
Impact of Class Imbalance on Unsupervised Label

Generation for Medicare Fraud Detection

Robert K.L. Kennedy and Taghi M. Khoshgoftaar

Florida Atlantic University

Boca Raton, Florida 33431

rkennedy@fau.edu, khoshgof@fau.edu

Abstract—In this work, we use an unsupervised method for
generating binary class labels in a novel context to create class
labels for Medicare fraud detection. We examine how class
imbalance influences the quality of these new labels and how it
affects supervised classification. We use four different Medicare
Part D fraud detection datasets, with the largest containing
over 5 million instances. The other three datasets are sampled
from the original dataset. Using Random Under-Sampling (RUS),
we subsample from the majority class of the original data to
produce three datasets with varying levels of class imbalance. To
evaluate the performance of the newly created labels, we train a
supervised classifier and evaluate its classification performance
and compare it to an unsupervised anomaly detection method as a
baseline. Our empirical findings indicate that the generated class
labels are of high enough quality and enable effective supervised
classifier training for fraud detection. Additionally, supervised
classification with the new labels consistently outperforms the
baseline used for comparison across all test scenarios. Further-
more, we observe an inverse relationship between class imbalance
in the dataset and classifier performance, with AUPRC scores
improving as the training dataset becomes more balanced. This
work not only validates the efficacy of the synthesized class labels
in labeling Medicare fraud but also shows its robustness across
different degrees of class imbalance.

Index Terms—class labeling, unsupervised learning, class im-
balance, Medicare fraud, machine learning

I. INTRODUCTION

Fraud detection is a critical task across various real-world

scenarios such as credit card transactions, identity theft, and

Medicare fraud. It involves identifying fraudulent activities

amid a multitude of legitimate activities. This process repre-

sents a form of anomaly detection, which identifies events that

occur infrequently and bear similarities to the rest of the data.

Fraud detection datasets, the type of dataset used in this work,

often suffer from a lack of consistent and accurate labels.

Due to the nature of anomalies, these datasets are often class

imbalanced or highly class imbalanced. Put another way, the

labeled examples of one class are significantly outnumbered

by the other class.

Data labeling is a resource-intensive and error-prone task

that is a critical component to the effective use of machine

learning models [1]. Labeling datasets can be cost prohibitive

and can often have noise or inaccurately labeled instances.

These low-quality labels can drastically reduce a machine

learning models’ performance [2]. Furthermore, a large pro-

portion of newly generated datasets are unlabeled by default

[3]. This presents both an opportunity and a challenge to the

machine learning community. While large datasets typically

produce better performing models than smaller datasets [4], the

absence of labels undermines this performance boost. This is

especially evident in privacy-sensitive or expert-dependent do-

mains like medical imaging or fraud detection. Consequently,

unsupervised learning, a paradigm that does not use class

labels, is appealing. However, unsupervised models typically

do not perform as well as their supervised counterparts when

labels are present [5], highlighting a gap in machine learning

research of data labeling.

Class imbalance presents a significant challenge in machine

learning, particularly in binary classification problems like the

one we focus on in this paper, where the minority class is

vastly outnumbered by the majority class. Though we focus

on the binary problem, all the concepts can be extended to

the multi-class problem via class decomposition [6]. A dataset

is typically considered imbalanced if the ratio between the

classes exceeds 1:4 [7] and is considered to have high class

imbalance when there is an imbalance ratio of 1:1000 or [8],

[9]. Such extreme imbalances between the class representation

in the datasets add complexity and requires tailored strategies

for effective model training and classification. Fraud detection

datasets are often plagued by class imbalance since fraudulent

examples, by nature, are few and far between and are often

the class of interest [10]–[12]. Our research aims to improve

upon the existing research of methodologies and strategies

designed to address the challenges of both class imbalance

and unlabeled data in the context of fraud detection.

In this paper, we evaluate an unsupervised method for

generating binary class labels for Medicare fraud detection

and examine how varying levels of class imbalance affect the

labeling method. Importantly, our work focuses on the scenario

where fraudulent data is unlabeled. In such scenarios, to iden-

tify fraudulent data, class labels need to be manually collected,

which can be costly and error prone, or unsupervised anomaly

detection methods can be used. We employ an automated

class labeling technique to label fraudulent Medicare data,

train a supervised classifier on the new labels, and measure its

classification performance. We compare its results to an unsu-

pervised anomaly detection method as a baseline comparison.

Our method uses an artificial neural network to learn from

the dataset’s features. Based on an error that is calculated for

each instance, detailed in Section III, every instance is labeled

as either fraudulent or non-fraudulent. Our empirical findings

216

2024 IEEE International Conference on Information Reuse and Integration for Data Science (IRI)

DOI 10.1109/IRI62200.2024.00053
979-8-3503-5118-7/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

show that our labeling technique significantly enhances data

quality for supervised learning. Models built with the data

labeled with our technique outperform an unsupervised model

used as a baseline for comparison. Additionally, our results

show that the classification performance increases as the class

imbalance ratio decreases when training on data labeled with

our novel technique.

The remainder of this paper is organized as follows. Section

II provides a review of related works and highlights gaps in

the existing research where our research fits in. In Section III,

we discuss the label synthesis methodology and the method in

which we measure the performance of the labeling technique.

Section IV presents and discusses the experimental results.

Section V concludes the work and provides areas for potential

future work.

II. RELATED WORK

After reviewing the relevant existing literature, it becomes

evident that our automated class labeling technique for highly

imbalanced big data represents novel research for labeling

big fraud detection datasets. Given the unique nature of our

research, to the best of our knowledge, there are no existing

methodologies or comparable studies currently available.

Baek et. al [13] aim to create a method for detecting

network anomalies in a supervised manner without requir-

ing extensive analysis of network traffic by human experts.

Their strategy involves three main steps. Initially they use

a clustering technique to assign labels to the training data.

Next, they train supervised models with these estimated labels.

Finally, they employ these models to differentiate between

anomalous and non-anomalous network behaviors. The first

step used K-means clustering to group the data. Then the

labeling of the clusters is based on two criteria. First a cluster

is anomalous if it is small or sparse. The second criterion,

which aimed to improve the performance, was based on their

observations of the data after extensive investigation. Many

network attacks exhibit similar patterns, which form dense

clusters. This insight allowed them to improve the performance

of the supervised models trained on the labels but required

extensive expert human involvement. This is in contrast with

our approach in that theirs relies heavily on expertise and a

thorough investigation of the datasets with prior knowledge.

This makes it unable to find new anomalous patterns that may

manifest in the future without additional human involvement.

Our approach is more automated and would not be susceptible

to such a scenario.

Moslehi et al. [14] also use K-means clustering to refine

a label assignment. They acknowledge the impracticality of

labeling the entire dataset and instead propose assigning labels

to a representative subset based on the generated clusters.

Their method involves matching the cluster statistics from

their dataset with those from a secondary, previously labeled

dataset, effectively using it as a reference to assign labels.

This approach significantly differs from ours, as it relies on

existing labels from an external source rather than synthesizing

new class labels without any provided class labels as a starting

basis. Further, their dataset only contains 385 samples, making

it significantly smaller than all the datasets we use in our paper,

by a factor of at least 48.

Maqbool et. al [15] introduce an automated method for

labeling clusters by leveraging keyword identifiers in their

dataset. They use two ranking schemes, frequency and in-

verse frequency of keywords. This prioritizes the keywords

for labeling, underscoring the importance of automation in

enhancing cluster interpretability. In [16], Rauber presents a

labeling technique of self-organizing maps applied to small

text datasets. Their cluster labels were derived from the words

in the dataset features. Our approach differs from theirs in

that our dataset lacks such keywords for labeling. Instead, we

use an autoencoder that only processes numeric features to

calculate an error statistic. This error statistic is then used to

generate binary class labels for each instance.

These related works differ from our approach in four

important ways. First, the reviewed clustering methods do

not address highly imbalanced datasets, and the studies often

used balanced data, such as in [13]. Second, these methods

are applied to a significantly smaller dataset than ours, with

examples like the 385-sample dataset used in [14]. Third, our

method does not derive class labels from dataset features,

which contrasts with the keyword-based labeling methods

seen in [15] and [16]. Fourth, and most importantly, our

method is automated, eliminating the need for the extensive

human involvement, making it suitable for big data and highly

imbalance datasets, in contrast to [13]–[15].

III. METHODOLOGY

Our methodology presents a new approach for synthesiz-

ing binary class labels for fraud detection data, specifically

designed for datasets that are characterized by having high

class imbalance [17]. In this paper, we test and evaluate its

efficacy on fraud detection datasets with varying levels of class

imbalance. The labeling methodology uses an autoencoder

[18] to learn from the features in the datasets. Once the

autoencoder is fully trained, a reconstruction error is produced,

specifically the mean squared error, for all instances in a

provided dataset. The instances are then sorted, by error, from

greatest to least. The underlying premise is that instances with

higher reconstruction errors are more likely to belong to the

minority class, whereas those with lower reconstruction errors

tend to be part of the majority class. Once sorted, the instances

are arranged in such a way that the likelihood of belonging to

the minority class decreases from the top to the bottom.

An error threshold needs to be established such that the

instances with errors above this threshold are classified as

positive, and those below as negative. In the context of our

datasets, positive instances belong to the minority or fraudulent

class, while negative instances belong to the majority or non-

fraudulent class. Initially, we set this threshold based on do-

main knowledge and an understanding of the data’s population

characteristics. We label a subset of instances just below the

threshold as positive. This has been shown to enhance model

generalization and performance in highly imbalanced datasets

217

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

[17]. Moreover, instances around the threshold are regarded

as potentially noisy. An alternative to labeling these uncertain

instances as positive would be to exclude them entirely from

the data set, potentially losing valuable information. Therefore,

to preserve as much information as possible, we choose to

label these uncertain instances as positive. For a given dataset,

the total number of instances labeled as positive is denoted

as P. We test our methodology across various P values for

multiple datasets with various levels of class imbalance.

We examine a wide range of P values that represent fewer

and greater numbers of positive-labeled instances than the

dataset population. Where applicable, we limit the P value so

that we do not create a dataset where the number of fraudulent-

labeled instances is greater than the number of non-fraudulent.

Increasing P beyond this point would start to resemble how

one-class classifiers are trained [19]. One-class classifiers are

typically trained on only the majority class and are out of scope

of this paper. Our findings indicate that labeling more instances

as positive, even those with a low probability of being in the

positive class, or increasing P, can boost supervised learning

classification performance.

A. Experimental Datasets

We utilize Medicare Part D data spanning from 2013

through 2019. Part D data contains Medicare claims data

describing a medical provider’s prescription drug activity, a

given year and drug name [20]. Annually, the Centers for

Medicare and Medicaid Services (CMS) releases one year’s

worth of data [21]. However, there is a delay between the

end of the year and when CMS releases data. The Part D

dataset contains approximately 172 million records, making

it one of the more extensive Medicare datasets released by

CMS. The features include provider specific details, such as

their National Provider Identifier (NPI), medical specialty,

gender, geographical information, and claims-level data like

the number of beneficiaries per drug, cost, and how many

prescriptions are written per NPI.

Initially, the raw Part D data is cleaned and processed. This

involves merging annual data, normalizing columns, filling

in missing values, and removing duplicates. Missing values

are handled using CMS-provided dictionary files, as well as

specific rules for imputing or excluding data based on its

nature. For example, the column named Tot Bene, or total

beneficiaries for a given drug per NPI, has missing rows

if the number is less than 10. A median value of 5 is

inputed for these missing values. Subsequent data aggregation

steps reduced the number of instances in the dataset to

approximately 6 million rows with 31 features. This process

involved consolidating data over NPI, year, and provider type,

and calculating summary statistics for numerical attributes.

This reduction in size reduces the computational and storage

requirements. It also helps with the challenges of its highly

class imbalanced nature [22], [23].

The preprocessed Part D data was then enriched with an-

other CMS dataset, the Medicare Part D summary by Provider,

also spanning from 2013 through 2019. This enrichment step

added 51 new features by combining the data on NPI and year.

All of the categorical features were one-hot encoded. This

resulted in a final dataset with 328 features. This enriched

and preprocessed Medicare Part D data forms the basis for

our experiments and is the largest of the Part D datasets

used, called Part D Full. When we train the autoencoder on

this dataset, and any of the randomly undersampled datasets

described below, we scale all the numeric features before

autoencoder training. Once we label each instance, the features

are reverted to the original non-scaled version, to avoid any

potential data leakage due to scaling the entire dataset at once.

TABLE I
DATASET CLASS CHARACTERISTICS

Dataset
Minority
Count

Majority
Count

Total
Count

Minority
Imbalance

Part D Full 3,700 5,340,406 5,344,106 0.0692%
Part D RUS-1 3,700 366,300 370,000 1%
Part D RUS-5 3,700 70,300 74,000 5%
Part D RUS-20 3,700 14,800 18,500 20%

To effectively examine the effects of class imbalance on

the synthesized class labels, we generated three additional,

smaller, Part D datasets with varying levels of class imbalance.

The dataset characteristics, including class counts, for all

datasets used are shown in Table I. We used random under-

sampling (RUS) to randomly undersample from the majority

class of the Part D Full dataset. RUS is a widely used

and effective machine learning technique to reduce the class

imbalance in a given dataset. We apply RUS to generate three

additional datasets with a class imbalance of 1%, 5%, and 20%

minority, namely, RUS-1, RUS-5, and RUS-20, respectively.

Additionally, we run RUS ten times for each of those dataset

sizes. The performance results shown in Table II and III

are the average across the 10 different datasets. We repeat

RUS multiple times so we can get high quality, representative

under-sampled results. This approach prevents the possibility

of obtaining a dataset split that may not be representative of

the overall distribution.

Autoencoders typically perform better with scaled features

largely due to their architectural design and the gradient

descent optimization used for training [18]. When features are

scaled, they contribute equally to the error gradient, enhancing

the model’s convergent speed instability during training. In

contrast, unscaled features with widely varying minimum and

maximum values can disrupt training. The learning algorithm

might focus on minimizing errors in features with larger

scales at the expense of those with smaller scales leading

to sub-optimal performance. Therefore, we scale the numeric

features in our datasets while generating new class labels to

optimize the training of the auto coder. However, to prevent

any potential data leakage in subsequent steps between the

training and test data splits, we reverse the scaling after all new

labels were generated and before proceeding to use supervised

classification to measure labeling performance.

218

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

B. Measuring Performance

Our work focuses on the unlabeled scenario where it is

only possible to use unsupervised learning. To use supervised

classification with a given unlabeled dataset, class labels must

be manually collected or otherwise created. Our methodology

generates class labels, using only the dataset features, for

subsequent use in supervised learning. To assess the impact of

class imbalance on the synthesized class labels, we generate

new class labels for each dataset across various levels of P. P

is the total number of positive-labeled instances. Although as

P varies, the number of positive instances changes, the total

number of instances does not change. Only the distribution

between the two classes changes. Throughout this labeling

process no instance is removed. We then train a supervised

machine learning classifier using these newly created labels

and evaluate its classification performance. The classification

performance is measured using the ground truth labels in the

original data set. It is important to note that we use the gen-

erated class labels with supervised learners solely to evaluate

the performance of the new labels and the label generation

method. We exclude supervised learning with original labels

from our study, as our focus is on the unlabeled scenario,

making the use of the original labeled data for supervised

learning beyond the scope of our work.

We use a Decision Tree (DT) as our supervised classifier

when evaluating the generated labels. DTs are a popular and

well-known supervised learning method that can be utilized for

both classification and regression tasks. They are structured

hierarchically, comprising of a root node, branches, internal

nodes, and leaf nodes. The internal nodes serve as decision

points based on data attributes. Leaf nodes are the DT’s final

output that can output either a numeric value for regression

tasks, or a class label prediction for classification tasks. The

DT classifier trains using a divide-and-conquer approach,

where the algorithm uses a greedy search to identify optimal

split points in the training dataset. When training on a binary

labeled dataset, this splitting process is done recursively until

all instances are categorized in either of the two classes. The

depth or size of the trained DT model has an impact on its

performance. Often, the leaves of the tree are pure nodes,

meaning that all data within a node is in a single class.

We train and evaluate the DT using five-fold cross valida-

tion. The classifier is trained on data labeled with the technique

described above and uses the original class labels in the test

folds. We perform one round of five-fold cross validation

on each dataset and repeat this for ten rounds. The random

undersampling is included in each round. I.e., for each of the

ten rounds, each randomly undersampled dataset consists of a

different randomly selected set of instances, while maintaining

the same imbalance ratio. The performance results shown in

the tables are the average value across the ten iterations of

five-fold cross validation for each of the full Part D, RUS-1,

RUS-5, and RUS-20 datasets.

The classification performance of the DT, when trained

on the new labels, serves as an effective indicator of the

labels’ overall quality and utility, reflecting their potential real-

world application. Datasets are often completely unlabeled.

Thus, our approach would be employed to generate labels

in an unsupervised fashion for use in supervised learning.

The performance metrics of the DTs trained our experimental

datasets show expected results on new, unseen fraud detection

datasets of varying class imbalances. In real-world situations

where datasets lack labels, one can either use an unsupervised

approach or manually collect class labels, which has its signif-

icant drawbacks, or use an automated labeling approach such

as the one used in this paper. Thus, it is essential to benchmark

our labeling technique against a baseline unsupervised model.

By outperforming this unsupervised baseline, we demonstrate

the practicality and superiority of our method.

We employ the area under the precision-recall curve

(AUPRC) as our primary classification performance metric.

The AUPRC values are calculated based on the true positive

(TP), false positive (FP), false negative (FN), and true negative

(TN) counts from a standard confusion matrix. This metric

effectively captures the balance between precision and recall.

They are defined as: Precision =
TP

TP+FP
and Recall =

TP

TP+FN
. AUPRC was selected as our key metric because it is

an optimal metric when evaluating classification performance

in the presence of class imbalance [24], [25].

C. Baseline Comparison

We train the DT on the class labels synthesized by our

method. This evaluates both the effectiveness and quality of

the labels. In the unlabeled scenario, it is possible to use an

unsupervised anomaly detection method to directly use the

unlabeled data. Therefore, a performance comparison between

the classification results obtained from our synthesized labels

and those from an unsupervised anomaly detection approach

is essential. To accurately demonstrate the advantage to our

labeling technique, it must outperform this baseline. For this

purpose, we utilize the Isolation Forest (IF) method, initially

introduced by Liu et al. in [26], as the baseline for comparison.

IF is a popular unsupervised method for anomaly detec-

tion. This tree-based algorithm works by isolating anomalies

from the dataset through recursively partitioning the data into

smaller subsets. The core idea behind IF, as described in [26],

is that anomalies are “few and different”, making them more

likely to be isolated earlier in the tree building process than

normal, non-anomalous instances. Anomalies are identified by

the IF algorithm when an instance has consistently shorter

paths, across multiple trees in the forest. We train the IF

algorithm using five-fold cross validation on each of the four

datasets. We repeat this ten times for each dataset, and the

performance metrics shown in Table II are the average across

the five folds and ten repetitions. Similar to how DT is used,

the original class labels are only used in the test folds to

calculate classification performance. If the DT trained on

synthesized labels yields higher AUPRC scores than IF, trained

only on features, we can conclude our labeling method is

better than using IF and is able to produce robust classifier

training. Our results show that in the unsupervised scenario,

219

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

when class labels are not available, when it is possible to use

IF with no labels or the binary classifier with synthetic labels,

our methodology outperforms.

D. Implementation Details

Using the implementations in Scikit-learn [27], version

1.3.0, we define and train DT, as well as IF. We use the library

defaults for DT. According to the original design [26], there

are only two available parameters for IF: the number of trees in

the forest and the contamination rate. We set both parameters

to the library defaults. However, during experimentation, we

observed that the contamination rate did not have any effect

on threshold-based performance metrics, such as AUPRC.

For the autoencoder [18], which is used for the labeling

process, we use Keras [28], version 2.8.0. The autoencoder

contains an encoder section that is connected to a decoder

section. The encoder section first has a 100-neuron layer

fully connected to the second layer containing 50 neurons.

Both layers use the ReLu activation function. These are then

connected to the decoder section, which first has 50 neurons

fully connected to 100 neurons. These layers use the Tanh

activation function. The final output layer of the autoencoder

uses ReLu. We train using a learning rate of 0.0001, a mini-

batch size of 256, and MSE as the loss function. We use the

Adam optimizer function and set the implementation to use a

20% validation set size for a maximum of 250 epochs with

EarlyStopping set to 25 epochs.

IV. EXPERIMENTAL RESULTS

We apply the unsupervised labeling method to four datasets,

Part D Full, Part D RUS-1, Part D RUS-5, and Part D

RUS-20. We train a DT on them and generate an AUPRC

score using the original class labels, only to calculate the

performance metric. We train IF on the same features used by

the DT, and only use the class labels for performance metric

calculations. Additionally, we vary P, the number of positive-

labeled instances. For the full dataset, RUS-1, and RUS-5 we

vary P from 1,000 through 15,000 in increments of 1,000. As

described in previous sections, we limit the number of positive-

labeled instances for the more balanced dataset, RUS-20. We

vary P from 1,000 to 8,000 in increments of 500. The number

of positives does not affect the IF results since it does not train

using the synthesized labels.

TABLE II
BASELINE IF RESULTS

Dataset AUPRC

Part D Full 0.00220
Part D RUS-1 0.02331
Part D RUS-5 0.09169
Part D RUS-20 0.24614

For the Part D Full dataset, IF achieved a baseline AUPRC

of 0.00220. This is drastically lower than DT for all levels of

P. The lowest AUPRC score of 0.02908, on the full dataset,

occurs when there are 1,000 labeled instances, as can be

seen in Table III. This is a factor of roughly 13. For all

the experiments completed with the full Part D datasets, the

synthesized labels produce a DT that is more performant.

Further, as P increases, the AUPRC score for DT increases as

well. It reaches a maximum value of 0.05518 when training

on 14,000 positive labeled instances. This shows that for all

levels of P on the full Part D dataset, the DT trained on

the synthesized labels outperforms the baseline IF. A similar

pattern can be seen when applying the methodology to the

RUS-1 dataset. RUS-1 starts with a class imbalance of 1% as

opposed to 0.0692% of the full Part D dataset, as can be seen in

Table I. The AUPRC score for the Decision Tree (DT) exceeds

that of the Isolation Forest (IF) across all values of P, reaching

0.22464 with 8,000 positive instances compared to IF’s score

of 0.02331. Although the highest performance typically occurs

when P is in the middle of its range, the trend of increasing

AUPRC scores with larger values of P is less pronounced when

using the entire dataset. The AUPRC fluctuates as P increases.

However, at all P values, DT outperforms IF.

TABLE III
DT AUPRC PART D RESULTS

P Part D Full RUS-1 RUS-5 P RUS-20

1000 0.02908 0.17756 0.35693 1000 0.49003
2000 0.02927 0.21253 0.33945 1500 0.49801

3000 0.03535 0.21268 0.33984 2000 0.44806
4000 0.03358 0.21166 0.28898 2500 0.45728
5000 0.03629 0.18541 0.30183 3000 0.42995
6000 0.03500 0.19101 0.29194 3500 0.42710
7000 0.04391 0.17844 0.28226 4000 0.42960
8000 0.04686 0.22464 0.31228 4500 0.45307
9000 0.04142 0.20159 0.29056 5000 0.41837
10000 0.04442 0.20581 0.28365 5500 0.40985
11000 0.05060 0.20412 0.29115 6000 0.41410
12000 0.05062 0.21676 0.30118 6500 0.43164
13000 0.05445 0.20915 0.30005 7000 0.41863
14000 0.05518 0.19346 0.30562 7500 0.44780
15000 0.05452 0.20328 0.30536 8000 0.44047

The results of RUS-5 and RUS-1, which have 5% and

1% minority respectively, are more similar to each other

than they are to the full datasets results. Specifically, the

AUPRC value fluctuates as P increases, though in this case,

the highest AUPRC score occurs when P is 1,000. Like the

previous datasets, however, the AUPRC score for every P

value outperforms that of IF. The last dataset examined, RUS-

20, has a 20% class imbalance, and the results are more similar

to RUS-5 than the others. In this case we increase P by a

smaller amount since the stopping point for P is lower than

the others due to it being a more balanced dataset with fewer

instances. With this level of imbalance, we observe that the

highest AUPRC of 0.49801 occurs early on when increasing

P, as can be seen in Table III. Again, with this imbalance ratio,

the AUPRC score for DT is higher than IF for all values of

P.

DT outperforms IF when measuring AUPRC for all values

of P and for all levels of class imbalance as shown when

using the full dataset, RUS-1, RUS-5, and RUS-20. This

220

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

shows that the synthesized class labels are of high enough

quality to produce a supervised classifier that outperforms

the baseline unsupervised model. We also observe an inverse

relationship between the class imbalance and the resulting

AUPRC classification performance, i.e., the AUPRC score

for DT increases as the class imbalance decreases. With

each dataset used, the AUPRC score generally increases as

we decrease the imbalance with RUS-1, RUS-5, then RUS-

20. This pattern is also evident with the IF results, but we

conclude that IF underperforms our method at all levels of

class imbalance.

V. CONCLUSION

In this paper, we assess an unsupervised technique for

generating binary class labels for Medicare fraud detection

and explore the impact of different levels of class imbalance

on classification performance of a supervised classifier trained

on the new labels. We evaluate using four different Medicare

Part D fraud detection datasets. The largest dataset contains

over 5 million instances, and the other three datasets are

randomly undersampled versions of that original dataset. We

produce three smaller datasets with varying levels of class

imbalance using RUS. To evaluate the labels, we generate

class labels on each of these datasets and train a supervised

classifier using the new labels and compare it to a baseline

unsupervised model that is trained on the features alone.

Our empirical results show that the generated class labels

produce a trained classifier that outperforms the unsupervised

IF model in every test case. We also show that there is an

inverse relationship between the classification performance

of a model using our labels and the class imbalance of the

underlying dataset. As the dataset becomes more balanced,

the AUPRC scores increase. This work both evaluates and

validates the performance and usability of the synthesized class

labels across various levels of class imbalance in the context

of Medicare fraud detection. Future work includes evaluating

the method with other supervised classifiers and datasets from

other domains.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[2] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[3] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE intelligent systems, vol. 24, no. 2, pp. 8–12, 2009.

[4] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 843–852.

[5] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning.
PMLR, 2016, pp. 478–487.

[6] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and po-
tential solutions,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 42, no. 4, pp. 1119–1130, 2012.

[7] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp.
221–232, 2016.

[8] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[9] T. M. Khoshgoftaar, C. Seiffert, J. Van Hulse, A. Napolitano, and
A. Folleco, “Learning with limited minority class data,” in Machine

Learning and Applications, 2007. ICMLA 2007. Sixth International

Conference on. IEEE, 2007, pp. 348–353.
[10] W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen, “Effective detection of

sophisticated online banking fraud on extremely imbalanced data,” World

Wide Web, vol. 16, no. 4, pp. 449–475, 2013.
[11] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the

detection of oil spills in satellite radar images,” Machine learning,
vol. 30, no. 2, pp. 195–215, 1998.

[12] D. A. Cieslak, N. V. Chawla, and A. Striegel, “Combating imbalance in
network intrusion datasets.” in GrC, 2006, pp. 732–737.

[13] S. Baek, D. Kwon, S. C. Suh, H. Kim, I. Kim, and J. Kim, “Clustering-
based label estimation for network anomaly detection,” Digital Commu-

nications and Networks, vol. 7, no. 1, pp. 37–44, 2021.
[14] F. Moslehi, A. Haeri, and M. R. Gholamian, “A novel selective clus-

tering framework for appropriate labeling of clusters based on k-means
algorithm,” Scientia Iranica, vol. 27, no. 5, pp. 2621–2634, 2020.

[15] O. Maqbool and H. A. Babri, “Automated software clustering: An insight
using cluster labels,” Journal of Systems and Software, vol. 79, no. 11,
pp. 1632–1648, 2006.

[16] A. Rauber, “Labelsom: On the labeling of self-organizing maps,” in
IJCNN’99. International Joint Conference on Neural Networks. Pro-

ceedings (Cat. No. 99CH36339), vol. 5. IEEE, 1999, pp. 3527–3532.
[17] R. K. Kennedy, F. Villanustre, T. M. Khoshgoftaar, and Z. Salek-

shahrezaee, “Synthesizing class labels for highly imbalanced credit card
fraud detection data,” Journal of Big Data, vol. 11, no. 1, pp. 1–22,
2024.

[18] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.
2011, pp. 1–19, 2011.

[19] P. Oliveri, “Class-modelling in food analytical chemistry: development,
sampling, optimisation and validation issues–a tutorial,” Analytica chim-

ica acta, vol. 982, pp. 9–19, 2017.
[20] U.S. Government, U.S. Centers for Medicare & Medicaid

Services. What’s medicare. Https://www.medicare.gov/sign-up-
change-plans/decide-how-to-get-medicare/whats-medicare/what-is-
medicare.html.

[21] Centers For Medicare & Medicaid Services. (2019)
Medicare provider utilization and payment data. [Online].
Available: https://www.cms.gov/research-statistics-data-and-systems/
statistics-trends-and-reports/medicare-provider-charge-data

[22] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey
on addressing high-class imbalance in big data,” Journal of Big Data,
vol. 5, no. 1, p. 42, 2018.

[23] R. A. Bauder and T. M. Khoshgoftaar, “The effects of varying class
distribution on learner behavior for medicare fraud detection with
imbalanced big data,” Health information science and systems, vol. 6,
pp. 1–14, 2018.

[24] J. L. Leevy, T. M. Khoshgoftaar, and J. Hancock, “Evaluating perfor-
mance metrics for credit card fraud classification,” in 2022 IEEE 34th

International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, 2022, pp. 1336–1341.

[25] J. T. Hancock, T. M. Khoshgoftaar, and J. M. Johnson, “Evaluating
classifier performance with highly imbalanced big data,” Journal of Big

Data, vol. 10, no. 1, p. 42, 2023.
[26] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth

ieee international conference on data mining. IEEE, 2008, pp. 413–422.
[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[28] F. Chollet et al., “Keras,” https://keras.io, 2015.

221

Authorized licensed use limited to: Florida Atlantic University. Downloaded on February 13,2025 at 23:41:19 UTC from IEEE Xplore. Restrictions apply.

