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Abstract—In this work, we use an unsupervised method for
generating binary class labels in a novel context to create class
labels for Medicare fraud detection. We examine how class
imbalance influences the quality of these new labels and how it
affects supervised classification. We use four different Medicare
Part D fraud detection datasets, with the largest containing
over 5 million instances. The other three datasets are sampled
from the original dataset. Using Random Under-Sampling (RUS),
we subsample from the majority class of the original data to
produce three datasets with varying levels of class imbalance. To
evaluate the performance of the newly created labels, we train a
supervised classifier and evaluate its classification performance
and compare it to an unsupervised anomaly detection method as a
baseline. Our empirical findings indicate that the generated class
labels are of high enough quality and enable effective supervised
classifier training for fraud detection. Additionally, supervised
classification with the new labels consistently outperforms the
baseline used for comparison across all test scenarios. Further-
more, we observe an inverse relationship between class imbalance
in the dataset and classifier performance, with AUPRC scores
improving as the training dataset becomes more balanced. This
work not only validates the efficacy of the synthesized class labels
in labeling Medicare fraud but also shows its robustness across
different degrees of class imbalance.

Index Terms—class labeling, unsupervised learning, class im-
balance, Medicare fraud, machine learning

I. INTRODUCTION

Fraud detection is a critical task across various real-world
scenarios such as credit card transactions, identity theft, and
Medicare fraud. It involves identifying fraudulent activities
amid a multitude of legitimate activities. This process repre-
sents a form of anomaly detection, which identifies events that
occur infrequently and bear similarities to the rest of the data.
Fraud detection datasets, the type of dataset used in this work,
often suffer from a lack of consistent and accurate labels.
Due to the nature of anomalies, these datasets are often class
imbalanced or highly class imbalanced. Put another way, the
labeled examples of one class are significantly outnumbered
by the other class.

Data labeling is a resource-intensive and error-prone task
that is a critical component to the effective use of machine
learning models [1]. Labeling datasets can be cost prohibitive
and can often have noise or inaccurately labeled instances.
These low-quality labels can drastically reduce a machine
learning models’ performance [2]. Furthermore, a large pro-
portion of newly generated datasets are unlabeled by default
[3]. This presents both an opportunity and a challenge to the

machine learning community. While large datasets typically
produce better performing models than smaller datasets [4], the
absence of labels undermines this performance boost. This is
especially evident in privacy-sensitive or expert-dependent do-
mains like medical imaging or fraud detection. Consequently,
unsupervised learning, a paradigm that does not use class
labels, is appealing. However, unsupervised models typically
do not perform as well as their supervised counterparts when
labels are present [5], highlighting a gap in machine learning
research of data labeling.

Class imbalance presents a significant challenge in machine
learning, particularly in binary classification problems like the
one we focus on in this paper, where the minority class is
vastly outnumbered by the majority class. Though we focus
on the binary problem, all the concepts can be extended to
the multi-class problem via class decomposition [6]. A dataset
is typically considered imbalanced if the ratio between the
classes exceeds 1:4 [7] and is considered to have high class
imbalance when there is an imbalance ratio of 1:1000 or [8],
[9]. Such extreme imbalances between the class representation
in the datasets add complexity and requires tailored strategies
for effective model training and classification. Fraud detection
datasets are often plagued by class imbalance since fraudulent
examples, by nature, are few and far between and are often
the class of interest [10]-[12]. Our research aims to improve
upon the existing research of methodologies and strategies
designed to address the challenges of both class imbalance
and unlabeled data in the context of fraud detection.

In this paper, we evaluate an unsupervised method for
generating binary class labels for Medicare fraud detection
and examine how varying levels of class imbalance affect the
labeling method. Importantly, our work focuses on the scenario
where fraudulent data is unlabeled. In such scenarios, to iden-
tify fraudulent data, class labels need to be manually collected,
which can be costly and error prone, or unsupervised anomaly
detection methods can be used. We employ an automated
class labeling technique to label fraudulent Medicare data,
train a supervised classifier on the new labels, and measure its
classification performance. We compare its results to an unsu-
pervised anomaly detection method as a baseline comparison.
Our method uses an artificial neural network to learn from
the dataset’s features. Based on an error that is calculated for
each instance, detailed in Section III, every instance is labeled
as either fraudulent or non-fraudulent. Our empirical findings
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show that our labeling technique significantly enhances data
quality for supervised learning. Models built with the data
labeled with our technique outperform an unsupervised model
used as a baseline for comparison. Additionally, our results
show that the classification performance increases as the class
imbalance ratio decreases when training on data labeled with
our novel technique.

The remainder of this paper is organized as follows. Section
II provides a review of related works and highlights gaps in
the existing research where our research fits in. In Section III,
we discuss the label synthesis methodology and the method in
which we measure the performance of the labeling technique.
Section IV presents and discusses the experimental results.
Section V concludes the work and provides areas for potential
future work.

II. RELATED WORK

After reviewing the relevant existing literature, it becomes
evident that our automated class labeling technique for highly
imbalanced big data represents novel research for labeling
big fraud detection datasets. Given the unique nature of our
research, to the best of our knowledge, there are no existing
methodologies or comparable studies currently available.

Baek et. al [13] aim to create a method for detecting
network anomalies in a supervised manner without requir-
ing extensive analysis of network traffic by human experts.
Their strategy involves three main steps. Initially they use
a clustering technique to assign labels to the training data.
Next, they train supervised models with these estimated labels.
Finally, they employ these models to differentiate between
anomalous and non-anomalous network behaviors. The first
step used K-means clustering to group the data. Then the
labeling of the clusters is based on two criteria. First a cluster
is anomalous if it is small or sparse. The second criterion,
which aimed to improve the performance, was based on their
observations of the data after extensive investigation. Many
network attacks exhibit similar patterns, which form dense
clusters. This insight allowed them to improve the performance
of the supervised models trained on the labels but required
extensive expert human involvement. This is in contrast with
our approach in that theirs relies heavily on expertise and a
thorough investigation of the datasets with prior knowledge.
This makes it unable to find new anomalous patterns that may
manifest in the future without additional human involvement.
Our approach is more automated and would not be susceptible
to such a scenario.

Moslehi et al. [14] also use K-means clustering to refine
a label assignment. They acknowledge the impracticality of
labeling the entire dataset and instead propose assigning labels
to a representative subset based on the generated clusters.
Their method involves matching the cluster statistics from
their dataset with those from a secondary, previously labeled
dataset, effectively using it as a reference to assign labels.
This approach significantly differs from ours, as it relies on
existing labels from an external source rather than synthesizing
new class labels without any provided class labels as a starting
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basis. Further, their dataset only contains 385 samples, making
it significantly smaller than all the datasets we use in our paper,
by a factor of at least 48.

Magbool et. al [15] introduce an automated method for
labeling clusters by leveraging keyword identifiers in their
dataset. They use two ranking schemes, frequency and in-
verse frequency of keywords. This prioritizes the keywords
for labeling, underscoring the importance of automation in
enhancing cluster interpretability. In [16], Rauber presents a
labeling technique of self-organizing maps applied to small
text datasets. Their cluster labels were derived from the words
in the dataset features. Our approach differs from theirs in
that our dataset lacks such keywords for labeling. Instead, we
use an autoencoder that only processes numeric features to
calculate an error statistic. This error statistic is then used to
generate binary class labels for each instance.

These related works differ from our approach in four
important ways. First, the reviewed clustering methods do
not address highly imbalanced datasets, and the studies often
used balanced data, such as in [13]. Second, these methods
are applied to a significantly smaller dataset than ours, with
examples like the 385-sample dataset used in [14]. Third, our
method does not derive class labels from dataset features,
which contrasts with the keyword-based labeling methods
seen in [15] and [16]. Fourth, and most importantly, our
method is automated, eliminating the need for the extensive
human involvement, making it suitable for big data and highly
imbalance datasets, in contrast to [13]-[15].

III. METHODOLOGY

Our methodology presents a new approach for synthesiz-
ing binary class labels for fraud detection data, specifically
designed for datasets that are characterized by having high
class imbalance [17]. In this paper, we test and evaluate its
efficacy on fraud detection datasets with varying levels of class
imbalance. The labeling methodology uses an autoencoder
[18] to learn from the features in the datasets. Once the
autoencoder is fully trained, a reconstruction error is produced,
specifically the mean squared error, for all instances in a
provided dataset. The instances are then sorted, by error, from
greatest to least. The underlying premise is that instances with
higher reconstruction errors are more likely to belong to the
minority class, whereas those with lower reconstruction errors
tend to be part of the majority class. Once sorted, the instances
are arranged in such a way that the likelihood of belonging to
the minority class decreases from the top to the bottom.

An error threshold needs to be established such that the
instances with errors above this threshold are classified as
positive, and those below as negative. In the context of our
datasets, positive instances belong to the minority or fraudulent
class, while negative instances belong to the majority or non-
fraudulent class. Initially, we set this threshold based on do-
main knowledge and an understanding of the data’s population
characteristics. We label a subset of instances just below the
threshold as positive. This has been shown to enhance model
generalization and performance in highly imbalanced datasets
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[17]. Moreover, instances around the threshold are regarded
as potentially noisy. An alternative to labeling these uncertain
instances as positive would be to exclude them entirely from
the data set, potentially losing valuable information. Therefore,
to preserve as much information as possible, we choose to
label these uncertain instances as positive. For a given dataset,
the total number of instances labeled as positive is denoted
as P. We test our methodology across various P values for
multiple datasets with various levels of class imbalance.

We examine a wide range of P values that represent fewer
and greater numbers of positive-labeled instances than the
dataset population. Where applicable, we limit the P value so
that we do not create a dataset where the number of fraudulent-
labeled instances is greater than the number of non-fraudulent.
Increasing P beyond this point would start to resemble how
one-class classifiers are trained [19]. One-class classifiers are
typically trained on only the majority class and are out of scope
of this paper. Our findings indicate that labeling more instances
as positive, even those with a low probability of being in the
positive class, or increasing P, can boost supervised learning
classification performance.

A. Experimental Datasets

We utilize Medicare Part D data spanning from 2013
through 2019. Part D data contains Medicare claims data
describing a medical provider’s prescription drug activity, a
given year and drug name [20]. Annually, the Centers for
Medicare and Medicaid Services (CMS) releases one year’s
worth of data [21]. However, there is a delay between the
end of the year and when CMS releases data. The Part D
dataset contains approximately 172 million records, making
it one of the more extensive Medicare datasets released by
CMS. The features include provider specific details, such as
their National Provider Identifier (NPI), medical specialty,
gender, geographical information, and claims-level data like
the number of beneficiaries per drug, cost, and how many
prescriptions are written per NPI.

Initially, the raw Part D data is cleaned and processed. This
involves merging annual data, normalizing columns, filling
in missing values, and removing duplicates. Missing values
are handled using CMS-provided dictionary files, as well as
specific rules for imputing or excluding data based on its
nature. For example, the column named Tot Bene, or total
beneficiaries for a given drug per NPI, has missing rows
if the number is less than 10. A median value of 5 is
inputed for these missing values. Subsequent data aggregation
steps reduced the number of instances in the dataset to
approximately 6 million rows with 31 features. This process
involved consolidating data over NPI, year, and provider type,
and calculating summary statistics for numerical attributes.
This reduction in size reduces the computational and storage
requirements. It also helps with the challenges of its highly
class imbalanced nature [22], [23].

The preprocessed Part D data was then enriched with an-
other CMS dataset, the Medicare Part D summary by Provider,
also spanning from 2013 through 2019. This enrichment step
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added 51 new features by combining the data on NPI and year.
All of the categorical features were one-hot encoded. This
resulted in a final dataset with 328 features. This enriched
and preprocessed Medicare Part D data forms the basis for
our experiments and is the largest of the Part D datasets
used, called Part D Full. When we train the autoencoder on
this dataset, and any of the randomly undersampled datasets
described below, we scale all the numeric features before
autoencoder training. Once we label each instance, the features
are reverted to the original non-scaled version, to avoid any
potential data leakage due to scaling the entire dataset at once.

TABLE 1
DATASET CLASS CHARACTERISTICS

o Minority ~ Majority Total Minority
Dataset Count Count Count Imbalance
Part D Full 3,700 5,340,406 5,344,106 0.0692%
Part D RUS-1 3,700 366,300 370,000 1%
Part D RUS-5 3,700 70,300 74,000 5%
Part D RUS-20 3,700 14,800 18,500 20%

To effectively examine the effects of class imbalance on
the synthesized class labels, we generated three additional,
smaller, Part D datasets with varying levels of class imbalance.
The dataset characteristics, including class counts, for all
datasets used are shown in Table I. We used random under-
sampling (RUS) to randomly undersample from the majority
class of the Part D Full dataset. RUS is a widely used
and effective machine learning technique to reduce the class
imbalance in a given dataset. We apply RUS to generate three
additional datasets with a class imbalance of 1%, 5%, and 20%
minority, namely, RUS-1, RUS-5, and RUS-20, respectively.
Additionally, we run RUS ten times for each of those dataset
sizes. The performance results shown in Table II and III
are the average across the 10 different datasets. We repeat
RUS multiple times so we can get high quality, representative
under-sampled results. This approach prevents the possibility
of obtaining a dataset split that may not be representative of
the overall distribution.

Autoencoders typically perform better with scaled features
largely due to their architectural design and the gradient
descent optimization used for training [18]. When features are
scaled, they contribute equally to the error gradient, enhancing
the model’s convergent speed instability during training. In
contrast, unscaled features with widely varying minimum and
maximum values can disrupt training. The learning algorithm
might focus on minimizing errors in features with larger
scales at the expense of those with smaller scales leading
to sub-optimal performance. Therefore, we scale the numeric
features in our datasets while generating new class labels to
optimize the training of the auto coder. However, to prevent
any potential data leakage in subsequent steps between the
training and test data splits, we reverse the scaling after all new
labels were generated and before proceeding to use supervised
classification to measure labeling performance.
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B. Measuring Performance

Our work focuses on the unlabeled scenario where it is
only possible to use unsupervised learning. To use supervised
classification with a given unlabeled dataset, class labels must
be manually collected or otherwise created. Our methodology
generates class labels, using only the dataset features, for
subsequent use in supervised learning. To assess the impact of
class imbalance on the synthesized class labels, we generate
new class labels for each dataset across various levels of P. P
is the total number of positive-labeled instances. Although as
P varies, the number of positive instances changes, the total
number of instances does not change. Only the distribution
between the two classes changes. Throughout this labeling
process no instance is removed. We then train a supervised
machine learning classifier using these newly created labels
and evaluate its classification performance. The classification
performance is measured using the ground truth labels in the
original data set. It is important to note that we use the gen-
erated class labels with supervised learners solely to evaluate
the performance of the new labels and the label generation
method. We exclude supervised learning with original labels
from our study, as our focus is on the unlabeled scenario,
making the use of the original labeled data for supervised
learning beyond the scope of our work.

We use a Decision Tree (DT) as our supervised classifier
when evaluating the generated labels. DTs are a popular and
well-known supervised learning method that can be utilized for
both classification and regression tasks. They are structured
hierarchically, comprising of a root node, branches, internal
nodes, and leaf nodes. The internal nodes serve as decision
points based on data attributes. Leaf nodes are the DT’s final
output that can output either a numeric value for regression
tasks, or a class label prediction for classification tasks. The
DT classifier trains using a divide-and-conquer approach,
where the algorithm uses a greedy search to identify optimal
split points in the training dataset. When training on a binary
labeled dataset, this splitting process is done recursively until
all instances are categorized in either of the two classes. The
depth or size of the trained DT model has an impact on its
performance. Often, the leaves of the tree are pure nodes,
meaning that all data within a node is in a single class.

We train and evaluate the DT using five-fold cross valida-
tion. The classifier is trained on data labeled with the technique
described above and uses the original class labels in the test
folds. We perform one round of five-fold cross validation
on each dataset and repeat this for ten rounds. The random
undersampling is included in each round. Le., for each of the
ten rounds, each randomly undersampled dataset consists of a
different randomly selected set of instances, while maintaining
the same imbalance ratio. The performance results shown in
the tables are the average value across the ten iterations of
five-fold cross validation for each of the full Part D, RUS-1,
RUS-5, and RUS-20 datasets.

The classification performance of the DT, when trained
on the new labels, serves as an effective indicator of the
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labels’ overall quality and utility, reflecting their potential real-
world application. Datasets are often completely unlabeled.
Thus, our approach would be employed to generate labels
in an unsupervised fashion for use in supervised learning.
The performance metrics of the DTs trained our experimental
datasets show expected results on new, unseen fraud detection
datasets of varying class imbalances. In real-world situations
where datasets lack labels, one can either use an unsupervised
approach or manually collect class labels, which has its signif-
icant drawbacks, or use an automated labeling approach such
as the one used in this paper. Thus, it is essential to benchmark
our labeling technique against a baseline unsupervised model.
By outperforming this unsupervised baseline, we demonstrate
the practicality and superiority of our method.

We employ the area under the precision-recall curve
(AUPRC) as our primary classification performance metric.
The AUPRC values are calculated based on the true positive
(TP), false positive (FP), false negative (FN), and true negative
(TN) counts from a standard confusion matrix. This metric
effectively captures the balance between precision and recall.
Th;cp); are defined as: Precision = 7p+7p and Recall =
7prrn - AUPRC was selected as our key metric because it is
an optimal metric when evaluating classification performance
in the presence of class imbalance [24], [25].

C. Baseline Comparison

We train the DT on the class labels synthesized by our
method. This evaluates both the effectiveness and quality of
the labels. In the unlabeled scenario, it is possible to use an
unsupervised anomaly detection method to directly use the
unlabeled data. Therefore, a performance comparison between
the classification results obtained from our synthesized labels
and those from an unsupervised anomaly detection approach
is essential. To accurately demonstrate the advantage to our
labeling technique, it must outperform this baseline. For this
purpose, we utilize the Isolation Forest (IF) method, initially
introduced by Liu et al. in [26], as the baseline for comparison.

IF is a popular unsupervised method for anomaly detec-
tion. This tree-based algorithm works by isolating anomalies
from the dataset through recursively partitioning the data into
smaller subsets. The core idea behind IF, as described in [26],
is that anomalies are “few and different”, making them more
likely to be isolated earlier in the tree building process than
normal, non-anomalous instances. Anomalies are identified by
the IF algorithm when an instance has consistently shorter
paths, across multiple trees in the forest. We train the IF
algorithm using five-fold cross validation on each of the four
datasets. We repeat this ten times for each dataset, and the
performance metrics shown in Table II are the average across
the five folds and ten repetitions. Similar to how DT is used,
the original class labels are only used in the test folds to
calculate classification performance. If the DT trained on
synthesized labels yields higher AUPRC scores than IF, trained
only on features, we can conclude our labeling method is
better than using IF and is able to produce robust classifier
training. Our results show that in the unsupervised scenario,
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when class labels are not available, when it is possible to use
IF with no labels or the binary classifier with synthetic labels,
our methodology outperforms.

D. Implementation Details

Using the implementations in Scikit-learn [27], version
1.3.0, we define and train DT, as well as [F. We use the library
defaults for DT. According to the original design [26], there
are only two available parameters for IF: the number of trees in
the forest and the contamination rate. We set both parameters
to the library defaults. However, during experimentation, we
observed that the contamination rate did not have any effect
on threshold-based performance metrics, such as AUPRC.

For the autoencoder [18], which is used for the labeling
process, we use Keras [28], version 2.8.0. The autoencoder
contains an encoder section that is connected to a decoder
section. The encoder section first has a 100-neuron layer
fully connected to the second layer containing 50 neurons.
Both layers use the ReLu activation function. These are then
connected to the decoder section, which first has 50 neurons
fully connected to 100 neurons. These layers use the Tanh
activation function. The final output layer of the autoencoder
uses ReLu. We train using a learning rate of 0.0001, a mini-
batch size of 256, and MSE as the loss function. We use the
Adam optimizer function and set the implementation to use a
20% validation set size for a maximum of 250 epochs with
EarlyStopping set to 25 epochs.

IV. EXPERIMENTAL RESULTS

We apply the unsupervised labeling method to four datasets,
Part D Full, Part D RUS-1, Part D RUS-5, and Part D
RUS-20. We train a DT on them and generate an AUPRC
score using the original class labels, only to calculate the
performance metric. We train IF on the same features used by
the DT, and only use the class labels for performance metric
calculations. Additionally, we vary P, the number of positive-
labeled instances. For the full dataset, RUS-1, and RUS-5 we
vary P from 1,000 through 15,000 in increments of 1,000. As
described in previous sections, we limit the number of positive-
labeled instances for the more balanced dataset, RUS-20. We
vary P from 1,000 to 8,000 in increments of 500. The number
of positives does not affect the IF results since it does not train
using the synthesized labels.

TABLE 11
BASELINE IF RESULTS

Dataset AUPRC
Part D Full 0.00220
Part D RUS-1 0.02331
Part D RUS-5 0.09169
Part D RUS-20  0.24614

For the Part D Full dataset, IF achieved a baseline AUPRC
of 0.00220. This is drastically lower than DT for all levels of
P. The lowest AUPRC score of 0.02908, on the full dataset,
occurs when there are 1,000 labeled instances, as can be
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seen in Table IIl. This is a factor of roughly 13. For all
the experiments completed with the full Part D datasets, the
synthesized labels produce a DT that is more performant.
Further, as P increases, the AUPRC score for DT increases as
well. It reaches a maximum value of 0.05518 when training
on 14,000 positive labeled instances. This shows that for all
levels of P on the full Part D dataset, the DT trained on
the synthesized labels outperforms the baseline IF. A similar
pattern can be seen when applying the methodology to the
RUS-1 dataset. RUS-1 starts with a class imbalance of 1% as
opposed to 0.0692% of the full Part D dataset, as can be seen in
Table I. The AUPRC score for the Decision Tree (DT) exceeds
that of the Isolation Forest (IF) across all values of P, reaching
0.22464 with 8,000 positive instances compared to IF’s score
of 0.02331. Although the highest performance typically occurs
when P is in the middle of its range, the trend of increasing
AUPRC scores with larger values of P is less pronounced when
using the entire dataset. The AUPRC fluctuates as P increases.
However, at all P values, DT outperforms IF.

TABLE III
DT AUPRC PART D RESULTS

P Part D Full RUS-1  RUS-5 | P RUS-20
1000 0.02908  0.17756  0.35693 | 1000  0.49003
2000 0.02927 021253 0.33945 | 1500  0.49801
3000 0.03535  0.21268  0.33984 | 2000  0.44806
4000 0.03358  0.21166  0.28898 | 2500  0.45728
5000 0.03629  0.18541  0.30183 | 3000  0.42995
6000 0.03500  0.19101  0.29194 | 3500  0.42710
7000 0.04391  0.17844  0.28226 | 4000  0.42960
8000 0.04686  0.22464  0.31228 | 4500  0.45307
9000 0.04142 020159  0.29056 | 5000  0.41837
10000 0.04442 020581  0.28365 | 5500  0.40985
11000 0.05060 020412  0.29115 | 6000  0.41410
12000 0.05062 021676 030118 | 6500  0.43164
13000 0.05445 020915 030005 | 7000  0.41863
14000 0.05518  0.19346 030562 | 7500  0.44780
15000 0.05452 020328  0.30536 | 8000  0.44047

The results of RUS-5 and RUS-1, which have 5% and
1% minority respectively, are more similar to each other
than they are to the full datasets results. Specifically, the
AUPRC value fluctuates as P increases, though in this case,
the highest AUPRC score occurs when P is 1,000. Like the
previous datasets, however, the AUPRC score for every P
value outperforms that of IF. The last dataset examined, RUS-
20, has a 20% class imbalance, and the results are more similar
to RUS-5 than the others. In this case we increase P by a
smaller amount since the stopping point for P is lower than
the others due to it being a more balanced dataset with fewer
instances. With this level of imbalance, we observe that the
highest AUPRC of 0.49801 occurs early on when increasing
P, as can be seen in Table III. Again, with this imbalance ratio,
the AUPRC score for DT is higher than IF for all values of
P.

DT outperforms IF when measuring AUPRC for all values
of P and for all levels of class imbalance as shown when
using the full dataset, RUS-1, RUS-5, and RUS-20. This

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.



shows that the synthesized class labels are of high enough
quality to produce a supervised classifier that outperforms
the baseline unsupervised model. We also observe an inverse
relationship between the class imbalance and the resulting
AUPRC classification performance, i.e., the AUPRC score
for DT increases as the class imbalance decreases. With
each dataset used, the AUPRC score generally increases as
we decrease the imbalance with RUS-1, RUS-5, then RUS-
20. This pattern is also evident with the IF results, but we
conclude that IF underperforms our method at all levels of
class imbalance.

V. CONCLUSION

In this paper, we assess an unsupervised technique for
generating binary class labels for Medicare fraud detection
and explore the impact of different levels of class imbalance
on classification performance of a supervised classifier trained
on the new labels. We evaluate using four different Medicare
Part D fraud detection datasets. The largest dataset contains
over 5 million instances, and the other three datasets are
randomly undersampled versions of that original dataset. We
produce three smaller datasets with varying levels of class
imbalance using RUS. To evaluate the labels, we generate
class labels on each of these datasets and train a supervised
classifier using the new labels and compare it to a baseline
unsupervised model that is trained on the features alone.
Our empirical results show that the generated class labels
produce a trained classifier that outperforms the unsupervised
IF model in every test case. We also show that there is an
inverse relationship between the classification performance
of a model using our labels and the class imbalance of the
underlying dataset. As the dataset becomes more balanced,
the AUPRC scores increase. This work both evaluates and
validates the performance and usability of the synthesized class
labels across various levels of class imbalance in the context
of Medicare fraud detection. Future work includes evaluating
the method with other supervised classifiers and datasets from
other domains.
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