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ABSTRACT This study explores cutting-edge computational technologies and intelligent methods to create

realistic synthetic data, focusing on dementia-centric Magnetic Resonance Imaging (MRI) scans related to

Alzheimer’s and Parkinson’s diseases. The research delves into Generative Adversarial Networks (GANs),

Variational Autoencoders, and Diffusion Models, comparing their efficacy in generating synthetic MRI

scans. Using datasets from Alzheimer’s and Parkinson’s patients, the study reveals intriguing findings.

In the Alzheimer dataset, diffusion models produced non-dementia images with the lowest Frechet Inception

Distance (FID) score at 92.46, while data-efficient GANs excelled in generating dementia images with

an FID score of 178.53. In the Parkinson dataset, data-efficient GANs achieved remarkable FID scores

of 102.71 for dementia images and 129.77 for non-dementia images. The study also introduces a novel

aspect by incorporating a classification study, validating the generative metrics. DenseNets, a deep learning

architecture, exhibited superior performance in disease detection compared to ResNets. Training bothmodels

on images generated by diffusion models further improved results, with DenseNet achieving accuracies of

80.84% and 92.42% in Alzheimer’s and Parkinson’s disease detection, respectively. The research not only

presents innovative generative architectures but also emphasizes the importance of classification metrics,

providing valuable insights into the synthesis and detection of neurodegenerative diseases through advanced

computational techniques.

INDEX TERMS Diffusion models, data augmentation, biomedical deep learning, dementia, generative

adversarial networks.

I. INTRODUCTION

Early identification of Parkinson’s and accurate predictive

analysis in the associated domain is a crucial task and

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra Bertoldo.

depicts substantial societal value [1]. Through the advent

of computational methodologies and the availability of

scalable computing sources, deep learning architectures and

methodologies have become highly prominent, and any

tasks that were considered difficult to deploy have become

more accessible [2]. The related set of approaches can be
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understood as a subset of machine learning, and artificial

intelligence, by an extended analogy. These approaches or

architectures have been used for a diverse set of domains and

have depicted a very positive utility [3], [4]. An interesting

and sought-after problem in the field of predictive models is

generating synthetic realistic data and developing intelligent

architectures that are feasible to deploy and can remedy the

scarcity of datasets and the need for higher data samples for

training and testing [5].

The current standard architectures or baselines being uti-

lized in the modality of domains are Generative Adversarial

Networks (GAN) [5]. The famous paper presented a novel

training mechanism, through a Generator and a Discrimina-

tor, where after substantial training, the generator could be

used as a standalone model for predicting newer data samples

from noise [5]. Many different versions and subsidiary

algorithms of GANs have been developed [6], [7], [8], and

the associated utility can be considered the most widespread

across all the other generative pipelines. Another approach

prominent in the recent work is Variational Autoencoders

(VAE) [9], this methodology provides a probabilistic manner

for describing an observation in latent space. Thus, rather

than building an encoder that outputs a single value to

describe each latent state attribute, this approach formulates

our encoder to describe a probability distribution for each

latent attribute [10]. This implementation can be leveraged for

generating synthetic data and the methodology has been used

for the aforementioned purpose for a multitude of research

statements.

The current literature also proposes the use of Diffusion

Models [11], the methodology is inspired by non-equilibrium

thermodynamics. AMarkov chain is a mathematical structure

used to model a system of diffusion steps, which are

designed to add random noise to data. This noise is then

used to assist in the process of learning how to reverse

the diffusion and create the desired data samples from

the noise. [11]. Unlike VAE, diffusion models are learned

with a fixed procedure and the latent variable has high

dimensionality [11]. Diffusion Models are relatively recent,

however, they represent a strong intuition and substantial

uses. This paper offers a thorough comparison between

these three generative pipelines by considering various

encoder options and experimental settings for generating

usable MRI scans, which are related to dementia with

an emphasis on Alzheimer’s and Parkinson’s [12]. The

paper is further divided into multiple sections, where the

Introduction is followed by the Related andmodern literature,

the methodology, the obtained empirical result, and the

analysis. This is further followed by the conclusion and

the future implications and societal impact of this research.

The gist of the paper is depicted in Figure 1, wherein

three generative pipelines were employed. In the topmost

pipeline, various deep learning models such as GAN, Data

Efficient GAN, Diffusion models, and VAE were trained on

the Alzheimer dataset to generate synthetic images. These

generated images were then utilized to train DenseNet and

ResNet models to detect Alzheimer’s disease. Similarly,

in the bottommost pipeline, the models were trained on the

Parkinson dataset for Parkinson’s disease detection. Notably,

in the middle pipeline, the deep learning models originally

trained on the Alzheimer’s dataset underwent fine-tuning on

the Parkinson’s dataset due to limited data availability for

Parkinson’s disease.

II. RELATED LITERATURE

This section extensively elaborates upon the current stan-

dards, the existing use cases, and other related work in mod-

ern literature and recent articles. The research presented in

the article [13] offered a novel deep learning pipeline centric

on the Wasserstein GAN-based algorithm for augmenting

Chest X-ray images and enhancing the automated COVID-19

detection pipeline. The paper [14] also developed a generative

pipeline about the Wasserstein GAN paradigm system and

altered it toward speech enhancement and robust speech

synthesis. The article [15] depicted the role of generative

models, specifically the GANs for dimensionality reduction,

and associated the practice with the Principal Component

Analysis (PCA) methodology. GAN-based approaches have

also been used for creating Image translation techniques,

with the primarily used architecture being the Pix2Pix

model [16]. The paper [11] depicted the utility of a Cascaded

Diffusion model specifically for high-fidelity image gener-

ation, showed thorough experimentation, and proposed the

diffusion model paradigm for the aforementioned statement.

The article [17] introduces a new approach to medical image

synthesis called the denoising diffusion model for medical

image synthesis (DDMM-Synth). The primary goal of this

framework is to decrease radiation exposure during computed

tomography (CT) scans while addressing several issues

such as incomplete information, limitations of learned prior

models, and errors in translating medical modalities from

magnetic resonance imaging (MRI) to CT. This approach [17]

can be used to optimize the projection number of CT for

specific clinical applications and can significantly enhance

results for cases with noise. In the paper [18], a novel

method named Light and Effective Generative Adversarial

Network (LEGAN) is introduced to generate high-quality

medical images in a lightweight manner. The primary aim of

this approach is to improve clinical diagnosis by providing

additional pathological information. Conventional methods

for medical image synthesis have certain limitations such

as a lack of sensitivity towards local tissue details and the

requirement of significant computing resources. To overcome

these challenges, LEGAN employs a two-stage generative

adversarial network with a coarse-to-fine paradigm, inspired

by the painting process of humans [18]. This approach

ensures the sensitivity of the model towards local information

of medical images. Additionally, a low-rank convolutional

layer is used to reduce model redundancy, which involves

utilizing principal components of full-rank convolutional

kernels [18]. The paper [19] illustrates the advantages

and applications of GAN models in medical image fusion
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FIGURE 1. The Taxonomy associated with this paper.

and discusses the challenges faced by GANs and their

applications in this field. The paper [20] proposes a novel

Quantized Evolutionary Gradient Aware Multiobjective

Cyclic GAN (QEMCGAN) to address issues faced by GANs

in medical image-to-image translation. QEMCGAN utilizes

evolutionary computation, multiobjective optimization, and

an intelligent selection scheme, achieving visually realistic

images and preserving crucial features efficiently, even

with reduced model size. The study [21] described in the

paper proposes an end-to-end GAN-based model (U-Patch

GAN) for the self-supervised fusion of multimodal brain

images, resulting in improved fusion quality. The study [22]

proposes FS-GAN, an unpaired learning approach with a

fuzzy discriminator and self-guided modules for medical

image enhancement, yielding improved texture structure, uni-

form illumination, and superior performance in downstream

tasks. The research presented in the paper [23] showcases

‘‘ImUnity,’’ an innovative 2.5D deep-learning model for

efficient MR image harmonization, outperforming existing

methods and enabling cross-center population studies. The

paper [24] introduces a diffusion model-based approach that

leverages stochastic sampling to generate a distribution of

segmentation masks, outperforming existing state-of-the-art

networks in accuracy and preserving natural variation in

medical image segmentation. The study [25] investigated

diffusion models’ performance in generating brain tumor

images revealing their tendency to memorize training images,

particularly for small datasets. The study [26] provides a

comprehensive review of deep generative models, including

variational autoencoders, generative adversarial networks,

and diffusion models, for medical image augmentation,

highlighting their potential for enhancing deep learning algo-

rithms in medical image analysis. The paper [27] introduces a

2D medical image synthesis framework based on a diffusion

model using a Swin-transformer-based network, addressing

limited training datasets for AI models. It demonstrates

the potential of generating high-quality medical images for

various modalities to supplement existing training sets for

AI model deployment. The paper [28] introduces FreMAE,

a new self-supervised Masked Image Modeling (MIM)

framework, which leverages frequency domain perspective to

incorporate global structural information and local details for

medical image segmentation. FreMAE outperforms previous

MIMmethods on benchmark datasets, demonstrating consis-

tent improvements over baselines. This work marks the first

exploration ofMIMwith Fourier Transform inmedical image

segmentation. The research [29] proposes the Attri-VAE,

a novel VAE-based approach with attribute regularization to

improve interpretability and disentanglement of clinical and

medical imaging attributes in the generated latent space. The
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TABLE 1. Current literature pertaining to medical imaging and unconditional synthesis [30].

model outperforms state-of-the-art VAE approaches, provid-

ing a valuable trade-off between reconstruction fidelity and

interpretability. To better understand the generative potential

of these methodologies in this domain the below-mentioned

table offers a condensed description for the same and it also

accurately depicts the varied data sources and use cases that

have been leveraged.

The research article [39] presented the use of the diffusion

model paradigm for symbolic music generation, with a

superlative and high-fidelity result. The paper [40] functioned

on creating a deep learning pipeline for super-resolution in

magnetic resonance images of the brain under clinical pro-

tocols and utilized the attention paradigm. The research arti-

cle [41] proposed a GAN-based framework for information

encoding in acoustic data for modeling lexical learning. The

article [42] showcased a novel GAN-based methodology for

augmenting data pertaining to rare liver cancers and depicted

an exemplary performance across various evaluation metrics.

The paper [43] presented a novel Variational Auto-encoder

based architecture for generating 3-D brain MRI scans and

the model can be understood as a Multi-scale Metamorphic

VAE. The article [44] proposed a diffusion model-based

deep learning pipeline for generating realistic histopathology

images and achieved a stellar performance across multiple

performance metrics. The paper [45] proposed a novel

generative pipeline based on the GAN methodology for 3D

image transformation in the domain of medicine and biology

and achieved state-of-the-art results. The research presented

in the paper [46] presented a novel learning pipeline for the

Variational Autoencoder methodology by involving sparse

encoding, the proposed methodology provided a superlative

performance and sufficient utility. The article [47] presented

a novel Variational Autoencoder termed the Radon Sobolev

Variational Autoencoder. The famous paper [48] extended the

VAE approach to the paradigm of graph-centric computation

and a potential generative algorithm for graph-based data

samples.

III. METHODOLOGY

This section offers thorough information considering the

tested methodologies and the conducted experiments. The

paper leverages the famous generative pipelines and also

utilizes the ResNet architecture [49] primarily for further

exploiting the generated synthetic images. The section is

further divided into multiple sub-sections that pertain to

the generative pipelines and the classification network. This

is followed by the experimental setting and the obtained

empirical results.

A. GENERATIVE PIPELINES

The paper explores three main augmentative pipelines that

fall under the umbrella term of deep learning. These are

learning architectures that after being trained on a multitude

of images, are capable of successfully generating novel

and unseen synthetic images that fall under the specified

data distributions while depicting high fidelity [5]. The

experimented deep learning pipelines include Generative

Adversarial Networks, Diffusion models, and Variational

Autoencoders. For the former category, two different GAN

pipelines (abbreviated as GAN1 throughout the paper), the

standard architecture, and the relatively recent data-efficient

GANs [50] (abbreviated as GAN2 throughout the paper) are

further analyzed.

1) GENERATIVE ADVERSARIAL NETWORKS

A game-theoretic scenario in which the generator network

must compete with an attacker serves as the foundation

for generative adversarial networks. Samples are generated

directly by the generator network [35]. The discriminator

network, which is its rival, makes an effort to differentiate

between samples taken from the training data and those taken

from the generator. The generator model takes a fixed-length

random vector as input, which is generated using a Gaussian

distribution, and produces a sample in the domain. This vector

is used as a seed for the generative process [35].

After training the data distribution can be compressed

into a multidimensional vector space. This type of vector

space is called a latent space and consists of latent variables,

which are important to the domain but cannot be observed

directly. The discriminator model then classifies an example

from the domain as real or fake based on its input, whether

it is real or synthetic (created artificially) [51]. The real

data samples originate from the training dataset, while
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the generator model is responsible for the production of

generated data. The discriminator model performs the task of

classifying real and generated data. After the training phase

is complete, the discriminator is no longer required and only

the generator is used for producing images. The generator

model produces images that are indistinguishable from real

data, accurately capturing the nuances of the data it is trained

on. The generated images are of high quality, containing

all essential details, making them indistinguishable from the

real data. This concept of a Generative Adversarial Network

(GAN) is illustrated in the following Figure 2. The inherent

functioning of the GAN methodology can be understood

better by the below-mentioned equations [52]. In these

equations, the variables represent different components and

loss functions used in the GAN framework. Equation 1

defines the conditional GAN loss, denoted as LcGAN (G,D).

In this equation, G represents the generator, responsible

for generating synthetic images, while D represents the

discriminator, which tries to differentiate between real and

generated images. The loss function comprises two parts.

The first term seeks to maximize the probability that the

discriminator correctly classifies real image pairs (a and b),

and the second term aims to maximize the probability that the

discriminator correctly classifies pairs of real images a and

the images generated by G from some input c. Equation 2

introduces the L1 loss function, denoted as LL1(G). The

purpose of this loss function is to measure the difference

between the real target image (y) and the image generated

by the generator G using input a and c. The absolute

difference (L1 norm) between these images is calculated and

used to quantify the dissimilarity between them. Equation 3

presents the combined objective of the GAN framework.

The goal here is to optimize the generator G to minimize

the conditional GAN loss LcGAN (G,D) along with the L1

loss LL1(G). The parameter ¼ allows you to control the

importance of the L1 loss relative to the GAN loss during the

optimization process. Finding the optimal G that minimizes

this combined function while simultaneously maximizing the

performance of the discriminator D results in an effective

GAN model capable of producing high-quality generated

images.

LcGAN (G,D) = Ea,b[logD(a, b)]

+ Ea,c[log(1 − D(a,G(a, c))] (1)

LL1(G) = Ea,b,c [∥y− G(a, c)∥1] (2)

G∗ = argmin
G

max
D
LcGAN (G,D) + ¼LL1(G) (3)

The second GAN pipeline used in this paper can

be summarised as a Data-efficient GAN with Adaptive

Discriminator Augmentation. The original article proposed

Differentiable Augmentation (DiffAugment) is a relatively

simple methodology that functioned to improve the data

efficiency of GANs by imposing various types of dif-

ferentiable augmentations on real and fake samples [53].

The conventional attempts to directly augment the training

data and manipulate the distribution of real images, yield

substantially little benefit. The algorithm, which is abbre-

viated as DiffAugment enables the adoption of the differ-

entiable augmentation pipeline for the generated samples,

further stabilizing effective training, and an overall better

convergence [54]. The experiments available in the original

paper demonstrated a consistent gain of the aforementioned

method over a variety of baseline GAN architectures and

loss functions for both unconditional and class-conditional

generation.

2) VARIATIONAL AUTOENCODERS
Variational Autoencoder (VAE) are a type of generative

model used in unsupervised learning. They consist of two

main parts: an encoder and a decoder. The encoder takes

input data and compresses it into a latent space representation

(lower-dimensional representation). The decoder then recon-

structs the original data from this representation. VAEs are

trained to generate new data points that resemble the input

data distribution. They are known for their ability to generate

diverse and realistic outputs [55].

An encoder creates a single value to represent each

dimension in the latent space of a VAE. This generates a

probability distribution for each latent attribute, allowing

for a probabilistic representation of the observation [56].

By constructing the encoder model to generate a range

of potential values (a statistical distribution) from which

to randomly sample the decoder model, a continuous and

uniform latent space representation is enforced [57]. When

sampling from the latent distribution, the decoder must be

able to accurately reconstruct the input with values in latent

space that are similar to one another. The process is illustrated

in the following Figure 3.

A continuous, smooth latent space representation is essen-

tially enforced by building the encoder model to generate

a range of potential values that can also be perceived as a

statistical distribution from which random picks are fed into

the decoder model. It can be anticipated that the decoder

model will be able to precisely reconstruct the input for any

sampling of the latent distributions. This results in values that

are close to one another in latent space that corresponds to

reconstructions that are quite similar [56]. The characteristic

equations for this methodology are mentioned below where

p¹ (a) is the probability of observing data a given model

parameters ¹ , log p¹ (a) is the logarithm of this probability,

qÆ(c|a) is the conditional distribution of latent variables c

given the data a parameterized by Æ, EqÆ (c|a)[log[
p¹ (a,c)
qÆ (c|a)

]] is

the expected log-likelihood term representing the expected

log-ratio between joint and posterior distributions over c,

andDKL(qÆ(c|a)||p¹ (c|a)) is the Kullback-Leibler divergence

measuring the difference between the posterior and prior

distributions over c. The equation is used in variational

inference to approximate complex posterior distributions

by optimizing model parameters ¹ and Æ to maximize the

log-likelihood of observed data a while minimizing the

divergence between the posterior and prior distributions over
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FIGURE 2. The inherent working of Generative Adversarial Networks [54].

latent variables c [56]:

log p¹ (a) == EqÆ (c|a)[log[
p¹ (a, c)

qÆ(c|a)
]] + DKL(qÆ(c|a)||p¹ (c|a))

(4)

The encoder component of a Variational Autoencoder

(VAE) will not directly output values for the latent state,

as is the case with a traditional autoencoder. Instead, it will

generate parameters describing the distribution of each

dimension of the latent space [56]. Two vectors characterizing

the mean and variance of the latent state distributions will be

outputted because it is presumed that the prior has a normal

distribution.

3) DIFFUSION MODELS

Diffusionmodels are probabilistic generative models that aim

to model complex data distributions. They work by iteratively

refining a probability distribution. Unlike many traditional

generative models that sample data directly from a simple

distribution (like a Gaussian distribution), diffusion models

start with a simple distribution and iteratively transition it into

a more complex distribution using a diffusion process. They

are particularly effective for generating high-quality, diverse

samples from complex data distributions [58]. The paradigm

is divided into many sub-architectures and after a thorough

literature survey, the authors have leveraged the Denoising

Diffusion Implicit Model (DDIM) methodology [59]. DDIM

serves as an upgrade to the relatively conventional Denoising

Diffusion Probabilistic Models (DDPM).

Without adversarial training, DDPMs have generated high-

quality images. To produce a sample, they must, however,

simulate a Markov chain for a lengthy period. With the

same training process as DDPMs, DDIMs use a more

effective class of iterative implicit probabilistic models

to speed up sampling [59]. The generating process in

DDPMs is described as the Markovian diffusion process

inverted. The technique creates a class of non-Markovian

diffusion processes that achieve the same training goal but

whose reverse process may be sampled considerably more

quickly [59]. Further allowing a trade-off computation for

sample quality, the paper empirically showed that DDIMs

can produce high-quality samples far faster than DDPMs

in terms of wall-clock time. They can also interpolate

semantically relevant images directly in the latent space [59].

The inherent functioning of the diffusion model methodology

as a graphical description is available below in Figure 4.

B. CLASSIFICATION ARCHITECTURES

This subsection elaborates on the various classification

encoders or architectures used throughout this study to

better understand or validate the generated samples of

the tested generative methodologies. This paper primarily

uses the ResNet architecture and also tests the DenseNet

methodology [60] to have a thorough and unbiased study.

1) RESNET

This subsection provides a summarised understanding of

ResNets as defined in the original paper [49]. The Residual

Networks more commonly known as ResNets is one of the

proposed encoders that we are going to use. The uniqueness

that ResNets offer, over plain networks, is that they address

the degradation problem that was exposed when the overly

deep networks started to converge. The ResNets introduced

identity mapping which meant that the input from a previous

layer was taken and passed to another layer as a shortcut.

Mostly the 34-layer and 18-layer ResNets are used as they

fetch less error and better accuracy as compared to their plain

competitors. The 34-layer ResNet displays fairly decreased

training error and handles the degradation problem that is

observed in its plain compeer, thus high accuracy is gained

from increased depths. Not to overlook the fact that the

18-layer ResNet also fetched a better accuracy than its

plain compeer, the 18-layer ResNet was able to achieve

convergence faster and obtain good solutions on smaller
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FIGURE 3. Pictorial representation corresponding to the VAE computing paradigm [56].

FIGURE 4. Information flow associated with the Denoising Diffusion
Models [59].

datasets [49]. For the experiments in this paper, the ResNet18

variant of residual networks is used.

2) DENSENET
The Dense Convolution Network, also known as DenseNet,

is another variety of encoders used in the proposed archi-

tecture. The advantage of using this particular type of

network is that each of its layers gathers supplementary inputs

from all of the layers before it. The data is concatenated

so essentially every single layer obtains the cumulative

intelligence of all the antecedent layers [60]. Therefore when

each layer obtains feature maps from the previous layers

it makes the complete network more compressed, which

means that the total channels will be fewer. The contrasting

detail that separates the DenseNets from the ResNets is that

they use the parameters more dexterously. Outwardly both

networks are quite similar the only major difference is that

the DenseNets concatenate the inputs while the process of

summation is what happens in ResNets. Although this seems

like a small adjustment it brings out a rather considerable

change in behavior between them both [60]. Adding to that

fact DenseNets crave extensively less number of parameters

and computational power to obtain highly accurate and

cutting-edge performances and results with better accuracy

can be achieved when the hyperparameters are tuned with

attention to detail. In this regard we will be using the

DenseNet-161 model, it’s one of the high-accuracy models of

theDenseNet group, and the size of thismodel is considerably

larger than its other variants at 100MB. Themodel used in this

paper is a DenseNet-161 [60].
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C. DATASET

This paper primarily leverages a publicly available

Alzheimer’s MRI dataset comprising a total of 6400 MRI

images as depicted in paper [61]. The dataset consists

of 4 classes, Mild Demented, Moderate Demented, Very

Mild Demented, and Non-Demented [61]. The former three

categories are combined to generate the dementia class,

and an 80-20 stratified train/test split is created. A subset

of the PPMI (Parkinson’s Progression Markers Initiative)

dataset consisting of 128 scans is used for analyzing the

proposed algorithms’ impact on predicting a Parkinson’s

class [62]. The paper primarily emphasizes Alzheimer’s due

to the significantly higher data samples, and experiments

on Parkinson’s are also presented to assess the robustness

and general implications of the proposed approaches. Due

to images from different machines and data acquisition

technologies, there were a lot of image biases and a usable

generative model was not obtained. To have images from

the same domain and to have a feasible image generation

experiment a single category was focused on and a total

of 43 Parkinsons-based images (PD ) and 18 images based

on healthy patients (HC) were obtained from the ‘‘Axial Dual

Turbo Spin Echo’’ (AX DUAL TSE) category of the PPMI

dataset. AXDUAL TSE is an imaging sequence that provides

detailed images of the brain in the axial plane using turbo spin

echo techniques, which are commonly used in clinical MRI

for T2-weighted imaging.

IV. RESULTS AND DISCUSSION

This section elaborates on the experimental setting and

obtained results of the proposed architectures. Each model

permutation is trained in an identical experimental setting to

maintain the unbiased nature of this study. Every associated

hyperparameter and attribute is thoroughly assessed to

maintain the scientific integrity of this study. For each

generative pipeline, 500 images are generated for the normal

and dementia classes which are tested for their FID scores

(Frechet Inception Distance) [63]. FID scores are a measure

used to evaluate the quality of generated images compared to

real images. They quantify the similarity between two sets of

images: the set of real images and the set of generated images.

FID utilizes features extracted from a pre-trained deep neural

network, often InceptionV3, to capture the statistics of real

and generated images [63]. The features extracted from the

intermediate layers of the neural network are used to represent

both real and generated images. FID calculates the Fréchet

distance between the multivariate Gaussian distributions of

feature representations from real and generated images.

A lower FID score indicates higher similarity between

the distributions of real and generated images, implying

better quality and diversity in the generated images [63].

A lower score suggests that the images have more similar

or comparable statistics [63]. The inception score helps in

estimating the variety and the ability of the model to generate

newer images that distinctly look like a possible entity [63].

The trained models are fine-tuned on the Parkinson’s dataset

TABLE 2. Models’ training and testing time on a single image.

and compared with a standalone training setting to further

assess the tested pipelines’ capabilities. The characteristic

equations that pertain to these performance measures are

mentioned below. The equation 5 and 6 demonstrate the FID

(Fréchet Inception Distance) calculation. Here, µ and µw

represent specific mean values, and 6 and 6w are covariance

matrices. The equation 7 demonstrates the Inception score,

which involves KL-Divergence (KL). In this context, Â

denotes the estimated probability distribution, A represents

the true probability distribution, and the sum is taken over the

’M ’ categories. These equations serve as integral components

for assessing the respective FID score and Inception score in

performance evaluation [63].

FD = |µ − µw|2 + tr(6 + 6w − 2(66w)
1/2) (5)

FD = |µ − µw|2 + tr(6 + 6w − 2(66w)
1
2 ) (6)

KL(Â||A) = sumMc=1Âc log
Âc

Ac
(7)

The below-mentioned tables showcase the performance

of the generative pipelines and their temporal characteristics

for the Alzheimer’s dataset.

From the above-mentioned tables 2 and 3, it can

be observed that the best-performing model for the

Non-Dementia related sub experiments was the Diffusion

model which showcased the lowest FID scores of 92.46.

In the context of the Dementia-related sub-experiments, the

GAN2 model demonstrated the lowest Frechet Inception

Distance (FID) scores, achieving a value of 177.53. However,

when considering the Inception Score (IS) value, the diffusion

model outperformed other models. It showed an increase of

4.55 units more than the baseline GAN for the dementia

images and an increase of 2.50 units more than the baseline

GAN for the non-dementia images. In terms of FID, the

VAE model produced the poorest results, with FID scores

of 333.27 for dementia images and 336.88 for non-dementia

images compared to other models. Regarding the temporal

characteristics, the VAE methodology performed best,

demonstrating a substantial decrease in both training and

testing times by 0.0023 seconds and 0.0765 seconds,

respectively, compared to the baseline GAN. On the other

hand, diffusion models showcased the highest training time

of 0.014 seconds, while the baseline GAN exhibited the

highest testing time of 0.080 seconds. All of these models

were used to generate a data bank of generated images which

was coupled with the already existing training set to gauge

the classification enhancements of these methodologies.

This paper leverages four primary performance metrics for

131238 VOLUME 12, 2024



P. Gajjar et al.: Empirical Analysis of Diffusion, Autoencoders, and Adversarial Deep Learning Models

TABLE 3. Performance measures pertaining to generative pipelines and the Alzheimer’s dataset.

TABLE 4. Experiments pertaining to the classification architectures and the Alzheimers centric generative pipelines.

TABLE 5. Performance measures pertaining to generative pipelines and the Parkinson’s dataset.

TABLE 6. PPMI classification Result.

TABLE 7. Performance measures pertaining to generative pipelines and finetuning for Parkinson’s.

the classification networks, percentage accuracy, precision,

recall, and the F-1 score. All of these metrics can be

understood better by the below-mentioned equations, here,

TP stands for True Positive, FP for False Positive, TN for
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TABLE 8. PPMI + Fine Tuning Classification Results.

FIGURE 5. The generated images and the ground truth, here (a) and (f) represent the actual scans of a
non-demented person. The images (b)-(e) are the GAN1, GAN2, DDIM, and VAE respectively.

True Negative, and FN for False Negative [64].

Accuracy =
TN + TP

TP+ TN + FP+ FN
(8)

Precision =
TP

FP+ TP
(9)

Recall =
TP

FN + TP
(10)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP+ FN + FP

(11)

From table 4, we can successfully infer that the use

of generative pipelines is justified and a clear increase

in performance metrics can be seen for the majority of

experiments. By considering accuracy as the primary perfor-

mance metric the best-performing generative pipeline was

obtained as the diffusion model functionality by achieving

an accuracy of 80.84% when DenseNet was used as the

classifier. The next best-performing generative pipeline

would be the data-efficient GANs as they have shown s

similar results for the ResNet set of experiments and have

also showcased a better precision score of 86.06% for the

experiments pertaining to the DenseNet as a backbone. Due

to a relatively smaller dataset for the Parkinson’s experiment,

we have also employed a fine-tuning regiment where the

already trained generative models on the Alzheimer’s dataset

were fine-tuned on the Parkinson’s dataset. For both of

these generative experiments, the classification models were

trained to accurately understand the utility of finetuning in

generative models and also the applicability of the tested

strategies in the domain of Parkinson’s and Alzheimer’s.

A similar inference was observed for the Parkinson’s

set of experiments from tables 5 and 6 with Diffusion

Models giving the best overall performance followed by

the data-efficient GAN paradigm. The data-efficient Gen-

erative Adversarial Network (GAN2) paradigm exhibits the

lowest FID scores for both the dementia (PD) and non-

dementia (HC) categories, with FID scores of 102.71 and

129.77, respectively. However, upon subjecting the generated

images to classifier training, the diffusion models set of

experiments achieved the highest classification accuracy of

92.42%. On the other hand, the Variational Autoencoder
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FIGURE 6. The generated images and the ground truth, here (a) represent the actual scans of a dementia person. The images
(b)-(e) are the GAN1, GAN2, DDIM, and VAE respectively. The images produced by fine-tuning GAN1, GAN2, DDIM, and VAE are
represented as (f) - (i).

(VAE) approach yielded a relatively poor FID score of

180.04, yet demonstrated an impressive Inception Score (IS)

of 25.43 for the PD category. Consequently, it emerged

as the second-best performing model when utilized for

classification in conjunction with the ResNet and DenseNet

sets of experiments, achieving classification accuracies of

82.09% and 84.01%, respectively. The following tables

extend upon the aforementioned experiments and indicate the

classification results associated with the generative pipelines.

Experiments have been conducted for both the fine-tuned

models and the standalone classification architectures.

From the tables 7 and 8 it can be inferred that a perfor-

mance boost was obtained for the classification architectures

for the fine-tuning strategy. It can be confidently said that

the use or utility of augmentative approaches was thoroughly

validated. A clear enhancement in the overall performance

metrics was observed for the classification architectures

and the methodology can be confidently proposed. The

sample-generated images for each architecture and their

contrast with real-world samples are mentioned below in

Figure 5 for experiments pertaining to Alzheimer’s and

Figure 6 for the Parkinson’s equivalent.

V. CONCLUSION AND FUTURE WORK

This paper aims to offer a thorough comparative study

between the various available generative pipelines to remedy

the scarcity of data and related predicaments. The study

performed experiments on Parkinson’s and Alzheimer’s

datasets using four deep-learning models to generate demen-

tia and non-dementia images. GAN2 demonstrated superior
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performance in generating Alzheimer’s and Parkinson’s

dementia images with FID scores of 178.53 and 102.71,

respectively. Fine-tuning models on the Parkinson’s dataset

produced poorer images, increasing the baseline GAN1 FID

score by 42.51. The utilization of generated images in a

classification task resulted in notable enhancements across

various models. Images generated by diffusion models when

trained for classification outperformed GANs and VAE by

yielding an accuracy of 80.84% for Alzheimer’s and 92.42%

for Parkinson’s. Training on images generated by fine-tuning

has been found to increase classification accuracy in the

majority of cases. However, there are instances where poor

results were observed, particularly with images generated by

VAE during the fine-tuning process. When the classifier used

was DenseNet, the accuracy decreased by 5.17%, and with

ResNet, the accuracy decreased by 13.1%. The experiments

also indicate that specialized provisions for Data efficiency

can be introduced in the denoising diffusion paradigm which

should result in a substantial performance increase. For a

specialized associated task emphasis can also be given to the

temporal characteristics for obtaining a usable computational

power and efficiency tradeoff. In the future, the authors would

like to emphasize the different domains associated with data

acquisition of MRI scans and work towards creating a robust

processing pipeline.
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