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Abstract:
Background:

Methods:

manifestations.

Results:

glaucoma, diabetic retinopathy.

Conclusion:

Early disease detection is emphasized within ophthalmology now more than ever, and as a result, clinicians and innovators turn to deep learning to
expedite accurate diagnosis and mitigate treatment delay. Efforts concentrate on the creation of deep learning systems that analyze clinical image
data to detect disease-specific features with maximum sensitivity. Moreover, these systems hold promise of early accurate diagnosis and treatment
of patients with common progressive diseases. DenseNet, ResNet, and VGG-16 are among a few of the deep learning Convolutional Neural
Network (CNN) algorithms that have been introduced and are being investigated for potential application within ophthalmology.

In this study, the authors sought to create and evaluate a novel ensembled deep learning CNN model that analyzes a dataset of shuffled retinal color
fundus images (RCFIs) from eyes with various ocular disease features (cataract, glaucoma, diabetic retinopathy). Our aim was to determine (1) the
relative performance of our finalized model in classifying RCFIs according to disease and (2) the diagnostic potential of the finalized model to
serve as a screening test for specific diseases (cataract, glaucoma, diabetic retinopathy) upon presentation of RCFIs with diverse disease

We found adding convolutional layers to an existing VGG-16 model, which was named as a proposed model in this article that, resulted in
significantly increased performance with 98% accuracy (p<0.05), including good diagnostic potential for binary disease detection in cataract,

The proposed model was found to be suitable and accurate for a decision support system in Ophthalmology Clinical Framework.

-
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1. INTRODUCTION

Artificial intelligence (Al) is a rapidly growing field that
aims to develop computer systems and algorithms capable of
thinking, learning, and making decisions reminiscent of human
intelligence [1 - 3]. Anisotropic angle distribution learning for
head poses estimation and attention understanding in human-

* Address correspondence to this author at the Department of CEECS, Florida
Atlantic University, FL, USA; E-mail: harshaPsanghvi7@gmail.com

computer interaction. Numerous studies have been conducted
on the utilization of deep learning systems and computer vision
[1 - 3]. Al is increasingly transforming healthcare and allowing
medical practitioners to make more informed and complex
medical decisions, detect and diagnose diseases, create
appropriate treatment plans, and minimize avoidable errors that
could harm patients [2]. Within medicine, deep learning has
recently seen an upsurge in its application, particularly in fields
such as oncology, neurology, and cardiology, where available
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electronic MRI, CT, and PET radiographic image data can be
leveraged for mass screening and to mitigate morbidity related
to delayed diagnosis of devastating diseases [3, 4]. One area of
medicine where Al has been particularly impactful is
ophthalmology [5, 6]. This focus is due in part to the reliance
on cross-sectional tomography and RCFIs, as these provide
magnified high-resolution images and documentation of
ophthalmoscopic examination findings within electronic
medical record systems [5 - 8]. Al systems in ophthalmology
cover a wide range of areas, from the diagnosis of external
eyelid lesions to the interpretation of congenital and acquired
retinal diseases [7]. Of particular interest is the neurosensory
retina, which is located within the posterior pole of the eye,
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detects light from the outside world, and transmits visual
information to the brain via the optic nerve. The retina is
histologically complex, containing photoreceptors, glial cells,
pigment cells, neurons, and arterial and venous vascular
systems [8]. Due to its location and prerequisite requirement
for normal function permissive of intact visual acuity, the
retina is highly susceptible to an exceedingly great number of
congenital dystrophic, metabolic, vasculopathic, anemic,
infectious, neuroinflammatory, neuro-atrophic, oncologic, and
other retinal diseases that may affect one or more histologic
structures or functions within the neurosensory retina resulting
in partial or complete loss of vision.

glaucoma

glaucoma

glaucoma

Fig. (1). Fundus images from the dataset [31].
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Fig. (1) indicates the fundus images from the dataset and
Fig. (2) indicates the heatmap of the sample fundus image from
the dataset. This study focused on Type 2 Diabetes Mellitus
(T2DM), a chronic metabolic disease that leads to chronically
elevated blood sugar levels and can cause damage to various
organs and systems in the body, including the blood vessels,
eyes, nerves, heart, kidneys, and brain. This damage can lead to
severe complications, such as hypertension, retinopathy,
peripheral neuropathy, myocardial infarction, heart failure,
chronic kidney disease, end-stage renal failure, stroke, and
even death [9, 10]. The healthcare costs associated with T2DM
are estimated to be approximately USD 327 billion [11, 12],
with projections showing this figure will continue to rise as the
prevalence of T2DM increases. It is estimated that within the
next five years, the number of diabetic patients developing
diabetic retinopathy will increase by 33% [6]. Patients with
T2DM are also at an increased risk of developing cataracts,
glaucoma, and diabetic retinopathy with or without macular
edema [6]. Previous studies have shown that Deep Learning
(DL) systems can accurately and precisely detect referable
diabetic retinopathy from RCFIs [3, 6, 9]. However, few
studies to date have created a model capable of classifying
multiple ocular diseases with high accuracy. In this study, we
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sought to create and evaluate a deep learning CNN model that
analyzes a dataset of shuffled retinalcolor fundus images
(RCFIs) from eyes with various ocular disease features
(cataract, glaucoma, diabetic retinopathy) or control. In the
proposed framework, we determine the relative performance of
our finalized deep learning model in classifying randomly
shuffled RCFIs from eyes with various ocular diseases
(cataract, glaucoma, diabetic retinopathy) or control, when
compared with existing models. Endpoints were accuracy
(Acc), precision (Prc), recall (Rcl), and F1-score. Then, we
determined the relative diagnostic potential of a finalized deep
learning model to serve as a binary screening test for the
preliminary diagnosis of each disease: cataract, glaucoma, or
diabetic retinopathy. After training, the dataset on randomly
shuffled RCFIs containing each of the included disease states
as well as normal images. The endpoints were sensitivity (Sn)
and specificity (Sp). This paper is divided into five sections.

* Section II. Related Works
* Section III. Methodology and Framework
* Section I'V. Results

* Section V. Discussion and Future Work
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Fig. (2). Heat map of sample fundus image from the dataset [31].
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2. RELATED WORKS

Numerous studies have been conducted on the utilization
of deep learning systems and computer vision in the detection
and diagnosis of important diseases within healthcare [12, 13].
Kaya et al. demonstrated that a CNN (AlexNet) could detect
and distinguish hemorrhagic and ischemic stroke based on non-
contrast CT image films, proposing its implementation for
preliminary treatment stroke management plans to improve
patient outcomes [14]. Singh et al. used CNN on CT scan
images to detect pulmonary infiltration and differentiate
pneumonia from viral and bacterial etiologies, specifically
detecting pneumonia related to the SARS-CoV-2 virus
(COVID-19) [15]. Seth et al. reviewed various literature for the
detection of breast cancer using MRI scans with a CNN [16].
In ophthalmology, deep learning has been shown in numerous
studies to be an effective method for developing automated
systems. These systems detect and classify ocular diseases such
as diabetic retinopathy and glaucoma from RCFIs with high
accuracy (87.9% - 96.8%) using ML support vector machines,
k-nearest neighbors, and various architectures of CNN such as
VGG-16, ResNet, DenseNet, Inception, and AlexNet [4 - 6, 17
- 21].

In early studies on deep learning convolutional neural
networks, Abramoff et al. and Kose et al. conducted similar
experiments where they trained a CNN on 120,000 and 10,000
pre-labeled RCFIs to detect diabetic retinopathy with a
sensitivity of 99% and an accuracy of 94% [22, 23]. Leong et
al. analyzed AI applications in Ophthalmology, identifying
1,762 publications on its potential benefits. They also found 70
review articles, with 24 each on DR and glaucoma detection,
and the rest on OCT and retinal CFI features [18]. Lee et al.
trained a DL CNN on 1,289 OCT macula images to detect IRF
and diagnose macular edema causes, achieving a Dice
coefficient of 0.911 compared to clinical professional
assessments [19]. In a separate study, Gulshan et al. evaluated
the performance of a pre-existing CNN (ResNet) on 128,000
RCFIs for the detection of both diabetic retinopathy and
diabetic macular edema and found ResNet was able to classify
diabetic retinopathy with macular edema, diabetic retinopathy
without macular edema, and control with an accuracy of 96%
[24]. Sarki et al. used two pretrained CNN models on
ImageNet for mild multiclass diabetic eye diseases and
multiclass diabetic eye diseases and employed performance
enhancement techniques on VGG16 to obtain an accuracy of
88.3% [25]. Lee et al. trained a CNN on 1,289 OCT macula
images (1,919,680 macula sections) to detect intraretinal fluid
(IRF) and diagnose macular edema etiologies, achieving a
maximal cross-validation Dice coefficient of 0.911 when
compared to the diagnostic assessments of clinical
professionals [26]. Nazir et al. used Fast Region-based CNN to
detect diabetic retinopathy in RCFIs. CNN was trained on a
dataset of over 2,500 images and was able to accurately
classify images as normal or abnormal with a sensitivity of
92% and a specificity of 91% [27]. In addition, Luo et al.
created and trained a CNN with the base EfficientNet-B3 to
classify 1,973 RCFIs to differentiate normal retina from
diabetic retinopathy and determined the relative performance
of their model versus a baseline model. They found their CNN
to have approximately 10% higher accuracy compared to the
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previous model (89.6% vs 80.0%). “In the pursuit of advanced
diagnostic techniques for eye diseases, Quellec et al.
introduced a transfer learning method for DR detection in
retinal images. Their model, trained on an extensive set of
fundus color images, attained an impressive accuracy of 94.9%
in identifying DR [28].

Deep learning has been widely applied in ophthalmology,
one such application is in the detection of early and or occult
glaucoma with CNN architectures [21]. Milea et al. used pre-
existing Al to detect and classify the presence of optic nerve
edema due to increased intracranial pressure (papilledema) and
other optic disc abnormalities from 1505 ocular fundus
photographs in external testing and achieved an AUC of 96%,
sensitivity of 96.4%, and specificity of 84.7% for papilledema.
Quellec et al. proposed a transfer learning approach for
detecting diabetic retinopathy in RCFIs, where the model was
trained on a large dataset of RCFIs and achieved an accuracy
of 94.9%. Bhaskaranand et al. proposed a deep learning model
for the detection of diabetic retinopathy from RCFIs, trained on
a large dataset of over 40,000 images, and achieved a high
sensitivity of 90% and specificity of 63.2% for detecting
diabetic retinopathy [29]. In 2020, Gargeya and Leng created a
retinal diabetic retinopathy detection deep learning model that
achieved 94% sensitivity after training on 120,000 pictures
[30]. In the rapidly evolving field of ophthalmic technology,
Grzybowsky et al. delved into the implications of Al. They
explored the pros and cons of Al in Ophthalmology, including
concerns about data quality and privacy. The authors stressed
the importance of clear regulations to ensure patient safety and
ethical Al application [20].

3. METHODS

3.1. Dataset

Training of the proposed model and existing CNN models
first began by obtaining a dataset of 4,217 RCFIs (1038
cataract, 1098 diabetic retinopathy, 1007 glaucoma, and 1074
control images) from the open-source database “eye diseases_
classification” https://www.kaggle.com/datasets/gunavenkat
doddi/eye-diseases-classification [31].

This dataset contains quality images. Since all the images
are the same color but different in shade, the images were
converted to Grayscale. This process reduces training time,
facilitates internal computation, and increases accuracy.

3.2. Methods

3.2.1. Baseline Methods

Each 512 x 512-pixel RGB image from the RCFI dataset
was rescaled to 224 x 224 pixels. These rescaled images were
batched with a batch size of 64, resulting in 66 total batches.
The batches were then distributed for training (70%),
validation (20%), and testing (10%) to create an ImageNet
dataset containing the RCFI images. Pixels from each RCFI
image were fed into the input layer for the training of all the
deep learning convolutional neural network (CNN) models.

During training, the model was fed labelled images
consisting of input images and corresponding class labels so
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that it could learn the optimal weights for all trainable layers.
The model adjusted its weights through backpropagation and
gradient descent, aiming to minimize the loss function and
improve accuracy on the training data.

Once training was complete, the model was used to make
predictions on new, unseen input images. The model took each
input image, processed it through the layers of the network, and
produced class probabilities as the output. The predicted class
was selected as the one with the highest probability. Thus, the
model produced a predicted class for each new input image fed
into it.

3.2.2. Transfer Learning Methods

Transfer learning models were used as a means of
comparison during the determination of our proposed model
performance. Transfer learning models VGG16, ResNet, and
DenseNet were selected, based on factors of increased relative
performance compared to other models and to leverage each
model’s large volume of pre-existing model gain through
extensive pre-training on expansive datasets. Our intention
during the selection of the transfer learning model was to
organize a competitive comparison between existing models’
and our model’s performance. To conduct a proper comparison
of performance between transfer learning models that were
created for routine use and our model, we first needed to align
the transfer learning models with our specifically defined task.
Fine-tuning of each transfer learning model, VGG16, ResNet,
and DenseNet, was hence achieved through addition of one
Flatten Layer, one Dense Output Layer, and several Custom
Layers (as outlined below). The addition of the custom layers
was permitted prior to performance evaluation of each of the
transfer learning models to elucidate higher-order details and
nuances in the performance of our created model.

VGG16 contained 16 Depth Layers that were generated
using ImageNet transfer learning weights. To fine-tune our
model for analysis of RCFIs, seven custom layers were added
to VGGI16: 1 Flatten, 2 Dense, 2 Dropout, 1 Batch
Normalization, 1 Dense Output. The total number of
parameters after VGG16 model preparation was 138,357,544.

ResNet contains 50 Depth Layers that were generated
using ImageNet transfer learning weights. To fine-tune our
model for analysis of RCFIs, seven custom layers were added
to ResNet: 1 Flatten, 1 Dropout, 1 Batch Normalization, and 1
Dense Output. The total number of parameters after DenseNet
model preparation was 25,642,714. DenseNet contained 121
Depth Layers that were generated using ImageNet transfer
learning weights. To fine-tune our model for analysis of
RCFIs, seven custom layers were added to DenseNet: 1
Flatten, 1 Dropout, 1 Batch Normalization, and 1 Dense
Output. The total number of parameters after DenseNet model
preparation was 8,068,506.

3.3. The Proposed Convolutional Neural Network

The proposed convolutional neural network model was
built upon the foundation of the pre-existing VGG16 transfer
learning model. Additional custom layers were added in the
following manner:

First, the output from the VGG16 base model was passed
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through a series of custom layers stacked on top. A Flatten
layer flattened the 3D tensor output from VGG16 into a 1D
tensor. This flattened tensor was fed into a fully connected
layer with 512 units and Rectified Linear Unit (ReLU)
activation function. Next, a Dropout layer with a 0.3 dropout
rate was applied, where 30% of the units were randomly set to
0 during training to prevent overfitting. Batch normalization
was then used to normalize the activations from the previous
layer across each batch to stabilize learning. After that, another
fully connected layer with 128 units and ReLU activation was
added. This was followed by another Dropout layer with a 0.3
dropout rate. For multi-class classification, a final fully
connected layer with 4 units and Softmax activation was added,
representing the number of classes. For binary classification,
the final layer had 2 units and Softmax activation. In both
cases, the Softmax activation function produced output
probabilities for each class. The output from the last dense
layer was the predicted probabilities for each class. The model
outputs a probability distribution over the classes for each input
image. Finally, the convolutional neural network model was
ensembled with the LeNetS model to complete the proposed
architecture.

4. RESULTS

4.1. Evaluation Metrics

Performance was determined using standard computational
metrics accuracy (Acc), precision (Prc), recall (Rcl) and F1-
score (F1) for each CNN model based on the correct
classification of shuffled RCFIs into ‘cataract’, ‘glaucoma’,
‘diabetic retinopathy’, or ‘control’ bins (Fig. 3) [30, 31].

Acc = (TPc + TNc )/ ( TPc +FPc+TNc+FNc)
Prc =TPc / (TPc+FPc)

Rcl = TPc / (TPc+FNc)

F1 = 2*(Prc*Rcl)/(Prc+Rcl)

[Classification] TPc: True Positive, TNc: True Negative,
FPc: False Positive, FNc: False Negative.

Classification true positive (TP,) and true negative (TN,)
scores were contingent on the model placing RCFIs into the
correct of three disease classes (cataract, glaucoma, diabetic
retinopathy) correctly identifying control. Hence, TP, events
were only counted when an RCFI from an eye with an ocular
disease was presented and classified under the correct ocular
disease. Given three disease classes, one TP, rate was
determined for each ocular disease. Similarly, TN, events were
counted when an RCFI from an eye with control features was
presented correct non-detection of all three ocular diseases was
achieved, thereby conferring correct identification of ‘control.’
Given that TN_ events only occurred after ruling out all ocular
diseases, only one TN, rate was calculated in each model’s
performance analysis.

Fig. (3) again is the matrix which shows the baseline
approach for the proposed model. The counting of
classification false positive (FP,) and false negative (FN,)
involved consideration of whether an error was absolute
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Fig. (3). Matrix showing the base approach for the proposed model.

(against normal control) or relative (against another disease).
Absolute FN_ events occurred when an RCFI from an eye with
any ocular disease was incorrectly classified as control due to
the failed detection of one and correct non-detection of two
ocular diseases. Analogously, relative FPc events occurred
when an RCFI from a control eye was incorrectly classified
into the bin for one ocular disease due to an invalid detection of
that disease but correct non-detection of the other two ocular
disease state classes. Thus, one absolute FNc and one absolute
FPc were calculated for each ocular disease. For each event
involving an RCFI from an eye with one ocular disease that
was incorrectly classified into the bin for another ocular
disease, both a relative FN, and a relative FP, event resulted
due to the failed and invalid detections, respectively. These six
relative errors represented every combination pair for three
ocular disease classes, each with two possible false positive
and two possible false negative relative errors. An analysis of
variance (ANOVA) was performed for CNN models’ accuracy,
precision, recall, Fl-score to determine whether significant
differences in model performance exist.

4.2. Sparse Categorical Cross Entropy Loss Function

Given the dataset multiclass, sparse categorical cross
entropy [30] loss function was deployed and defined where ¢, is
the truth label, and ; was the probability, which was the output
of SoftMax function for i class.

n

Legp = — Z tilog(p;), for nclasses

i=1

The cross-entropy loss function was used to predict the
output probability with the actual label, which penalizes the
model based on the deviation of models’ categorization of
disease state compared with RCFI dataset’s diagnosis label for
that image. In the sparse categorical cross-entropy loss
function, one-hot encoding of labels was not required, as it was
in traditional categorical cross entropy [refer-CCE]. The labels
were marked as integers (1,2,3). Data augmentation was
avoided in each algorithm for this study, as the data included
high-resolution fundus color images. The detection model was
trained on Google Collaboratory's default RAM runtime and
was implemented using Python.

To enhance the process of disease diagnosis in our model,
we used two loss functions. The Sparse Categorical Cross
Entropy loss function was utilized in our deep learning model's
initial stage. This function was extremely useful for
classification jobs where the classes are mutually exclusive. In
our example, the model was attempting to categorize the input
into one of four classes, one of which denotes normal eyes. The
difference between the true distribution and the anticipated
probability distribution was quantified using sparse categorical
cross-entropy, with an emphasis on the right class. Given that
this model worked well in situations with numerous class
labels and was more computationally efficient when dealing
with sparse labels, it was an advantageous option in this
situation.

4.3. Binary Cross Entropy Loss Function

Given the dataset multiclass, binary cross entropy [30] loss
function was deployed and defined where ¢, was the truth label
and p, was the probability, which was the output of SoftMax
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function for i, class. Binary cross-entropy loss function maps
were used to predict the output probability with the true label
and penalize in logarithmic function based on how far the
output from the actual label was. In sparse categorical cross-
entropy loss function, one-hot encoding of the labels is like in
traditional categorical cross entropy [refer-CCE]. Labels that
can be marked as integers (1,2,3) were not required. Data
augmentation was avoided in each algorithm for this study, as
the data included high-resolution fundus color images. The
detection model was trained on Google Collaboratory's default
RAM runtime and was implemented using Python. To
determine whether a significant difference in model diagnostic
potential exists, an analysis of variance (ANOVA) was
performed for CNN models’ sensitivity and specificity.

The model then used a series of binary classifications to
identify a specific disease state and distinguish it from healthy
eyes in the second stage of the procedure. The Binary Cross-
Entropy loss function was used for these jobs. Binary

Current Medical Imaging, 2024, Volume 20 7

classification tasks use the binary cross-entropy loss function,
sometimes referred to as log loss. The cross-entropy loss
between true labels and anticipated probability was calculated
using this loss function. In essence, it assessed how well a
classification model performs given that its output is a
probability value between 0 and 1. The loss is -log(p) when the
true label is 1.plus, -log(1-p) when the true label is 0, where p
is the predicted probability. Therefore, the loss grew as the
projected probability departed from the actual label. Given that
the difference was calculated between the model's predictions
and the actual data in situations when there are two class labels,
this loss function was a good option for binary classification
issues. The Binary Cross-Entropy function measures the
difference between the projected likelihood and the actual
label, offering a reliable technique to enhance the ability of our
model to identify the presence or absence of disease. The
model achieved high accuracy in this key binary decision-
making phase of the diagnostic by using this function.

Input Image
224x224x1

Custom Model Layers

LeNet-5 Layers

Combined Feature
Vector

l

Additional Custom

Layers

l

Qutput Layer

Flowchart-1 Architecture of the proposed model
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All CNN models converged to the 100th epoch, except for
the VGG-16 model, which only converged to the 47th epoch
before failure. Hence, the VGG-16 model was excluded from
all statistical comparisons. Overall, the proposed model served
as a better diagnostic screening test for preliminary diagnosis
of all ocular diseases using RCFIs when compared to existing
models after dedicated disease training [Sn/Sp] (cataract:
0.9953/0.9769, glaucoma: 0.9897/0.9374, diabetic retinopathy:
1.000/0.9098) (P-VALUE). The sensitivity and specificity for
existing models were: DenseNet (cataract: 0.96/0.96,
glaucoma: 0.96/0.95, diabetic retinopathy: 0.91/0.91), ResNet
(cataract: 0.9/0.85, glaucoma: 0.49/0.72, diabetic retinopathy:
0.31/0.51). In general, there were neither significant
differences in true positive or negative rates nor false positive
or negative rates between models.

4.4. Confusion Matrix

The following section describes the results obtained in
terms of Confusion Matrix, Accuracy vs Epoch Curves, Loss vs
Epoch Curves, and calculations of various parameters. Figures

Table 1. Calculation of parameters for the proposed model.

Singh et al.

describe the confusion matrix, which states the classification as
Cataract vs Non-Cataract, Glaucoma vs Non-Glaucoma,
Diabetic Retinopathy vs Non-Diabetic Retinopathy for the
proposed model, DenseNet Model and ResNet Model. Figs. (4
- 15) denote Accuracy vs Epoch, Loss vs Epoch Curves. Tables
1 - 6 show the calculation of various parameters for the
Proposed Model, DenseNet Model, and ResNet Model.

4.5. Proposed Model

4.5.1. Architecture

Flowchart 1 illustrates the outlined architecture, and how
an embedded neural network operates by taking an input image
and processing it through two separate streams: one comprising
the custom model layers and the other consisting of LeNet-5
layers. The outputs of these streams are then combined into a
single feature vector, which is further processed by additional
custom layers, culminating in the final output layer.

Fig. (7) represents the Accuracy vs Epoch and Loss vs
Epoch Curves for the proposed model.

Accuracy 0.980
Training 0.993
Validation 0.982
- CAT GL DR
Precision 0.940 0.890 0.980
Recall 0.960 0.860 0.910
F1 Score 0.950 0.870 0.940

TP 1013

47.96%

FP

25
1.18%

FN

5
0.24%

Fig. (4). Confusion matrix (cataract vs on cataract).

1069 TN

50.62%

Fig. (4) displays the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.

TP: 1013 cases were correctly classified as having cataracts.

FP: 25 cases were incorrectly classified as having cataracts when they did not.

TN: 1069 cases were correctly classified as not having cataracts.

FN: 5 cases were incorrectly classified as not having cataracts when they did.
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Table 2. Calculation of various parameters for densenet model.

Current Medical Imaging, 2024, Volume 20

Accuracy 0.790
Training 0.836
Validation 0.792
- CAT GL DR
Precision 0.850 0.740 0.90
Recall 0.890 0.710 0.740
F1 Score 0.870 0.720 0.810
Table 3. Calculation of various parameters for resnet model.
Accuracy 0.630
Training 0.663
Validation 0.635
- CAT GL DR
Precision 0.830 0.760 0.840
Recall 0.780 0.710 0.690
F1 Score 0.800 0.730 0.750
Table 4. Calculation of parameters for proposed model.
i TP TN
Ocular Condition TP + FN Sn TN + FP Sp
1013 1069
Cataract 1013+ 5 0.995 1069425 0.977
1063 944
Glaucoma 1063411 0.989 044463 0.937
N . 1074 999
Diabetic Retinopathy 1074+ 0 1.000 999 + 99 0.909

TP
944

45.36%

FN

0.53%

Fig. (5). Confusion matrix (glaucoma vs non-glaucoma).

FP
63

3.03%

1063 TN

51.08%

Illustrates the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.

TP: 944 cases were correctly classified as having glaucoma.

FP: 63 cases were incorrectly classified as having glaucoma when they did not.

TN: 1063 cases were correctly classified as not having glaucoma.

FN: 11 cases were incorrectly classified as not having glaucoma when they did.
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TP 983 98 FP

45.99% 4.56%

FN 0 1074 TN

0.00% 49.45%

Fig. (6). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).

Tllustrates displays the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 999 cases were correctly classified as having diabetic retinopathy.

FP: 99 cases were incorrectly classified as having diabetic retinopathy when they did not.

TN: 1074 cases were correctly classified as not having diabetic retinopathy.

FN: 0 cases were incorrectly classified as not having diabetic retinopathy when they did.
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Fig. (7). Accuracy vs Epoch and Loss vs Epoch Curves for the Proposed model.

1007
47.68%

FN

0.05%

Fig. (8). Confusion matrix (cataract vs on cataract).

P
31

1.47%

1073TN

50.80%

Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.

TP: 1007 cases were correctly classified as having cataracts.

FP: 31 cases were incorrectly classified as having cataracts when they did not.

TN: 1073 cases were correctly classified as not having cataracts.

FN: 1 case was incorrectly classified as not having cataracts when they did.

4.6. Loss Plot

The training loss starts high and rapidly decreases during
the initial epochs and slowly decreases over the rest of the
epochs. The validation loss also starts high but decreases at a
similar rate to the training loss. However, after the initial
decrease, it begins to oscillate and does not show a consistent
downward trend. This suggests that the model might be
overfitting to the training data.

4.7. Accuracy Plot

The training accuracy starts low but rapidly increases in
the initial epochs. Afterward, it continues to grow but at a
slower rate. The validation accuracy also starts lower and then
increases, but it starts to plateau and oscillates after the initial
rise. This plot again hints at potential overfitting, as the model's
performance on the training data continues to improve while its
performance on the validation data remains stable.
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Fig. (9). Confusion matrix (glaucoma vs non-glaucoma).
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Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.

TP: 1012 cases were correctly classified as having glaucoma.

FP: 21 cases were incorrectly classified as having glaucoma when they did not.
TN: 1012 cases were correctly classified as not having glaucoma.
FN: 36 cases were incorrectly classified as not having glaucoma when they did.
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Fig. (10). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).
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Shows the statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) Values.

TP: 1031 cases were correctly classified as having diabetic retinopathy.
FP: 27 cases were incorrectly classified as having diabetic retinopathy when they did not.
TN: 999 cases were correctly classified as not having diabetic retinopathy.

FN: 99 cases were incorrectly classified as not having diabetic retinopathy when they did.
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Fig. (11). Accuracy vs epoch and loss vs epoch curves for densenet.

The graph displays the training and validation loss and
accuracy for an Al model over 100 epochs. The loss graph
portrays a typical convergence pattern, with both the training
and validation loss decreasing sharply in the initial epochs,
followed by a gradual descent. The training loss decreases
more consistently than the validation loss, which fluctuates but
remains within a similar range after about 20 epochs,
suggesting good generalization without significant overfitting.
The accuracy graph exhibits an increase in both training and
validation accuracy over time, with training accuracy being
slightly higher throughout, indicating the model was learning
effectively and maintaining a consistent performance on
unseen data.

4.8. DenseNet Model
Fig. (11) represents accuracy vs epoch and loss vs epoch
curves for densenet model.

4.8.1. Loss

The training loss starts extremely high but quickly
decreases, while the validation loss initially decreases but then
fluctuates around a certain value without significant further
improvement. This process could indicate overfitting as the

training loss continues to decrease, but the validation loss does
not show the same trend.

4.8.2. Accuracy

The training accuracy displayed an upward trend, but the
validation accuracy seemed to plateau and fluctuate around a
certain value, again hinting toward overfitting.

The graph presents a more erratic pattern of training and
validation loss and accuracy. The loss for both training and
validation decreases initially but shows significant fluctuation
throughout the training process, which could indicate a model
struggling with convergence or being affected by a noisy
dataset. The accuracy graph indicates a high degree of
variability in both training and validation accuracy, with both
lines crossing frequently. This suggests the model might
benefit from further hyperparameter tuning, more data, or a
review of the data quality to improve stability and
performance.

4.9. ResNet Model

Fig. (15) represents accuracy vs epoch and loss vs epoch
curves for resnet model.
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Fig. (12). Confusion matrix (cataract vs on cataract).

The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 872 cases were correctly classified as having cataracts.

FP: 166 cases were incorrectly classified as having cataracts when they did not.

TN: 985 cases were correctly classified as not having cataracts.

FN: 89 cases were incorrectly classified as not having cataracts when they did.
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Fig. (13). Confusion matrix (glaucoma vs non-glaucoma).

The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 997 cases were correctly classified as having glaucoma.

FP: 21 cases were incorrectly classified as having glaucoma when they did not.

TN: 1007 cases were correctly classified as not having glaucoma.

FN: 56 cases were incorrectly classified as not having glaucoma when they did.

Singh et al.
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Fig. (14). Confusion matrix (diabetic retinopathy vs non-diabetic retinopathy).

The statistics of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values.
TP: 43 cases were correctly classified as having diabetic retinopathy.

FP: 1003 cases were incorrectly classified as having diabetic retinopathy when they did not.

TN: 1027 cases were correctly classified as not having diabetic retinopathy.

FN: 99 cases were incorrectly classified as not having diabetic retinopathy when they did.

4.9.1. Loss

Both training and validation loss are depicted with minor
decreases over the epochs. However, the scale of the loss
changes was quite narrow, suggesting that the model may have
plateaued and is not learning much more from the data. The
validation loss is volatile, with fluctuations that do not
converge to a significantly better value.

4.9.2. Accuracy

Training accuracy fluctuates quite a bit, which might be an
indicator of instability in the training process. The validation
accuracy also fluctuates and does not show a clear trend of
improvement over epochs. This lack of improvement and the

erratic pattern can be a sign of either a model struggling to
capture the patterns in the data or a noisy dataset.

The third graph illustrates a model that exhibits a gentle
downward trend in both training and validation loss, with the
validation loss showing more fluctuations. This could be a sign
of the model beginning to overfit, as the validation loss does
not decrease as steadily as the training loss. The accuracy
graph reflects considerable volatility, particularly with
validation accuracy, which does not show a clear upward trend.
This could imply that the model's capacity may not be
sufficient to capture the complexity of the data, or the model
may need better regularization techniques to enhance its
generalization abilities.
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Fig. 15 contd.....
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Fig. (15). Accuracy vs epoch and loss vs epoch curves for resnet model.

4.10. Overall Findings

* The proposed model demonstrated excellent training and
validation performance, with both metrics closely mirroring
each other. This suggested good generalization. The model is
well-optimized for the given task. The model had high
accuracy for this classification, given the high TP and TN
values and low FP and FN values. The percentages further
confirmed this point. The proposed model demonstrates
satisfactory performance for this classification with relatively
low FP and FN values. The proposed model appeared
particularly strong in identifying cases of diabetic retinopathy,
given the zero FN.

» The DenseNet Model appeared to have reached a plateau
in both loss and accuracy, suggesting convergence. The model
may benefit from regularization or hyperparameter tuning to
improve validation performance.

* The ResNet Model displayed signs of instability,
especially in the validation accuracy. This might indicate the
model was sensitive to the specific validation data or that the
model was not generalized enough. Techniques such as
dropout, regularization, or data augmentation might help.

4.11. Preliminary Clinical Diagnostic Test

The diagnostic potential was determined with standard
clinical diagnostic metrics sensitivity and specificity for each
CNN model for cataract, glaucoma, and diabetic retinopathy
using disease-specific ImageNet training cycles. For example,
during cataract training cycles, CNN models were presented
with shuffled RCFIs with either cataracts, glaucoma, diabetic
retinopathy, or control features. CNN diagnostic potential for
cataracts was determined for each CNN based on the rate of
RCFI assignment with the correct binary cataract score (1 =
cataract, 0 = Not cataract). Analogously, each CNN’s
diagnostic potential for glaucoma and diabetic retinopathy of
CNNs were firmly based on rates of RCFI assignments with
the correct binary glaucoma score (1 = glaucoma, 0 = Not
glaucoma) or the correct diabetic retinopathy (1= diabetic

60 g0 100

retinopathy, 0 = diabetic retinopathy) during each respective
and distinct disease-specific training cycle.

Sn = (TP)/ (TP +FN)

Sp (TN)/ (TN + FP)
Sn: Sensitivity. Sp: Specificity.

Diagnostic potentials were evaluated using standard binary
clinical testing, given that comorbid conditions frequently exist
within the medical field, despite the presentation of shuffled
RCFlIs containing 4 possible ocular disease states, true positive
(TP) and true negative (TN) scores were founded upon binary
determinations for each individual disease. A TP event was
totaled when the disease under training was correctly detected.
An FP event was counted when the disease was incorrectly
detected despite its absence. Regardless of whether other
disease features from ocular conditions were present, a TN
event was only calculated if the model correctly determined the
absence of the disease of interest. Finally, FN events were
reckoned when the disease of interest was presented and
recognized.

In addition, the overall performance of the proposed model
was increased across all metrics when compared to existing
CNN models. The proposed model achieved an increased
overall accuracy 98.87% (training accuracy: 0.993, validation
accuracy: 88.34%) as shown in Fig. (6) and Table 1 when
compared with ResNet as shown in Fig. (14) and Table 3
[overall: training, validation] (79%: 0.836, 0.792%) and
DenseNet as noted in Fig. (10) and Table 2 (0.63%: 0.663%,
0.635%) (P-VALUE). The proposed model detected cataracts,
glaucoma, and diabetic retinopathy with increased precision
(0.94, 0.89, 0.98) compared with DenseNet (0.85, 0.74, 0.90)
and ResNet (0.83, 0.76, 0.84) (P-VALUE) as shown in Fig.
(15). In addition, the proposed model demonstrated increased
recall for cataract, glaucoma, and diabetic retinopathy (0.96,
0.86, 0.91) compared with DenseNet (0.89, 0.71, 0.74) and
ResNet (0.78, 0.71, 0.69) (p<0.05), as well as a better F1 score
proposed model (0.95, 0.87, 0.94) compared with DenseNet
(0.87,0.72, 0.81) and ResNet (0.8, 0.73, 0.75) (P-VALUE).
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Table 5. Calculation of parameters for densenet model.
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i TP TN
Ocular Condition TP + FN Sn TN + FP Sp
1013 1069
Cataract 1013+ 5 0.995 1069425 0.977
1063 944
Glaucoma 1063411 0.989 044463 0.937
S . 1074 999
Diabetic Retinopathy 1074+ 0 1.000 999 + 99 0.909
Table 6. Calculation of parameters for ResNet model.
. TP TN
Ocular Condition TP + FN Sn TN + FP Sp
1013 1069
Cataract 1013+ 5 0.995 1069425 0.977
1063 944
Glaucoma 1063411 0.989 944163 0.937
S . 1074 999
Diabetic Retinopathy 1074 + 0 1.000 999 + 99 0.909

Abbreviations: = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.
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Fig. (16). Performance comparison of the models by analysis through ROC curve.
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4.12. Performance of Algorithm

Fig. (16) shows Receiver operating characteristic (ROC)
curves. ROC curves are commonly used to evaluate the
performance of binary classification models by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR)
at various thresholds.

4.12.1. Cataract

The three models (DenseNetl121, ResNet50, Proposed
Model) had identical performance for detecting cataracts. Their
ROC curves reach a TPR of almost 1.0 with an exceptionally
low FPR, indicating excellent performance.

4.12.2. Diabetic Retinopathy

The proposed model appeared to be the most performant,
reaching higher TPR values at lower FPRs compared to the
other two models. This suggests the proposed model was better
at detecting diabetic retinopathy with fewer false positives.

DenseNet121 and ResNet50 indicate similar performance
up to an FPR of around 0.2, after which DenseNet121 has a
slightly higher TPR.

4.12.3. Glaucoma

The proposed model again seemed superior, particularly in
the mid-range of FPR. It achieves a higher TPR at a lower FPR
compared to the other two models.

ResNet50 and DenseNet121 were closer in performance,
with ResNet50 having a slight advantage in the mid-range of
the FPR.

4.12.4. Overall Observations

The proposed model consistently performed better or
comparably to the other two models across all three conditions.
It often achieved higher TPRs at lower FPRs, suggesting better
diagnostic capability with fewer false positives.

ResNet50 and DenseNetl21 displayed competitive
performance, with one sometimes edging out the other
depending on the specific condition being diagnosed.

5. DISCUSSION

Al holds great promise as a future tool in medicine.
Already, ML systems have shown potential as a means for
medical professionals to augment the detection of rare, life-
threatening diseases, such as malignant cancers or ischemic
strokes, through analysis of radiographic imaging. In the
future, machine learning may take on more clear-cut roles
within medicine, such as large-volume biomedical image data
analysis to standardize disease screening, assist disease
classification, and distinguish diseases that can be hard to
differentiate. Clinically, great interest exists in the creation of
specialized deep learning systems that enable earlier diagnosis
and decrease treatment delay for progressive, irreversible
diseases. In this study, we demonstrated that deep learning
convolutional neural networks can be fitted with additional
convolutional layers to achieve increased performance

Singh et al.

compared to non-modified predecessors. In particular, the
authors sought to quantify the relative performance gained
while completing an especially demanding task; in this case:
classifying a shuffled dataset of CRFIs obtained from eyes with
multiple ocular diseases or control.

However, in designing this study, we also wanted to create
training conditions that simulated circumstances that become
relevant upon utilization of the model, specifically within the
clinical environment. In this effort, we appreciated that the
comparison of diagnostic tests was standardized and reported
in 2x2 tables with binary diagnostic test results versus either a
clinical result or gold-standard diagnostic test result. Yet,
regardless of how diagnostic tests were compared, patients
often presented with more than one related (comorbid) medical
condition at a time or coexisting diseases that nevertheless
impacted routine disease screenings. Thus, disease diagnoses
were not mutually exclusive, and, moreover, the presence of a
comorbid disease that was unrelated may nevertheless disrupt
and create inaccuracy within diagnostic screening for the
disease of interest and hence, indirectly hinder quality care. In
both examples, the medical principle of comorbid disease
highlights how patient medical complexity may complicate
appropriate computational analysis by deep learning systems.
For this reason, our study design aimed to maintain the use of
ImageNet’s dataset containing randomly shuffled RCFIs from
eyes with manifestations from multiple diseases, even
performing dedicated training for one disease at a time. Despite
the increased potential margin for matrix confusion, the same
modified deep learning model used in this study classified
three ocular diseases simultaneously, and achieved high
sensitivity and specificity when serving as a binary screening
test for preliminary diagnosis of individual diseases while
analyzing a complex RCFI dataset.

Fig. (17) denotes the framework of the proposed
innovative process. The technician uploads the fundus images
to the software. The software is accessed by the physician with
their own user credentials and the clinician can see the images.
The physician uploads the image to the software. The first step
in the software is to clean the patient information from the
images and then the images are labelled with a unique patient’s
identification number. The image is then checked along with
patients’ identification number according to HIPAA.
Furthermore, the image is then sent to the backend cloud model
for computation. The classification is generated in the form of
a PDF report, which classifies images as Cataract or Non-
Cataract, Diabetic Retinopathy or Non-Diabetic Retinopathy,
Glaucoma or Non-Glaucoma. The report is sent to the
physician and the comments of the physician are saved into the
software as patient notes.

In clinical settings, various handheld devices exist that will
assist physicians to capture the photographs of the front and
back of the eye. These recorded images will then be stored in a
HIPAA compliant cloud-based system. The proposed
framework can be utilized as a testing and validation dataset
for the proposed framework and the biofeedback loop stores
the physician’s diagnosis into the proposed framework. The
model will learn about the images, and the system will be more
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Fig. (17). Framework for classification of ophthalmic images.

robust and will be available to treat patients at remote
locations. The limitation of the system is computational
architectures, which may not be available when applied in
remote locations. The handheld devices may be able to address
these limitations and shall be economically available in order
to reduce medical costs and thus give treatment to the patients.

The physicians have validated the system. The system was
also presented at many conferences, which motivated the
authors creating a more robust framework, which was a cloud-
based system where the images were stored on a HIPAA
Compliant Cloud based system and the analytics was carried
out. The visual representation of the framework is shown in
Fig. (17).

CONCLUSION

Al systems cover a wide range of areas, including the
diagnosis of external eyelid lesions and the interpretation of
congenital and acquired retinal diseases. This study provided
an experimental setup on Type 2 Diabetes Mellitus (T2DM), a
chronic metabolic disease that leads to elevated blood sugar
levels and damage to organs and systems. The healthcare costs
associated with T2DM are estimated to be around USD 327
billion, with projections showing it will continue to rise as the
prevalence of T2DM increases. Artificial intelligence has the
potential to revolutionize disease detection and referral
processes in ophthalmology. By leveraging Al as a screening
tool, objective parameters can be utilized to identify patients
who require further evaluation for diabetic retinopathy and
glaucoma, leading to timely interventions and improved patient
outcomes. This study represents a significant contribution by
demonstrating the creation of a deep learning convolutional
neural network model capable of analyzing retinal color fundus
images and differentiating and class. This study leads to the
development of decision support systems for clinicians, which
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will assist them in the current settings as well as the
development of telehealth applications.

LIMITATIONS OF THE STUDY

The dataset that the authors have utilized was an
unstructured dataset, which was formatted and structured to be
utilized in a specific way. The data set needs more labelling
and classification.

FUTURE APPROACH

The model would be trained on multiple datasets provided
by previously curated and labelled images and the framework
would increase the possibility of diagnosing further retinal
disease. The framework will also include the software for the
proposed approach and direction to system development.
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