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Abstract—Reliable performance metrics are necessary prereq-
uisites to building large-scale end-to-end integrated workflows
for collaborative scientific research, particularly within context
of use-inspired decision making platforms with many concurrent
users and when computing real-time and urgent results using
large data. This work is a building block for the National
Data Platform, which leverages multiple use-cases including the
WIFIRE Data and Model Commons for wildfire behavior model-
ing and the EarthScope Consortium for collaborative geophysical
research. This paper presents an artificial intelligence and ma-
chine learning (AI/ML) approach to performance assessment and
optimization of scientific workflows. An associated early AI/ML
framework spanning performance data collection, prediction and
optimization is applied to wildfire science applications within
the WIFIRE BurnPro3D (BP3D) platform for proactive fire
management and mitigation.

Index Terms—Cyberinfrastructure, Workflows, Performance
Analysis, Artificial Intelligence, Machine Learning

I. INTRODUCTION

Scientific application workflows have become a key tool

in natural disaster mitigation and response. Real-time sensor

and satellite data now provide invaluable resources for urgent

science analytics to be conducted with remarkable speed

and precision. Workflows and larger cyberinfrastructures (CIs)

powered by such data can deliver critical knowledge about im-

minent natural hazards such as wildfires [1], earthquakes [2],

and volcanic eruptions [3].

However, the vast influx of raw and pre-processed data from

geo-distributed sources presents challenges to the design of

scalable cyberinfrastructures for data to knowledge workflows,

thus heightening the need for developing a computing contin-

uum of integrated cloud-to-edge resources [4]. A computing

continuum especially enables novel implementations of urgent

application workflow with particular attention to efficient data

processing, and reliable but timely data to knowledge transfer

to support urgent decision-making [5].

∗
Equal contribution

Earlier works presented the WIFIRE cyberinfrastructure of

integrated end-to-end workflows for wildfire behavior model-

ing [6], as well as a use case of the computing continuum

to support data-driven workflows for air quality prediction to

manage wildfire impacts [7]. The WIFIRE Commons itself

is one such use-case for the National Data Platform project,

which will leverage the computing continuum to democratize

scientific data access and analysis through a national cyberin-

frastructure [8]. Fig 1 outlines an early performance pipeline

for the National Data Platform (NDP).

Fig. 1

Our work particularly addresses the issue of performance

optimization for the WIFIRE-powered BurnPro3D (BP3D)

platform [9], [10]. BP3D is a decision support platform

to inform and optimize prescribed burn planning for wild-

fire management. The platform works in tandem with other

WIFIRE frameworks, namely QUIC-Fire fire and atmospheric

models and FastFuels 3D fuel structure models, in order to
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identify environmental conditions and ignition patterns that

are optimal for prescribed burns.

BP3D is a user-facing tool for geographically distributed

land managers and fire planners, and is applied in a variety

of computing environments with different capabilities. In this

paper, we present preliminary steps towards a performance

prediction framework that will be used by BP3D users to

assess the necessary resource provisions to run BP3D given

environmental and fuel data inputs. We present a performance

framework for integrating data processing and AI/ML tech-

niques in order to predict resource consumption during BP3D

runs, and thereby improve the scalability and reliability of

underlying BP3D data workflows. We implement a data pro-

cessing architecture to collect and prepare performance data

for AI/ML analysis, and demonstrate examples of predictive

modeling techniques for performance evaluation and provision

of our AI-driven data workflows. This is part of a larger

work to optimize sub-systems for integrated end-to-end data

cyberinfrastructures, which is critical to enabling efficient data

processing and modeling across the computing continuum.

The rest of the paper is structured as follows: Section II

discusses related works in the existing scientific literature,

Section III describes a use case application of our work-

flow architecture, Section IV describes our methodological

approach and design, Section V demonstrates early results of

our framework, and Section VI summarizes conclusions and

future endeavors of this work.

II. RELATED WORKS

Large-scale data cyberinfrastructures are next generation

platforms for collaborative research workflow and data shar-

ing. Beckman et al. [11] highlights the need for performance

optimization across the computing continuum. Current case

studies for scalable CIs include the Virtual Data Collaboratory

for interdisciplinary data and science sharing presented by

Parashar et al. [8], and the EarthScope [3] framework for open

access, real-time geophysical data, modeling, and educational

services. Our work also draws from contributions in distributed

and multimodal data architectures such as the Quantum Data

Hub presented by Purawat et al. [12] and the AWESOME

polystore using open-knowledge networks (OKNs) presented

by Dasgupta & Gupta [13].

Nguyen et al. [14] presented methods for integrating ma-

chine learning techniques in scientific workflow systems to

evaluate accuracy and scalability. As described in Parashar et

al. [8], the GeoSciFramework (commonly known as Earth-

Scope) is one such case study for scalable architectures of

scientific workflows and integrative machine learning envi-

ronments that operate with continuously streaming geodetic

and seismic data. However, an existing key problem area

in developing scalable architectures for integrated machine

learning and scientific workflows is developing knowledge

management techniques to assimilate and prepare data from

sources for AI/ML analysis. This concept is also referred

to as the “AI-readiness” of data. AI-readiness is especially

important for urgent computing applications such as natural

hazard modeling and prediction-making. Baru et al. [15] are

currently addressing the challenge of finding and matching AI-

ready data and models in an integrated platform, while also fol-

lowing guidelines for FAIR [16] for data provenance. Holding

scientific work to FAIR data management principles (where

FAIR stands for Findability, Accessibility, Interoperability,

and Reusability) is a key step to ensuring the responsible

deployment of AI models and other data services.

By building upon existing work in integrated AI/ML and

scientific workflow architectures as well, this paper will further

previous research towards global, integrated cyberinfrastruc-

tures that enable equitable data-driven technology sharing.

III. WORKFLOW USE CASE

The use case application described in this section was

created to predict total resource consumption of BurnPro3D

simulations for prescribed burns and wildfire mitigation [9].

An execution of BP3D takes a single set of environmental

input data and runs an ensemble of simulations over multiple

Kubernetes servers. We created an integrated ML/AI workflow

that retrieves the input parameter values given to a BP3D run

and resource consumption data that is generated throughout

the run and stored on Nautilus servers. The workflow then

takes a linear regression approach to predicting total CPU and

memory usage of a BP3D run.

For the purposes of this paper, the chosen machine learning

method (linear regression) is rather arbitrary, as our intentions

at this stage of research are to demonstrate a functional data-

driven pipeline for AI/ML performance analysis, as opposed

to choosing the most accurate or robust modeling approach for

the task. So, we used a basic linear regression implementation

with default model parameter values made accessible using

the popular Python package Scikit-Learn. In future extensions

of this work, we plan to conduct more extensive sensitivity

analyses and parameter estimation techniques in order to im-

plement modeling techniques that better fit the given data. The

results of this particular use case are discussed in Section V.

IV. APPROACH

In this section, we describe our methodology for retrieving

resource consumption data and integrating AI/ML-informed

decision-making to analyze overall performance of the Burn-

Pro3D architecture for prescribed burn modeling. We describe

two primary objectives in developing our AI/ML solution:

1) data preparation for AI-readiness (Section IV-A), and 2)

integration of predictive ML/AI modeling methods into the

scientific workflow architecture of BP3D (Section IV-B).

A. AI-Ready Data Preparation

We first discuss the steps that were taken towards reaching

our AI-readiness objective. Data assimilation and preparation

requirements will vary depending on the form of ML/AI

analysis being applied. The use case we describe in this paper

demonstrates results obtained through linear regression. So, in

this section, we discuss the steps taken to achieve data that is

AI-ready in the specific context of linear regression modeling.
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TABLE I: BurnPro3D Inputs/Outputs

Feature Name Description
surface_moisture surface fuel moisture
wind_moisture fuel moisture of surface winds
wind_direction direction of surface winds
wind_speed speed of surface winds
sim_time estimated minimum runtime (seconds)
timestep elapsed seconds between simulation steps

run_max_mem_rss_bytes maximum RSS bytes allowed per run
area calculated regional surface area

runtime time for whole run simulation (seconds)

TABLE II: Performance Outputs

Feature Name Description
pod unique ID of a Kubernetes pod
node unique ID of a Kubernetes node
start datetime-stamp marking the beginning of a run
stop datetime-stamp marking the end of a run

threads total # of threads used
memory_requests Min bytes of memory requested

cpu_usage total CPU usage seconds
mem_usage Max bytes of memory used

By accessing the BurnPro3D API, we can retrieve data

about individual ensembles of simulation runs generated using

the QUIC-FIRE model. This paper deals with two different

classes of data relevant to BurnPro3D simulations: first are

the model input data features (weather and atmospheric data,

ignition and fuel conditions, geospatial data) for BP3D models;

second are performance data (runtime, CPU usage, memory

usage, storage I/O, network usage) generated during a Burn-

Pro3D ensemble run.

Each BP3D ensemble is hosted on one or more Kubernetes

nodes, where simulation runs are hosted on different pods

in the node. The performance data is then stored as time

series data on a Nautilus server, where it can be queried

using PromQL (a querying language for Prometheus servers in

Nautilus) and visualized on a Prometheus web user interface

and/or Grafana dashboard.

Prior to retrieving performance data, we store the following

identifiers for each BP3D run: the set of all input parameters

passed into the simulation, the unique and corresponding

ensemble IDs (i.e., the pod/node pair in Kubernetes), and

total simulation runtime. Once these identifiers are stored,

we proceed to collect the start/end timestamps and input

parameter values for each run per ensemble. This data set

will later be used as training data for performance optimizing

AI/ML methods. Occasionally, a simulation run will fail, as

indicated in the data by NA timestamps in the start, end, or

total simulation time categories. We chose not to include failed

runs in the final training data set. Table I describes input and

output features collected after a simulation run of BurnPro3D,

and Table II describes performance features retrieved during

the run.

We can then retrieve the performance data that was collected

and stored in our Nautilus server during each simulation

run, and pre-process the JSON-formatted data to achieve

tabular data sets suitable for basic AI/ML models. For our

experiments, we are focusing on resource consumption over

the duration of a BP3D simulation run. So, we query for

the minimum memory requested for each pod, the total CPU

usage, and total memory usage during the time range of each

run. Total CPU usage and memory usage of a BP3D simulation

will be the target variables that we want to predict using

AI/ML modeling methods. We also collect the partial CPU and

memory usage of a run from the start time until certain time

periods (either predetermined or pseudo-random) to represent

refreshed prediction times. This data will then be used with

an AI/ML approach to predict the performance consumption

metrics of the entire duration of each run.

B. Predictive Model Design

Having assembled an AI-ready data set, we now want

implement a predictive model to evaluate the performance of

BP3D simulations. This stage follows a standard experimental

procedure of: 1) choosing a predictive modeling method, 2)

data pre-processing and feature analysis, and 3) model fitting,

training, and testing.

We have two target features in our data to indicate resource

utilization during a given simulation run: total CPU usage (as

a percentage of total CPU capacity) and total memory usage

(as a percentage of total memory available). Before training

the model, we calculated Pearson correlation coefficients to

determine which of the variables (which consist of BP3D

simulation input parameters and resource consumption data

collected from a BP3D run) in our data set were most strongly

indicative of changes in resource utilization. Figure 2 shows

the correlation matrix for our assembled data set.

We select features that are strongly correlated (i.e., with a

Pearson coefficient > .5) with CPU Usage and/or Memory

Usage. We then proceed to the model fitting stage, which

would resemble the linear regression use case described in

Section III.

C. User Experience Design

We consider two potential implementations for determining

how users can interact with our predictive modeling workflow.

One implementation would automatically refresh model pre-

dictions at set time intervals. To do this, we would automate

queries to retrieve performance data of the current simulation

over set time ranges (e.g. from the start of the run until 5

minutes in), and then rerunning the predictive model, taking

into account the most recent query results in order to obtain

an updated prediction of resource utilization over the entire

simulation run.

A second potential implementation would enable users to

refresh performance predictions at any time point after the

model has started running, and then continue to update the

prediction as desired. There is a brief time period where

the run has started, but the user is not able to request a

prediction, as it takes time for data to be put onto Kubernetes

servers. Our approach is to wait 45 seconds after the run starts,

then automatically refresh the prediction. From then onwards,

we allow the user to refresh the prediction as desired. This

design approach would be similar to the previously described
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Fig. 2: Pearson correlation coefficients for CPU and Memory

Usage.

implementation, except that updated performance data would

only be queried when/if the user indicates, rather than at set

time intervals. Using this approach, the data collected at each

model refresh would consist of performance metrics from the

start time of the simulation to the refresh time. The data

collected from the start until the refresh time would be used

to obtain an updated prediction of resource utilization over the

entire simulation run. We simulate these refresh times in our

training data by inserting duration columns (like duration t2

from Figure 2) and querying from the start time until the du-

ration time, generating data such as transmitted packages t2.

We feed these into the model to predict the final resource

consumption metrics.

The decision ultimately centers on balancing user expe-

rience and the effectiveness of model training. In the first

implementation, the model is trained at consistent time in-

tervals, which could improve its ability to recognize patterns

in BP3D resource consumption, and as a result, enhance

prediction accuracy. However, this implementation might neg-

atively impact the user experience due to limited user control

and potential frustration arising from the passive nature of

updates. Conversely, the second approach offers the user

greater flexibility, allowing them to update predictions as

needed and providing a more interactive experience. While this

approach might introduce complexities in model performance,

we could potentially mitigate these with issues with strategic

data manipulation—such as using a ratio of refresh time to

resource metrics instead of analyzing these metrics separately.

This ratio is shown in Figure 2 with the t1 ratio and t2 ratio

metrics. A hybrid approach, integrating the consistent training

intervals of the first method and the user-initiated updates

of the second could also be considered. This would provide

a more balanced approach, though its increased complexity

could result in a less intuitive user experience.

V. EARLY RESULTS

In the initial stages of the workflow, we retrieve resource

consumption data from over 900 BP3D runs. The retrieved

data will include performance statistics under four distinct

categories: CPU usage, memory usage, network usage, and

storage I/O. Post-processing, the tabular data will describe

performance features for each BP3D run. In addition to

the unique pod/node IDs for each simulation run, the final,

cleaned performance database will contain the features listed

in Tables III - VI.

The next stage of the workflow (AI/ML modeling), outputs

predictions of total CPU usage (in seconds) and memory usage

(in bytes) during a BurnPro3D run. To demonstrate possible

TABLE III: CPU Quota

Feature Name Description
CPU Usage total CPU usage seconds

CPU Requests number of CPU cores requested
CPU Requests % (CPU user time) / (total CPU time requested)

CPU Limits maximum capacity for CPU usage
CPU Limits % (CPU user time) / (total CPU time limit)
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TABLE V: Network Usage

Feature Name Description
Receive Bandwidth network bandwidth for receiving bytes
Transmit Bandwidth network bandwidth for transmitting bytes
Received Packets # of packets received in a run

Transmitted Packets # of packets transmitted in a run
Received Packets Dropped # of received packets dropped in a run

Transmitted Packets Dropped # of transmitted packets dropped in a run

TABLE VI: Current Storage IO

Feature Name Description
IO (Reads) # of I/Os read in a run
IO (Writes) # of I/Os written in a run

IO (Reads+Writes) # of I/Os read and written in a run
Throughput (Read) bytes of throughput read during the run
Throughput (Write) bytes of throughput written in the run

Throughput (Read+Write) bytes of throughput read/written in a run

results at this stage, we return to the use case application

of linear regression introduced in Section III. For our linear

regression model, we selected training features based on the

feature analysis results described in Section IV-B. Figure 3

shows the preliminary results of a linear regression model

using sample performance data retrieved from BurnPro3D

runs.

The linear regression model predicted CPU and memory

usage with R-squared error rates of 0.70626 and 0.9221,

respectively. However, given the shortage of training and

testing data at this stage of our research, there are too few data

points to obtain accurate or generalizable predictions through

linear regression, and are currently working towards generating

and preparing sufficient amounts of BP3D data in order to

develop more robust AI/ML models. For the purposes of this

paper, our demonstrated AI-readiness and AI/ML modeling

pipelines are fundamental building blocks of an early workflow

architecture.

VI. CONCLUSION & FUTURE WORKS

We have presented our approach and early results of an

integrated AI/ML workflow for performance analysis of the

BurnPro3D fire management platform. Our use-case can be

applied for the integration of AI-ready data preparation and

AI/ML predictive modeling techniques in an end-to-end sci-

entific workflow. where the use-case presented in this paper

limits the use of ML/AI to identify relationships between

BP3D input parameters and total resource consumption, our

ongoing work aims to also optimize resource consumption for

the purpose of mitigating uncertainty and improving accuracy

of BP3D outputs. This work is part of a broader effort

towards integrating AI/ML-driven methods for performance

optimization in large cyberinfrastructures, namely the in-

progress National Data Platform project. Immediate extensions

of this work include the incorporation of a runtime prediction

modeling stage into the current workflow, and the introduction

of end-to-end uncertainty quantification metrics in order to

align our work with FAIR data management standards for

scientific research.
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TABLE IV: Memory Quota

Feature Name Description
Memory Usage number of bytes of memory usage

Memory Requests minimum number of bytes requested
Memory Requests % (memory usage) / (memory requests)

Memory Limits maximum capacity for memory usage
Memory Limits % (memory usage) / (memory limits)

Memory Usage (RSS) RSS bytes used
Memory Usage (Cache) CPU cache memory used
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