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ABSTRACT This study explores cutting-edge computational technologies and intelligent methods to create
realistic synthetic data, focusing on dementia-centric Magnetic Resonance Imaging (MRI) scans related to
Alzheimer’s and Parkinson’s diseases. The research delves into Generative Adversarial Networks (GANSs),
Variational Autoencoders, and Diffusion Models, comparing their efficacy in generating synthetic MRI
scans. Using datasets from Alzheimer’s and Parkinson’s patients, the study reveals intriguing findings.
In the Alzheimer dataset, diffusion models produced non-dementia images with the lowest Frechet Inception
Distance (FID) score at 92.46, while data-efficient GANs excelled in generating dementia images with
an FID score of 178.53. In the Parkinson dataset, data-efficient GANs achieved remarkable FID scores
of 102.71 for dementia images and 129.77 for non-dementia images. The study also introduces a novel
aspect by incorporating a classification study, validating the generative metrics. DenseNets, a deep learning
architecture, exhibited superior performance in disease detection compared to ResNets. Training both models
on images generated by diffusion models further improved results, with DenseNet achieving accuracies of
80.84% and 92.42% in Alzheimer’s and Parkinson’s disease detection, respectively. The research not only
presents innovative generative architectures but also emphasizes the importance of classification metrics,
providing valuable insights into the synthesis and detection of neurodegenerative diseases through advanced
computational techniques.

INDEX TERMS Diffusion models, data augmentation, biomedical deep learning, dementia, generative
adversarial networks.

I. INTRODUCTION depicts substantial societal value [1]. Through the advent
Early identification of Parkinson’s and accurate predictive of computational methodologies and the availability of
analysis in the associated domain is a crucial task and scalable computing sources, deep learning architectures and

methodologies have become highly prominent, and any
The associate editor coordinating the review of this manuscript and tasks that W?re considered difficult to deploy have become
approving it for publication was Alessandra Bertoldo. more accessible [2]. The related set of approaches can be
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understood as a subset of machine learning, and artificial
intelligence, by an extended analogy. These approaches or
architectures have been used for a diverse set of domains and
have depicted a very positive utility [3], [4]. An interesting
and sought-after problem in the field of predictive models is
generating synthetic realistic data and developing intelligent
architectures that are feasible to deploy and can remedy the
scarcity of datasets and the need for higher data samples for
training and testing [5].

The current standard architectures or baselines being uti-
lized in the modality of domains are Generative Adversarial
Networks (GAN) [5]. The famous paper presented a novel
training mechanism, through a Generator and a Discrimina-
tor, where after substantial training, the generator could be
used as a standalone model for predicting newer data samples
from noise [S]. Many different versions and subsidiary
algorithms of GANs have been developed [6], [7], [8], and
the associated utility can be considered the most widespread
across all the other generative pipelines. Another approach
prominent in the recent work is Variational Autoencoders
(VAE) [9], this methodology provides a probabilistic manner
for describing an observation in latent space. Thus, rather
than building an encoder that outputs a single value to
describe each latent state attribute, this approach formulates
our encoder to describe a probability distribution for each
latent attribute [10]. This implementation can be leveraged for
generating synthetic data and the methodology has been used
for the aforementioned purpose for a multitude of research
statements.

The current literature also proposes the use of Diffusion
Models [11], the methodology is inspired by non-equilibrium
thermodynamics. A Markov chain is a mathematical structure
used to model a system of diffusion steps, which are
designed to add random noise to data. This noise is then
used to assist in the process of learning how to reverse
the diffusion and create the desired data samples from
the noise. [11]. Unlike VAE, diffusion models are learned
with a fixed procedure and the latent variable has high
dimensionality [11]. Diffusion Models are relatively recent,
however, they represent a strong intuition and substantial
uses. This paper offers a thorough comparison between
these three generative pipelines by considering various
encoder options and experimental settings for generating
usable MRI scans, which are related to dementia with
an emphasis on Alzheimer’s and Parkinson’s [12]. The
paper is further divided into multiple sections, where the
Introduction is followed by the Related and modern literature,
the methodology, the obtained empirical result, and the
analysis. This is further followed by the conclusion and
the future implications and societal impact of this research.
The gist of the paper is depicted in Figure 1, wherein
three generative pipelines were employed. In the topmost
pipeline, various deep learning models such as GAN, Data
Efficient GAN, Diffusion models, and VAE were trained on
the Alzheimer dataset to generate synthetic images. These
generated images were then utilized to train DenseNet and
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ResNet models to detect Alzheimer’s disease. Similarly,
in the bottommost pipeline, the models were trained on the
Parkinson dataset for Parkinson’s disease detection. Notably,
in the middle pipeline, the deep learning models originally
trained on the Alzheimer’s dataset underwent fine-tuning on
the Parkinson’s dataset due to limited data availability for
Parkinson’s disease.

Il. RELATED LITERATURE
This section extensively elaborates upon the current stan-

dards, the existing use cases, and other related work in mod-
ern literature and recent articles. The research presented in
the article [13] offered a novel deep learning pipeline centric
on the Wasserstein GAN-based algorithm for augmenting
Chest X-ray images and enhancing the automated COVID-19
detection pipeline. The paper [14] also developed a generative
pipeline about the Wasserstein GAN paradigm system and
altered it toward speech enhancement and robust speech
synthesis. The article [15] depicted the role of generative
models, specifically the GANs for dimensionality reduction,
and associated the practice with the Principal Component
Analysis (PCA) methodology. GAN-based approaches have
also been used for creating Image translation techniques,
with the primarily used architecture being the Pix2Pix
model [16]. The paper [11] depicted the utility of a Cascaded
Diffusion model specifically for high-fidelity image gener-
ation, showed thorough experimentation, and proposed the
diffusion model paradigm for the aforementioned statement.
The article [17] introduces a new approach to medical image
synthesis called the denoising diffusion model for medical
image synthesis (DDMM-Synth). The primary goal of this
framework is to decrease radiation exposure during computed
tomography (CT) scans while addressing several issues
such as incomplete information, limitations of learned prior
models, and errors in translating medical modalities from
magnetic resonance imaging (MRI) to CT. This approach [17]
can be used to optimize the projection number of CT for
specific clinical applications and can significantly enhance
results for cases with noise. In the paper [18], a novel
method named Light and Effective Generative Adversarial
Network (LEGAN) is introduced to generate high-quality
medical images in a lightweight manner. The primary aim of
this approach is to improve clinical diagnosis by providing
additional pathological information. Conventional methods
for medical image synthesis have certain limitations such
as a lack of sensitivity towards local tissue details and the
requirement of significant computing resources. To overcome
these challenges, LEGAN employs a two-stage generative
adversarial network with a coarse-to-fine paradigm, inspired
by the painting process of humans [18]. This approach
ensures the sensitivity of the model towards local information
of medical images. Additionally, a low-rank convolutional
layer is used to reduce model redundancy, which involves
utilizing principal components of full-rank convolutional
kernels [18]. The paper [19] illustrates the advantages
and applications of GAN models in medical image fusion
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FIGURE 1. The Taxonomy associated with this paper.

and discusses the challenges faced by GANs and their
applications in this field. The paper [20] proposes a novel
Quantized Evolutionary Gradient Aware Multiobjective
Cyclic GAN (QEMCGAN) to address issues faced by GANs
in medical image-to-image translation. QEMCGAN utilizes
evolutionary computation, multiobjective optimization, and
an intelligent selection scheme, achieving visually realistic
images and preserving crucial features efficiently, even
with reduced model size. The study [21] described in the
paper proposes an end-to-end GAN-based model (U-Patch
GAN) for the self-supervised fusion of multimodal brain
images, resulting in improved fusion quality. The study [22]
proposes FS-GAN, an unpaired learning approach with a
fuzzy discriminator and self-guided modules for medical
image enhancement, yielding improved texture structure, uni-
form illumination, and superior performance in downstream
tasks. The research presented in the paper [23] showcases
“ImUnity,” an innovative 2.5D deep-learning model for
efficient MR image harmonization, outperforming existing
methods and enabling cross-center population studies. The
paper [24] introduces a diffusion model-based approach that
leverages stochastic sampling to generate a distribution of
segmentation masks, outperforming existing state-of-the-art
networks in accuracy and preserving natural variation in
medical image segmentation. The study [25] investigated
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diffusion models’ performance in generating brain tumor
images revealing their tendency to memorize training images,
particularly for small datasets. The study [26] provides a
comprehensive review of deep generative models, including
variational autoencoders, generative adversarial networks,
and diffusion models, for medical image augmentation,
highlighting their potential for enhancing deep learning algo-
rithms in medical image analysis. The paper [27] introduces a
2D medical image synthesis framework based on a diffusion
model using a Swin-transformer-based network, addressing
limited training datasets for AI models. It demonstrates
the potential of generating high-quality medical images for
various modalities to supplement existing training sets for
Al model deployment. The paper [28] introduces FreMAE,
a new self-supervised Masked Image Modeling (MIM)
framework, which leverages frequency domain perspective to
incorporate global structural information and local details for
medical image segmentation. FreMAE outperforms previous
MIM methods on benchmark datasets, demonstrating consis-
tent improvements over baselines. This work marks the first
exploration of MIM with Fourier Transform in medical image
segmentation. The research [29] proposes the Attri-VAE,
a novel VAE-based approach with attribute regularization to
improve interpretability and disentanglement of clinical and
medical imaging attributes in the generated latent space. The
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TABLE 1. Current literature pertaining to medical imaging and unconditional synthesis [30].

Methods | Modalities | Description
MRI SCGAN A Semi-supervised method involving two stages is used for the detection of
missing features from cardiac MR images, here, SC stands for Semi-Coupled
[31].
CT PGGAN Segmenting, mapping, and augmenting brain images using joint learning [32].
MRI LAPGAN | Generating synthetic MR brain image slices [33].
MRI DCGAN Leveraging manifold learning methodology for image synthesis and denoising
[34].
CT DCGAN The mentioned approach synthesizes liver lesions by using DCGAN for each
class, then classifying different classes of lesions [35].
X-ray DCGAN Pathology classification and augmentation of Chest X-Rays [36].
Dermo LAPGAN | High-resolution skin lesion image generation [37].
X-ray DCGAN Abnormal cardiac classification using Semi-supervised learning [38].

model outperforms state-of-the-art VAE approaches, provid-
ing a valuable trade-off between reconstruction fidelity and
interpretability. To better understand the generative potential
of these methodologies in this domain the below-mentioned
table offers a condensed description for the same and it also
accurately depicts the varied data sources and use cases that
have been leveraged.

The research article [39] presented the use of the diffusion
model paradigm for symbolic music generation, with a
superlative and high-fidelity result. The paper [40] functioned
on creating a deep learning pipeline for super-resolution in
magnetic resonance images of the brain under clinical pro-
tocols and utilized the attention paradigm. The research arti-
cle [41] proposed a GAN-based framework for information
encoding in acoustic data for modeling lexical learning. The
article [42] showcased a novel GAN-based methodology for
augmenting data pertaining to rare liver cancers and depicted
an exemplary performance across various evaluation metrics.
The paper [43] presented a novel Variational Auto-encoder
based architecture for generating 3-D brain MRI scans and
the model can be understood as a Multi-scale Metamorphic
VAE. The article [44] proposed a diffusion model-based
deep learning pipeline for generating realistic histopathology
images and achieved a stellar performance across multiple
performance metrics. The paper [45] proposed a novel
generative pipeline based on the GAN methodology for 3D
image transformation in the domain of medicine and biology
and achieved state-of-the-art results. The research presented
in the paper [46] presented a novel learning pipeline for the
Variational Autoencoder methodology by involving sparse
encoding, the proposed methodology provided a superlative
performance and sufficient utility. The article [47] presented
a novel Variational Autoencoder termed the Radon Sobolev
Variational Autoencoder. The famous paper [48] extended the
VAE approach to the paradigm of graph-centric computation
and a potential generative algorithm for graph-based data
samples.

lll. METHODOLOGY
This section offers thorough information considering the

tested methodologies and the conducted experiments. The
paper leverages the famous generative pipelines and also
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utilizes the ResNet architecture [49] primarily for further
exploiting the generated synthetic images. The section is
further divided into multiple sub-sections that pertain to
the generative pipelines and the classification network. This
is followed by the experimental setting and the obtained
empirical results.

A. GENERATIVE PIPELINES

The paper explores three main augmentative pipelines that
fall under the umbrella term of deep learning. These are
learning architectures that after being trained on a multitude
of images, are capable of successfully generating novel
and unseen synthetic images that fall under the specified
data distributions while depicting high fidelity [5]. The
experimented deep learning pipelines include Generative
Adversarial Networks, Diffusion models, and Variational
Autoencoders. For the former category, two different GAN
pipelines (abbreviated as GAN1 throughout the paper), the
standard architecture, and the relatively recent data-efficient
GANSs [50] (abbreviated as GAN2 throughout the paper) are
further analyzed.

1) GENERATIVE ADVERSARIAL NETWORKS

A game-theoretic scenario in which the generator network
must compete with an attacker serves as the foundation
for generative adversarial networks. Samples are generated
directly by the generator network [35]. The discriminator
network, which is its rival, makes an effort to differentiate
between samples taken from the training data and those taken
from the generator. The generator model takes a fixed-length
random vector as input, which is generated using a Gaussian
distribution, and produces a sample in the domain. This vector
is used as a seed for the generative process [35].

After training the data distribution can be compressed
into a multidimensional vector space. This type of vector
space is called a latent space and consists of latent variables,
which are important to the domain but cannot be observed
directly. The discriminator model then classifies an example
from the domain as real or fake based on its input, whether
it is real or synthetic (created artificially) [51]. The real
data samples originate from the training dataset, while
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the generator model is responsible for the production of
generated data. The discriminator model performs the task of
classifying real and generated data. After the training phase
is complete, the discriminator is no longer required and only
the generator is used for producing images. The generator
model produces images that are indistinguishable from real
data, accurately capturing the nuances of the data it is trained
on. The generated images are of high quality, containing
all essential details, making them indistinguishable from the
real data. This concept of a Generative Adversarial Network
(GAN) is illustrated in the following Figure 2. The inherent
functioning of the GAN methodology can be understood
better by the below-mentioned equations [52]. In these
equations, the variables represent different components and
loss functions used in the GAN framework. Equation 1
defines the conditional GAN loss, denoted as L.can (G, D).
In this equation, G represents the generator, responsible
for generating synthetic images, while D represents the
discriminator, which tries to differentiate between real and
generated images. The loss function comprises two parts.
The first term seeks to maximize the probability that the
discriminator correctly classifies real image pairs (a and b),
and the second term aims to maximize the probability that the
discriminator correctly classifies pairs of real images a and
the images generated by G from some input c. Equation 2
introduces the L1 loss function, denoted as L71(G). The
purpose of this loss function is to measure the difference
between the real target image (y) and the image generated
by the generator G using input a and c. The absolute
difference (L1 norm) between these images is calculated and
used to quantify the dissimilarity between them. Equation 3
presents the combined objective of the GAN framework.
The goal here is to optimize the generator G to minimize
the conditional GAN loss L.can(G, D) along with the L1
loss L£r1(G). The parameter A allows you to control the
importance of the L1 loss relative to the GAN loss during the
optimization process. Finding the optimal G that minimizes
this combined function while simultaneously maximizing the
performance of the discriminator D results in an effective
GAN model capable of producing high-quality generated
images.

Lc6an(G, D) = Eq p[log D(a, b)]
+ Eq,cllog(1 — D(a, G(a, c))] )
L11(G) =Equpcllly — Gla, o)l1] ()
G* = arg Hgn max Lean(G, D) + ALL1(G) (3)

The second GAN pipeline used in this paper can
be summarised as a Data-efficient GAN with Adaptive
Discriminator Augmentation. The original article proposed
Differentiable Augmentation (DiffAugment) is a relatively
simple methodology that functioned to improve the data
efficiency of GANs by imposing various types of dif-
ferentiable augmentations on real and fake samples [53].
The conventional attempts to directly augment the training
data and manipulate the distribution of real images, yield
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substantially little benefit. The algorithm, which is abbre-
viated as DiffAugment enables the adoption of the differ-
entiable augmentation pipeline for the generated samples,
further stabilizing effective training, and an overall better
convergence [54]. The experiments available in the original
paper demonstrated a consistent gain of the aforementioned
method over a variety of baseline GAN architectures and
loss functions for both unconditional and class-conditional
generation.

2) VARIATIONAL AUTOENCODERS

Variational Autoencoder (VAE) are a type of generative
model used in unsupervised learning. They consist of two
main parts: an encoder and a decoder. The encoder takes
input data and compresses it into a latent space representation
(lower-dimensional representation). The decoder then recon-
structs the original data from this representation. VAEs are
trained to generate new data points that resemble the input
data distribution. They are known for their ability to generate
diverse and realistic outputs [55].

An encoder creates a single value to represent each
dimension in the latent space of a VAE. This generates a
probability distribution for each latent attribute, allowing
for a probabilistic representation of the observation [56].
By constructing the encoder model to generate a range
of potential values (a statistical distribution) from which
to randomly sample the decoder model, a continuous and
uniform latent space representation is enforced [57]. When
sampling from the latent distribution, the decoder must be
able to accurately reconstruct the input with values in latent
space that are similar to one another. The process is illustrated
in the following Figure 3.

A continuous, smooth latent space representation is essen-
tially enforced by building the encoder model to generate
a range of potential values that can also be perceived as a
statistical distribution from which random picks are fed into
the decoder model. It can be anticipated that the decoder
model will be able to precisely reconstruct the input for any
sampling of the latent distributions. This results in values that
are close to one another in latent space that corresponds to
reconstructions that are quite similar [56]. The characteristic
equations for this methodology are mentioned below where
po(a) is the probability of observing data a given model
parameters 6, log pg(a) is the logarithm of this probability,
qg(cla) is the conditional distribution of latent variables ¢
given the data a parameterized by ¢, ¢(c‘a)[log[z Z((‘;‘Z;]] is
the expected log-likelihood term representing the expected
log-ratio between joint and posterior distributions over c,
and Dgy.(q¢(cla)||pe(c|a)) is the Kullback-Leibler divergence
measuring the difference between the posterior and prior
distributions over c. The equation is used in variational
inference to approximate complex posterior distributions
by optimizing model parameters 6 and ¢ to maximize the
log-likelihood of observed data a while minimizing the
divergence between the posterior and prior distributions over
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FIGURE 2. The inherent working of Generative Adversarial Networks [54].

latent variables ¢ [56]:

pe(a, ¢
qy(cla)

1T+ Diir(gq(cla)l|pe(cla))

“

The encoder component of a Variational Autoencoder
(VAE) will not directly output values for the latent state,
as is the case with a traditional autoencoder. Instead, it will
generate parameters describing the distribution of each
dimension of the latent space [56]. Two vectors characterizing
the mean and variance of the latent state distributions will be
outputted because it is presumed that the prior has a normal
distribution.

10gp0 (a) == q¢(cla) [10g[

3) DIFFUSION MODELS

Diffusion models are probabilistic generative models that aim
to model complex data distributions. They work by iteratively
refining a probability distribution. Unlike many traditional
generative models that sample data directly from a simple
distribution (like a Gaussian distribution), diffusion models
start with a simple distribution and iteratively transition it into
a more complex distribution using a diffusion process. They
are particularly effective for generating high-quality, diverse
samples from complex data distributions [58]. The paradigm
is divided into many sub-architectures and after a thorough
literature survey, the authors have leveraged the Denoising
Diffusion Implicit Model (DDIM) methodology [59]. DDIM
serves as an upgrade to the relatively conventional Denoising
Diffusion Probabilistic Models (DDPM).

Without adversarial training, DDPMs have generated high-
quality images. To produce a sample, they must, however,
simulate a Markov chain for a lengthy period. With the
same training process as DDPMs, DDIMs use a more
effective class of iterative implicit probabilistic models
to speed up sampling [59]. The generating process in
DDPMs is described as the Markovian diffusion process
inverted. The technique creates a class of non-Markovian
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diffusion processes that achieve the same training goal but
whose reverse process may be sampled considerably more
quickly [59]. Further allowing a trade-off computation for
sample quality, the paper empirically showed that DDIMs
can produce high-quality samples far faster than DDPMs
in terms of wall-clock time. They can also interpolate
semantically relevant images directly in the latent space [59].
The inherent functioning of the diffusion model methodology
as a graphical description is available below in Figure 4.

B. CLASSIFICATION ARCHITECTURES

This subsection elaborates on the various classification
encoders or architectures used throughout this study to
better understand or validate the generated samples of
the tested generative methodologies. This paper primarily
uses the ResNet architecture and also tests the DenseNet
methodology [60] to have a thorough and unbiased study.

1) RESNET

This subsection provides a summarised understanding of
ResNets as defined in the original paper [49]. The Residual
Networks more commonly known as ResNets is one of the
proposed encoders that we are going to use. The uniqueness
that ResNets offer, over plain networks, is that they address
the degradation problem that was exposed when the overly
deep networks started to converge. The ResNets introduced
identity mapping which meant that the input from a previous
layer was taken and passed to another layer as a shortcut.
Mostly the 34-layer and 18-layer ResNets are used as they
fetch less error and better accuracy as compared to their plain
competitors. The 34-layer ResNet displays fairly decreased
training error and handles the degradation problem that is
observed in its plain compeer, thus high accuracy is gained
from increased depths. Not to overlook the fact that the
18-layer ResNet also fetched a better accuracy than its
plain compeer, the 18-layer ResNet was able to achieve
convergence faster and obtain good solutions on smaller
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datasets [49]. For the experiments in this paper, the ResNet18
variant of residual networks is used.

2) DENSENET

The Dense Convolution Network, also known as DenseNet,
is another variety of encoders used in the proposed archi-
tecture. The advantage of using this particular type of
network is that each of its layers gathers supplementary inputs
from all of the layers before it. The data is concatenated
so essentially every single layer obtains the cumulative
intelligence of all the antecedent layers [60]. Therefore when
each layer obtains feature maps from the previous layers
it makes the complete network more compressed, which
means that the total channels will be fewer. The contrasting
detail that separates the DenseNets from the ResNets is that
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they use the parameters more dexterously. Outwardly both
networks are quite similar the only major difference is that
the DenseNets concatenate the inputs while the process of
summation is what happens in ResNets. Although this seems
like a small adjustment it brings out a rather considerable
change in behavior between them both [60]. Adding to that
fact DenseNets crave extensively less number of parameters
and computational power to obtain highly accurate and
cutting-edge performances and results with better accuracy
can be achieved when the hyperparameters are tuned with
attention to detail. In this regard we will be using the
DenseNet-161 model, it’s one of the high-accuracy models of
the DenseNet group, and the size of this model is considerably
larger than its other variants at 100MB. The model used in this
paper is a DenseNet-161 [60].
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C. DATASET

This paper primarily leverages a publicly available
Alzheimer’s MRI dataset comprising a total of 6400 MRI
images as depicted in paper [61]. The dataset consists
of 4 classes, Mild Demented, Moderate Demented, Very
Mild Demented, and Non-Demented [61]. The former three
categories are combined to generate the dementia class,
and an 80-20 stratified train/test split is created. A subset
of the PPMI (Parkinson’s Progression Markers Initiative)
dataset consisting of 128 scans is used for analyzing the
proposed algorithms’ impact on predicting a Parkinson’s
class [62]. The paper primarily emphasizes Alzheimer’s due
to the significantly higher data samples, and experiments
on Parkinson’s are also presented to assess the robustness
and general implications of the proposed approaches. Due
to images from different machines and data acquisition
technologies, there were a lot of image biases and a usable
generative model was not obtained. To have images from
the same domain and to have a feasible image generation
experiment a single category was focused on and a total
of 43 Parkinsons-based images (PD ) and 18 images based
on healthy patients (HC) were obtained from the “Axial Dual
Turbo Spin Echo” (AX DUAL TSE) category of the PPMI
dataset. AX DUAL TSE is an imaging sequence that provides
detailed images of the brain in the axial plane using turbo spin
echo techniques, which are commonly used in clinical MRI
for T2-weighted imaging.

IV. RESULTS AND DISCUSSION
This section elaborates on the experimental setting and

obtained results of the proposed architectures. Each model
permutation is trained in an identical experimental setting to
maintain the unbiased nature of this study. Every associated
hyperparameter and attribute is thoroughly assessed to
maintain the scientific integrity of this study. For each
generative pipeline, 500 images are generated for the normal
and dementia classes which are tested for their FID scores
(Frechet Inception Distance) [63]. FID scores are a measure
used to evaluate the quality of generated images compared to
real images. They quantify the similarity between two sets of
images: the set of real images and the set of generated images.
FID utilizes features extracted from a pre-trained deep neural
network, often InceptionV3, to capture the statistics of real
and generated images [63]. The features extracted from the
intermediate layers of the neural network are used to represent
both real and generated images. FID calculates the Fréchet
distance between the multivariate Gaussian distributions of
feature representations from real and generated images.
A lower FID score indicates higher similarity between
the distributions of real and generated images, implying
better quality and diversity in the generated images [63].
A lower score suggests that the images have more similar
or comparable statistics [63]. The inception score helps in
estimating the variety and the ability of the model to generate
newer images that distinctly look like a possible entity [63].
The trained models are fine-tuned on the Parkinson’s dataset
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TABLE 2. Models’ training and testing time on a single image.

Model | Training Time (s) | Testing Time (s)
GANI1 0.003 0.080
GAN2 0.001 0.017

DM 0.014 0.005

VAE 0.0007 0.0035

and compared with a standalone training setting to further
assess the tested pipelines’ capabilities. The characteristic
equations that pertain to these performance measures are
mentioned below. The equation 5 and 6 demonstrate the FID
(Fréchet Inception Distance) calculation. Here, i and w,,
represent specific mean values, and ¥ and X,, are covariance
matrices. The equation 7 demonstrates the Inception score,
which involves KL-Divergence (KL). In this context, A
denotes the estimated probability distribution, A represents
the true probability distribution, and the sum is taken over the
"M’ categories. These equations serve as integral components
for assessing the respective FID score and Inception score in
performance evaluation [63].

FD = |p — pyl” +u(E + Z, —2AEE)'?) ()

FD = | — > + (4 £, - 2£5,)7)  (6)

KL(A||A) = sum™_|A log fTC @)
c

The below-mentioned tables showcase the performance
of the generative pipelines and their temporal characteristics
for the Alzheimer’s dataset.

From the above-mentioned tables 2 and 3, it can
be observed that the best-performing model for the
Non-Dementia related sub experiments was the Diffusion
model which showcased the lowest FID scores of 92.46.
In the context of the Dementia-related sub-experiments, the
GAN2 model demonstrated the lowest Frechet Inception
Distance (FID) scores, achieving a value of 177.53. However,
when considering the Inception Score (IS) value, the diffusion
model outperformed other models. It showed an increase of
4.55 units more than the baseline GAN for the dementia
images and an increase of 2.50 units more than the baseline
GAN for the non-dementia images. In terms of FID, the
VAE model produced the poorest results, with FID scores
of 333.27 for dementia images and 336.88 for non-dementia
images compared to other models. Regarding the temporal
characteristics, the VAE methodology performed best,
demonstrating a substantial decrease in both training and
testing times by 0.0023 seconds and 0.0765 seconds,
respectively, compared to the baseline GAN. On the other
hand, diffusion models showcased the highest training time
of 0.014 seconds, while the baseline GAN exhibited the
highest testing time of 0.080 seconds. All of these models
were used to generate a data bank of generated images which
was coupled with the already existing training set to gauge
the classification enhancements of these methodologies.
This paper leverages four primary performance metrics for
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TABLE 3. Performance measures pertaining to generative pipelines and the Alzheimer’s dataset.

Model Category FID Score Inception Score
Average | Standard Deviation

GANI1 Dementia 212.48 4.07 0.074

Non-Dementia 200.42 4.28 0.136

GAN2 Dementia 178.53 7.33 0.374

Non-Dementia 243.51 493 0.008

Diffusion Dementia 186.36 8.62 0.095

Non-Dementia 92.46 6.68 0.082

VAE Dementia 333.27 4.87 0.024

Non-Dementia 336.88 3.76 0.022

TABLE 4. Experiments pertaining to the classification architectures and the Alzheimers centric generative pipelines.

Model Accuracy | Precision | Recall | F1-Score
ResNet 74.35 78.63 66.82 72.25
ResNet + GAN1 74.74 74.15 75.89 75.01
ResNet + GAN2 78.34 78.01 78.88 78.44
ResNet + DM 77.01 73.40 84.66 78.63
ResNet + VAE 75.21 72.93 80.12 76.36
DenseNet 79.35 80.38 77.62 78.98
DenseNet + GAN1 75.52 71.39 85.13 77.65
DenseNet + GAN2 79.59 86.06 70.57 77.55
DenseNet + DM 80.84 77.82 86.22 81.81
DenseNet + VAE 78.42 75.31 84.50 79.64

TABLE 5. Performance measures pertaining to generative pipelines and the Parkinson’s dataset.

Model Category | FID Score Inception Score
Average | Standard Deviation
Ganl PD 124.59 10.57 0.101
HC 184.79 15.62 0.483
Gan2 PD 102.71 532 0.148
HC 129.77 1.50 0.001
Diffusion PD 115.02 10.46 0.0001
HC 139.34 10.76 0.271
VAE PD 184.04 2543 0.73
HC 195.66 18.89 1.08
TABLE 6. PPMI classification Result.
Model Accuracy | Precision | Recall | F1-Score
ResNet 69.23 69.24 99.13 81.53
ResNet + GAN1 68.99 69.29 99.10 81.55
ResNet + GAN2 76.20 76.92 92.36 84.31
ResNet + DM 84.97 90.33 87.67 88.98
ResNet + VAE 82.09 84.60 90.62 87.51
DenseNet 77.16 77.89 93.57 85.01
DenseNet + GAN1 76.33 78.06 93.57 85.01
DenseNet + GAN2 79.80 81.19 92.18 86.34
DenseNet + DM 92.42 96.21 92.70 94.42
DenseNet + VAE 84.01 88.25 88.71 88.48

TABLE 7. Performance measures pertaining to generative pipelines and finetuning for Parkinson’s.

Model Category | FID Score Inception Score
Average | Standard Deviation

Ganl PD 166.64 12.91 0.191

HC 260.08 8.62 0.013

Gan2 PD 121.81 6.66 0.083

HC 166.61 4.81 0.116

Diffusion PD 109.48 12.84 0.035

HC 106.35 9.17 0.220

VAE PD 213.36 11.64 0.297

HC 212.75 1.06 3.4987977e-05

the classification networks, percentage accuracy, precision, understood better by the below-mentioned equations, here,
recall, and the F-1 score. All of these metrics can be TP stands for True Positive, FP for False Positive, TN for
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TABLE 8. PPMI + Fine Tuning Classification Results.

Model Accuracy

ResNet + GAN1 + FT 79.68
ResNet + GAN2 + FT 76.80
ResNet + DM + FT 85.21
ResNet + VAE+ FT 68.99
DenseNet + GAN1+ FT 80.16
DenseNet + GAN2+ FT 87.01
DenseNet + DM+ FT 90.50
DenseNet + VAE+ FT 78.84

Precision | Recall | F1-Score
81.94 90.62 86.06
83.07 83.50 83.29
83.65 97.74 90.15
69.23 72.46 70.65
80.53 94.09 86.78
93.01 87.84 90.35
94.74 91.31 93.01
82.15 88.71 85.30

0 20 40 60 B0 100 120 0o 220 40
(d}

(b)

80 100 120 4] 20 40 60 80 100 120

{e) (f)

FIGURE 5. The generated images and the ground truth, here (a) and (f) represent the actual scans of a
non-demented person. The images (b)-(e) are the GAN1, GAN2, DDIM, and VAE respectively.

True Negative, and FN for False Negative [64].

TN + TP
Accuracy = (8)
TP+ TN + FP + FN
o TP
Precision = —— O]
FP+4 TP
TP
Recall = ——— (10)
FN 4+ TP
Fl— 2 x Precision * Recall _ 2x TP
~ Precision + Recall ~ 2% TP + FN + FP

(11

From table 4, we can successfully infer that the use
of generative pipelines is justified and a clear increase
in performance metrics can be seen for the majority of
experiments. By considering accuracy as the primary perfor-
mance metric the best-performing generative pipeline was
obtained as the diffusion model functionality by achieving
an accuracy of 80.84% when DenseNet was used as the
classifier. The next best-performing generative pipeline
would be the data-efficient GANs as they have shown s
similar results for the ResNet set of experiments and have
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also showcased a better precision score of 86.06% for the
experiments pertaining to the DenseNet as a backbone. Due
to a relatively smaller dataset for the Parkinson’s experiment,
we have also employed a fine-tuning regiment where the
already trained generative models on the Alzheimer’s dataset
were fine-tuned on the Parkinson’s dataset. For both of
these generative experiments, the classification models were
trained to accurately understand the utility of finetuning in
generative models and also the applicability of the tested
strategies in the domain of Parkinson’s and Alzheimer’s.

A similar inference was observed for the Parkinson’s
set of experiments from tables 5 and 6 with Diffusion
Models giving the best overall performance followed by
the data-efficient GAN paradigm. The data-efficient Gen-
erative Adversarial Network (GAN2) paradigm exhibits the
lowest FID scores for both the dementia (PD) and non-
dementia (HC) categories, with FID scores of 102.71 and
129.77, respectively. However, upon subjecting the generated
images to classifier training, the diffusion models set of
experiments achieved the highest classification accuracy of
92.42%. On the other hand, the Variational Autoencoder
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FIGURE 6. The generated images and the ground truth, here (a) represent the actual scans of a dementia person. The images
(b)-(e) are the GAN1, GAN2, DDIM, and VAE respectively. The images produced by fine-tuning GAN1, GAN2, DDIM, and VAE are

represented as (f) - (i).

(VAE) approach yielded a relatively poor FID score of
180.04, yet demonstrated an impressive Inception Score (IS)
of 25.43 for the PD category. Consequently, it emerged
as the second-best performing model when utilized for
classification in conjunction with the ResNet and DenseNet
sets of experiments, achieving classification accuracies of
82.09% and 84.01%, respectively. The following tables
extend upon the aforementioned experiments and indicate the
classification results associated with the generative pipelines.
Experiments have been conducted for both the fine-tuned
models and the standalone classification architectures.

From the tables 7 and 8 it can be inferred that a perfor-
mance boost was obtained for the classification architectures
for the fine-tuning strategy. It can be confidently said that
the use or utility of augmentative approaches was thoroughly
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validated. A clear enhancement in the overall performance
metrics was observed for the classification architectures
and the methodology can be confidently proposed. The
sample-generated images for each architecture and their
contrast with real-world samples are mentioned below in
Figure 5 for experiments pertaining to Alzheimer’s and
Figure 6 for the Parkinson’s equivalent.

V. CONCLUSION AND FUTURE WORK
This paper aims to offer a thorough comparative study

between the various available generative pipelines to remedy
the scarcity of data and related predicaments. The study
performed experiments on Parkinson’s and Alzheimer’s
datasets using four deep-learning models to generate demen-
tia and non-dementia images. GAN2 demonstrated superior
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performance in generating Alzheimer’s and Parkinson’s
dementia images with FID scores of 178.53 and 102.71,
respectively. Fine-tuning models on the Parkinson’s dataset
produced poorer images, increasing the baseline GAN1 FID
score by 42.51. The utilization of generated images in a
classification task resulted in notable enhancements across
various models. Images generated by diffusion models when
trained for classification outperformed GANs and VAE by
yielding an accuracy of 80.84% for Alzheimer’s and 92.42%
for Parkinson’s. Training on images generated by fine-tuning
has been found to increase classification accuracy in the
majority of cases. However, there are instances where poor
results were observed, particularly with images generated by
VAE during the fine-tuning process. When the classifier used
was DenseNet, the accuracy decreased by 5.17%, and with
ResNet, the accuracy decreased by 13.1%. The experiments
also indicate that specialized provisions for Data efficiency
can be introduced in the denoising diffusion paradigm which
should result in a substantial performance increase. For a
specialized associated task emphasis can also be given to the
temporal characteristics for obtaining a usable computational
power and efficiency tradeoff. In the future, the authors would
like to emphasize the different domains associated with data
acquisition of MRI scans and work towards creating a robust
processing pipeline.
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