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Abstract—Reliable performance metrics are necessary prereq-
uisites to building large-scale end-to-end integrated workflows
for collaborative scientific research, particularly within context
of use-inspired decision making platforms with many concurrent
users and when computing real-time and urgent results using
large data. This work is a building block for the National
Data Platform, which leverages multiple use-cases including the
WIFIRE Data and Model Commons for wildfire behavior model-
ing and the EarthScope Consortium for collaborative geophysical
research. This paper presents an artificial intelligence and ma-
chine learning (AI/ML) approach to performance assessment and
optimization of scientific workflows. An associated early AI/ML
framework spanning performance data collection, prediction and
optimization is applied to wildfire science applications within
the WIFIRE BurnPro3D (BP3D) platform for proactive fire
management and mitigation.

Index Terms—Cyberinfrastructure, Workflows, Performance
Analysis, Artificial Intelligence, Machine Learning

I. INTRODUCTION

Scientific application workflows have become a key tool
in natural disaster mitigation and response. Real-time sensor
and satellite data now provide invaluable resources for urgent
science analytics to be conducted with remarkable speed
and precision. Workflows and larger cyberinfrastructures (Cls)
powered by such data can deliver critical knowledge about im-
minent natural hazards such as wildfires [1], earthquakes [2],
and volcanic eruptions [3].

However, the vast influx of raw and pre-processed data from
geo-distributed sources presents challenges to the design of
scalable cyberinfrastructures for data to knowledge workflows,
thus heightening the need for developing a computing contin-
uum of integrated cloud-to-edge resources [4]. A computing
continuum especially enables novel implementations of urgent
application workflow with particular attention to efficient data
processing, and reliable but timely data to knowledge transfer
to support urgent decision-making [5].
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Earlier works presented the WIFIRE cyberinfrastructure of
integrated end-to-end workflows for wildfire behavior model-
ing [6], as well as a use case of the computing continuum
to support data-driven workflows for air quality prediction to
manage wildfire impacts [7]. The WIFIRE Commons itself
is one such use-case for the National Data Platform project,
which will leverage the computing continuum to democratize
scientific data access and analysis through a national cyberin-
frastructure [8]. Fig 1 outlines an early performance pipeline
for the National Data Platform (NDP).
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Our work particularly addresses the issue of performance
optimization for the WIFIRE-powered BurnPro3D (BP3D)
platform [9], [10]. BP3D is a decision support platform
to inform and optimize prescribed burn planning for wild-
fire management. The platform works in tandem with other
WIFIRE frameworks, namely QUIC-Fire fire and atmospheric
models and FastFuels 3D fuel structure models, in order to
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identify environmental conditions and ignition patterns that
are optimal for prescribed burns.

BP3D is a user-facing tool for geographically distributed
land managers and fire planners, and is applied in a variety
of computing environments with different capabilities. In this
paper, we present preliminary steps towards a performance
prediction framework that will be used by BP3D users to
assess the necessary resource provisions to run BP3D given
environmental and fuel data inputs. We present a performance
framework for integrating data processing and AI/ML tech-
niques in order to predict resource consumption during BP3D
runs, and thereby improve the scalability and reliability of
underlying BP3D data workflows. We implement a data pro-
cessing architecture to collect and prepare performance data
for AI/ML analysis, and demonstrate examples of predictive
modeling techniques for performance evaluation and provision
of our Al-driven data workflows. This is part of a larger
work to optimize sub-systems for integrated end-to-end data
cyberinfrastructures, which is critical to enabling efficient data
processing and modeling across the computing continuum.

The rest of the paper is structured as follows: Section II
discusses related works in the existing scientific literature,
Section III describes a use case application of our work-
flow architecture, Section IV describes our methodological
approach and design, Section V demonstrates early results of
our framework, and Section VI summarizes conclusions and
future endeavors of this work.

II. RELATED WORKS

Large-scale data cyberinfrastructures are next generation
platforms for collaborative research workflow and data shar-
ing. Beckman et al. [11] highlights the need for performance
optimization across the computing continuum. Current case
studies for scalable CIs include the Virtual Data Collaboratory
for interdisciplinary data and science sharing presented by
Parashar et al. [8], and the EarthScope [3] framework for open
access, real-time geophysical data, modeling, and educational
services. Our work also draws from contributions in distributed
and multimodal data architectures such as the Quantum Data
Hub presented by Purawat et al. [12] and the AWESOME
polystore using open-knowledge networks (OKNs) presented
by Dasgupta & Gupta [13].

Nguyen et al. [14] presented methods for integrating ma-
chine learning techniques in scientific workflow systems to
evaluate accuracy and scalability. As described in Parashar et
al. [8], the GeoSciFramework (commonly known as Earth-
Scope) is one such case study for scalable architectures of
scientific workflows and integrative machine learning envi-
ronments that operate with continuously streaming geodetic
and seismic data. However, an existing key problem area
in developing scalable architectures for integrated machine
learning and scientific workflows is developing knowledge
management techniques to assimilate and prepare data from
sources for AI/ML analysis. This concept is also referred
to as the “Al-readiness” of data. Al-readiness is especially
important for urgent computing applications such as natural
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hazard modeling and prediction-making. Baru et al. [15] are
currently addressing the challenge of finding and matching Al-
ready data and models in an integrated platform, while also fol-
lowing guidelines for FAIR [16] for data provenance. Holding
scientific work to FAIR data management principles (where
FAIR stands for Findability, Accessibility, Interoperability,
and Reusability) is a key step to ensuring the responsible
deployment of Al models and other data services.

By building upon existing work in integrated AI/ML and
scientific workflow architectures as well, this paper will further
previous research towards global, integrated cyberinfrastruc-
tures that enable equitable data-driven technology sharing.

III. WORKFLOW USE CASE

The use case application described in this section was
created to predict total resource consumption of BurnPro3D
simulations for prescribed burns and wildfire mitigation [9].
An execution of BP3D takes a single set of environmental
input data and runs an ensemble of simulations over multiple
Kubernetes servers. We created an integrated ML/AI workflow
that retrieves the input parameter values given to a BP3D run
and resource consumption data that is generated throughout
the run and stored on Nautilus servers. The workflow then
takes a linear regression approach to predicting total CPU and
memory usage of a BP3D run.

For the purposes of this paper, the chosen machine learning
method (linear regression) is rather arbitrary, as our intentions
at this stage of research are to demonstrate a functional data-
driven pipeline for AI/ML performance analysis, as opposed
to choosing the most accurate or robust modeling approach for
the task. So, we used a basic linear regression implementation
with default model parameter values made accessible using
the popular Python package Scikit-Learn. In future extensions
of this work, we plan to conduct more extensive sensitivity
analyses and parameter estimation techniques in order to im-
plement modeling techniques that better fit the given data. The
results of this particular use case are discussed in Section V.

IV. APPROACH

In this section, we describe our methodology for retrieving
resource consumption data and integrating AI/ML-informed
decision-making to analyze overall performance of the Burn-
Pro3D architecture for prescribed burn modeling. We describe
two primary objectives in developing our AI/ML solution:
1) data preparation for Al-readiness (Section IV-A), and 2)
integration of predictive ML/AI modeling methods into the
scientific workflow architecture of BP3D (Section 1V-B).

A. Al-Ready Data Preparation

We first discuss the steps that were taken towards reaching
our Al-readiness objective. Data assimilation and preparation
requirements will vary depending on the form of ML/AI
analysis being applied. The use case we describe in this paper
demonstrates results obtained through linear regression. So, in
this section, we discuss the steps taken to achieve data that is
Al-ready in the specific context of linear regression modeling.
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TABLE I: BurnPro3D Inputs/Outputs

Feature Name
surface_moisture
wind_moisture
wind_direction
wind_speed
sim_time
timestep
run_max_mem_rss_bytes
area
runtime

Description

surface fuel moisture

fuel moisture of surface winds

direction of surface winds

speed of surface winds

estimated minimum runtime (seconds)
elapsed seconds between simulation steps
maximum RSS bytes allowed per run
calculated regional surface area

time for whole run simulation (seconds)

TABLE II: Performance Outputs

Feature Name Description
pod unique ID of a Kubernetes pod
node unique ID of a Kubernetes node
start datetime-stamp marking the beginning of a run
stop datetime-stamp marking the end of a run
threads total # of threads used

memory_requests
cpu_usage
mem_usage

Min bytes of memory requested
total CPU usage seconds
Max bytes of memory used

By accessing the BurnPro3D API, we can retrieve data
about individual ensembles of simulation runs generated using
the QUIC-FIRE model. This paper deals with two different
classes of data relevant to BurnPro3D simulations: first are
the model input data features (weather and atmospheric data,
ignition and fuel conditions, geospatial data) for BP3D models;
second are performance data (runtime, CPU usage, memory
usage, storage 1/O, network usage) generated during a Burn-
Pro3D ensemble run.

Each BP3D ensemble is hosted on one or more Kubernetes
nodes, where simulation runs are hosted on different pods
in the node. The performance data is then stored as time
series data on a Nautilus server, where it can be queried
using PromQL (a querying language for Prometheus servers in
Nautilus) and visualized on a Prometheus web user interface
and/or Grafana dashboard.

Prior to retrieving performance data, we store the following
identifiers for each BP3D run: the set of all input parameters
passed into the simulation, the unique and corresponding
ensemble IDs (i.e., the pod/node pair in Kubernetes), and
total simulation runtime. Once these identifiers are stored,
we proceed to collect the start/end timestamps and input
parameter values for each run per ensemble. This data set
will later be used as training data for performance optimizing
AI/ML methods. Occasionally, a simulation run will fail, as
indicated in the data by NA timestamps in the start, end, or
total simulation time categories. We chose not to include failed
runs in the final training data set. Table I describes input and
output features collected after a simulation run of BurnPro3D,
and Table II describes performance features retrieved during
the run.

We can then retrieve the performance data that was collected
and stored in our Nautilus server during each simulation
run, and pre-process the JSON-formatted data to achieve
tabular data sets suitable for basic AI/ML models. For our
experiments, we are focusing on resource consumption over

80

the duration of a BP3D simulation run. So, we query for
the minimum memory requested for each pod, the total CPU
usage, and total memory usage during the time range of each
run. Total CPU usage and memory usage of a BP3D simulation
will be the target variables that we want to predict using
AI/ML modeling methods. We also collect the partial CPU and
memory usage of a run from the start time until certain time
periods (either predetermined or pseudo-random) to represent
refreshed prediction times. This data will then be used with
an AI/ML approach to predict the performance consumption
metrics of the entire duration of each run.

B. Predictive Model Design

Having assembled an Al-ready data set, we now want
implement a predictive model to evaluate the performance of
BP3D simulations. This stage follows a standard experimental
procedure of: 1) choosing a predictive modeling method, 2)
data pre-processing and feature analysis, and 3) model fitting,
training, and testing.

We have two target features in our data to indicate resource
utilization during a given simulation run: total CPU usage (as
a percentage of total CPU capacity) and total memory usage
(as a percentage of total memory available). Before training
the model, we calculated Pearson correlation coefficients to
determine which of the variables (which consist of BP3D
simulation input parameters and resource consumption data
collected from a BP3D run) in our data set were most strongly
indicative of changes in resource utilization. Figure 2 shows
the correlation matrix for our assembled data set.

We select features that are strongly correlated (i.e., with a
Pearson coefficient > .5) with CPU Usage and/or Memory
Usage. We then proceed to the model fitting stage, which
would resemble the linear regression use case described in
Section III.

C. User Experience Design

We consider two potential implementations for determining
how users can interact with our predictive modeling workflow.
One implementation would automatically refresh model pre-
dictions at set time intervals. To do this, we would automate
queries to retrieve performance data of the current simulation
over set time ranges (e.g. from the start of the run until 5
minutes in), and then rerunning the predictive model, taking
into account the most recent query results in order to obtain
an updated prediction of resource utilization over the entire
simulation run.

A second potential implementation would enable users to
refresh performance predictions at any time point after the
model has started running, and then continue to update the
prediction as desired. There is a brief time period where
the run has started, but the user is not able to request a
prediction, as it takes time for data to be put onto Kubernetes
servers. Our approach is to wait 45 seconds after the run starts,
then automatically refresh the prediction. From then onwards,
we allow the user to refresh the prediction as desired. This
design approach would be similar to the previously described
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implementation, except that updated performance data would
only be queried when/if the user indicates, rather than at set
time intervals. Using this approach, the data collected at each
model refresh would consist of performance metrics from the
start time of the simulation to the refresh time. The data
collected from the start until the refresh time would be used
to obtain an updated prediction of resource utilization over the
entire simulation run. We simulate these refresh times in our
training data by inserting duration columns (like duration_t2
from Figure 2) and querying from the start time until the du-
ration time, generating data such as transmitted_packages_t2.
We feed these into the model to predict the final resource
consumption metrics.

The decision ultimately centers on balancing user expe-
rience and the effectiveness of model training. In the first
implementation, the model is trained at consistent time in-
tervals, which could improve its ability to recognize patterns
in BP3D resource consumption, and as a result, enhance
prediction accuracy. However, this implementation might neg-
atively impact the user experience due to limited user control
and potential frustration arising from the passive nature of
updates. Conversely, the second approach offers the user
greater flexibility, allowing them to update predictions as
needed and providing a more interactive experience. While this
approach might introduce complexities in model performance,
we could potentially mitigate these with issues with strategic
data manipulation—such as using a ratio of refresh time to
resource metrics instead of analyzing these metrics separately.
This ratio is shown in Figure 2 with the _t1_ratio and _t2_ratio
metrics. A hybrid approach, integrating the consistent training
intervals of the first method and the user-initiated updates
of the second could also be considered. This would provide
a more balanced approach, though its increased complexity
could result in a less intuitive user experience.

V. EARLY RESULTS

In the initial stages of the workflow, we retrieve resource
consumption data from over 900 BP3D runs. The retrieved
data will include performance statistics under four distinct
categories: CPU usage, memory usage, network usage, and
storage 1/0. Post-processing, the tabular data will describe
performance features for each BP3D run. In addition to
the unique pod/node IDs for each simulation run, the final,
cleaned performance database will contain the features listed
in Tables IIT - VL.

The next stage of the workflow (AI/ML modeling), outputs
predictions of total CPU usage (in seconds) and memory usage
(in bytes) during a BurnPro3D run. To demonstrate possible

TABLE III: CPU Quota

Description

total CPU usage seconds

number of CPU cores requested

(CPU user time) / (total CPU time requested)
maximum capacity for CPU usage

(CPU user time) / (total CPU time limit)

Feature Name
CPU Usage
CPU Requests
CPU Requests %
CPU Limits
CPU Limits %
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TABLE V: Network Usage

Feature Name Description

Receive Bandwidth
Transmit Bandwidth
Received Packets
Transmitted Packets
Received Packets Dropped
Transmitted Packets Dropped

network bandwidth for receiving bytes
network bandwidth for transmitting bytes
# of packets received in a run

# of packets transmitted in a run

# of received packets dropped in a run

# of transmitted packets dropped in a run

TABLE VI: Current Storage 10

Feature Name Description
IO (Reads) # of 1/Os read in a run
IO (Writes) # of I/Os written in a run
IO (Reads+Writes) # of I/Os read and written in a run
Throughput (Read) bytes of throughput read during the run
Throughput (Write) bytes of throughput written in the run
Throughput (Read+Write) bytes of throughput read/written in a run

results at this stage, we return to the use case application
of linear regression introduced in Section III. For our linear
regression model, we selected training features based on the
feature analysis results described in Section IV-B. Figure 3
shows the preliminary results of a linear regression model
using sample performance data retrieved from BurnPro3D
runs.

The linear regression model predicted CPU and memory
usage with R-squared error rates of 0.70626 and 0.9221,
respectively. However, given the shortage of training and
testing data at this stage of our research, there are too few data
points to obtain accurate or generalizable predictions through
linear regression, and are currently working towards generating
and preparing sufficient amounts of BP3D data in order to
develop more robust AI/ML models. For the purposes of this
paper, our demonstrated Al-readiness and AI/ML modeling
pipelines are fundamental building blocks of an early workflow
architecture.

VI. CONCLUSION & FUTURE WORKS

We have presented our approach and early results of an
integrated AI/ML workflow for performance analysis of the
BurnPro3D fire management platform. Our use-case can be
applied for the integration of Al-ready data preparation and
AI/ML predictive modeling techniques in an end-to-end sci-
entific workflow. where the use-case presented in this paper
limits the use of ML/AI to identify relationships between
BP3D input parameters and total resource consumption, our
ongoing work aims to also optimize resource consumption for
the purpose of mitigating uncertainty and improving accuracy
of BP3D outputs. This work is part of a broader effort
towards integrating AI/ML-driven methods for performance
optimization in large cyberinfrastructures, namely the in-
progress National Data Platform project. Immediate extensions
of this work include the incorporation of a runtime prediction
modeling stage into the current workflow, and the introduction
of end-to-end uncertainty quantification metrics in order to
align our work with FAIR data management standards for
scientific research.
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TABLE IV: Memory Quota

Description

number of bytes of memory usage
minimum number of bytes requested
(memory usage) / (memory requests)
maximum capacity for memory usage
(memory usage) / (memory limits)
RSS bytes used

CPU cache memory used

Feature Name
Memory Usage
Memory Requests
Memory Requests %
Memory Limits
Memory Limits %
Memory Usage (RSS)
Memory Usage (Cache)
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