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Abstract:
Background:
Early disease detection is emphasized within ophthalmology now more than ever, and as a result, clinicians and innovators turn to deep learning to
expedite accurate diagnosis and mitigate treatment delay. Efforts concentrate on the creation of deep learning systems that analyze clinical image
data to detect disease-specific features with maximum sensitivity. Moreover, these systems hold promise of early accurate diagnosis and treatment
of patients with common progressive diseases.  DenseNet,  ResNet,  and VGG-16 are among a few of the deep learning Convolutional Neural
Network (CNN) algorithms that have been introduced and are being investigated for potential application within ophthalmology.

Methods:
In this study, the authors sought to create and evaluate a novel ensembled deep learning CNN model that analyzes a dataset of shuffled retinal color
fundus images (RCFIs) from eyes with various ocular disease features (cataract, glaucoma, diabetic retinopathy). Our aim was to determine (1) the
relative performance of our finalized model in classifying RCFIs according to disease and (2) the diagnostic potential of the finalized model to
serve  as  a  screening  test  for  specific  diseases  (cataract,  glaucoma,  diabetic  retinopathy)  upon  presentation  of  RCFIs  with  diverse  disease
manifestations.

Results:
We found adding convolutional  layers  to  an existing VGG-16 model,  which was named as  a  proposed model  in  this  article  that,  resulted in
significantly increased performance with 98% accuracy (p<0.05), including good diagnostic potential for binary disease detection in cataract,
glaucoma, diabetic retinopathy.

Conclusion:
The proposed model was found to be suitable and accurate for a decision support system in Ophthalmology Clinical Framework.
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1. INTRODUCTION
Artificial intelligence (AI) is a rapidly growing field that

aims to develop computer systems and algorithms capable of
thinking, learning, and making decisions reminiscent of human
intelligence [1 - 3]. Anisotropic angle distribution learning for
head poses estimation and attention understanding in human-
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computer interaction. Numerous studies have been conducted
on the utilization of deep learning systems and computer vision
[1 - 3]. AI is increasingly transforming healthcare and allowing
medical  practitioners  to  make  more  informed  and  complex
medical  decisions,  detect  and  diagnose  diseases,  create
appropriate treatment plans, and minimize avoidable errors that
could  harm patients  [2].  Within  medicine,  deep  learning  has
recently seen an upsurge in its application, particularly in fields
such as oncology, neurology, and cardiology, where available
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electronic MRI, CT, and PET radiographic image data can be
leveraged for mass screening and to mitigate morbidity related
to delayed diagnosis of devastating diseases [3, 4]. One area of
medicine  where  AI  has  been  particularly  impactful  is
ophthalmology [5, 6]. This focus is due in part to the reliance
on  cross-sectional  tomography  and  RCFIs,  as  these  provide
magnified  high-resolution  images  and  documentation  of
ophthalmoscopic  examination  findings  within  electronic
medical record systems [5 - 8]. AI systems in ophthalmology
cover  a  wide  range  of  areas,  from  the  diagnosis  of  external
eyelid lesions to the interpretation of congenital and acquired
retinal diseases [7]. Of particular interest is the neurosensory
retina,  which  is  located  within  the  posterior  pole  of  the  eye,

detects  light  from  the  outside  world,  and  transmits  visual
information  to  the  brain  via  the  optic  nerve.  The  retina  is
histologically complex, containing photoreceptors, glial cells,
pigment  cells,  neurons,  and  arterial  and  venous  vascular
systems [8].  Due to its  location and prerequisite requirement
for  normal  function  permissive  of  intact  visual  acuity,  the
retina is highly susceptible to an exceedingly great number of
congenital  dystrophic,  metabolic,  vasculopathic,  anemic,
infectious, neuroinflammatory, neuro-atrophic, oncologic, and
other  retinal  diseases  that  may  affect  one  or  more  histologic
structures or functions within the neurosensory retina resulting
in partial or complete loss of vision.

Fig. (1). Fundus images from the dataset [31].
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Fig. (1) indicates the fundus images from the dataset and
Fig. (2) indicates the heatmap of the sample fundus image from
the  dataset.  This  study  focused  on  Type  2  Diabetes  Mellitus
(T2DM), a chronic metabolic disease that leads to chronically
elevated blood sugar levels and can cause damage to various
organs and systems in the body, including the blood vessels,
eyes, nerves, heart, kidneys, and brain. This damage can lead to
severe  complications,  such  as  hypertension,  retinopathy,
peripheral  neuropathy,  myocardial  infarction,  heart  failure,
chronic  kidney  disease,  end-stage  renal  failure,  stroke,  and
even death [9, 10]. The healthcare costs associated with T2DM
are estimated to be approximately USD 327 billion [11,  12],
with projections showing this figure will continue to rise as the
prevalence of T2DM increases. It is estimated that within the
next  five  years,  the  number  of  diabetic  patients  developing
diabetic  retinopathy  will  increase  by  33%  [6].  Patients  with
T2DM  are  also  at  an  increased  risk  of  developing  cataracts,
glaucoma,  and  diabetic  retinopathy  with  or  without  macular
edema  [6].  Previous  studies  have  shown that  Deep  Learning
(DL)  systems  can  accurately  and  precisely  detect  referable
diabetic  retinopathy  from  RCFIs  [3,  6,  9].  However,  few
studies  to  date  have  created  a  model  capable  of  classifying
multiple ocular diseases with high accuracy. In this study, we

sought to create and evaluate a deep learning CNN model that
analyzes  a  dataset  of  shuffled  retinalcolor  fundus  images
(RCFIs)  from  eyes  with  various  ocular  disease  features
(cataract,  glaucoma,  diabetic  retinopathy)  or  control.  In  the
proposed framework, we determine the relative performance of
our  finalized  deep  learning  model  in  classifying  randomly
shuffled  RCFIs  from  eyes  with  various  ocular  diseases
(cataract,  glaucoma,  diabetic  retinopathy)  or  control,  when
compared  with  existing  models.  Endpoints  were  accuracy
(Acc),  precision  (Prc),  recall  (Rcl),  and  F1-score.  Then,  we
determined the relative diagnostic potential of a finalized deep
learning  model  to  serve  as  a  binary  screening  test  for  the
preliminary diagnosis of each disease: cataract, glaucoma, or
diabetic  retinopathy.  After  training,  the  dataset  on  randomly
shuffled RCFIs containing each of the included disease states
as well as normal images. The endpoints were sensitivity (Sn)
and specificity (Sp). This paper is divided into five sections.

• Section II. Related Works

• Section III. Methodology and Framework

• Section IV. Results

• Section V. Discussion and Future Work

Fig. (2). Heat map of sample fundus image from the dataset [31].
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2. RELATED WORKS

Numerous studies have been conducted on the utilization
of deep learning systems and computer vision in the detection
and diagnosis of important diseases within healthcare [12, 13].
Kaya et al.  demonstrated that a CNN (AlexNet) could detect
and distinguish hemorrhagic and ischemic stroke based on non-
contrast  CT  image  films,  proposing  its  implementation  for
preliminary  treatment  stroke  management  plans  to  improve
patient  outcomes  [14].  Singh  et  al.  used  CNN  on  CT  scan
images  to  detect  pulmonary  infiltration  and  differentiate
pneumonia  from  viral  and  bacterial  etiologies,  specifically
detecting  pneumonia  related  to  the  SARS-CoV-2  virus
(COVID-19) [15]. Seth et al. reviewed various literature for the
detection of breast cancer using MRI scans with a CNN [16].
In ophthalmology, deep learning has been shown in numerous
studies  to  be  an  effective  method  for  developing  automated
systems. These systems detect and classify ocular diseases such
as  diabetic  retinopathy  and  glaucoma  from RCFIs  with  high
accuracy (87.9% - 96.8%) using ML support vector machines,
k-nearest neighbors, and various architectures of CNN such as
VGG-16, ResNet, DenseNet, Inception, and AlexNet [4 - 6, 17
- 21].

In  early  studies  on  deep  learning  convolutional  neural
networks,  Abràmoff  et  al.  and  Kose  et  al.  conducted  similar
experiments where they trained a CNN on 120,000 and 10,000
pre-labeled  RCFIs  to  detect  diabetic  retinopathy  with  a
sensitivity of 99% and an accuracy of 94% [22, 23]. Leong et
al.  analyzed  AI  applications  in  Ophthalmology,  identifying
1,762 publications on its potential benefits. They also found 70
review articles, with 24 each on DR and glaucoma detection,
and the rest on OCT and retinal CFI features [18]. Lee et al.
trained a DL CNN on 1,289 OCT macula images to detect IRF
and  diagnose  macular  edema  causes,  achieving  a  Dice
coefficient  of  0.911  compared  to  clinical  professional
assessments [19]. In a separate study, Gulshan et al. evaluated
the performance of a pre-existing CNN (ResNet) on 128,000
RCFIs  for  the  detection  of  both  diabetic  retinopathy  and
diabetic macular edema and found ResNet was able to classify
diabetic retinopathy with macular edema, diabetic retinopathy
without macular edema, and control with an accuracy of 96%
[24].  Sarki  et  al.  used  two  pretrained  CNN  models  on
ImageNet  for  mild  multiclass  diabetic  eye  diseases  and
multiclass  diabetic  eye  diseases  and  employed  performance
enhancement techniques on VGG16 to obtain an accuracy of
88.3% [25].  Lee et  al.  trained a CNN on 1,289 OCT macula
images (1,919,680 macula sections) to detect intraretinal fluid
(IRF)  and  diagnose  macular  edema  etiologies,  achieving  a
maximal  cross-validation  Dice  coefficient  of  0.911  when
compared  to  the  diagnostic  assessments  of  clinical
professionals [26]. Nazir et al. used Fast Region-based CNN to
detect  diabetic  retinopathy  in  RCFIs.  CNN was  trained  on  a
dataset  of  over  2,500  images  and  was  able  to  accurately
classify  images  as  normal  or  abnormal  with  a  sensitivity  of
92%  and  a  specificity  of  91%  [27].  In  addition,  Luo  et  al.
created  and  trained  a  CNN with  the  base  EfficientNet-B3  to
classify  1,973  RCFIs  to  differentiate  normal  retina  from
diabetic retinopathy and determined the relative performance
of their model versus a baseline model. They found their CNN
to have approximately 10% higher accuracy compared to the

previous model (89.6% vs 80.0%). “In the pursuit of advanced
diagnostic  techniques  for  eye  diseases,  Quellec  et  al.
introduced  a  transfer  learning  method  for  DR  detection  in
retinal  images.  Their  model,  trained  on  an  extensive  set  of
fundus color images, attained an impressive accuracy of 94.9%
in identifying DR [28].

Deep learning has been widely applied in ophthalmology,
one such application is in the detection of early and or occult
glaucoma with CNN architectures [21]. Milea et al. used pre-
existing AI to detect and classify the presence of optic nerve
edema due to increased intracranial pressure (papilledema) and
other  optic  disc  abnormalities  from  1505  ocular  fundus
photographs in external testing and achieved an AUC of 96%,
sensitivity of 96.4%, and specificity of 84.7% for papilledema.
Quellec  et  al.  proposed  a  transfer  learning  approach  for
detecting diabetic retinopathy in RCFIs, where the model was
trained on a large dataset of RCFIs and achieved an accuracy
of 94.9%. Bhaskaranand et al. proposed a deep learning model
for the detection of diabetic retinopathy from RCFIs, trained on
a  large  dataset  of  over  40,000  images,  and  achieved  a  high
sensitivity  of  90%  and  specificity  of  63.2%  for  detecting
diabetic retinopathy [29]. In 2020, Gargeya and Leng created a
retinal diabetic retinopathy detection deep learning model that
achieved  94%  sensitivity  after  training  on  120,000  pictures
[30].  In the rapidly evolving field of  ophthalmic technology,
Grzybowsky  et  al.  delved  into  the  implications  of  AI.  They
explored the pros and cons of AI in Ophthalmology, including
concerns about data quality and privacy. The authors stressed
the importance of clear regulations to ensure patient safety and
ethical AI application [20].

3. METHODS

3.1. Dataset

Training of the proposed model and existing CNN models
first  began  by  obtaining  a  dataset  of  4,217  RCFIs  (1038
cataract, 1098 diabetic retinopathy, 1007 glaucoma, and 1074
control images) from the open-source database “eye_diseases_
classification”  https://www.kaggle.com/datasets/gunavenkat
doddi/eye-diseases-classification  [31].

This dataset contains quality images. Since all the images
are  the  same  color  but  different  in  shade,  the  images  were
converted  to  Grayscale.  This  process  reduces  training  time,
facilitates internal computation, and increases accuracy.

3.2. Methods

3.2.1. Baseline Methods

Each 512 x 512-pixel RGB image from the RCFI dataset
was rescaled to 224 x 224 pixels. These rescaled images were
batched with a batch size of 64, resulting in 66 total batches.
The  batches  were  then  distributed  for  training  (70%),
validation  (20%),  and  testing  (10%)  to  create  an  ImageNet
dataset  containing  the  RCFI  images.  Pixels  from  each  RCFI
image were fed into the input layer for the training of all the
deep learning convolutional neural network (CNN) models.

During  training,  the  model  was  fed  labelled  images
consisting of  input  images  and corresponding class  labels  so
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that it could learn the optimal weights for all trainable layers.
The model adjusted its weights through backpropagation and
gradient  descent,  aiming  to  minimize  the  loss  function  and
improve accuracy on the training data.

Once training was complete, the model was used to make
predictions on new, unseen input images. The model took each
input image, processed it through the layers of the network, and
produced class probabilities as the output. The predicted class
was selected as the one with the highest probability. Thus, the
model produced a predicted class for each new input image fed
into it.

3.2.2. Transfer Learning Methods

Transfer  learning  models  were  used  as  a  means  of
comparison  during  the  determination  of  our  proposed  model
performance.  Transfer learning models VGG16, ResNet,  and
DenseNet were selected, based on factors of increased relative
performance compared to  other  models  and to  leverage each
model’s  large  volume  of  pre-existing  model  gain  through
extensive  pre-training  on  expansive  datasets.  Our  intention
during  the  selection  of  the  transfer  learning  model  was  to
organize a competitive comparison between existing models’
and our model’s performance. To conduct a proper comparison
of  performance  between  transfer  learning  models  that  were
created for routine use and our model, we first needed to align
the transfer learning models with our specifically defined task.
Fine-tuning of each transfer learning model, VGG16, ResNet,
and  DenseNet,  was  hence  achieved  through  addition  of  one
Flatten  Layer,  one  Dense  Output  Layer,  and  several  Custom
Layers (as outlined below). The addition of the custom layers
was permitted prior to performance evaluation of each of the
transfer learning models to elucidate higher-order details and
nuances in the performance of our created model.

VGG16  contained  16  Depth  Layers  that  were  generated
using  ImageNet  transfer  learning  weights.  To  fine-tune  our
model for analysis of RCFIs, seven custom layers were added
to  VGG16:  1  Flatten,  2  Dense,  2  Dropout,  1  Batch
Normalization,  1  Dense  Output.  The  total  number  of
parameters after VGG16 model preparation was 138,357,544.

ResNet  contains  50  Depth  Layers  that  were  generated
using  ImageNet  transfer  learning  weights.  To  fine-tune  our
model for analysis of RCFIs, seven custom layers were added
to ResNet: 1 Flatten, 1 Dropout, 1 Batch Normalization, and 1
Dense Output. The total number of parameters after DenseNet
model  preparation  was  25,642,714.  DenseNet  contained  121
Depth  Layers  that  were  generated  using  ImageNet  transfer
learning  weights.  To  fine-tune  our  model  for  analysis  of
RCFIs,  seven  custom  layers  were  added  to  DenseNet:  1
Flatten,  1  Dropout,  1  Batch  Normalization,  and  1  Dense
Output. The total number of parameters after DenseNet model
preparation was 8,068,506.

3.3. The Proposed Convolutional Neural Network

The  proposed  convolutional  neural  network  model  was
built upon the foundation of the pre-existing VGG16 transfer
learning  model.  Additional  custom  layers  were  added  in  the
following manner:

First, the output from the VGG16 base model was passed

through  a  series  of  custom  layers  stacked  on  top.  A  Flatten
layer  flattened  the  3D tensor  output  from VGG16  into  a  1D
tensor.  This  flattened  tensor  was  fed  into  a  fully  connected
layer  with  512  units  and  Rectified  Linear  Unit  (ReLU)
activation function. Next, a Dropout layer with a 0.3 dropout
rate was applied, where 30% of the units were randomly set to
0  during  training  to  prevent  overfitting.  Batch  normalization
was then used to normalize the activations from the previous
layer across each batch to stabilize learning. After that, another
fully connected layer with 128 units and ReLU activation was
added. This was followed by another Dropout layer with a 0.3
dropout  rate.  For  multi-class  classification,  a  final  fully
connected layer with 4 units and Softmax activation was added,
representing the number of classes.  For binary classification,
the  final  layer  had  2  units  and  Softmax  activation.  In  both
cases,  the  Softmax  activation  function  produced  output
probabilities  for  each  class.  The  output  from  the  last  dense
layer was the predicted probabilities for each class. The model
outputs a probability distribution over the classes for each input
image.  Finally,  the  convolutional  neural  network  model  was
ensembled  with  the  LeNet5  model  to  complete  the  proposed
architecture.

4. RESULTS

4.1. Evaluation Metrics

Performance was determined using standard computational
metrics  accuracy  (Acc),  precision  (Prc),  recall  (Rcl)  and  F1-
score  (F1)  for  each  CNN  model  based  on  the  correct
classification  of  shuffled  RCFIs  into  ‘cataract’,  ‘glaucoma’,
‘diabetic retinopathy’, or ‘control’ bins (Fig. 3) [30, 31].

Acc = (TPc + TNc )/ ( TPc +FPc+TNc+FNc)

Prc =TPc / (TPc+FPc)

Rcl = TPc / (TPc+FNc)

F1 = 2*(Prc*Rcl)/(Prc+Rcl)

[Classification] TPc: True Positive, TNc: True Negative,
FPc: False Positive, FNc: False Negative.

Classification true positive (TPc) and true negative (TNc)
scores  were  contingent  on  the  model  placing  RCFIs  into  the
correct  of  three  disease  classes  (cataract,  glaucoma,  diabetic
retinopathy)  correctly  identifying  control.  Hence,  TPc  events
were only counted when an RCFI from an eye with an ocular
disease was presented and classified under the correct ocular
disease.  Given  three  disease  classes,  one  TPc  rate  was
determined for each ocular disease. Similarly, TNc events were
counted when an RCFI from an eye with control features was
presented correct non-detection of all three ocular diseases was
achieved, thereby conferring correct identification of ‘control.’
Given that TNc events only occurred after ruling out all ocular
diseases,  only  one  TNc  rate  was  calculated  in  each  model’s
performance analysis.

Fig.  (3)  again  is  the  matrix  which  shows  the  baseline
approach  for  the  proposed  model.  The  counting  of
classification  false  positive  (FPc)  and  false  negative  (FNc)
involved  consideration  of  whether  an  error  was  absolute
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Fig. (3). Matrix showing the base approach for the proposed model.

(against normal control) or relative (against another disease).
Absolute FNc events occurred when an RCFI from an eye with
any ocular disease was incorrectly classified as control due to
the  failed  detection  of  one  and  correct  non-detection  of  two
ocular  diseases.  Analogously,  relative  FPc  events  occurred
when  an  RCFI  from a  control  eye  was  incorrectly  classified
into the bin for one ocular disease due to an invalid detection of
that disease but correct non-detection of the other two ocular
disease state classes. Thus, one absolute FNc and one absolute
FPc  were  calculated  for  each  ocular  disease.  For  each  event
involving  an  RCFI  from an  eye  with  one  ocular  disease  that
was  incorrectly  classified  into  the  bin  for  another  ocular
disease,  both a  relative FNc  and a  relative FPc  event  resulted
due to the failed and invalid detections, respectively. These six
relative  errors  represented  every  combination  pair  for  three
ocular  disease  classes,  each  with  two  possible  false  positive
and two possible false negative relative errors. An analysis of
variance (ANOVA) was performed for CNN models’ accuracy,
precision,  recall,  F1-score  to  determine  whether  significant
differences in model performance exist.

4.2. Sparse Categorical Cross Entropy Loss Function

Given  the  dataset  multiclass,  sparse  categorical  cross
entropy [30] loss function was deployed and defined where ti is
the truth label, and i was the probability, which was the output
of SoftMax function for ith class.

The  cross-entropy  loss  function  was  used  to  predict  the
output  probability  with  the  actual  label,  which  penalizes  the
model  based  on  the  deviation  of  models’  categorization  of
disease state compared with RCFI dataset’s diagnosis label for
that  image.  In  the  sparse  categorical  cross-entropy  loss
function, one-hot encoding of labels was not required, as it was
in traditional categorical cross entropy [refer-CCE]. The labels
were  marked  as  integers  (1,2,3).  Data  augmentation  was
avoided in each algorithm for this study, as the data included
high-resolution fundus color images. The detection model was
trained  on  Google  Collaboratory's  default  RAM runtime and
was implemented using Python.

To enhance the process of disease diagnosis in our model,
we  used  two  loss  functions.  The  Sparse  Categorical  Cross
Entropy loss function was utilized in our deep learning model's
initial  stage.  This  function  was  extremely  useful  for
classification jobs where the classes are mutually exclusive. In
our example, the model was attempting to categorize the input
into one of four classes, one of which denotes normal eyes. The
difference  between  the  true  distribution  and  the  anticipated
probability distribution was quantified using sparse categorical
cross-entropy, with an emphasis on the right class. Given that
this  model  worked  well  in  situations  with  numerous  class
labels  and  was  more  computationally  efficient  when  dealing
with  sparse  labels,  it  was  an  advantageous  option  in  this
situation.

4.3. Binary Cross Entropy Loss Function

Given the dataset multiclass, binary cross entropy [30] loss
function was deployed and defined where ti was the truth label
and pi  was the probability, which was the output of SoftMax

���  =   2∑āÿ log(āÿ) �
ÿ=1  , ĀĀÿ ÿ ���ĀĀÿĀ 
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function for ith class. Binary cross-entropy loss function maps
were used to predict the output probability with the true label
and  penalize  in  logarithmic  function  based  on  how  far  the
output from the actual label was. In sparse categorical cross-
entropy loss function, one-hot encoding of the labels is like in
traditional categorical  cross entropy [refer-CCE]. Labels that
can  be  marked  as  integers  (1,2,3)  were  not  required.  Data
augmentation was avoided in each algorithm for this study, as
the  data  included  high-resolution  fundus  color  images.  The
detection model was trained on Google Collaboratory's default
RAM  runtime  and  was  implemented  using  Python.  To
determine whether a significant difference in model diagnostic
potential  exists,  an  analysis  of  variance  (ANOVA)  was
performed  for  CNN  models’  sensitivity  and  specificity.

The model  then used a  series  of  binary classifications  to
identify a specific disease state and distinguish it from healthy
eyes in the second stage of the procedure. The Binary Cross-
Entropy  loss  function  was  used  for  these  jobs.  Binary

classification tasks use the binary cross-entropy loss function,
sometimes  referred  to  as  log  loss.  The  cross-entropy  loss
between true labels and anticipated probability was calculated
using  this  loss  function.  In  essence,  it  assessed  how  well  a
classification  model  performs  given  that  its  output  is  a
probability value between 0 and 1. The loss is -log(p) when the
true label is 1.plus, -log(1-p) when the true label is 0, where p
is  the  predicted  probability.  Therefore,  the  loss  grew  as  the
projected probability departed from the actual label. Given that
the difference was calculated between the model's predictions
and the actual data in situations when there are two class labels,
this loss function was a good option for binary classification
issues.  The  Binary  Cross-Entropy  function  measures  the
difference  between  the  projected  likelihood  and  the  actual
label, offering a reliable technique to enhance the ability of our
model  to  identify  the  presence  or  absence  of  disease.  The
model  achieved  high  accuracy  in  this  key  binary  decision-
making phase of the diagnostic by using this function.

 

Flowchart-1 Architecture of the proposed model 
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Custom Model Layers LeNet-5 Layers
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All CNN models converged to the 100th epoch, except for
the VGG-16 model, which only converged to the 47th epoch
before failure. Hence, the VGG-16 model was excluded from
all statistical comparisons. Overall, the proposed model served
as a better diagnostic screening test for preliminary diagnosis
of all ocular diseases using RCFIs when compared to existing
models  after  dedicated  disease  training  [Sn/Sp]  (cataract:
0.9953/0.9769, glaucoma: 0.9897/0.9374, diabetic retinopathy:
1.000/0.9098) (P-VALUE). The sensitivity and specificity for
existing  models  were:  DenseNet  (cataract:  0.96/0.96,
glaucoma: 0.96/0.95, diabetic retinopathy: 0.91/0.91), ResNet
(cataract: 0.9/0.85, glaucoma: 0.49/0.72, diabetic retinopathy:
0.31/0.51).  In  general,  there  were  neither  significant
differences in true positive or negative rates nor false positive
or negative rates between models.

4.4. Confusion Matrix

The  following  section  describes  the  results  obtained  in
terms of Confusion Matrix, Accuracy vs Epoch Curves, Loss vs
Epoch Curves, and calculations of various parameters. Figures

describe the confusion matrix, which states the classification as
Cataract  vs  Non-Cataract,  Glaucoma  vs  Non-Glaucoma,
Diabetic  Retinopathy  vs  Non-Diabetic  Retinopathy  for  the
proposed model, DenseNet Model and ResNet Model. Figs. (4
- 15) denote Accuracy vs Epoch, Loss vs Epoch Curves. Tables
1  -  6  show  the  calculation  of  various  parameters  for  the
Proposed  Model,  DenseNet  Model,  and  ResNet  Model.

4.5. Proposed Model

4.5.1. Architecture

Flowchart 1 illustrates the outlined architecture, and how
an embedded neural network operates by taking an input image
and processing it through two separate streams: one comprising
the custom model layers and the other consisting of LeNet-5
layers. The outputs of these streams are then combined into a
single feature vector, which is further processed by additional
custom layers, culminating in the final output layer.

Fig.  (7)  represents  the  Accuracy  vs  Epoch  and  Loss  vs
Epoch Curves for the proposed model.

Table 1. Calculation of parameters for the proposed model.

Accuracy 0.980
Training 0.993

Validation 0.982
- CAT GL DR

Precision 0.940 0.890 0.980
Recall 0.960 0.860 0.910

F1 Score 0.950 0.870 0.940

Fig. (4). Confusion matrix (cataract vs on cataract).
Fig. (4) displays the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 1013 cases were correctly classified as having cataracts.
FP: 25 cases were incorrectly classified as having cataracts when they did not.
TN: 1069 cases were correctly classified as not having cataracts.
FN: 5 cases were incorrectly classified as not having cataracts when they did.

1013

47.96%

25

1.18%

5

0.24%

1069

50.62%
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Table 2. Calculation of various parameters for densenet model.

Accuracy 0.790
Training 0.836

Validation 0.792
- CAT GL DR

Precision 0.850 0.740 0.90
Recall 0.890 0.710 0.740

F1 Score 0.870 0.720 0.810

Table 3. Calculation of various parameters for resnet model.

Accuracy 0.630
Training 0.663

Validation 0.635
- CAT GL DR

Precision 0.830 0.760 0.840
Recall 0.780 0.710 0.690

F1 Score 0.800 0.730 0.750

Table 4. Calculation of parameters for proposed model.

Ocular Condition TP
TP + FN Sn TN

TN + FP Sp

Cataract 1013
1013+ 5 0.995 1069

1069+25 0.977

Glaucoma 1063
1063+11 0.989 944

944+63 0.937

Diabetic Retinopathy 1074
1074 + 0 1.000 999

999 + 99 0.909

Fig. (5). Confusion matrix (glaucoma vs non-glaucoma).
Illustrates the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 944 cases were correctly classified as having glaucoma.
FP: 63 cases were incorrectly classified as having glaucoma when they did not.
TN: 1063 cases were correctly classified as not having glaucoma.
FN: 11 cases were incorrectly classified as not having glaucoma when they did.

944

45.36%

63

3.03%

11 1063

0.53% 51.08%
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Fig. (6). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).
Illustrates displays the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 999 cases were correctly classified as having diabetic retinopathy.
FP: 99 cases were incorrectly classified as having diabetic retinopathy when they did not.
TN: 1074 cases were correctly classified as not having diabetic retinopathy.
FN: 0 cases were incorrectly classified as not having diabetic retinopathy when they did.

999 99

45.99% 4.56%

0

0.00%

1074

49.45%

Fig. 7 contd.....
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Fig. (7). Accuracy vs Epoch and Loss vs Epoch Curves for the Proposed model.

Fig. (8). Confusion matrix (cataract vs on cataract).
Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 1007 cases were correctly classified as having cataracts.
FP: 31 cases were incorrectly classified as having cataracts when they did not.
TN: 1073 cases were correctly classified as not having cataracts.
FN: 1 case was incorrectly classified as not having cataracts when they did.

4.6. Loss Plot

The training loss starts high and rapidly decreases during
the  initial  epochs  and  slowly  decreases  over  the  rest  of  the
epochs. The validation loss also starts high but decreases at a
similar  rate  to  the  training  loss.  However,  after  the  initial
decrease, it begins to oscillate and does not show a consistent
downward  trend.  This  suggests  that  the  model  might  be
overfitting  to  the  training  data.

4.7. Accuracy Plot

The  training  accuracy  starts  low but  rapidly  increases  in
the  initial  epochs.  Afterward,  it  continues  to  grow  but  at  a
slower rate. The validation accuracy also starts lower and then
increases, but it starts to plateau and oscillates after the initial
rise. This plot again hints at potential overfitting, as the model's
performance on the training data continues to improve while its
performance on the validation data remains stable.

1007

47.68%

31

1.47%

1 1073

0.05% 50.80%
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Fig. (9). Confusion matrix (glaucoma vs non-glaucoma).
Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 1012 cases were correctly classified as having glaucoma.
FP: 21 cases were incorrectly classified as having glaucoma when they did not.
TN: 1012 cases were correctly classified as not having glaucoma.
FN: 36 cases were incorrectly classified as not having glaucoma when they did.

Fig. (10). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).
Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) Values.
TP: 1031 cases were correctly classified as having diabetic retinopathy.
FP: 27 cases were incorrectly classified as having diabetic retinopathy when they did not.
TN: 999 cases were correctly classified as not having diabetic retinopathy.
FN: 99 cases were incorrectly classified as not having diabetic retinopathy when they did.

1012 21

36 1012

48.63% 1.01%

1.73% 48.63%

1031 27

99 999

47.82% 1.25%

4.59% 46.34%
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Fig. (11). Accuracy vs epoch and loss vs epoch curves for densenet.

The  graph  displays  the  training  and  validation  loss  and
accuracy  for  an  AI  model  over  100  epochs.  The  loss  graph
portrays a typical convergence pattern, with both the training
and  validation  loss  decreasing  sharply  in  the  initial  epochs,
followed  by  a  gradual  descent.  The  training  loss  decreases
more consistently than the validation loss, which fluctuates but
remains  within  a  similar  range  after  about  20  epochs,
suggesting good generalization without significant overfitting.
The accuracy graph exhibits  an increase in both training and
validation  accuracy  over  time,  with  training  accuracy  being
slightly higher throughout, indicating the model was learning
effectively  and  maintaining  a  consistent  performance  on
unseen  data.

4.8. DenseNet Model

Fig. (11) represents accuracy vs  epoch and loss vs  epoch
curves for densenet model.

4.8.1. Loss

The  training  loss  starts  extremely  high  but  quickly
decreases, while the validation loss initially decreases but then
fluctuates  around  a  certain  value  without  significant  further
improvement.  This  process  could  indicate  overfitting  as  the

training loss continues to decrease, but the validation loss does
not show the same trend.

4.8.2. Accuracy

The training accuracy displayed an upward trend, but the
validation accuracy seemed to plateau and fluctuate around a
certain value, again hinting toward overfitting.

The graph presents a more erratic pattern of training and
validation  loss  and  accuracy.  The  loss  for  both  training  and
validation decreases initially but shows significant fluctuation
throughout the training process, which could indicate a model
struggling  with  convergence  or  being  affected  by  a  noisy
dataset.  The  accuracy  graph  indicates  a  high  degree  of
variability in both training and validation accuracy, with both
lines  crossing  frequently.  This  suggests  the  model  might
benefit  from  further  hyperparameter  tuning,  more  data,  or  a
review  of  the  data  quality  to  improve  stability  and
performance.

4.9. ResNet Model

Fig. (15) represents accuracy vs  epoch and loss vs  epoch
curves for resnet model.
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Fig. (12). Confusion matrix (cataract vs on cataract).
The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 872 cases were correctly classified as having cataracts.
FP: 166 cases were incorrectly classified as having cataracts when they did not.
TN: 985 cases were correctly classified as not having cataracts.
FN: 89 cases were incorrectly classified as not having cataracts when they did.

Fig. (13). Confusion matrix (glaucoma vs non-glaucoma).
The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 997 cases were correctly classified as having glaucoma.
FP: 21 cases were incorrectly classified as having glaucoma when they did not.
TN: 1007 cases were correctly classified as not having glaucoma.
FN: 56 cases were incorrectly classified as not having glaucoma when they did.

872

41.29%

166

7.86%

89

4.21%

985

46.64%

997

47.91%

21

1.01%

1007 56

48.39% 2.69%



Classification of Ophthalmic Images using Convolutional Neural Network Current Medical Imaging, 2024, Volume 20   15

Fig. (14). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).
The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 43 cases were correctly classified as having diabetic retinopathy.
FP: 1003 cases were incorrectly classified as having diabetic retinopathy when they did not.
TN: 1027 cases were correctly classified as not having diabetic retinopathy.
FN: 99 cases were incorrectly classified as not having diabetic retinopathy when they did.

4.9.1. Loss

Both training and validation loss are depicted with minor
decreases  over  the  epochs.  However,  the  scale  of  the  loss
changes was quite narrow, suggesting that the model may have
plateaued and is  not  learning  much more  from the  data.  The
validation  loss  is  volatile,  with  fluctuations  that  do  not
converge  to  a  significantly  better  value.

4.9.2. Accuracy

Training accuracy fluctuates quite a bit, which might be an
indicator of instability in the training process. The validation
accuracy  also  fluctuates  and  does  not  show  a  clear  trend  of
improvement over epochs. This lack of improvement and the

erratic  pattern  can  be  a  sign  of  either  a  model  struggling  to
capture the patterns in the data or a noisy dataset.

The third  graph illustrates  a  model  that  exhibits  a  gentle
downward trend in both training and validation loss, with the
validation loss showing more fluctuations. This could be a sign
of the model beginning to overfit, as the validation loss does
not  decrease  as  steadily  as  the  training  loss.  The  accuracy
graph  reflects  considerable  volatility,  particularly  with
validation accuracy, which does not show a clear upward trend.
This  could  imply  that  the  model's  capacity  may  not  be
sufficient to capture the complexity of the data, or the model
may  need  better  regularization  techniques  to  enhance  its
generalization  abilities.

43

1.98%

1003

46.18%

99

4.56%

1027

47.28%

Fig. 15 contd.....
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Fig. (15). Accuracy vs epoch and loss vs epoch curves for resnet model.

4.10. Overall Findings

• The proposed model demonstrated excellent training and
validation  performance,  with  both  metrics  closely  mirroring
each other. This suggested good generalization. The model is
well-optimized  for  the  given  task.  The  model  had  high
accuracy  for  this  classification,  given  the  high  TP  and  TN
values  and  low  FP  and  FN  values.  The  percentages  further
confirmed  this  point.  The  proposed  model  demonstrates
satisfactory performance for this classification with relatively
low  FP  and  FN  values.  The  proposed  model  appeared
particularly strong in identifying cases of diabetic retinopathy,
given the zero FN.

• The DenseNet Model appeared to have reached a plateau
in both loss and accuracy, suggesting convergence. The model
may benefit  from regularization  or  hyperparameter  tuning to
improve validation performance.

•  The  ResNet  Model  displayed  signs  of  instability,
especially in the validation accuracy. This might indicate the
model was sensitive to the specific validation data or that the
model  was  not  generalized  enough.  Techniques  such  as
dropout,  regularization,  or  data  augmentation  might  help.

4.11. Preliminary Clinical Diagnostic Test

The  diagnostic  potential  was  determined  with  standard
clinical diagnostic metrics sensitivity and specificity for each
CNN model  for  cataract,  glaucoma,  and  diabetic  retinopathy
using disease-specific ImageNet training cycles. For example,
during  cataract  training  cycles,  CNN models  were  presented
with shuffled RCFIs with either cataracts, glaucoma, diabetic
retinopathy, or control features. CNN diagnostic potential for
cataracts  was determined for  each CNN based on the rate  of
RCFI  assignment  with  the  correct  binary  cataract  score  (1  =
cataract,  0  =  Not  cataract).  Analogously,  each  CNN’s
diagnostic potential for glaucoma and diabetic retinopathy of
CNNs were  firmly based on rates  of  RCFI assignments  with
the  correct  binary  glaucoma  score  (1  =  glaucoma,  0  =  Not
glaucoma)  or  the  correct  diabetic  retinopathy  (1=  diabetic

retinopathy,  0  =  diabetic  retinopathy)  during  each respective
and distinct disease-specific training cycle.

Sn: Sensitivity. Sp: Specificity.

Diagnostic potentials were evaluated using standard binary
clinical testing, given that comorbid conditions frequently exist
within  the  medical  field,  despite  the  presentation of  shuffled
RCFIs containing 4 possible ocular disease states, true positive
(TP) and true negative (TN) scores were founded upon binary
determinations  for  each  individual  disease.  A  TP  event  was
totaled when the disease under training was correctly detected.
An  FP  event  was  counted  when  the  disease  was  incorrectly
detected  despite  its  absence.  Regardless  of  whether  other
disease  features  from  ocular  conditions  were  present,  a  TN
event was only calculated if the model correctly determined the
absence  of  the  disease  of  interest.  Finally,  FN  events  were
reckoned  when  the  disease  of  interest  was  presented  and
recognized.

In addition, the overall performance of the proposed model
was  increased  across  all  metrics  when  compared  to  existing
CNN  models.  The  proposed  model  achieved  an  increased
overall accuracy 98.87% (training accuracy: 0.993, validation
accuracy:  88.34%)  as  shown  in  Fig.  (6)  and  Table  1  when
compared  with  ResNet  as  shown  in  Fig.  (14)  and  Table  3
[overall:  training,  validation]  (79%:  0.836,  0.792%)  and
DenseNet as noted in Fig. (10) and Table 2 (0.63%: 0.663%,
0.635%) (P-VALUE). The proposed model detected cataracts,
glaucoma,  and  diabetic  retinopathy  with  increased  precision
(0.94, 0.89, 0.98) compared with DenseNet (0.85, 0.74, 0.90)
and  ResNet  (0.83,  0.76,  0.84)  (P-VALUE)  as  shown  in  Fig.
(15). In addition, the proposed model demonstrated increased
recall  for  cataract,  glaucoma,  and  diabetic  retinopathy  (0.96,
0.86,  0.91)  compared  with  DenseNet  (0.89,  0.71,  0.74)  and
ResNet (0.78, 0.71, 0.69) (p<0.05), as well as a better F1 score
proposed  model  (0.95,  0.87,  0.94)  compared  with  DenseNet
(0.87, 0.72, 0.81) and ResNet (0.8, 0.73, 0.75) (P-VALUE).

ÿÿ =  (Ā� )/ ( Ā� + ��) ÿā =  (Ā� )/ ( Ā� + ��) 
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Table 5. Calculation of parameters for densenet model.

Ocular Condition TP
TP + FN Sn TN

TN + FP Sp

Cataract 1013
1013+ 5 0.995 1069

1069+25 0.977

Glaucoma 1063
1063+11 0.989 944

944+63 0.937

Diabetic Retinopathy 1074
1074 + 0 1.000 999

999 + 99 0.909

Table 6. Calculation of parameters for ResNet model.

Ocular Condition TP
TP + FN Sn TN

TN + FP Sp

Cataract 1013
1013+ 5 0.995 1069

1069+25 0.977

Glaucoma 1063
1063+11 0.989 944

944+63 0.937

Diabetic Retinopathy 1074
1074 + 0 1.000 999

999 + 99 0.909

Abbreviations: = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.

Fig. (16). Performance comparison of the models by analysis through ROC curve.
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4.12. Performance of Algorithm

Fig.  (16)  shows  Receiver  operating  characteristic  (ROC)
curves.  ROC  curves  are  commonly  used  to  evaluate  the
performance  of  binary  classification  models  by  plotting  the
True Positive Rate (TPR) against the False Positive Rate (FPR)
at various thresholds.

4.12.1. Cataract

The  three  models  (DenseNet121,  ResNet50,  Proposed
Model) had identical performance for detecting cataracts. Their
ROC curves reach a TPR of almost 1.0 with an exceptionally
low FPR, indicating excellent performance.

4.12.2. Diabetic Retinopathy

The proposed model appeared to be the most performant,
reaching  higher  TPR  values  at  lower  FPRs  compared  to  the
other two models. This suggests the proposed model was better
at detecting diabetic retinopathy with fewer false positives.

DenseNet121 and ResNet50 indicate similar performance
up to  an  FPR of  around 0.2,  after  which DenseNet121 has  a
slightly higher TPR.

4.12.3. Glaucoma

The proposed model again seemed superior, particularly in
the mid-range of FPR. It achieves a higher TPR at a lower FPR
compared to the other two models.

ResNet50 and DenseNet121 were closer  in  performance,
with ResNet50 having a slight advantage in the mid-range of
the FPR.

4.12.4. Overall Observations

The  proposed  model  consistently  performed  better  or
comparably to the other two models across all three conditions.
It often achieved higher TPRs at lower FPRs, suggesting better
diagnostic capability with fewer false positives.

ResNet50  and  DenseNet121  displayed  competitive
performance,  with  one  sometimes  edging  out  the  other
depending  on  the  specific  condition  being  diagnosed.

5. DISCUSSION

AI  holds  great  promise  as  a  future  tool  in  medicine.
Already,  ML  systems  have  shown  potential  as  a  means  for
medical  professionals  to  augment  the  detection  of  rare,  life-
threatening  diseases,  such  as  malignant  cancers  or  ischemic
strokes,  through  analysis  of  radiographic  imaging.  In  the
future,  machine  learning  may  take  on  more  clear-cut  roles
within medicine, such as large-volume biomedical image data
analysis  to  standardize  disease  screening,  assist  disease
classification,  and  distinguish  diseases  that  can  be  hard  to
differentiate. Clinically, great interest exists in the creation of
specialized deep learning systems that enable earlier diagnosis
and  decrease  treatment  delay  for  progressive,  irreversible
diseases.  In  this  study,  we  demonstrated  that  deep  learning
convolutional  neural  networks  can  be  fitted  with  additional
convolutional  layers  to  achieve  increased  performance

compared  to  non-modified  predecessors.  In  particular,  the
authors  sought  to  quantify  the  relative  performance  gained
while completing an especially demanding task; in this case:
classifying a shuffled dataset of CRFIs obtained from eyes with
multiple ocular diseases or control.

However, in designing this study, we also wanted to create
training conditions that simulated circumstances that become
relevant upon utilization of the model, specifically within the
clinical  environment.  In  this  effort,  we  appreciated  that  the
comparison of diagnostic tests was standardized and reported
in 2x2 tables with binary diagnostic test results versus either a
clinical  result  or  gold-standard  diagnostic  test  result.  Yet,
regardless  of  how  diagnostic  tests  were  compared,  patients
often presented with more than one related (comorbid) medical
condition  at  a  time  or  coexisting  diseases  that  nevertheless
impacted routine disease screenings. Thus, disease diagnoses
were not mutually exclusive, and, moreover, the presence of a
comorbid disease that was unrelated may nevertheless disrupt
and  create  inaccuracy  within  diagnostic  screening  for  the
disease of interest and hence, indirectly hinder quality care. In
both  examples,  the  medical  principle  of  comorbid  disease
highlights  how  patient  medical  complexity  may  complicate
appropriate computational analysis by deep learning systems.
For this reason, our study design aimed to maintain the use of
ImageNet’s dataset containing randomly shuffled RCFIs from
eyes  with  manifestations  from  multiple  diseases,  even
performing dedicated training for one disease at a time. Despite
the increased potential margin for matrix confusion, the same
modified  deep  learning  model  used  in  this  study  classified
three  ocular  diseases  simultaneously,  and  achieved  high
sensitivity and specificity when serving as a binary screening
test  for  preliminary  diagnosis  of  individual  diseases  while
analyzing  a  complex  RCFI  dataset.

Fig.  (17)  denotes  the  framework  of  the  proposed
innovative process. The technician uploads the fundus images
to the software. The software is accessed by the physician with
their own user credentials and the clinician can see the images.
The physician uploads the image to the software. The first step
in  the  software  is  to  clean  the  patient  information  from  the
images and then the images are labelled with a unique patient’s
identification number. The image is then checked along with
patients’  identification  number  according  to  HIPAA.
Furthermore, the image is then sent to the backend cloud model
for computation. The classification is generated in the form of
a  PDF  report,  which  classifies  images  as  Cataract  or  Non-
Cataract, Diabetic Retinopathy or Non-Diabetic Retinopathy,
Glaucoma  or  Non-Glaucoma.  The  report  is  sent  to  the
physician and the comments of the physician are saved into the
software as patient notes.

In clinical settings, various handheld devices exist that will
assist  physicians  to  capture  the  photographs  of  the  front  and
back of the eye. These recorded images will then be stored in a
HIPAA  compliant  cloud-based  system.  The  proposed
framework can be utilized as a testing and validation dataset
for  the  proposed framework and the  biofeedback loop stores
the  physician’s  diagnosis  into  the  proposed  framework.  The
model will learn about the images, and the system will be more
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Fig. (17). Framework for classification of ophthalmic images.

robust  and  will  be  available  to  treat  patients  at  remote
locations.  The  limitation  of  the  system  is  computational
architectures,  which  may  not  be  available  when  applied  in
remote locations. The handheld devices may be able to address
these limitations and shall be economically available in order
to reduce medical costs and thus give treatment to the patients.

The physicians have validated the system. The system was
also  presented  at  many  conferences,  which  motivated  the
authors creating a more robust framework, which was a cloud-
based  system  where  the  images  were  stored  on  a  HIPAA
Compliant Cloud based system and the analytics was carried
out.  The  visual  representation  of  the  framework  is  shown  in
Fig. (17).

CONCLUSION

AI  systems  cover  a  wide  range  of  areas,  including  the
diagnosis  of  external  eyelid  lesions  and  the  interpretation  of
congenital and acquired retinal diseases. This study provided
an experimental setup on Type 2 Diabetes Mellitus (T2DM), a
chronic  metabolic  disease  that  leads  to  elevated  blood  sugar
levels and damage to organs and systems. The healthcare costs
associated  with  T2DM are  estimated  to  be  around  USD 327
billion, with projections showing it will continue to rise as the
prevalence of T2DM increases. Artificial intelligence has the
potential  to  revolutionize  disease  detection  and  referral
processes in ophthalmology. By leveraging AI as a screening
tool,  objective parameters can be utilized to identify patients
who  require  further  evaluation  for  diabetic  retinopathy  and
glaucoma, leading to timely interventions and improved patient
outcomes. This study represents a significant contribution by
demonstrating  the  creation  of  a  deep  learning  convolutional
neural network model capable of analyzing retinal color fundus
images  and  differentiating  and  class.  This  study  leads  to  the
development of decision support systems for clinicians, which

will  assist  them  in  the  current  settings  as  well  as  the
development  of  telehealth  applications.

LIMITATIONS OF THE STUDY

The  dataset  that  the  authors  have  utilized  was  an
unstructured dataset, which was formatted and structured to be
utilized in  a  specific  way.  The data  set  needs  more  labelling
and classification.

FUTURE APPROACH

The model would be trained on multiple datasets provided
by previously curated and labelled images and the framework
would  increase  the  possibility  of  diagnosing  further  retinal
disease. The framework will also include the software for the
proposed approach and direction to system development.
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