MRI-based AI models, it may underexplore other imaging modalities, such as CT
or functional imaging, which could also play a role in lesion differentiation. Moreover, many studies
reviewed rely on small, single-institution datasets, limiting the generalizability of their findings. Further
research is needed to address these gaps and explore the broader potential of Al in differentiating sellar
region lesions.

Despite the advancements Al offers, several limitations hinder widespread adoption. First, Al models rely
heavily on large, high-quality datasets for training and validation. While datasets like OASIS and BRATS
have been instrumental in advancing neuroimaging, there is a need for multi-institutional datasets that
specifically focus on cystic lesions in the sellar region. The small sample sizes used in many of the studies
reviewed often lead to overfitting, where models perform well on training data but fail to generalize to
broader clinical contexts.

While MRI offers excellent soft-tissue contrast, combining it with other imaging techniques could improve
the Al model's performance by capturing a broader range of lesion characteristics. For example, integrating
MRI with PET could provide both anatomical and functional data, enhancing diagnostic accuracy, especially
in ambiguous cases. The study should also address the “black-box” nature of DL models, which can hinder
clinician trust due to a lack of interpretability. Emphasizing explainable Al techniques, such as saliency
maps or SHapley Additive exPlanations (SHAP), would help clinicians understand how Al reaches specific
conclusions, potentially increasing adoption [48]. Moreover, there is a risk of bias in Al model development
if the dataset does not adequately represent various demographic groups or lesion types, leading to
disparities in diagnostic accuracy. Mitigating this bias involves balancing the dataset across different patient
demographics, and lesion subtypes, and applying bias-correction techniques during model training [48].

The Al models’ promising performance in controlled settings does not guarantee robustness in real-world
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clinical environments, where factors such as image quality variations, MRI machine settings, and differences
in radiological expertise could impact model performance. Multi-site clinical validation studies are
necessary to test the adaptability of the Al models across different settings and ensure consistent diagnostic
accuracy [48]. Another issue is the challenge of data annotation and quality, as high-quality, annotated
datasets are essential for training accurate AI models [49]. Obtaining consistent labeling, especially for rare
lesions, can be difficult, and the study should address how variations in data annotation might affect model
performance. Collaborative efforts to standardize annotation guidelines and share high-quality datasets
could help mitigate this limitation [49].

The integration of Al into clinical workflows also raises regulatory and ethical concerns, particularly
regarding patient data use and the need for model transparency [49]. The study should discuss strategies for
ensuring compliance with regulations such as the General Data Protection Regulation (GDPR) and the
Health Insurance Portability and Accountability Act (HIPAA). Additionally, the ethical implications of AI-
driven decision-making, including its influence on treatment choices, should be considered to support the
broader adoption of Al technologies [49].

Conclusions

This paper underscores the significant potential of AI and ML models, particularly CNNs and DL
architectures, in advancing the early and accurate differentiation of cystic lesions in the sellar region, such
as pituitary adenomas, RCCs, and craniopharyngiomas. The review of current Al applications in
neuroimaging highlights how these models, combined with high-quality datasets like OASIS and BRATS, can
overcome traditional diagnostic limitations. AI-driven models have enhanced diagnostic precision by
detecting subtle differences in lesion morphology, leading to earlier detection and better-informed clinical
decision-making. Despite the advancements, the review also identifies the need for larger, multi-
institutional datasets and more interpretable AI models to integrate Al into clinical practice further. The
results of this paper suggest that, with continued development and validation, Al can become an
indispensable tool in neuroimaging, significantly improving patient outcomes in the diagnosis and
management of sellar region cystic lesions. Future research should focus on expanding datasets, improving
model interpretability, and exploring multi-modal imaging to realize AI's full potential in clinical
neuroimaging.
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